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Abstract

Supervised Word Sense Disambiguation
(WSD) has been studied intensively for over
three decades. However, disentangling diverse
contexts is still a challenging problem. This
paper addresses the problem and proposes a
Perturbation-based constrained attention net-
work (Pconan) for injecting lexical knowledge
derived from the WordNet. The Pconan allows
modeling beneficial dependencies between the
segments/words within the input sequence with
the mask-attention technique. We incorporate a
perturbation method into our model to mitigate
the overfitting problem resulting from intensive
learning. The experimental results by using a
benchmark dataset show that our method is
comparable to the SOTA WSD methods. Our
source codes are available online1.

1 Introduction

Computational lexicons such as WordNet (George
A. Miller and Miller, 1990) and ACQUILEX (Ed-
ward, 1991) have been popular knowledge re-
sources for NLP tasks. There is a large body of
WSD work based on neural networks that leverage
rich information derived from these resources (Luo
et al., 2018b; Vial et al., 2019; Kumar and Talukdar,
2019; Huang et al., 2019; Blevins and Zettlemoyer,
2020; Bevilacqua and Navigli, 2020; Conia and
Navigli, 2021). They demonstrated that the exter-
nal knowledge base is beneficial to disambiguate
senses. However, it is often the case that the in-
puts are long sequences. It hampers WSD attempts
with external knowledge. Several authors have at-
tempted to alleviate the issue. (Blevins and Zettle-
moyer, 2020) independently embedded the target
word with its surrounding contexts and the dic-
tionary definition of each sense. (Bevilacqua and
Navigli, 2020) extended (Blevins and Zettlemoyer,
2020) method and integrated relational knowledge
into the architecture through a simple additional

1https://github.com/fukumoto-lab/Pconan

sparse dot product operation. Their results by using
a benchmark dataset were beyond 80%.

The attention mechanism is also one of the ma-
jor techniques to capture long-term dependencies
on their sequence (Vaswani et al., 2017). (Luo
et al., 2018a) introduced a co-attention mechanism
to generate co-dependent representations to capture
both word- and sentence-level information. Their
assumption is that lexical knowledge such as gloss
sentences and context sentences can help each other
to highlight the important words within these sen-
tences, while the sense definition candidates do not
all at once take into account during the training pro-
cess. Several authors focused on the issue (Wang
and Wang, 2021). (Barba et al., 2021b) proposed a
joint-learning that learns the input context and tar-
get word definitions jointly. Subsequently, (Barba
et al., 2021a) attempted to process the disambigua-
tion of a target word to be conditioned not only on
its context but also on the explicit senses assigned
to the surrounding words, while their model has
not leveraged external lexical knowledge.

Inspired by the previous work mentioned above,
we propose a method to inject lexical knowledge,
i.e. example sentences from WordNet to effectively
learn a context sentence and lexical knowledge
simultaneously. Our model called Perturbation-
based constrained attention network (Pconan) al-
lows the modeling of dependencies between the
segments/words within the input sequence with the
mask-attention technique. The technique makes
it possible to concentrate on learning beneficial
dependencies only, entirely discarding the others.
However, this causes an overfitting problem, espe-
cially when the available training data is limited. To
alleviate this issue, the Pconan utilizes the perturba-
tion technique (Sato et al., 2019). More specifically,
we add noises to the training data and the model
learns sense distinctions of the same word by using
these noisy data to assign the correct label.
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<def> the world of scholarship and science .

The social and intellectual <d> world </d> . 

[CLS]

[SEP]

<def> people in ... as a whole.

<def> the world of scholarship and science.

<def> people in ... shared interest .

<def> he is a hero in the eyes of the public.

<def> belonging to the modern era; since the Middle Ages.

[SEP]

<def> he is a hero in the eyes of the public.

The social and intellectual <d> world </d> . 

<def> belonging to the modern era; since the Middle Ages.

<def> people in ... shared interest .

<def> people in ... as a whole.

Words with attention weights

(2) Transferring information

<def>

The social and intellectual <d> world </d> . 

<def> people in ... as a whole.

<def>

people in ... shared interest .
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The social and intellectual <d> world </d> . <def> people in ... shared interest .

<def> people in ... as a whole.

<def> the world of scholarship and science.
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<def> he is a hero in the eyes of the public. <def> belonging to the modern era; since the Middle Ages.
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Figure 1: Identifying keyword and transferring information

2 Framework

2.1 The WSD task definition

For each of the candidate definitions (CDs), our
model utilizes an example sentences (ESs) pro-
vided by the WordNet.

Let SItw(i) be a sense inventory, tw(i)
be a current, i-th target word appeared in
the context sentence c. Let also Dtw(i) =
<def>tw(i)g11 · · · tw(i)g1|g1|<def>es(i)s11 · · · es(i)s1|s1|
<def>tw(i)gN1 · · · tw(i)gN|gN | <def> es(i)sN1 · · · es(i)sN|sN | be
the CDs for tw(i), along with ESs, where tw(i)gkj
and es(i)skj be the j-th word of the k-th CD gk,
and ES sk (1 ≤ k ≤ N ), respectively. N is the
total number of CDs and <def> stands for the start
of each segment. Let also D̃ = s̃1,· · · , s̃i−1 be a
sequence concatenating the context definitions of
the senses previously assigned to w̃1,· · · , w̃i−1.

For a given c including <d>tw(i)</d>, we create
an input sequence [CLS] c [SEP] Dtw(i) D̃ [SEP].
Here, the inputs to each encoder are padded with
DEBERTa-specific start and end symbols: [CLS]
and [SEP] (He et al., 2021). The goal of the WSD
task is for the input sequence, to find the correct
definition g̃ ∈ SItw(i).

2.2 Constrained Attention Network

Our model applies (1) identifying keywords, and
(2) transferring information to learn relevant con-
textual features for WSD. The top of Figure 1 il-
lustrates an example of the input sequence X , i.e.
[CLS] c [SEP] Dtw(i) D̃ [SEP].

For the input sequence X = [CLS] c [SEP]Dtw(i)

D̃ [SEP], we apply the so-called hard attention tech-
nique (Xu et al., 2015; Shen et al., 2018) that a
model concentrates solely on learning beneficial
dependencies to identify keywords in the sequence,
entirely discarding the others. The middle picture
of Figure 1 illustrates masked attention for a bi-
dimensional matrix. The words aligned on the
horizontal axis are heads, and those aligned on
the vertical axis are dependents. As illustrated in
Figure 1, we discard some segment pairs, each of
which consists of a head and dependence on the
sequence by masking them as these pairs are not
semantically related to each other and do not in-
clude keywords that are beneficial to identify the
sense of the target word. Table 1 shows pairs that
we masked. For example, (b) pairs of candidate
definitions and example sentences which do not
correspond to each other are masked (purple box
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Head Dependent
(a) Context sentence Example sentence
(b) Candidate definition Different example sentence
(c) Example sentence Different candidate definition
(d) Example sentence Different example sentence

Table 1: Masked attention between head and dependent.

in Figure 1). The output is a sequence of words
with attention weights. In Figure 1, keywords hav-
ing high weight values are marked in red. From
the result of keyword identification, for each candi-
date definition, we created a sequence for the target
candidate definition starting from <def> as follows:

• Context sentence segment perceived as imme-
diately before the CD segment. ((i) in Figure
1)

• <def> of the target CD has two branches. One
is that it witnesses other CDs, their ES, and
context definitions. ((ii) in Figure 1) Another
is that its ES. Relative position of the special
token <def> is set to 1. ((iii) in Figure 1)

As shown in “(2) Transferring information” of Fig-
ure 1, the structure provides a method to leverage
the relative positions of <def> including keywords
representation to learn a model more accurately.

2.3 Model Architecture
Figure 2 illustrates an overview of our model. Let
E = [e1, e2, · · · , eL] ∈ Rd×L refers to the con-
catenation of word/token embeddings for the input
sequence X , and Erpm ∈Rd×L be relative position
matrix of X . Here, ek and its relative position is
obtained by DEBERTa encoding. d refers to the
dimension of embedding, and L is the number of
words/tokens in X . We further utilize a special
symbol in X so that the model can capture the dif-
ference between the context sentence and others.
Let also rk ∈ Rd be a perturbation vector for the
k-th word xk in the input X . The perturbed input
embedding êk is computed based on the stochastic
gradient descent as follows:

êk = ek + rk,

rk = ϵ
ck

||ck||
,

ck = ▽êkL1(θ), (1)

where ϵ refers to a hyperparameter that controls
the norm of the perturbation and L1(θ) indicates
cross-entropy loss which is given by:
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Figure 2: Pconan model architecture.

L1(θ) = −
M∑
i=1

Ni∑
j=1

yij log ŷij , (2)

where M is the total number of target words in
the training data, and Ni is the word sense num-
ber of the i-th target word, yij and ŷij are true
and predicted probability of the i-th target word
that belongs to the j-th candidate definition. As
shown in Figure 2, for each embedding ek, we ap-
ply Eq.(1) and obtain perturbed sequence. Let Ê
= [ê1, ê2, · · · , êL] ∈ Rd×L be the concatenation
of perturbed sequence. Our constrained attention
networks aim to learn relevant contextual keywords
for WSD, and finally output attention weights A
for the inputs, Ê and Erpm. We further obtain Â
by applying the mask-attention procedure to A. Ê
is linearly projected and we obtain Vc. We multi-
ply Vc and Â by matrix multiplication. Keyword
information is transferred by this operation. The
result is fed into a feed-forward network, combined
with layer normalization and residual connection.
Each encoder layer takes the output of the previous
layer as input and the number of layers is Ñ . We
obtain the matrix H = [h1, h2, · · · , hL] ∈ Rd×L as
an output of the encoder. Each <def> vector that
corresponds to the start of the candidate definition
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is extracted from the matrix H, passed to the fully
connected layer and finally, we obtain the proba-
bility score ŷij by the softmax function. The final
loss L(θ) obtained by our model is given by:

L(θ) = L1(θ) + αL2(θ),

L2(θ) =
1

|D|
∑
D

KL(p(·|X; θ)||p(·|X, r; θ)),

(3)
where D refers to the number of training instances.
α indicates a hyperparameter. KL(p||q) denotes
KL-divergence between distributions p and q, and r
shows a concatenated vector of rk for all xk (1 ≤ k
≤ L). We train the whole architecture to minimize
L(θ). Similar to (Barba et al., 2021a) approach, at
training time, we use teacher forcing on the context
definitions, and at prediction time, we use a greedy
decoding strategy and the model deems g̃ as the
most likely definition for a current target word.

3 Experiments

3.1 Dataset

We performed the experiments on English all-
words fine-grained WSD datasets (Alessandro Ra-
ganato, 2017b), using SemCor (George A. Miller
and Bunker, 1993) as the training corpus. The
datasets are Senseval/SemEval data consisting of
Senseval-2 (SE2) (Edmonds and Cotton, 2001),
Senseval-3 (SE3) (Snyder and Palmer, 2004),
SemEval-07 (SE07) (Sameer Pradhan and Palmer,
2007), SemEval-13 (SE13) (Roberto Navigli and
Vannella, 2013), and SemEval-15 (SE15) (Moro
and Navigli, 2015). Similar to other related work,
we chose SE07 as the development set.

3.2 Model settings and evaluation metrics

We utilized the hyperparameters with the best per-
formance on SE07 as follows: The dimension of
word embedding d was 1,024. The number of max-
imum words per batch was 1,536. The gradient
accumulation and the maximum number of steps
were 8.0 and 25,000, respectively. The number of
layer Ñ of DEBERTa was 24 and the learning rate
was 3e-6. The initial perturbation was set to 1e-2
and the ϵ value in Eq.(1) was 3e-6. α in Eq. (3) was
set to 1.0. We used Rectified Adam as optimizer
(Weijie Liu, 2020). The experiments were con-
ducted by using Pytorch on Nvidia GeForce RTX
A6000 (48GB memory). We used the F1-score
following (Alessandro Raganato, 2017b).

3.3 Comparison Models

We compared our model with the SOTA meth-
ods; MSF-SemCor as a frequency based approach,
SVC (Vial et al., 2019), GlossBERT (Huang et al.,
2019), ARES (Bianca Scarlini, 2020), EWISER
(Bevilacqua and Navigli, 2020), BEM (Blevins and
Zettlemoyer, 2020), WMLC (Conia and Navigli,
2021), HCAN (Luo et al., 2018a), and KELESC
(Zhang et al., 2022) as a knowledge source integra-
tion approach, SACE (Wang and Wang, 2021), ES-
CHER (Barba et al., 2021b), and ConSec (Barba
et al., 2021a) as a joint learning approach.

3.4 Results

The results are summarized in Table 2. The perfor-
mance of joint-learning approaches was better than
those of frequency-based and knowledge source
integration approaches in all test sets and part-
of-speech (POS) patterns. This indicates that the
model learned the input context and target word
definitions jointly are effective for disambiguation.
Our model was statistically significant compared
with the second-best method for test sets and POS
patterns except for SE3, 15, Adj, and Adv.

3.5 Ablation study

We conducted ablation studies to empirically exam-
ine our mask-attention technique and perturbation
(Prtb). Table 3 shows the results. When we did
not utilize the mask-attention and perturbation pro-
cedures, the F1-score was 82.1% which is no sig-
nificant difference compared with ConSec (82.0%)
even though ESs are injected. When we applied the
mask-attention technique, the improvement was
0.5% at maximum, 82.6%. Among masked atten-
tions, there is also no statistically significant dif-
ference between the masked attention (a) context
sentence and ES pairs (82.5%) and the combination
of (b)∼ (d) (82.3%). However, we gained 0.6% im-
provement by using (a) ∼ (d) and further gained
0.4% improvement by perturbation. From these
observations, we can conclude that the perturba-
tion approach helps the mask-attention procedure
to boost the WSD task performance.

3.6 Qualitative analysis of errors

We performed an error analysis to provide feedback
for further improvement of our method. The num-
ber of errors for each POS was 590 noun words,
420 for a verb, 120 for an adjective, and 38 for
an adverb, 1,168 words in all. The average senses
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Dev Set Test Sets Concatenation of all Datasets
Model SE7 SE2 SE3 SE13 SE15 Noun Verb Adj Adv ALL

Se
m

C
or

MFS-SemCor 54.5 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5
SVC (hypernyms) 69.5 77.5 77.4 76.0 78.3 79.6 65.9 79.5 85.5 76.7
GlossBERT 72.5 77.7 75.2 76.1 80.4 79.8 67.1 79.6 87.4 77.0
ARES 71.0 78.0 77.1 78.7 75.0 80.6 68.3 80.5 83.5 77.9
EWISER 71.0 78.9 78.4 78.9 79.3 81.7 66.3 81.2 85.8 78.3
BEM 74.5 79.4 77.4 79.7 81.7 81.4 68.5 83.0 87.9 79.0
WMLC 72.2 78.4 77.8 76.7 78.2 80.1 67.0 80.5 86.2 77.6
HCAN - 72.8 70.3 68.5 72.8 72.7 58.2 77.4 84.1 71.1
KELESC 76.7 82.2 78.1 82.2 83.0 84.3 69.4 84.0 86.7 81.2
SACE 76.3 82.4 81.1 82.5 83.7 84.1 72.2 86.4 89.0 81.9
ESCHER 76.3 81.7 77.8 82.2 83.2 83.9 69.3 83.8 86.7 80.7
ConSec 77.4 82.3 79.9 83.2 85.2 85.4 70.8 84.0 87.3 82.0
Pconan 79.8 83.8 81.1∗ 83.9 84.7∗ 85.6 73.8 84.8 89.0∗ 83.0

Table 2: Performance comparison: The best score is in boldface and the second best is underlined. ∗ denotes the
method (if any) whose score is not statistically significant compared to the best one. We used a t-test, p-value < 0.01.

Model ALL
ConSec 82.0
w/o Prtb & w/o (a), (b), (c), and (d) 82.1∗

w/o Prtb & w/o (b), (c), and (d) 82.5∗

w/o Prtb & w/o (a) 82.3∗

w/o Prtb 82.6
Pconan 83.0

Table 3: Ablation test over the Pconan components:
“w/o Prtb” refers to the result without pertubation. ∗
denotes the method whose score is not statistically sig-
nificant compared to the baseline, ConSec.

for these POS words were 6.7 for nouns, 12.2 for
verbs, 5.9 for adjectives, and 5.2 for adverbs. We
randomly picked up 100 words from 1,168 and
found that there are mainly two types of errors:

1. Sense distribution: When the sense distri-
bution of the target word in the training data is
unbalanced, most of the target words tend to be
assigned to the sense of having much training in-
stances. This was the most frequent error type and
51 words were classified into this type.

2. The similarity between candidate defini-
tions: When words that appear one candidate defi-
nition are semantically similar or the same as those
of other candidate definitions, it is difficult to model
beneficial dependencies to identify keywords. For
example, in Figure 3, as “move forward” appears
in both candidate definitions and example sentence,
only a few words such as “car” and “seat” are clues
to predict beneficial dependencies which causes an
error. 26 words were classified into this type.

We focused on example sentences extracted from
WordNet as lexical knowledge. (Vial et al., 2019;
Conia and Navigli, 2021) utilized the semantic re-
lationships between senses such as synonymy, hy-
pernymy, and hyponymy derived from the Word-

[Context sentence]
Skilled ringers use their wrists to <d> advance </d>

or retard the next swing so that one bell can swap places
with another in the following change.

[Candidate sense & definition & example sentence]
advance#1 <def> move forward, also in the

metaphorical sense. <def> Times
marches on.

advance#5 <def> cause to move forward <def>
Can you move the car seat forward?

Figure 3: An example with similar context definitions:
The correct sense in <d> advance <d> is advance#5.

Net and reported that the external knowledge con-
tributes to improving WED performance. This is
definitely worth trying with Pconan.

4 Conclusion

We presented WSD approach for injecting lexi-
cal knowledg from the WordNet with perturbation-
based constrained attention network. The compara-
tive results with the SOTA WSD methods showed
the effectiveness of our method. Future work will
include: (i) evaluating our model by using other
lexical knowledge such as the semantic relationship
between senses, (ii) investigating other perturbation
techniques (Gal and Ghahramani, 2016; Wang and
Wang, 2021) to improve the performance, and (iii)
applying methods (Liu et al., 2020; Xiong et al.,
2021) to reduce the overall self-attention complex-
ity for further advantages in efficacy.
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