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Abstract

Extractive Question Answering (EQA) is a
fundamental problem in Natural Language
Understanding, aiming at answering given
questions via extracting a contiguous sequence
or span of words from a passage. Recent work
on EQA has achieved promising performance
with the help of pre-trained language models,
for which Masked Language Modeling (MLM)
is usually adopted as a pre-training task to pre-
dict masked tokens. This paper revisits MLM
and proposes a simple yet effective method
to improve the EQA performance, termed
the [Mask]-for-Answering method (M4A).
Specifically, three masking strategies are first
introduced, which produce masked copies of the
original passages. Instead of predicting masked
tokens as in MLM, both original samples and
masked copies are utilized simultaneously for
training the EQA model. Importantly, a discrep-
ancy loss is further incorporated to ensure that
masked copies remain semantically close to
the originals. As such, M4A is able to produce
robust embeddings for both original and masked
samples and infer correct answers even with
masked context. Experimental study on several
highly-competitive benchmarks consistently
demonstrates the superiority of our proposed
method over existing methods. M4A also
achieves strong performance in low-resource
settings and out-of-domain generalization.

1 Introduction

Extractive Question Answering (EQA), a funda-
mental task for Natural Language Understanding,
refers to the process of identifying the answer span
(a sequence of continuous words) over the given
question and passage. Past years have witnessed
a dramatically increasing interest in applications
of Pre-trained Language Models (PLMs) for EQA,
where PLMs are usually adopted as encoders to
form contextual/semantic embeddings for the
∗corresponding author

Limit Context: Portugal has the largest aquarium in Europe, the Lisbon Oceanarium, and the Portuguese have
several other notable organizations focused on science-related exhibits and divulgation, like the state agency

Ciência Viva, a programme of the Portuguese Ministry of Science and Technology to the promotion of a scientific
and technological culture among the Portuguese population, the Science Museum of the University of Coimbra,

the National Museum of Natural History at the University of Lisbon, and the Visionarium.

Question: What is the name of
the largest European aquarium?

Answer: 
Lisbon Oceanarium

Figure 1: An illustration case from SQuAD (1.1) (Fisch
et al., 2019), using the proposed[Mask]-for-Answering
algorithm (M4A) to infer answer(s) from samples with
limit (unmasked) context.

question-passage pair. Abundant evidences indicate
that the strong encoding capability of PLMs has
rapidly advanced the EQA performance, compared
to traditional word embedding methods, such as
GloVe and Word2Vec (Devlin et al., 2019; Joshi
et al., 2020; Liu et al., 2019). Recently, how humans
approaching reading comprehension becomes
a major source of inspiration for enhancing
EQA. There is a rich literature to incorporate the
human-like reading comprehension strategy with
PLMs and achieve remarkable success beyond the
vanilla models, as later shown in Section 2.

Notably, when experienced human readers
perform question reasoning, they could infer the
correct answer using only few sentences (even
some parts of one sentence), instead of the entire
passage (Paris et al., 1983; Yu et al., 2017). As
illustrated in Fig. 1, even with the limit (unmasked)
contexts, one could still predict the correct an-
swer of “Lisbon Oceanarium” to the given
question (of “the name of the largest
European aquarium”). The observation of
humans approaching reading comprehension with
limit (unmasked) contexts is the major source of
inspiration for this paper.

Accordingly, we propose a simple yet effective
mask-training scheme, termed [Mask]-for-
Answering (M4A). Specifically, M4A introduces
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three masking strategies to substitute non-answer
tokens from the original training passage with
[Mask] tokens. Additionally, semantic similarity
is utilized to maintain the semantic closeness
between masked samples and originals. The effec-
tiveness of our training scheme can be intuitively
explained from two perspectives: (1) providing
strong training signals by strategically masking out
potentially-irrelevant contents (non-answer tokens)
and (2) data augmentation by simply perturbing
the original training samples without additional
annotations.

Our method differs from existing methods in the
following perspectives. (1) The [Mask] token is
traditionally utilized to hold out a portion of the
input tokens in pre-training PLMs to predict miss-
ing tokens (Özkan Tan et al., 2023; Yang et al.,
2023). Several studies leverage[Mask] to produce
pseudo passage-question pairs (Ram et al., 2021;
Bian et al., 2021), which is limited by parts of speech
(POS) of masked tokens (usually nouns) and the
objective is still for predicting masked tokens (the
in-domain pre-training). In contrast, M4A directly
employs samples with masked tokens in directly
optimizing the downstream task objective. Addi-
tionally, in M4A non-answer tokens can be masked
regardless their POS. (2) Masked samples also play
a role of data augmentation, and existing augmen-
tation methods either replace words with synonyms
(Ng et al., 2020) or perturb input embeddings (Lee
et al., 2021). The former is limited by the set of avail-
able synonyms, while our method is independent
from synonyms. The latter adds noise on the embed-
ding level (for all tokens) with a prior assumption
of a multivariate Gaussian distribution. In contrast,
M4A performs masking on the token level, and en-
sures (ground-truth) answer tokens unmasked.

The main contributions of our proposed work are
summarized as follows:

• A novel [Mask]-for-Answering method is
proposed to produce robust features and incor-
porate human comprehension skills to infer
answers from samples with masked tokens.

• Three masking strategies are introduced to
produce masked samples, that are trained
simultaneously with original inputs.

• The semantic similarity between original-and-
masked pairs is applied to minimize the noise
conveyed in masked samples.

• Empirically, our proposed M4A method
outperforms recent strong baselines on six

standard benchmarks. Intensive ablation
studies are also conducted to understand the
impact from masking strategies and ratios.
Moreover, M4A also demonstrates a strong
generalizability in the low-resource training
and zero-shot domain adaptation setting.

2 Related work

The Extractive Question Answering (EQA) task
requires a model to learn informative representation
from the context passage, and return a span (continu-
ous words from this passage) that matches the given
question. Usually, Pre-trained Language Models
(PLMs) are adopted as the encoder to estimate
embeddings for the pair of question-passage, which
is followed by a decision layer (i.e., two binary
classifiers to identify the start and end position of
the answer span respectively). Due to the capability
of forming semantic representation for input
questions and passages, PLMs have significantly
advanced the EQA frontier (Devlin et al., 2019;
Joshi et al., 2020; Liu et al., 2022).

Inspired by the remarkable success of PLMs, a va-
riety of improvement methods have been proposed
to further enhance PLMs with human-reading strate-
gies. A block based attention method is proposed
in (Seonwoo et al., 2020), which predicts highly-
relevant context about answers. Another similar
work is found in (Guan, 2022), that introduces the
Block-Skim strategy to identify and skim irrelevant
context blocks by utilizing CNN to for EQA. In Sun
et al. (2019), different-level attention mechanisms
are implemented to simulate the process of
back-and-forth reading, highlighting, and self-
assessment, while Zhang et al. (2020) considers the
reading strategy for multi-round reasoning phrases
of reading-attending-excluding, that is, through
initial scan reading, followed by attended intensive
reading, and concluding with answer exclusion.

In addition to attention-based work, a few
studies employed the data-augmentation strategy
to fine-tune the EQA task, including synthetic
question-answer generation, external knowledge,
and input perturbation. As an example, the
work from (Ram et al., 2021; Bian et al., 2021)
produces synthetic pairs by masking specific words
from the passage and training a model to answer
questions related to those masked words. Yet,
generation-based methods usually suffer from
costly computational resource and have limitations
on masked words (usually nouns) and question
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types (mainly cloze-like). KALA (Kang et al., 2022)
is proposed to integrate the contextual representa-
tion of intermediate PLM layers with related entity
and relational representations (from the external
Knowledge Graph). With knowledge-augmented
representations, KALA improves the performance
of the vanilla PLM on various EQA tasks. Ad-
ditionally, input perturbation is also considered
via the word deletion or synonym replacement
(Wei and Zou, 2019). SSMBA (Ng et al., 2020)
corrupts input sequences via substituting existing
tokens with [Mask] and then reconstructing them.
SWEP (Lee et al., 2021) directly perturbs input
embeddings via adjustable Gaussian noises. Using
both original and perturbed samples, models are
trained to extract token representations to facilitate
the subsequent answering task. By comparison, our
proposed method neither recovers masked tokens
nor perturbs input embeddings. Instead, augmented
samples (with [Mask] tokens) are directly utilized
for the model training while ensuring their semantic
similarity with originals.

3 Proposed method

The proposed [Mask]-for-Answering (M4A)
algorithm is detailed in this section. It consists
of three main modules: source training, [Mask]
training, and semantic alignment. Specifically,
the second module enables the model to answer
questions with incomplete (masked) contents, while
the third module ensures semantic correlations
between original and masked samples (shown in
Fig 2). Notably, the [Mask] training module is not
utilized during the inference stage, as our ultimate
aim is to fine-tune a resilient encoder that can handle
masked samples and generate robust features.

Masked copy

Original sample

...

Source Training

Semantic alignment

 Training

Masking strategy

Figure 2: Illustration of the proposed M4A for EQA.
Original inputs are masked to produce additional training
samples, while their representation similarity is later
maximized to remain the semantic alignment.

3.1 Source training

Given the input pair of question (q) and pas-
sage (p), the EQA task aims to identify the
start and end positions of the correct answer
span (as/e) from p. Specifically, the in-
put of EQA is a tokenized sequence, X =
[CLS]q1q2··· q|q|[SEP]p1p2··· p|p|[SEP],
where qi and pj represents the i-th and j-th token
from q and p, respectively. Then the encoder (F,
usually a PLM such as BERT (Devlin et al., 2019))
is applied to induce the following probability
distribution:

p(pi=as/e)≜
exp(MLPs/e(F(pi)))∑|p|
j exp(MLPs/e(F(pj)))

, (1)

where F(pi) represents the extracted feature of pi,
and MLPs/e represents a multilayer perceptron
network (usually with one-hidden layer) for
predicting the start and end of the answer span,
respectively. Accordingly, the loss function for
EQA is defined as follows:

LEQA≜−
|p|∑
i

1(pi=as/e)logp(pi=as/e), (2)

where 1(·) is the indicator function that returns
1 if the condition is true and returns 0 otherwise.
Overall, the source training module is to minimize
the LEQA loss using labeled original samples.

3.2 [Mask] training

The traditional mask-based training (or masked-
language modeling (MLM)) aims to predict a set
fraction of [Mask] tokens given the remaining
unmasked text. This fraction is defined as the mask-
ing budget (bM ), and tokens for masking are chosen
by a uniform (or random) sampling until bM is met.
This previous mask-and-predict task is different
from ours. In contrast, samples with masked tokens
are utilized for training the EQA model directly,
while the mask-prediction task is less emphasized.

Given the tokenized input X , this module
substitutes tokens from the passage p (the second
part of X) with [Mask] to generate the masked
copy XM .* Specifically, three masking strategies,
Gaussian, U-shaped, and Uniform, are adopted,

*Some masking techniques (such as removing continues
words (Joshi et al., 2020) or words with dependency connec-
tions (Tian et al., 2022)) may be beneficial to produce more
diverse masked copies, and we leave the investigation to future
work.
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which are differentiated by the distributions of
masked tokens. A reference index r is introduced
(r ∈ [1, |p|]), where r is explicitly determined by
the index of the start token from the ground-truth
answer span. Then, Gaussian favors masking
tokens around r, while U-shaped differs from
Gaussian by masking more away from r (towards
the begin or end of p). Uniform masks tokens with a
uniform probability (similar to the MLM). Note that
for all three masking strategies, tokens belonging
to the ground-truth answer span are assigned with
zero masking probability (never masked), and only
non-answer tokens can be masked.

To estimate the masking rate for each token
within the passage, probability density functions
(PDFs) under different masking strategies are
firstly introduced. Assume that PDFs are defined
within a range of [−∆,∆] (where ∆ > 0 is a
hyper-parameter). Followed by the standard
Gaussian distribution N (0, 1), the PDF for the
Gaussian masking is accordingly defined as

Gau(x)=
e−

x2

2

√
2π

, −∆≤x≤∆.

Similarly the PDF for the U-shaped distribution is
defined as:

Ush(x)=

{
Gau(x−∆) if 0≤x≤∆

Gau(x+∆) if −∆≤x<0
.

To be consistent with Gaussian and U-shaped, the
PDF for Uniform is simply given by

Uni(x)=
1

∆−(−∆)
=

1

2×∆
, −∆≤x≤∆.

Next, given the reference index r, the following
mapping function is adopted to project the t-th
token into this range of [−∆,∆] by:

Map(t)=
∆(t−r)

max(r,|X|−r)
. (3)

At last, given the masking budget (the fraction of
masked tokens) bM , the masking probability for
this t-th token is further given by:

p(t)=bm×|X|× f(Map(t))∑|X|
i f(Map(i))

, (4)

where f(·) represents Gau(·), Ush(·), and Uni(·)
for the case of Gaussian, U-shaped, and Uniform,
respectively. An illustrating example of the three
masking strategies is provided in Fig. 3. At last,
masked passages are combined with the given ques-
tion to form XM , and the resultant loss L[Mask]

EQA is
obtained by replacing X with XM in Eq. (2).
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Figure 3: Comparison of proposed masking strategies,
where bm = 20%, the length of the passage is 20 and
∆=2. Presumably, the ground-truth answer token is
with the 7th index. Specifically, Gaussian prefers to
mask tokens around the reference index of r=7, while
more tokens from the begin and end are masked in the
U-shaped strategy. By contrast, Uniform marks tokens
with the equally distributed way. Notably, ground-truth
answer tokens will never be masked across three cases.

3.3 Semantic alignment
The [Mask] training module enables the model to
answer questions with masked samples XM , which
could introduce noise from masked tokens. To re-
duce the impact of noises, we design the semantic
alignment module to suppress noisy signals con-
veyed in XM , and enforce the semantics of original
inputs is preserved even after masking parts of the
passage. This is done by minimizing the difference
between the distribution of individual-token score
(i.e., the probability of being correct-answer tokens)
obtained fromX and that of the correspondingXM .

To begin with, let C and CM represent feature
embedding of original and masked samples, i.e.,
C = F(X) and CM = F(XM ), where C/CM

∈ R|X|×l and l is the hidden dimension. Given
two classifiers for identifying the start/end token
(MLPs/e) from Eq. (1), the score distribution of
individual tokens from C and CM is estimated by:

d
s/e
C ≜softmax(MLPs/e(C))

d
s/e

CM ≜softmax(MLPs/e(CM )), (5)

The Jensen-Shannon divergence (DJS) is then
employed to measure the distribution similarity
with the following objective:

LALI≜DJS(d
s
C,d

s
CM )+DJS(d

e
C,d

e
CM ). (6)

As such, this loss minimization encourages F
to produce semantically similar representations be-
tween the original input X and its masked version
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XM . Note that this alignment loss is different from
that of [Mask] training, as it does not require su-
pervision signals, but only reduces the token-score
difference obtained by X and XM .

3.4 Overall objective function

In summary, in the proposed M4A, samples with
masked tokens are trained simultaneously with
originals. Additionally, the semantic alignment
loss further ensures masked samples remaining
semantically close to original ones. The following
joint loss is utilized:

L=
1

2
LEQA+

1

2
L[Mask]
EQA +λLALI , (7)

where λ is a penalty regularizer. During the
inference, the [Mask] training and semantic
alignment modules are discarded, and testing
samples follow the traditional steps to extract latent
representation via the trained encoder (F), before
applying the classifiers (MLPs/e) to identify the
start and end position of answers.

4 Experiments

4.1 Setup

Experiments and analysis are carried on a collection
of high-competitive EQA tasks. Specifically, six
benchmarking datasets from MRQA 2019 (Fisch
et al., 2019) are employed, including SQuAD
(1.1), HotpotQA, NewsQA, NaturalQ, TriviaQA,
and SearchQA. Their statistics are provided in
Appendix A.1.

The RoBERTa-base model (Liu et al., 2019)
is adopted as the encoder. In addition, with both
Gaussian and U-shaped masking, the reference
index r is set as the beginning location of the
ground-truth answer token (from training samples),
while ground-truth answer tokens are assigned
with zero masking probability (never masked). The
hyper-parameter is set as ∆=2 for Eq. (3). More
training details are provided in Appendix A.2. The
F1-evaluation metric, measured by the number
of overlapping tokens between the predicted and
ground-truth answers, is adopted.

4.2 Main results

Our proposed method is compared with the
following models. We re-implement them using
provided source codes and results are competing
with the reported.

• Base (Liu et al., 2019) is implemented using
the pre-trained vanilla model (RoBERTa-base)
and fine-tuned as described in Section 3.1;

• BLANC (Seonwoo et al., 2020) applies a
block-attention strategy to predict answers
and supporting contexts (spans surrounding
around answers) simultaneously;

• SSMBA (Ng et al., 2020) randomly substitutes
tokens with [Mask] and recovers them to
produce new samples for data augmentation;

• SWEP (Lee et al., 2021) augments the data
by perturbing the input embedding with an
adjustable Gaussian noise;

• KALA (Kang et al., 2022) augments the
original contextual representation using
related entity and relational representation
from the external Knowledge Graph.

For M4A we set λ = 0.5 (the ablation study of λ
is provided later), the masking budget (or the the
fraction of masked tokens) as bm = 20% with the
U-shaped masking strategy (the impact of different
masking strategies are also offered in the ablation
study).

Table 1: Comparison among M4A and existing
methods. Specifically, M4A achieves 1.66e−16,
4.47e−7, 9.91e−19, 6.92e−19, 2.58e−9, and 5.14e−13

for SQuAD, HotpotQA, NewsQA, NaturalQ, TriviaQA
and SearchQA, respectively, in terms of the p-values
from the T-tests. This statistical significance testing
confirms the stability of M4A.

Model SQuAD HotpotQA NewsQA

Base 90.3±0.2 78.7±0.3 69.8±0.4
BLANC 91.1±0.2 77.8±0.1 70.7±0.5
SSMBA 90.1±0.3 77.3±0.4 69.2±0.2
SWEP 91.0±0.1 78.8±0.1 71.7±0.1
KALA 90.9±0.4 77.3±0.5 72.7±0.3
M4A 92.2±0.1 79.2±0.1 72.8±0.2

Model NaturalQ TriviaQA SearchQA

Base 79.6±0.2 74.0±0.4 81.5±0.3
BLANC 80.3±0.1 75.1±0.1 82.6±0.1
SSMBA 79.8±0.2 74.8±0.2 82.1±0.1
SWEP 80.2±0.3 75.3±0.2 82.5±0.2
KALA 80.1±0.4 75.5±0.3 82.4±0.4
M4A 81.4±0.1 76.3±0.2 83.5±0.1

The comparison results in terms of the mean
value and standard deviation over 10 runs are
shown in Table 1, in which the best result for each
dataset is bolded. M4A consistently improves
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existing models across employed EQA tasks. For
instance, the strongest baseline SWEP model
achieves an approximately 0.8 absolute-point
improvement compared to the vanilla model, while
our M4A model enhance a further 1.1 absolute
point over SWEP. Thus, it amounts to a comparable
improvement and demonstrates the superiority of
the proposed masking approach.

Notably, in terms of the computational complex-
ity, the proposed algorithm has a same scale of
model-training parameters as the vanilla model
(RoBERTa-base). Specifically, M4A reuses two
MLPs (MLPs/e for classifying the start/end answer
token from Eq. (1)) in the [Mask] training and
semantic alignment modules (Eq. (5)). As such,
the proposed method does not require extra model
parameters. Additionally, during the inference,
both the [Mask] training and semantic alignment
modules are discarded as M4A only requires the
trained encoder. As an example, M4A needs only
0.02 seconds per question on the SQuAD testing set.

4.3 Ablation study

On the encoder flexibility. To start with, we
evaluate the impact from the fundamental encoder
towards the proposed M4A. Specifically, the BERT-
base encoder (Devlin et al., 2019) is implemented
as the Base, and the strongest baseline SWEP
from Table 1 is also employed for comparison
purposes. Most of the experimental settings, such
as the batch size and the sequence length, are in
line with the above RoBERTa-base model, except
the learning rate is fixed as 3e−5 and the training
epoch is 2 (consistent with SWEP). The comparison
results over 10 runs are illustrated in Fig. 4, and our
M4A method achieves the best F1 score across all
datasets, outperforming SWEP. This experiment
provides further evidence for M4A’s stability on
the underlying encoder: it outperforms the current
best model SWEP on both RoBERTa and BERT
as the encoder. Without explicitly mentioning, the
following ablation studies are conducted using the
RoBERTa-base encoder.

On the masking strategy. The following
ablation experiments are performed using SQuAD
to evaluate the proposed masking strategies, i.e.,
Gaussian, U-shaped, and Uniform, whose main
difference lies in the distribution of masked tokens.
Given λ=0.5, ∆=2, and bm = 20%, the reference
index r, again, for Gaussian and U-shaped is set
as the start location of the ground-truth answer
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Figure 4: Impact analysis from the underlying encoder.

token(s), respectively. As for Uniform, the token
masking probability is set as bm.

Table 2: Comparison of the answering performance
achieved by different masking strategies.

Base Gaussian U-shaped Uniform

90.3±0.2 91.7±0.1 92.2±0.1 92.1±0.1

Table 2 compares the three proposed masking
strategies, all of which obtain the similar, and higher
accuracy than the Base model. The result clearly
demonstrates the effectiveness of M4A to utilize
masked samples for solving EQA. In addition, the
U-shaped masking strategy, which masks less to-
kens around the ground-truth answer(s) but more
towards the begin/end of the entire passage, per-
forms the best on the SQuAD dataset. This find-
ing is consistent with BLANC (Seonwoo et al.,
2020), from which supporting contexts (spans sur-
rounding around answers) are highlighted via a pre-
determined soft label. In contrast, our method en-
courages to remove (via masking) tokens that are
far away from answer tokens. Accordingly, the U-
shaped masking strategy is adopted for all following
experiments. However, we need to point out that
the differences among these three masking distribu-
tions are relatively moderate (e.g., ±0.25 F1). The
contributor to this effectiveness is explored later on
the module breakdown part.

On the masking budget. The impact from the
masking budget (or the the fraction of masked
tokens) bm is validated hereafter. Obviously, more
tokens are masked out with a higher value of bm,
which also leads to more noisy samples (due to the
increase of masked or missing tokens). Specifically,
experiments are conduced by varying bm from 10%
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to 100% on the SQuAD dataset. Notably, with
bM=100%, all tokens except ground-truth ones are
removed.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
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Figure 5: Performance comparison as a function of the
masking budgets bm.

The comparison is shown in Fig 5, and results
show that the proposed method is relatively insen-
sitive to bm. For instance, with SQuAD the highest
performance is observed as 92.2±0.1 (bm = 20%),
which decreases to 90.7±0.2 (bm = 100%). Sur-
prisingly, even with bM=100%, M4A still obtains
a slightly better performance than the Basemodel
(90.3 from RoBERTa-base), which shows the lower
bound of M4A is the vanilla model. That is, given
the very incomplete (masked) passages, M4A is still
capable of identifying correct answers, which em-
pirically confirms the robustness and stability of our
proposed masking strategy. Furthermore, we argue
that such a stable performance (with high mask-
ing rate) is a result of the semantic alignment. In
the extreme case of bM=100%, for instance, only
ground-truth tokens are maintained in the masked
sample, and presumably the contribution from the
[Mask] training loss becomes limited; yet, the
semantic alignment loss enforces the encoder to pro-
duce robust features for sample with/out masking
masking. We further investigate this hypothesis in
the model breakdown study below.

On the module breakdown. The following ex-
periment examines the effectiveness of M4A from
aspects of masked training and semantic alignment.
Specifically, the comparison is considered with
the following variants: Base represents the model
trained using only original samples (w.r.t. the first
term of Eq. (7)); Mask only employs U-shaped
masking samples for the model training (w.r.t. the
second term of Eq. (7)); and Alignment maxi-
mizes the semantic similarity between the original-
masked pairs (w.r.t. the last term of Eq. (7)).

Table 3: Examination on individual modules of training
with masked copies and aligning original-and-masked
semantics.

Base Mask Base+Mask

90.3 90.0 90.7

Base+Alignment Mask+Alignment Full

91.5 91.0 92.2

Table 3 shows contributions from individual
modules using SQuAD with λ = 0.5 and bm =
0.2. To begin with, both the proposed masked
training and alignment modules stably improve
the performance of the Base model. Training
with only masked samples, as observed, the Mask
variant achieves the worst result; the reason is
mainly due to the noise brought by the incomplete
(or masked) passage(s). Yet, Base+Mask achieves
the accuracy of 90.7 for SQuAD, which shows
the benefit of employing masked copies as the
data augmentation. Furthermore, Alignment
brings a bigger performance boost in comparison
with Mask. The former achieves the averaged
improvement of 1.2 points on top of Base, while
the latter only obtains a boost of 0.4 points.
More importantly, that is also evidenced by the
second-place score from Base+Alignment,
which trains the model without masked samples but
only enforces the semantic similarity between the
original and masked samples. In other words, with
the presence of masked samples, the key contributor
to M4A is to restrict their semantic alignment
with the original ones (not the way of producing
those masked samples, such as the masking budget
and the masking strategy). The alignment loss
regulates the encoder to generate robust features so
to improve the model robustness and performance.

It is worth noting that, the utilization of the
masking model proves essential not only for
generating supplementary samples that comple-
ment the originals, but also for facilitating the
Semantic Alignment module to align these masked
samples with the original ones. In other words,
masked samples form the foundational element
on which the alignment depends, although the key
contributor to M4A is the semantic alignment. Yet,
the proposed masking strategy is also cost-effective,
which stands in stark contrast to existing data
augmentation techniques that often demand prior
domain knowledge and/or resources.

On the penalty regularizer λ. The model
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accuracy is also evaluated by varying values of
λ from 0.1 to 1.0. The comparison is shown in
Fig 6 with SQuAD. The result illustrates that the
proposed method is robust to λ, as M4A achieves
a stable performance for different scenarios (with
an average F1 difference of ±0.35 approximately).
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Figure 6: Performance comparison as a function of
different λ.

On the data augmentation. This section
validates the proposed model from the aspect of
the low-resource training, as samples with masked
tokens could play a role of the data augmentation.
Accordingly, only a small amount (say m) of
samples (randomly selected from the training set)
are utilized for masking and further fine-tuning the
model, where m = [20%,40%,60%,80%,100%]
(m=100% represents the full dataset).

Table 4: Averaged performance (measured by F1)
obtained by SWEP/M4A under different percentages
of training samples.

SQuAD 20% 40% 60% 80% 100%

SWEP 88.4 89.6 90.1 90.7 91.0
M4A 88.6 90.4 91.5 91.9 92.2

Table 4 shows the accuracy as a function of the
sample size using the SQuAD dataset. Compared
to the strongest baseline (SWEP from Table 1),
M4A consistently improves the model performance
under all percentages of the training samples. With
40% of labeled data, M4A has achieved even
higher accuracy than SWEP with 60% samples.
Empirically, the result clearly demonstrates the
superiority of produced samples with [Mask]
tokens as an effective data augmentation.

On out-of-domain generalizability. In this
experiment, we measure M4A’s ability via adapting
to unseen domains (i.e., datasets) in a zero-shot

manner. Following SSMBA and SWEP, the model
is first trained on a single source dataset (SQuAD
in this case), and further evaluated on the other
two target dataset (i.e., HotpotQA and NaturalQ)
without any fine-tuning†.
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Figure 7: Transferring the EQA model trained by
SQuAD to unseen datasets.

Averaged performance from our proposed and
other methods is presented in Fig. 7. The Base
method (directly applying the RoBERTa-base
model trained from SQuAD) achieves the worst
F1 (60.1 on average) on three subsequent target
datasets, which reveals the different data distribu-
tion among diverse datasets. Therefore, a direct
application of the Base model to downstream
dataset(s) is ineffective as shown by its low general-
izability. Surprisingly, SSMBA achieves even worse
results than Base on HotpotQA and NaturalQ.
Notably, SSMBA reconstructs masked tokens to
produced augmented samples. Yet, new substituted
tokens may still cause the semantic drift and lead
to poor performance on test sets. In contrast, the
average performance of M4A (62.58) is highest
across three target datasets. Due to masked samples,
M4A is encouraged to produce more robust features,
which contributes to the model generalizability
to unseen datasets. The comparison indicates
that M4A can be regarded as a supplementary
pre-training method, along with the traditional
Masked Language Modeling (MLM), to offer a
robust starting point for fine-tuning unseen datasets.

5 Conclusion

This paper proposes a [Mask]-for-Answering
algorithm (M4A) to tackle the Extractive Question
Answering (EQA) task, via simulating human-
comprehension skills to infer answers with limit

†Notably these three datasets share the same Wikipedia domain
background, as shown in Table 5 from Appendix A.1.



230

context. Specifically, three different masking
strategies are introduced to produce masked copies
of original samples. Those masked samples
are directly utilized for the model training, and
regularized by an alignment loss to ensure their se-
mantic similarity with originals. Empirically, M4A
achieves statistically better performance than cur-
rent methods on several benchmark EQA datasets.
In addition, M4A also demonstrates the strong
capability in the settings of the low-resource train-
ing and zero-shot domain adaptation. At last, this
masking-then-training strategy, explored by M4A,
is also agnostic to downstream tasks, and we will
incorporate it with other downstream applications.

Limitations

[Mask] tokens play a critical role, for our
proposed M4A, in improving the model inference
capability even with masked contents. Yet, the
proposed masking strategies mainly focus on the
distribution of masked tokens; intuitively, it still
cannot be guaranteed that all question-irrelevant
contents are masked (or removed). Therefore,
masking strategies can be further refined, such as
by incorporating external/prior knowledge about
passages/questions, masking (stop) words with
specific POS, or introducing dependency parsing
for identifying trivial words.

Additionally, regarding the Jensen-Shannon
divergence employed in this paper, we acknowledge
its crucial role in semantic alignment. However,
other methods exist for calculating semantic
similarity. We defer exploring these alternatives to
future work, as they hold potential to enhance the
performance further

At last, while current Large Language Models
(LLMs), such as GPT-3.5 and Vicuna, achieve
impressive achievements across different tasks,
including EQA, the proposed method is much more
lightweight, based on models that are orders of mag-
nitude smaller (e.g., 110M parameters for BERT-
base compared to 7B for Vicuna). Nevertheless, our
ablation study highlights the adaptability of our ap-
proach as it can be applied to other encoder-decoder
language models in a plug-and-play manner. We
anticipate enhanced performance by adopting our
proposed method using LLMs like Vicuna for EQA.

Ethical Statement

In terms of reproducibility, we have made the
experimental source code available anonymously.

Additionally, the benchmark datasets used in our
study are publicly accessible. However, it is impor-
tant to acknowledge the potential presence of hidden
biases from Pre-trained Language Models, stem-
ming from biased data they were trained on. Despite
utilizing these pre-trained language models for en-
coding, we did not encounter any biased outcomes.
Nevertheless, we carefully considered the low-risk
nature of our specific domain during the study.
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A Appendix

A.1 Employed benchmarks

The statistics for employed datasets are provided
in Table 5.

A.2 Training Details

The RoBERTa-base model (Liu et al., 2019) is
adopted as the encoder. The dropout rate across
all layers is set as 0.1. The Adam optimizer with
a dynamic learning rate is adopted, for which the
learning rate is warmed up for 10 thousand steps to
a maximum value of 1e−4 before decaying linearly
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Table 5: Employed datasets for the EQA task, where
Domain represents the passage resource, and #Train
and #Test is the number of training and test samples,
respectively.

Dataset Domain #Train #Test

SQuAD(1.1) Wikipedia 86,588 10,507
HotpotQA Wikipedia 72,928 5,904
NewsQA News articles 74,160 4,212
NaturalQ Wikipedia 104,071 12,836
TriviaQA Web snippets 61,688 7,785
SearchQA Web snippets 117,384 16,980

to a minimum value of 2e−5. The training is per-
formed with batches of 8 sequences of length 512.
The maximal number of training epoch is 10. For
each dataset, 1,000 samples are randomly selected
from the training set to form the validation set, and
training stops when the validation accuracy fails to
improve for one epoch. At last, the proposed model
is trained on a machine with four Tesla K80 GPUs.


