
Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023, pages 268–277
November 1–4, 2023. ©2023 Asian Federation of Natural Language Processing

268

Privacy Adhering Machine Un-learning in NLP

Vinayshekhar Bannihatti Kumar, Rashmi Gangadharaiah, Dan Roth
AWS AI Labs

{vinayshk,rgangad,drot}@amazon.com

Abstract

Regulations introduced General Data Protec-
tion Regulation (GDPR) in the EU or Cali-
fornia Consumer Privacy Act (CCPA) in the
US have included provisions on the right to be
forgotten that mandates industry applications
to remove data related to an individual from
their systems. In several real world industry ap-
plications that use Machine Learning to build
models on user data, such mandates require sig-
nificant effort both in terms of data cleansing
as well as model retraining while ensuring the
models do not deteriorate in prediction quality
due to removal of data. As a result, continuous
removal of data and model retraining steps do
not scale if these applications receive such re-
quests at a very high frequency. Recently, a few
researchers proposed the idea of Machine Un-
learning to tackle this challenge. Despite the
significant importance of this task, the area of
Machine Unlearning is under-explored in Natu-
ral Language Processing (NLP) tasks. In this
paper, we explore the Unlearning framework on
various GLUE tasks (Wang et al., 2018), such
as, QQP, SST and MNLI. We propose compu-
tationally efficient approaches (SISA-FC and
SISA-A) to perform guaranteed Unlearning
that provides significant reduction in terms of
both memory (90-95%), time (100x) and space
consumption (99%) in comparison to the base-
lines while having minimal impact on model
performance.1.

1 Introduction

The use of user generated content in building ML-
based solutions in many industry applications is
quite common. As new data is acquired, these
ML models undergo constant updates to further
improve the performance. Such data can contain
sensitive information such as names, account ids,
email addresses and so on. Typically, user gener-
ated content goes through several redaction sys-

1https://github.com/awslabs/privacy-adhering-machine-
unlearning-nlp

tems to remove such sensitive information before
being used for retraining purposes. Industry ap-
plications also adopt rigorous approval processes
with opt-in or opt-out capabilities to ensure that
user generated content is used in a safe manner
while raising awareness among users on how their
generated content will be used.

More recently, the GDPR and CCPA provisioned
the right to be forgotten, introducing new regula-
tions that mandates industry applications to support
deletion of user generated content when requested
by users. Although privacy concerns have gained
significant importance now, the scale at which these
models are built make it extremely expensive and
time-consuming to remove data efficiently while
providing complete removal guarantees.

Unlearning assures the users that their data has
been completely removed when they prefer to have
their data erased (Bourtoule et al., 2019). This
task is different from Differential Privacy that fo-
cuses on models that ensure that the users’ infor-
mation in the training data cannot be inferred and
provides guarantees on the effect of an individual
examples. Such a task is challenging as removal
of data points can have significant deterioration on
the performance of the models aka catastrophic
unlearning (Du et al., 2019; Golatkar et al., 2019;
Nguyen et al., 2020, 2022a).

Approaches that guarantee complete removal of
users’ data points have recently gained momentum
(Bourtoule et al., 2019; Nguyen et al., 2022b) but
are under explored on NLP tasks. Motivated by
SISA (Sharded, Isolated, Sliced and Aggregated)
training (Bourtoule et al., 2019) applied to CV
datasets, we explore an approach that trains mul-
tiple ML models in isolation on disjoint shards
and its slices. Model checkpoints are saved af-
ter training each slice in a shard. When a request
for deletion is received, the corresponding data-
point is deleted from its slice and the model check-
point upto the datapoint is used to further retrain

https://github.com/awslabs/privacy-adhering-machine-unlearning-nlp
https://github.com/awslabs/privacy-adhering-machine-unlearning-nlp


269

the model. Although the SISA framework can be
applied to any learning algorithm, it is still im-
practical in NLP settings as storing model check-
points that include large language models (such as,
BERT (Devlin et al., 2018a)) is both space and time
consuming. We propose extensions to this SISA
framework (1) (SISA-FC) requires storing only
task-specific layers (2) (SISA-A) uses Adapters
(Houlsby et al., 2019) that requires storing only
the adapter weights. These extensions prevent stor-
ing the entire model checkpoints, hence reducing
time, memory and space footprints. We further
improve upon the approaches by creating shards
such that the least number of slices are affected
when requests for removal are made, further reduc-
ing the time required to retrain the models. To the
best of our knowledge this paper makes the first
attempt to explore the task of Unlearning on vari-
ous NLP tasks. The contributions of this paper are
summarized as follows:

• We explore the task of Unlearning on various
NLP tasks (GLUE tasks such as QQP, SST
and MNLI) in both full data as well as few
shot settings.

• We explore SISA-FC and SISA-A for NLP-
based models that do not require storing large
model checkpoints, thereby significantly re-
ducing space, memory and time

• We propose novel ways to partition the data,
thereby reducing the number of slices affected
and the retraining time while ensuring mini-
mal degradation in the overall model quality.

The paper is organized as follows. Section 2 briefly
describes some of the related work in the area of
Unlearning. Section 3 describes the NLP datasets
used to evaluate the approaches proposed in this
paper. Section 4 explains the proposed approaches
(SISA-FC and SISA-A) followed by results in Sec-
tion 5. We finally conclude and provide future
extensions to this work in Section 6.

2 Related Work

Privacy preserving ML provides guarantees on
bounds ensuring the contribution from the data
points is as low as possible (Sarwate et al., 2009;
Abadi et al., 2016; Jang et al., 2022; Yu et al., 2021;
Li et al., 2021). Machine Unlearning on the other
hand focuses on complete removal of training ex-
amples, ensuring that there is zero contribution of

the training sample to the model’s learned weights.
As a result, Unlearning assures the users that their
data has been completely removed when they pre-
fer to have their data erased (Bourtoule et al., 2019).
A simple approach to forget training samples would
be to re-train the models after removal of the exam-
ples. Such an approach is not scalable and compu-
tationally expensive when systems receive removal
requests at high frequencies. Another challenge
this brings is in the deterioration of the performance
of the models.

Machine Unlearning has gained significant at-
tention in industry applications as a means to allow
users to completely delete their data from ML mod-
els (Tahiliani et al., 2021; Nguyen et al., 2022a;
Baumhauer et al., 2020). Regulations introduced
by regulatory bodies apply to all forms of user
generated content. However, most of the recent
approaches tackle this problem of Unlearning in
Computer Vision (CV) settings (Mehta et al., 2022;
Golatkar et al., 2019; Bourtoule et al., 2019). It is
imperative to explore unlearning strategies on tex-
tual data that can contain user sensitive information
or personally identifiable information (PII).

Our work is inspired by SISA training (Bour-
toule et al., 2019) which was originally applied to
CV datasets. The framework provides a strategic
way to limit the influence of a data point in the
training procedure. The approach trains models in
isolation on disjoint shards created by partitioning
the training data. When a request for removal is
made, only the affected model is retrained. Shards
are further broken down into slices to decrease the
time required to unlearn. During inference, they
use ensemble strategies to aggregate predictions of
individual models. We extend this framework for
NLP models. Our paper also proposes approaches
to partition the data such that the least number of
shards/slices are affected, thereby further reducing
the re-training time.

3 Datasets

Glue (Wang et al., 2018) tasks are divided into
three categories namely , "SINGLE-SENTENCE
TASKS", " SIMILARITY AND PARAPHRASE
TASKS" , " INFERENCE TASKS". We pick
"SST-2" dataset from the first, "QQP" dataset from
the second and "MNLI" dataset from the third
respectively. In order to test the generalizability
of our approach in terms of performance, time
taken to retrain models and the memory they



270

Figure 1: Architecture of SISA-A which uses S slices and R shards. One model is built for each shard and the labels
are aggregated using a majority voting strategy.

Dataset Name BERT-A SISA-A Accuracy
Reduction (%)

Re-training
time gain (%)Accuracy Re-training time (s) Accuracy Re-training time (s)

SST 0.93 1580 0.92 147 1 9748
QQP 0.82 1750 0.80 145 2 1106

MNLI 0.75 1868 0.70 145 6 1188

Table 1: We see that our SISA-A (SISA with Adapters) approach is only 1 − 6% worse when compared to the
deletion baseline model (BERT-A BERT model trained using Adapters) but has a 100x improvement in training
time over the deletion baseline. This performance is measured upon receiving 16 unlearning requests

occupy on disk, we pick the first 60, 000 samples
across each datasets and use 20% of this as our
test split. Having the same number of training and
evaluation samples helps us to compare training
times across different types of NLP tasks. For each
of the datasets, we use accuracy to measure model
performance. The tasks are explained below:
SST-2: This is a movie review corpus from Socher
et al. (2013) that consists of a sentence form the
review along with the sentiment associated with
that sentence.
QQP: Quora Question Pair corpus (Wang et al.,
2018) consists of two questions and a label
indicating if the two questions are duplicates of
each other.
MNLI: The MNLI (Williams et al., 2017) corpus
is built of top of SNLI. This consists of a premise,
hypothesis and a label indicating if the premise
and hypothesis are in entailment, contradiction or
they are neutral.

4 Models

The simplest way to make a model forget the data-
point it has seen during training is to remove the dat-
apoint from the training set and re-train the model.

However, this is computationally very expensive
for large models like BERT (Devlin et al., 2018b)
and we need an efficient way to re-training mod-
els if we want to forget a datapoint. Bourtoule
et al. (2019) presented Sharded, Isolated, Sliced
and Aggregated (SISA) training approach in order
to "un-learn" a datapoint. While they measured the
performance of this approach on computer vision
datasets, no work has looked at its performance on
NLP datasets. We explain the algorithm and our
approach to make it parameter efficient for NLP
specific models.

4.1 SISA

Figure 1 shows the working of the SISA algorithm.
The entire training dataset is split into S shards.
Each shard is made up of R slices. There is one
model that is trained for every shard. In order to
begin training, we can pick any ML model and
then use gradient descent to train the model. While
training, the model goes through the data, slice by
slice saving a checkpoint after training for each
slice. Finally once the model finishes training on
the final slice, the model is saved and mapped to
the shard. This process is continued for all the
shards. During inference, each model belonging



271

(a) SST (b) QQP (c) MNLI

Figure 2: Performance of SISA-A on the 3 datasets. Number of slices is shown in the legend. We see SISA-A has
same or slightly lower performance than the baseline BERT model.

(a) SST (b) QQP (c) MNLI

Figure 3: Re-training time of SISA-A on the 3 datasets. Number of slices is shown in the legend. We see that the
re-training time remains fairly constant if the slice size is greater than 8 for a number of un-learning requests.

to a shard predicts the label and the labels are ag-
gregated similar to model ensembling. When an
un-learning request comes in, we pick the shard
where this data point is present, then go to the slice
that contains the un-learning request. We delete the
datapoint from this slice, take the checkpoint that
was trained up until that checkpoint and continue
training the model. This guarantees that the model
forgets the un-learning request. During inference
we pass the sample through each of the S mod-
els, obtain S labels and aggregate using a majority
voting strategy.

4.2 SISA modified with fully connected Layer
(SISA-FC)

While the SISA framework is flexible to be used
with any model, in the NLP domain it is not practi-
cal to store a checkpoint after each slice. Moreover
the pre-training/fine-tuning time of the full model
will become a major shortcoming and we need a
way to reduce both the training time and the mem-
ory footprint of these large models. A simple way
to alleviate this short-coming is to use a base model
and pre-train it on a generic corpus of text and then
add fully connected layers on top of it. Only the pa-

rameters from the linear layers are fine tuned in the
optimization process. This will reduce the overall
training time as the backpropagation of gradients
only happens in the final layers and also we will
only need to store the weights of these additional
parameters.

4.3 SISA modified with Adapters (SISA-A)

While adding linear layers to SISA might solves
both the training time and the memory footprint
issue, the raw performance of the model will take a
hit when compared to fine tuning the entire model
as is done in a regular NLP setting (Devlin et al.,
2018b). One approach to keep the benefits of the
linear layer while also optimizing for performance
is to use Adapters (Houlsby et al., 2019) in the
Encoder blocks of the transformer. While this in-
creases the memory footprint of the model, it only
accounts for about 1 − 5% of the model parame-
ters. Thereby providing us with 95− 99% memory
benefits.

4.4 Baselines:

We compare the performance of SISA-FC and
SISA-A with respect to popular NLP settings. We



272

(a) SST (b) QQP (c) MNLI

Figure 4: Performance of SISA-FC on the 3 datasets. Number of slices is shown in the legend. We see the
performance of SISA-FC is lower than that of SISA-A.

(a) SST (b) QQP (c) Accuracy

Figure 5: Re-training time of SISA-FC on the 3 datasets. Number of slices is shown in the legend. We see that the
re-training time remains fairly constant if the slice size is greater than 8 for a number of un-learning requests.

fine-tune Bert on the same samples and show that
there is minimal impact on performance. We also
show the majority classifier accuracy to show the
improvement of SISA-FC and SISA-A against this
baseline.

4.5 Implementation details:

We use the Bert-base model from Huggingface2

to train on this task. We used a batch of 16, max
length of 256, Adam (Kingma and Ba, 2014) opti-
mizer learning rate of 5e− 3 and train the model
for 10 epochs when we are training the SISA-FC
model. We also use the same hyper-parameters for
SISA-A approach but add adapters using Adapter-
hub3 and only update those parameters. We experi-
ment with different slice sizes but keep the number
of shards fixed at 5. We ran each experiment 4
times and averaged the results. All the experiments
were run on 4 V-100 GPUs with 16GB memory
each for a total of 10 days.

2https://huggingface.co/
3https://docs.adapterhub.ml/training.html

5 Experiments and Results

For all the experiments in this paper we use a shard
size of 5. We however experiment with different
slices sizes (these are shown in the legends of the
graphs)

5.1 Evaluation Metrics:

In order for an organization to allow customers to
opt-out we need mechanisms that will enable re-
training of models with low re-training time and
memory foot-print while keeping the model perfor-
mance as close to the original model as possible.
Hence we look at the following three metrics :
Accuracy: Percentage of samples in the test set
that the model predicts accurately.
Re-training time: The amount of time taken to
delete the un-learning requests from the dataset and
then re-train the model.
Memory: The amount of memory the final model
takes up on disk.
We analyze the model across all the three met-
rics for upto 16 uniformly randomly sampled un-
learning requests unless stated otherwise. An un-
learning request is defined as a request to the delete
a datapoint from the training set. This is equivalent



273

(a) Pareto Distribution
(b) Slices affected with Pareto in or-
ange

(c) Slices affected with Inverse Pareto
in orange

Figure 6: Figure 6a shows the Pareto distribution and the subsequent figures shows how the slices get affected with
the Pareto and the inverse Pareto distributions.

to an user opting out of data collection practices.

5.2 Analysis of SISA-A
Figure 2 shows the performance of SISA-A for
different slice sizes. We see that our approach is
able to achieve the same level of performance as
the BERT-base model even with the new setup we
have with Adapters and SISA 1. While it doesn’t
drop in accuracy by more than 1− 6%, we see that
the model has a lower training time of 100x. We
also see that the memory occupied by the model is
much lower than using the original SISA approach
which would store the weights of the full model.
We also see from Figure 2 that the accuracy of our
approach for slice size greater than 2 is almost the
same across different slices and remains same for
different number of un-learning requests as well.
However with larger number of slices we see that
the model has a much lower re-training time when
compared to a slice size of two from Figure 3. This
observation is consistent across all the 3 datasets. It
is also to be noted that the re-training time does not
increase linearly with more number of un-learning
requests. The re-training time does increase with a
positive delta. We show in Section 5.5 on how we
can make this re-training time flat across multiple
un-learning requests. We also see that the model
re-training time is constant across all the 3 datasets
that were chosen.

5.3 Analysis of SISA-FC
Figure 5 shows the performance of SISA-FC for
different slice sizes. We observe that the model
performance for different un-learning requests is
lower than that of SISA-A by 20 − 30% on all
the tasks. This is due to the fact that there are far
lesser number of weights that were used to fine-
tune the model. However in low memory settings
this approach would work better than the SISA-A
approach as it occupies lesser memory. We also
observe that the re-training time to just train the
final layer is much lower than that of SISA-A. But

other observations made with respect to SISA-A
still holds with SISA-FC.

5.4 Comparison Between SISA-FC and
SISA-A

From Figures 5, we see that the SISA-A approach
significantly outperforms the SISA-FC approach
in terms of accuracy. Across different slice sizes
we see that we can get an absolute gain of 20-
30% in accuracy depending on the task. While
the Houlsby et al. (2019) does note this perfor-
mance difference, the performance difference is
only 1%. When we apply adapters to SISA we see
that the performance gain is much higher.

5.5 Profiling requests based on probability of
occurrence

In the above two experiments, we assumed that
the un-learning requests are uniformly randomly
chosen from all of the training points. However,
in a practical setting this might not be the case.
Organizations can group customers into high risk
and low risk customers based on their probability
of opting out. In order to simulate such a scenario,
we use the Pareto distribution. Pareto distribution
is defined using the equation below:

p(x) = a.ma/xa+1 (1)

When we plot the Pareto distribution we get the
curve shown in Figure 6a. 80% of the mass is in the
head of the distribution and 20% in the tail. When
we sample requests based on this distribution we
get data-points belonging to the shards shown in
Figure 6b. For the purpose of this experiment we
set m to 1 and a to 1.16. However if we take the
mirror image of the Pareto distribution and sample
from that distribution then the shards that will be
affected is shown in Figure 6c. We experiment
with both these types of sampling to see its affect
on model performance and re-training time.



274

(a) SST (b) QQP (c) MNLI

Figure 7: Accuracy of SISA-A on Inverse Pareto distribution. Number of slices is shown in the legend.

(a) SST (b) QQP (c) Accuracy

Figure 8: Re-training time of SISA-A on Inverse Pareto distribution. Number of slices is shown in the legend.

(a) SST (b) QQP (c) MNLI

Figure 9: Accuracy of SISA-A on Pareto distribution. Number of slices is shown in the legend.

(a) SST (b) QQP (c) MNLI

Figure 10: Re-training time of SISA-A on Pareto distribution. Number of slices is shown in the legend.



275

(a) SST (b) QQP (c) Accuracy

Figure 11: Accuracy of SISA-A on partial datasets. Percentage data used is shown in the legend

(a) SST (b) QQP (c) Accuracy

Figure 12: Re-training time of SISA-A on partial datasets. Percentage data used is shown in the legend

From Figures 8 and 10, we see that the training
time of the inverse Pareto distribution is lesser than
that of both the uniform distribution and Pareto dis-
tribution by 350% and 360% respectively. We also
see that the re-training time of the inverse Pareto
distribution is flat across multiple un-learning re-
quests as they only affect the last few slices in the
shard, thereby lowering training time. This opens
up to possibilities of smarter customer segmenta-
tion while training. While we show one simple way
to segment customers to gain on re-training time,
we leave the possibilities of exploring other such
strategies for future work.

5.6 Performance on a portion of the data

In the next experiment, we look at the performance
of SISA-A on portions of the training set to test
the few shot generalizability of this approach. For
the purpose of this experiment, we use 5 shards, 16
slices and uniform un-learning requests. Results
are shown in Figures 11 and 12. We see that on
all the different datasets, the performance in the
few-shot setting does not match the performance
of the model in the full-data setting. This is one of
the major drawbacks of the SISA algorithm in low
resource NLP settings. Since the model is forced
to look at a portion of the data several times before
it is check-pointed, the model tends to overfit on

the slice it is training on. We hypothesize this to be
the reason for lower model performance.

We also see that the BERT-base model performs
much better than the SISA-A approach in the few-
shot setting. While we show the short-coming of
this approach in the few-shot setting we leave the
further exploration to alleviate this issue for future
work.

Figure 13: Memory Occupied by the three approaches.
We see that the SISA-A and SISA-FC approaches pro-
vides a significant memory savings when compared to
the base SISA approach

5.7 Memory profiling

Figure 13 shows the memory occupied by the three
different approaches compared in this work. We
see that if we use the BERT model along with
the vanilla SISA algorithm, the memory increases
linearly as the number of slices increases. But



276

with our approach, the memory increase is far less
drastic (SISA-A and SISA-FC).

6 Conclusion

The central tenet of privacy regulations in the U.S
and EU revolve around the concept of "notice and
choice". This allows users to opt-out of data collec-
tion if they deem something violates their privacy
needs. However, owing to the gap between tech-
nology experts and privacy regulators there has not
been enough work around opting out of data that
has already been used to train ML models. Through
the SISA-A and SISA-FC approaches we show the
working of the SISA algorithm in the NLP domain
on Encoder based models. We show the benefits of
our approach in terms of re-training time and disk
space usage.

Limitations

While the experimental results show that it is pos-
sible to use SISA in LLMs, it is only limited to
Encoder based models because of the requirement
of an aggregation layer in SISA. We cannot extend
this approach to the decoder based models as is
and that is a limitation of our work. Also,as noted
in Section 5.6, our results show that SISA-A ap-
proches do not work well in the few shot setting
because of the tendency of the model to overfit
on each slice. In this paper we do point out the
lack of generalizability of this approach in the few
shot setting. However, we do not discuss steps to
mitigate these issues using our technique. Finally,
we show how organizations can benefit from seg-
menting users into different groups based on the
probability of opting out. While we show this by
using/simulating different distributions we do not
perform profiling on actual user data.

Ethics Statement

In this work we show how we can perform efficient
NLP while also adhering to the people’s privacy
requirements. While we show how organizations
can efficiently perform the task of un-learning we
cannot prove if the organization indeed performed
unlearning on the samples. Also all the associated
risks of using pre-trained language models like
BERT will remain with this approach as they form
the backbone of our framework.

References

Martin Abadi, Andy Chu, Ian Goodfellow, H. Bren-
dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep learning with differential pri-
vacy. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security.
ACM.

Thomas Baumhauer, Pascal Schöttle, and Matthias Zep-
pelzauer. 2020. Machine unlearning: Linear filtration
for logit-based classifiers.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A.
Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu
Zhang, David Lie, and Nicolas Papernot. 2019. Ma-
chine unlearning. CoRR, abs/1912.03817.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018a. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018b. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Min Du, Zhi Chen, Chang Liu, Rajvardhan Oak, and
Dawn Song. 2019. Lifelong anomaly detection
through unlearning. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS ’19, page 1283–1297, New York,
NY, USA. Association for Computing Machinery.

Aditya Golatkar, Alessandro Achille, and Stefano
Soatto. 2019. Eternal sunshine of the spotless
net: Selective forgetting in deep networks. CoRR,
abs/1911.04933.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. CoRR,
abs/1902.00751.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha,
Moontae Lee, Lajanugen Logeswaran, and Minjoon
Seo. 2022. Knowledge unlearning for mitigating
privacy risks in language models.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Xuechen Li, Florian Tramèr, Percy Liang, and Tat-
sunori Hashimoto. 2021. Large language models
can be strong differentially private learners. CoRR,
abs/2110.05679.

Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N.
Ravi. 2022. Deep unlearning via randomized condi-
tionally independent hessians.

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.48550/ARXIV.2002.02730
https://doi.org/10.48550/ARXIV.2002.02730
http://arxiv.org/abs/1912.03817
http://arxiv.org/abs/1912.03817
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3319535.3363226
https://doi.org/10.1145/3319535.3363226
http://arxiv.org/abs/1911.04933
http://arxiv.org/abs/1911.04933
http://arxiv.org/abs/1902.00751
https://doi.org/10.48550/ARXIV.2210.01504
https://doi.org/10.48550/ARXIV.2210.01504
http://arxiv.org/abs/2110.05679
http://arxiv.org/abs/2110.05679
https://doi.org/10.48550/ARXIV.2204.07655
https://doi.org/10.48550/ARXIV.2204.07655


277

Quoc Phong Nguyen, Bryan Kian Hsiang Low, and
Patrick Jaillet. 2020. Variational bayesian unlearn-
ing. In Advances in Neural Information Processing
Systems, volume 33, pages 16025–16036. Curran As-
sociates, Inc.

Quoc Phong Nguyen, Ryutaro Oikawa, Dinil Mon Di-
vakaran, Mun Choon Chan, and Bryan Kian Hsiang
Low. 2022a. Markov chain monte carlo-based ma-
chine unlearning. In Proceedings of the 2022 ACM
on Asia Conference on Computer and Communica-
tions Security. ACM.

Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le
Nguyen, Alan Wee-Chung Liew, Hongzhi Yin, and
Quoc Viet Hung Nguyen. 2022b. A survey of ma-
chine unlearning.

Anand D. Sarwate, Kamalika Chaudhuri, and Claire
Monteleoni. 2009. Differentially private support vec-
tor machines. CoRR, abs/0912.0071.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Aman Tahiliani, Vikas Hassija, Vinay Chamola, and
Mohsen Guizani. 2021. Machine unlearning: Its
need and implementation strategies. In 2021 Thir-
teenth International Conference on Contemporary
Computing (IC3-2021), IC3 ’21, page 241–246, New
York, NY, USA. Association for Computing Machin-
ery.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. CoRR,
abs/1804.07461.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi,
Huseyin A. Inan, Gautam Kamath, Janardhan Kulka-
rni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz,
Sergey Yekhanin, and Huishuai Zhang. 2021. Dif-
ferentially private fine-tuning of language models.
CoRR, abs/2110.06500.

https://proceedings.neurips.cc/paper/2020/file/b8a6550662b363eb34145965d64d0cfb-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b8a6550662b363eb34145965d64d0cfb-Paper.pdf
https://doi.org/10.1145/3488932.3517406
https://doi.org/10.1145/3488932.3517406
https://doi.org/10.48550/ARXIV.2209.02299
https://doi.org/10.48550/ARXIV.2209.02299
http://arxiv.org/abs/0912.0071
http://arxiv.org/abs/0912.0071
https://doi.org/10.1145/3474124.3474158
https://doi.org/10.1145/3474124.3474158
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/2110.06500
http://arxiv.org/abs/2110.06500

