
Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023, pages 278–290
November 1–4, 2023. ©2023 Asian Federation of Natural Language Processing

278

GECTurk: Grammatical Error Correction and Detection Dataset for
Turkish

Atakan Kara, Farrin Marouf Safian, Andrew Bond, Gözde Gül Şahin
Computer Engineering Department

Koç University, Istanbul, Turkey
https://gglab-ku.github.io/

Abstract

Grammatical Error Detection and Correction
(GEC) tools have proven useful for native
speakers and second language learners. De-
veloping such tools requires a large amount of
parallel, annotated data, which is unavailable
for most languages. Synthetic data generation
is a common practice to overcome the scarcity
of such data. However, it is not straightfor-
ward for morphologically rich languages like
Turkish due to complex writing rules that re-
quire phonological, morphological, and syn-
tactic information. In this work, we present a
flexible and extensible synthetic data genera-
tion pipeline for Turkish covering more than
20 expert-curated grammar and spelling rules
(a.k.a., writing rules) implemented through
complex transformation functions. Using this
pipeline, we derive 130,000 high-quality par-
allel sentences from professionally edited arti-
cles. Additionally, we create a more realistic
test set by manually annotating a set of movie
reviews. We implement three baselines for-
mulating the task as i) neural machine trans-
lation, ii) sequence tagging, and iii) prefix
tuning with a pretrained decoder-only model,
achieving strong results. Furthermore, we per-
form exhaustive experiments on out-of-domain
datasets to gain insights on the transferabil-
ity and robustness of the proposed approaches.
Our results suggest that our corpus, GECTurk,
is high-quality and allows knowledge trans-
fer for the out-of-domain setting. To encour-
age further research on Turkish GEC, we re-
lease our datasets, baseline models, and the
synthetic data generation pipeline at https:
//github.com/GGLAB-KU/gecturk.

1 Introduction

Grammatical Error Correction (GEC) is among the
well-established NLP tasks with dedicated shared
tasks (e.g., BEA (Bryant et al., 2019)), benchmarks,
and even specific evaluation measures. With in-
creasing interest from the community, the field is

in constant need of novel tools, methods, and more
importantly, extensions to other languages.

Recently, there has been an explosion of research
about GEC for high-resource languages, especially
for English (Rothe et al., 2021; Omelianchuk et al.,
2020; Bryant et al., 2019). These recent tech-
niques either formulate the task as neural ma-
chine translation, i.e., generation (Rothe et al.,
2021), or token classification to detect erroneous
tokens (Omelianchuk et al., 2020). The first ap-
proach mainly utilizes and engineers vanilla Trans-
formers to generate the corrected text, while the
second focuses on engineering a set of errors and
transformation rules. Both formulations require a
large set of parallel corpora containing grammat-
ically correct and incorrect sentence pairs. Also,
the latter approach additionally requires a highly
curated dataset with annotations for correcting er-
rors (i.e., location and type of the error). Con-
structing such a corpus with error annotations is
nontrivial—especially for low-resource languages
with rich morphology like Turkish. The challenge
is due to grammar rules, a.k.a., writing errors be-
ing entangled in several layers, such as phonology,
morphology, syntax, and semantics. As of today,
there are no spelling or grammatical error datasets,
as mentioned by Çöltekin et al. (2023), with the
exception of the dataset introduced by Arikan et al.
(2019).

To address this, we focus on the Turkish Lan-
guage and utilize the official writing rules estab-
lished by the Turkish Language Association1. We
implement corruption, a.k.a. transformation, func-
tions to generate instances that violate a specific
rule, which requires challenging analysis of sen-
tences on several linguistic levels, as well as cura-
tion of specialized lexicons. Then, we generate a
large, synthetic, high-quality annotated corpus by
applying transformation functions to professionally
edited, modern Turkish articles. In addition to the

1https://tdk.gov.tr/

https://gglab-ku.github.io/
https://github.com/GGLAB-KU/gecturk
https://github.com/GGLAB-KU/gecturk
https://tdk.gov.tr/

279

transformation functions, we implement and share
the reverse-transformation functions for validating
the generated datasets and developing sequence
tagger models, which achieve state-of-the-art in
English.

In addition, we compile a corpus of movie re-
views and manually annotate 300 sentences with
the proposed error types to evaluate the models
in a real-life setting. Furthermore, we design and
implement several baselines using standard neural
machine translation (NMT), sequence tagging and
prefix-tuning. The NMT model only generates the
correct sentece, but the sequence tagging model is
trained to tag the tokens with the error type (if any)
and then use our reverse transformation function
on this error to generate the correct text. Finally,
we perform prefix-tuning (Li and Liang, 2021) on
mGPT Shliazhko et al. (2022) for both detection
and correction to test more recent techniques.

Our findings indicate that our pipeline approach
using smaller models perform better than employ-
ing larger pretrained models in an end-to-end fash-
ion when it comes to both synthetic and real-world
datasets—particularly for the grammatical error de-
tection task. Conversely, we observe that pretrain-
ing benefits the models in more realistic cases, de-
spite the larger models still falling behind their sim-
pler counterparts. Our results from out-of-domain
tests imply that training on the synthetic dataset
gives a strong prior to both smaller and larger mod-
els.

Our contributions can be summarized as follows:

• We propose the first comprehensive, expert-
curated grammatical error schema for Turkish
that covers 25 error types.

• We present a synthetic data generation
pipeline that can be used to create arbitrary
sized datasets, and can be easily extended to
include new grammatical error types or lex-
icons, and can easily be modified to include
custom tools (e.g., morphological analyzer
and disambiguator).

• We present the first large-scale, fine-grained
public dataset for Turkish grammatical cor-
rection and detection, along with a manually
annotated realistic test set and strong baseline
models.

We make our datasets, baseline models, and
synthetic data generation pipeline publicly avail-

able at https://github.com/GGLAB-KU/
gecturk.

2 Related Work

English GEC Despite having a long history, with
the BEA-2019 Shared Task on Grammatical Error
Correction (Bryant et al., 2019), the GEC com-
munity started using neural models and formu-
lating GEC as a neural machine translation task
(i.e., translate from grammatically incorrect to
correct sentences), which has become the domi-
nant approach. Another recent approach, GEC-
ToR (Omelianchuk et al., 2020), uses the idea of re-
verse transformations, which can be applied to a list
of source tokens [x1, . . . , xn], in order to produce
the desired correct grammar. They use a sequence
tagger with a BERT encoder. Each tag corresponds
to a transformation where transformations are ap-
plied after the sequence tagging finishes. In con-
trast, the gT5 model released by Xue et al. (2021)
is a multilingual mT5 model fine-tuned on artifi-
cially corrupted sentences from the mC4 corpus
and uses a span prediction and classification task
to fix grammatical errors (Rothe et al., 2021). This
does require a lot of additional training time, since
the original mT5 model is not initially prepared for
a similar task. Their model achieves SOTA results
in 4 languages while only training once.

Turkish GEC Previously, Arikan et al. (2019)
proposed a neural sequence tagger model and a
synthetically generated dataset to correct “de/da”
clitic errors. In Turkish grammar, “de/da” is used
both as a locative suffix and a conjuction meaning
also, too that is written separately. For instance,
“-de” is a locative suffix in the sentence “Evde (At
home)”; while used as a conjuction here: “Ben de
geliyorum (I’m coming too)”. Mistakes in using
these clitics are common among native speakers,
often due to some contextual subtleties and oral di-
alect influencing the written language. Öztürk et al.
(2020) combined a contextual word embedding
model, namely BERT, with a sequence tagger to
correct “de/da” clitic errors. Although these errors
are common, they constitute only a small portion
of grammatical errors made by native speakers. In
addition, while there are various forms of this error,
the previous work only considers a few. Our data
generation strategy considers multiple versions of
the “de/da” clitic errors and many more common
grammatical errors.

https://github.com/GGLAB-KU/gecturk
https://github.com/GGLAB-KU/gecturk

280

Uyuyakaldığı için hem
işe gitmedi

hemde akşamki
yemeğe gelemeyecek

Grammatically
correct
corpus

Lexicons

Sample
sentence

Transformation
Functions

3. Use lexicons if needed
2. Obtain part of speech

information

If valid,Analyzing validity1. Get correct
sentence

Morphological
Analysis and

Disambiguation

4. Extract tokens to modify

Transform
sentence with

specified
probability

Transformed
tokens

5. Undo using
reverse

transformation
Output Sentence

For each transformation,

6. If equal,
keep

Compare with
original sentence

Corpus for
Turkish Grammatical

 Error Correction

Uyuyakaldığı için hem
işe gitmedi hem

de akşamki
yemeğe gelemeyecek

de
(CONJ)

No
lexicons
needed

hem de

hemde

7. Add to
corpus

Combine all
transformations

Uyuya kaldığı için
hem işe

gitmedi hemde
akşamki

yemeğe gelemiyecek

Figure 1: Data generation pipeline. 1) First, a correct sentence is obtained from the grammatically correct corpus.
2) Then, morphological analysis is performed. 3) The validity of the sentence for the transformation function is
checked. If the sentence is eligible, the transformation is applied with some probability p. 4)First, selecting tokens
to modify, 5) then, checking if the reverse transformations can recover the original tokens. 6) If original cannot be
recovered, the sentence is removed. If can be recovered 7) the transformed sentence is added to the corpus.

Parsing-based Approaches While most of the
current approaches focus on reverse transforma-
tions and sequence tagging, there are several stud-
ies that involve the use of parsing techniques.
Flickinger and Yu (2013) create a parsing tree,
and identify malformed parts of the tree to detect
grammatical errors. da Costa (2021) use symbolic
parsers and computational grammars for GEC and
GED. On the same research line, Flickinger and
Packard use bridged analyses combined with pars-
ing to better allow for connecting two phrases in
Head-driven Phrase Structure Grammar (HPSG).

3 Synthetic Data Generation

The overall generation process is given in Fig. 1.
First, we randomly sample from professionally
edited Turkish corpora (§3.1). Then, sentences
are corrupted—if possible—following the expert-
curated transformation rules explained in §3.2, as
well as the use of a morphological analyzer. Fi-
nally, pairs of grammatically correct and corrupted
sentences are added to the final Turkish GEC cor-
pus following the M2 scorer (Dahlmeier and Ng,
2012) (MaxMatch) data format.

3.1 Corpus

Our proposed data generation pipeline is built upon
the assumption that all input sentences are gram-
matically correct. Hence, we base our study on
previously compiled newspaper corpora (Diri and
Amasyali, 2003; Amasyalı and Diri, 2006; Can and

Amasyalı, 2016; Kemik NLP Group, 2022) that are
proofread and went through a professional editing
process. The articles are on various topics, includ-
ing politics, sports, and medicine, and have been
written by more than 95 authors for three differ-
ent newspapers; in total, more than 7000 singly
authored documents were collected between 2004-
2012. Once we obtained grammatically correct
source sentences, we performed several preprocess-
ing steps, such as removing duplicates (2.9% of
the combined dataset), ending with 138K unique
sentences.

3.2 Transformation
The Turkish Language Association (TDK)2, a gov-
ernment agency founded in 1932, is responsible for
providing resources to conduct scientific research
on written and oral sources of Turkish. Within this
scope, they specify and maintain a comprehensive
list of publicly available writing rules3. We rely
on this expert-curated list to generate forward and
backward transformation rules, which we refer to
as f and f−1 respectively. However, the list is long,
and some writing rules are intuitive to native speak-
ers, so that any errors made on these rules sound
abnormal to them. We select the grammar rules
that are most commonly used incorrectly by native
speakers, determined by consulation with Turkish
language experts and filtering the list from TDK

2https://www.tdk.gov.tr/
3https://www.tdk.gov.tr/kategori/

icerik/yazim-kurallari/

https://www.tdk.gov.tr/
https://www.tdk.gov.tr/kategori/icerik/yazim-kurallari/
https://www.tdk.gov.tr/kategori/icerik/yazim-kurallari/

281

using their feedback. We do not include any rules
that are common for Turkish language learners but
rarely made by native speakers. Table 1 provides
the full list of the transformation rules produced
by this work. The transformations rely on a mor-
phological analyzer, which was essential to get the
transformations right for a morphologically rich
language like Turkish. For more information on
Turkish Morphology, we refer to Oflazer (2014)
and Lewis (1985).

Applying f For each sampled sentence, first, we
shuffle the list of fs. This ensures that mutually
exclusive transformation functions are applied with
desired frequencies. Then, we iteratively apply
each f on the sentence given with the pseudo-code
in Algorithm 1. Here, f gets an input sentence
s , morphological analysis of the sentence Ms , an
array of indicators for whether any transformation
has been applied to the word— flags, and param-
eter p ∈ (0,1). The algorithm, then, iterates over
tokens (or pairs) and checks whether the token has
been transformed. If not, it checks whether the
token(s) are eligible for f . If eligible, we apply f
with the probability p, since not all errors are made
with the same frequency by native speakers.4

Eligibility Check Some official writing rules re-
quire syntactic analysis at the token and sentence
levels. For instance, to apply the transformation
function CONJ_DE_SEP, one must perform mor-
phological analysis and disambiguation to analyze
the part-of-speech tags at the morpheme level. That
is, CONJ_DE_SEP transformation can be applied
only if a “-de/da” morpheme with a CONJUC-
TION part-of-speech tag is found. Additionally,
a small set of rules requires specialized lexicons,
e.g., a list of exceptional foreign words for FOR-
EIGN_R2_EXC. To address the former, we use
a state-of-the-art morphological analyzer Dayanik
et al. (2018), and the lexicons are taken from the
official lists provided by TDK2.

Annotation Format We use the standard GEC
annotation format following Ng et al. (2013) and
Bryant et al. (2019). An example annotation is
given in Fig. 2. Here, S and A refer to the ungram-
matical sentence and edit annotations respectively.
Each A contains starting and ending indices, the
error type, the corrected phrase, and the id of the
annotator.

4We choose the probabilities intuitively after an initial
analysis on web corpus and student essays.

Uyuyakaldığı için hem işe gitmedi hem de akşamki

yemeğe gelemeyecek .

(Because they overslept, they didn’t go to work and won’t be able to come to

dinner tonight.)

(a)
Uyuya kaldığı için hem işe gitmedi hemde akşamki

yemeğe gelemiyecek .

(b)
S Uyuya kaldığı için hem işe gitmedi hemde akşamki yemeğe gelemiyecek.

A 0 2|||COMP_VERB_ADJ|||Uyuyakaldığı|||REQUIRED|||-NONE-|||0
A 6 7|||CONJ_DE_SEP|||hem de|||REQUIRED|||-NONE-|||0

A 9 10|||PRONOUNC_EXC|||gelemeyecek|||REQUIRED|||-NONE-|||0

(c)

Figure 2: The grammatically correct sentence is given
in (a), the transformed version is given in (b), and the
annotation format is given in (c).

Postprocessing Despite the use of professionally
edited source sentences, there are still some gram-
matically incorrect sentences that slip through. We
detect these cases by taking advantage of a key
property of our reverse transformations: since each
f is reversible, we should see S = f−1(f(S)) for
each sentence S. Therefore, at the end of the trans-
formation process, we perform this check on every
generated, grammatically incorrect sentence. If a
sentence fails this check, then we know it is prob-
lematic, and we remove it from the corpus. The
final sentences are thus properly modified in the
desired way, with no unintentional side effects.

3.3 Annotated Corpus

The annotated corpus includes more than 138K
sentences, with 104K error annotations belonging
to 25 error types given in Table 1. In this corpus,
50% of sentences are error free, in order for mod-
els to learn how to detect/correct sentences that
are already grammatically correct. The generative
pipeline controls the frequency of those error types,
aiming to mimic the human error frequencies (see
App. B). As in the dataset of CoNLL-2014 shared
task (Ng et al., 2014), some error types appear
more frequently than others. These frequencies
are by the probability parameters p; therefore, the
difference between frequencies of error types is an
intended result. Our dataset is finally split into a
train/val/test set of 70%/15%/15%.

282

Algorithm 1 Apply f

Require: s := sentence, Ms := morphological analysis, flags, p
Ensure: tags

tags← []
n← Number of tokens in s
for i = 1→ n do

if flags[i] and is_eligible(s,Ms) and flipCoin(p) then
tags.insert("A i {i+ 1} ||| ruleID ||| sentence[i] ||| REQUIRED ||| -NONE- ||| 0")
sentence[i]← transformed token at index i
flags[i]← False

3.4 Curated Test Corpus

For a more realistic test setting, we used movie
reviews from a popular website 5 shared by Altinok
(2023). We asked a domain expert to annotate the
sentences for the proposed error types, following
the standard GEC annotation format. As a results,
we curated a test dataset of 300 sentences, wherein
half of the sentences were grammatically correct
and the other half contained errors.

4 Tasks and Models

In this paper, we consider two tasks: Grammatical
Error Correction (GEC) and Grammatical Error
Detection (GED).

Grammatical Error Correction (GEC) takes
as input a grammatically incorrect sentence and
outputs the corrected version of the sentence. For-
mally, given an input sentence x = (x1, · · · , xT)
which may contain some grammar mistakes, the
aim is to produce an output sentence y =
(y1, · · · , yT ′) which contains no grammatical er-
rors. Conditions are not imposed on how the model
produces grammatically correct sentences.

Grammatical Error Detection (GED) takes a
slightly different approach to this problem, with the
goal of producing detailed information about the
errors in the source sentence. This includes details
about the type of error and the location of the error
in the sentence. Formally, given an input sentence
x = (x1, · · · , xT), we can represent the problem as
a token-level classification task, where the output is
c = (c1, · · · , cT), and ci represents the error type
of token i. Given the knowledge that an error of
type ck occurred at the location from m to n, it is
then possible to apply the corresponding reverse
transformation f−1, and fix the error.

5www.beyazperde.com

4.1 Models

We introduce three models to evaluate the perfor-
mance of GECTurk: An NMT baseline, a sequence
tagger using BERT (Devlin et al., 2019) pretrained
on Turkish, and mGPT using prefix-tuning. All
models are trained using 1 Nvidia V100 GPU. We
only provide the essential information about the
models here. More details are available in Ap-
pendix A.

NMT Baseline: We train a vanilla transformer
model (Vaswani et al., 2017) for GEC. This choice
is inspired by the most recent shared task on gram-
matical correction (Bryant et al., 2019), where
many of the winning teams used transformer-based
models and modeled the problem as a Neural Ma-
chine Translation (NMT). The training dataset con-
sists of triples {(xi, yi, ai)}Ni=1, where xi is the i-th
input sentence, yi is the corresponding ground truth
corrected sentence, and ai are the annotations. Dur-
ing training, the model receives xi as input and
tried to predict yi as output. Due to the nature of
the formulation, NMT is only used for correction.

Sequence Tagger: Similar to recent
work (Omelianchuk et al., 2020), we train a
sequence tagging model using a cased BERT en-
coder, pretrained on Turkish text (Schweter, 2020)
with default configurations and additional linear
and softmax layers on the top. The BERT model
uses the WordPiece tokenizer (Wu et al., 2016)
that segments tokens into subwords. Therefore,
each sentence in the dataset is first tokenized into
subwords and passed into the BERT encoder. We
only hold the first subword’s representation for
words with multiple subword tokens. Then, the
encoder’s representations are linearly transformed
and passed to the softmax layer to classify into
possible error types described in Table 1 or no error.
The model is finetuned for token classification
objective using cross-entropy loss.

The advantage of this model is the ability to per-

www.beyazperde.com

283

Category Rule ID Description f Frequency
-D

E
/-

D
A

1. CONJ_DE_SEP Conjunction “-de/-da” is writ-
ten separately.

Durumu [oğluna da -> oğlu-
nada] bildirdi.

12962

2. CONJ_DE_VH Conjunction “-de/-da” must fol-
low the vowel harmony

Çok [da -> de] iyi olmuş. 101

3. CONJ_DE_AR Conjunction “-de/-da” does not
follow phonetic assimilation
rules.

Sınıf [da -> ta] temizlendi. 99

4. YADA “-de/-da” written together with
the word “ya” is always written
separately.

Sen [ya da -> yada] o buradan
gidecek.

472

5. CONJ_DE_APOS Conjunction “-de/-da” cannot
be used with an apostrophe.

[Ayşe de -> Ayşe’de] geldi. 10859

6. CASE_DE Suffix “-de/-da” is written adja-
cent.

[Evde -> Ev de] hiç süt
kalmamıştı.

37462

-K
I

7. CONJ_KI_SEP Conjunction “-ki” is written sep-
arately.

Bugün öyle çok [yorulmuş ki ->
yorulmuşki] hemen yattı.

1817

8. CONJ_KI_EXC On some exceptional instances,
by convention, the conjunction
“-ki” is written adjacent.

[Belki -> Bel ki], [oysaki ->
oysa ki], [çünkü -> çünki]

1395

FO
R

E
IG

N

9. FOREIGN_R1 Words that start with double
consonants of foreign origin are
written without adding an “-i”
between the letters.

[gram -> gıram] 307

15. FOREIGN_R2 Some foreign origin words un-
dergo consonant assimilation

[sebebi -> sebepi] 327

16. FOREIGN_R2_EXC Exceptions to the FOR-
EIGN_R2 rule

[evrakı -> evrağı] 422

B
IS

Y
L

13. BISYLL_HAPL_VOW Some bisyllabic words undergo
haplology when they get a suf-
fix starting with a vowel.

[ağzı -> ağızı] 1567

14. BISYLL_HAPL_VOW_EXC Exception to previous rule [içeride -> içerde] 866

L
IG

H
T

V
E

R
B

17. LIGHT_VERB_SEP Light verbs such as “etmek,
edilmek, eylemek, olmak, olun-
mak” are written separately in
case of no phonological assimi-
lation

[arz etmek -> arzetmek] 460

18. LIGHT_VERB_ADJ Light verbs are written adjacent
in case of phonological assimi-
lation e.g., liaison

[emretti -> emir etti] 547

C
O

M
PO

U
N

D

20. COMP_VERB_ADJ Compound words formed by
knowing, giving, staying, stop-
ping, coming, and writing are
written adjacent if they have a
suffix starting with -a, -e, -ı, -i,
-u, -ü.

[uyuyakalma -> uyuya kalmak],
[gidedurmak -> gide durmak],
[çıka gelmek -> çıka gelmek]

7840

SI
N

G
L

E

22. PRONOUN_EXC Traditionally, some pronouns
are written adjacent.

[hiçbir -> hiç bir], [herhangi ->
her hangi]

3867

23. SENT_CAP The first letter of the sentence is
capitalized.

[Onlar -> onlar] geldi. 2613

24. CAPPED Some Arabic and Persian orig-
inated words are written with
capped letters.

[kâğıt -> kağıt], [karargâh ->
karargah]

834

25. ABBREV Grammatical rules for abbrevi-
ations, such as adding suffixes
to abbreviations, punctuations
with abbreviations etc.

[Alm. -> Alm], [THY’de ->
THY’da], [cm’yi -> cm’ye]

359

12. PRONOUNC_EXC Unlike its pronunciation, verbs
ending with “-a/-e” do not mu-
tate when they get a suffix other
than “-yor”

[başlayacağım -> başlıyacağım] 12750

Table 1: Selected list of writing rules introduced by Turkish Language Association. f [arg1− > arg2] refers to the
transformation function where the correct and corrupted surface forms are given with arg1 and arg2 respectively.

284

Dataset #s #a %e #e

(Ours) GECTurk 138K 104K 49.7% 25
(Ours) CuratedTest 300 227 50% 25
BOUN 10K 6K 50.0% 2
BOUN complex 102 105 100.0% 2

Table 2: Datasets used for training and evaluation. #s:
sentences, #a: annotations, %e: percentage of erroneous
sentences, #e: number of errors types

form error detection easily, as opposed to simply
error correction. Correction is simply performed
with reverse transformations as described previ-
ously.

Prefix Tuning: Inspired by the recent successes
of prefix tuning (Li and Liang, 2021) as an al-
ternative to model fine-tuning, we use Open-
Prompt (Ding et al., 2022) to perform prefix tuning
on mGPT (Shliazhko et al., 2022). Despite be-
ing multilingual and primarily focused on other
languages, mGPT achieves encouraging results on
morphologically rich languages (Acikgoz et al.,
2022). In prefix tuning, we append N trainable
(soft) tokens to the front of each input. Therefore,
given input x = (x1, · · · , xT), the new input be-
comes x = (s1, · · · , sN , x1, · · · , xT), where the
si’s are the added artificial tokens. We then opti-
mize only these tokens during training, while leav-
ing the original model frozen.

Here, we model both correction and detection
tasks in the same sequence generation approach,
where the corrected sentence is first generated, and
then information about the violated rule, and the
location of this error is generated at the end of the
sentence. This allows for one trained model to
output both results. In order to train this correctly,
the target sentence was appended with the details
of the error type and location, and used for loss
calculations. An example is provided in Fig 6.

5 Experimental Setup

5.1 Datasets

The list of datasets and their statistics are given
in Table 2. GECTurk and MovieReview datasets
are already described in §3.3 and §3.4 accordingly.
The BOUN dataset (Arikan et al., 2019) is a rela-
tively smaller dataset of 15K training and 2K test
sentences, containing only 2 error types. It also
includes a complex split, a list of 100 sentences
that are mentioned to be extra challenging by the
authors.

5.2 Evaluation

Grammatical Error Correction Following the
Omelianchuk et al. (2020) and Bryant et al.
(2019), we report Precision (P), Recall (R),
and F0.5 scores using the M2 (MaxMatch)
scorer (Dahlmeier and Ng, 2012).

Grammatical Error Detection To allow for
a fair comparison with the BOUN dataset from
Arikan et al. (2019), we use the same metrics,
namely Precision (P), Recall (R), and F1. Since
the task is modeled as a sequence tagging prob-
lem, this aligns with the standard evaluation for se-
quence tagging, such as in Huang et al. (2015). For
all GED results, we report macro metrics, which are
computed by taking unweighted average of each
classes’ result. We use macro metrics over micro
ones since distribution of grammatical errors types
made by humans are imbalanced. To calculate
these scores, we use SeqEval (Nakayama, 2018),
a common library for evaluating sequence tagging
tasks and use one tag for each error type.

6 Experiments and Results

We train the baseline models using the setup ex-
plained in Section §5 with three different fixed
seeds. The mean and standard deviation of their
performances on GEC and GED are given in Ta-
ble 3. As can be seen, both SeqTag and mGPT
provide strong results over 0.94 F0.5 score for the
GEC task, compared to the NMT baseline model.
On the other hand, the detection task is performed
more competently by SeqTag—as expected—than
mGPT, which again achieves around 0.90 F1 score.
Moreover, the experiment on the effect of dataset
sizes shows that the proposed dataset is more chal-
lenging than existing ones, with a steeper learning
curve due to the larger number of error types. More
information on the dataset size experiments can be
found in Appendix C.

Successful detection does not always translate
into successful correction because erroneous edits
undermine the grammatical accuracy of the sen-
tence, even when the grammatical error is success-
fully detected. Here, the M2 scorer does identify
this anomaly and explains the decrease in the cor-
rection scores. It is also worth noting that GED and
GEC are two separate tasks, and models handle
them differently. For example, generative models
such as mGPT generate both the corrections and
detections by predicting the next tokens, so there

285

GECTurk
Detection Correction

P R F1 P R F0.5

NMT - - - 0.50 ± 0.01 0.84 ± 0.01 0.55 ± 0.01
SeqTag 0.90 ± 0.003 0.90 ± 0.013 0.90 ± 0.006 0.98 ± 0.001 0.98 ± 0.001 0.98 ± 0.001
mGPT 0.52 ± 0.02 0.38 ± 0.004 0.41 ± 0.01 0.95 ± 0.01 0.92 ± 0.03 0.94 ± 0.01

Curated Test Data

NMT - - - 0.31 0.62 0.35
SeqTag 0.94 0.87 0.89 0.85 0.80 0.84
mGPT 0.73 0.52 0.59 0.75 0.61 0.72

Table 3: Detection and Correction results of the baselines on GECTurk (in-domain) and curated test dataset (out-of-
domain).

isn’t necessarily a strong correlation between what
is generated for each of them. On the other hand,
SeqTag uses a pipeline approach, where it detects
the errors first, then applies reverse transformations
to fix them. Hence there is a stronger correlation
between the detection and correction performances
for SeqTag, as expected.

In order to test whether the performance of our
models would transfer to different domains, we
perform zero-shot experiments on the curated test
set from the movie domain. We use our highest
performing checkpoints on our synthetic test set,
and evaluate without any additional training on the
hand-annotated corpus as given in Table 3, second
row. For detection, SeqTag performs similarly to
synthetic setting, while mGPT’s performance in-
creases dramatically, proving the importance of
being exposed to real-life data during pretraining.
However, SeqTag still outperforms mGPT by a
large margin due to its classification objective. On
the other hand, both models perform significantly
worse on the correction task for the currated test
data compared to the synthetic setting, suggesting
larger room for improvement on this more chal-
lenging test set.

6.1 Knowledge Transfer

Next, we investigate the transfer capacity of our
models on unseen datasets using a different set of
errors (i.e., mostly a subset) originally introduced
to our models. We first evaluate our pretrained
models on the BOUN (Arikan et al., 2019) stan-
dard and complex test splits to see their zero-shot
ability, seen in Table 4, first row. Surprisingly,
our best model, SeqTag, achieves 0,80 F1, on-par
with state-of-the-art for the standard split. It also
surpasses state-of-the-art accuracy on the complex
split by a large margin together with the mGPT
model. This suggests that the error type knowledge

BOUN Zero-Shot
Detection Correction

P R F1 Acc P R F0.5

NMT - - - - 0.19 0.56 0.22
SeqTag 0.91 0.72 0.80 0.99 0.81 0.63 0.77
mGPT 0.60 0.56 0.58 0.97 0.75 0.67 0.73

BOUN Complex Split Zero-Shot

NMT - - - - 0.71 0.73 0.72
SeqTag 0.99 0.93 0.96 0.99 0.99 0.93 0.98
mGPT 0.61 0.96 0.90 0.93 0.79 0.75 0.78

BOUN Full Training

NMT - - - - 0 0 0
SeqTag 0.97 0.86 0.91 0.99 0.97 0.86 0.94
mGPT 0.61 0.48 0.53 0.97 0.85 0.73 0.82

BOUN Results 0.92 0.82 0.87 0.71 * - - -

* This result is for BOUN Complex Split Zero-Shot task.

Table 4: Performance metrics of various models on the
BOUN dataset. The table is divided into three sections:
models trained on the GECTurk dataset and evaluated
zero-shot on two different BOUN splits, and models
exclusively trained and evaluated on BOUN.

is mostly transferrable to other domains. Similar to
our results on GECTurk, mGPT scores much lower
on detection compared to SeqTag. However, the
performance of mGPT is higher on BOUN dataset
due to the small number of error types that are rel-
atively more balanced. We note that despite the
claims made by the authors of the BOUN dataset,
our results suggest no additional complexity in the
“complex” split as shown in Table 4, second row.

Finally, we investigate the effectiveness of our
general approach by training our proposed models
from scratch on the BOUN (Arikan et al., 2019)
training split, given in Table 4, BOUN Full Train-
ing. For this setup, the NMT model was not able to
converge, and just produced noise, hence, shown
as 0.

Following our previous results, SeqTag achieves
F1 score of 0.91, surpassing the state-of-the-art

286

by 0.04 pp, and its zero-shot performance by a
large margin (0.11 pp). This suggests that pipeline
approach is able to transfer a lot of knowledge.
However, there is still a large gap that can be com-
pensated by directly training on the actual domain
and error types. On the other hand, the high scores
provide cues for the strength of the proposed model.
Surprisingly, prefix tuning of mGPT directly on the
BOUN training dataset does not increase the per-
formance compared to the zero-shot setting. This
suggests two things: i) synthetic dataset such as
ours, GECTurk, provides quality prior knowledge
on the Turkish grammatical error types and ii) pre-
trained models have a considerably larger transfer
capacity compared to training from scratch, as ex-
pected. Furthermore, for languages where the error
types are mostly identified and can be fixed by a
set of rules, a pipeline approach such as SeqTag
proves more effective, efficient and robust.

7 Conclusion and Future Work

In this work, we have presented an annotated
dataset for Grammatical Error Correction (GEC)
and Detection (GED), GECTurk, containing more
than 20 Turkish writing error types proposed by
Turkish language experts. We have also intro-
duced a flexible and extensible data generation
pipeline that can be used to create a synthetic
dataset from grammatically correct sentences. We
used this pipeline to create a large-scale dataset us-
ing multiple opinion columns from Turkish news-
papers. In addition, we have manually constructed
a more challenging test set by annotating the movie-
reviews with the proposed error types.

Finally, we implemented a diverse set of strong
baseline models, by training from scratch, fine-
tuning, or using prefix tuning. Our results show that
smaller models focusing on the simpler problem
of detecting the error types outperform large pre-
trained models on both the synthetic and real-life
datasets, especially for the detection task. On the
other hand, we observe that pretraining helps the
models to handle more realistic cases, even though
they still lag behind the simpler models. Our out-
of-domain results suggest that training on the syn-
thetic data gives a strong prior to both smaller and
larger models.

Acknowledgements

This work has been supported by the Scien-
tific and Technological Research Council of

Türkiye (TÜBİTAK) as part of the project “Auto-
matic Learning of Procedural Language from Natu-
ral Language Instructions for Intelligent Assistance”
with the number 121C132. We also gratefully ac-
knowledge KUIS AI Lab for providing computa-
tional support. We thank our anonymous reviewers
and the members of GGLab who helped us improve
this paper.

Limitations

One key issue is that mGPT is very computation-
ally intensive to work with, even when only doing
prefix tuning. This meant we could only train for
1 epoch. Another limitation is that the data gener-
ation pipeline is very time-consuming due to the
use of a morphological analyzer. This means many
resources are needed for very large-scale datasets.
Additionally, needing hand-crafted rules and re-
verse transformations makes adding new rules slow.

Another key limitation is the need of dictionar-
ies for exceptions to grammatical rules. Words in
Turkish originating from other languages (notably
Persian, French, and Arabic) don’t always follow
normal grammar rules, and thus require special
lists of exceptions. While we included as many as
possible, our list is not exhaustive, which can lead
to rare edge cases where our pipeline fails. While
dictionaries allow for adding learned knowledge
directly, and is an invaluable part of our pipeline,
these edge cases can cause problems during dataset
generation.

Ethical Considerations

One ethical issue is the misuse of grammatical cor-
rection models for cheating. Having such models
and datasets mean that students can more easily use
these to score better than normal on assignments
and exams. This is bad for the student’s learning,
and also affects others who can be negatively im-
pacted by this artificial success.

Despite this, we believe that grammatical error
correction models are more beneficial than harmful.
Many people, from authors to language learners,
can benefit from having grammar corrections. By
introducing a dataset and demonstrating models
on Turkish, an under-served language in the NLP
community, more people will be able to take ad-
vantage of this, similar to the many existing tools
for English.

287

References
Emre Can Acikgoz, Tilek Chubakov, Muge Kural,

Gözde Şahin, and Deniz Yuret. 2022. Transformers
on multilingual clause-level morphology. In Proceed-
ings of the The 2nd Workshop on Multi-lingual Rep-
resentation Learning (MRL), pages 100–105, Abu
Dhabi, United Arab Emirates (Hybrid). Association
for Computational Linguistics.

Duygu Altinok. 2023. A diverse set of freely avail-
able linguistic resources for Turkish. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13739–13750, Toronto, Canada. Association
for Computational Linguistics.

M. Fatih Amasyalı and Banu Diri. 2006. Automatic
Turkish text categorization in terms of author, genre
and gender. In Natural Language Processing and
Information Systems, pages 221–226, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Ugurcan Arikan, Onur Güngör, and Suzan Uskudarli.
2019. Detecting clitics related orthographic errors
in Turkish. In Proceedings of the International Con-
ference on Recent Advances in Natural Language
Processing, RANLP 2019, Varna, Bulgaria, Septem-
ber 2-4, 2019, pages 71–76. INCOMA Ltd.

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 shared
task on grammatical error correction. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 52–75,
Florence, Italy. Association for Computational Lin-
guistics.

Ender Can and Mehmet Fatih Amasyalı. 2016.
Text2arff: A text representation library. In 2016 24th
Signal Processing and Communication Application
Conference (SIU), pages 197–200.

Çagri Çöltekin, A. Seza Doğruöz, and Özlem Çetinoglu.
2023. Correction to: Resources for Turkish natural
language processing: A critical survey. Lang. Resour.
Evaluation, 57(1):489.

Luís Morgado da Costa. 2021. Using rich models of lan-
guage in grammatical error detection. Ph.D. thesis,
Nanyang Technological University.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572, Montréal, Canada. Association for Compu-
tational Linguistics.

Erenay Dayanik, Ekin Akyürek, and Deniz Yuret. 2018.
Morphnet: A sequence-to-sequence model that com-
bines morphological analysis and disambiguation.
CoRR, abs/1805.07946.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen,
Zhiyuan Liu, Haitao Zheng, and Maosong Sun. 2022.
Openprompt: An open-source framework for prompt-
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2022 - System Demonstrations, Dublin, Ireland,
May 22-27, 2022, pages 105–113. Association for
Computational Linguistics.

Banu Diri and Mehmet Fatih Amasyali. 2003. Auto-
matic author detection for Turkish texts.

Dan Flickinger and Woodley Packard. Robust parsing in
hpsg: Bridging the coverage chasm. Poster presented
at the 22nd International Conference on HPSG. 2015.

Dan Flickinger and Jiye Yu. 2013. Toward more preci-
sion in correction of grammatical errors. In CoNLL
Shared Task.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
CoRR, abs/1508.01991.

Kemik NLP Group. 2022. Our datasets.
http://www.kemik.yildiz.edu.tr/
data/File/2500koseyazisi.rar. Online;
accessed 26-November-2022]".

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

G. Lewis. 1985. Turkish Grammar. Oxford University
Press.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), abs/2101.00190.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Hiroki Nakayama. 2018. seqeval: A python framework
for sequence labeling evaluation. Software available
from https://github.com/chakki-works/seqeval.

https://doi.org/10.18653/v1/2022.mrl-1.10
https://doi.org/10.18653/v1/2022.mrl-1.10
https://doi.org/10.18653/v1/2023.acl-long.768
https://doi.org/10.18653/v1/2023.acl-long.768
https://doi.org/10.26615/978-954-452-056-4_009
https://doi.org/10.26615/978-954-452-056-4_009
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.1109/SIU.2016.7495711
https://doi.org/10.1007/s10579-022-09625-0
https://doi.org/10.1007/s10579-022-09625-0
https://api.semanticscholar.org/CorpusID:247266314
https://api.semanticscholar.org/CorpusID:247266314
https://aclanthology.org/N12-1067
https://aclanthology.org/N12-1067
http://arxiv.org/abs/1805.07946
http://arxiv.org/abs/1805.07946
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2022.acl-demo.10
https://doi.org/10.18653/v1/2022.acl-demo.10
https://api.semanticscholar.org/CorpusID:10479821
https://api.semanticscholar.org/CorpusID:10479821
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
http://www.kemik.yildiz.edu.tr/data/File/2500koseyazisi.rar
http://www.kemik.yildiz.edu.tr/data/File/2500koseyazisi.rar
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval

288

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning: Shared Task, pages 1–14,
Baltimore, Maryland. Association for Computational
Linguistics.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 shared task on grammatical error correction.
In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared
Task, pages 1–12, Sofia, Bulgaria. Association for
Computational Linguistics.

Kemal Oflazer. 2014. Turkish and its challenges for
language processing. Lang. Resour. Evaluation,
48(4):639–653.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR – grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163–170, Seattle, WA, USA →
Online. Association for Computational Linguistics.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A simple
recipe for multilingual grammatical error correction.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 702–707,
Online. Association for Computational Linguistics.

Stefan Schweter. 2020. Berturk - bert models for Turk-
ish.

Oleh Shliazhko, Alena Fenogenova, Maria Tikhonova,
Vladislav Mikhailov, Anastasia Kozlova, and Tatiana
Shavrina. 2022. mGPT: Few-shot learners go multi-
lingual. CoRR, abs/2204.07580.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. CoRR, abs/1609.08144.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Hasan Öztürk, Alperen Değirmenci, Onur Güngör, and
Suzan Uskudarli. 2020. The role of contextual word
embeddings in correcting the ‘de/da’ clitic errors in
Turkish. In 2020 28th Signal Processing and Com-
munications Applications Conference (SIU), pages
1–4.

https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://aclanthology.org/W13-3601
https://aclanthology.org/W13-3601
https://doi.org/10.1007/s10579-014-9267-2
https://doi.org/10.1007/s10579-014-9267-2
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.5281/zenodo.3770924
https://doi.org/10.5281/zenodo.3770924
https://doi.org/10.48550/arXiv.2204.07580
https://doi.org/10.48550/arXiv.2204.07580
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.1109/SIU49456.2020.9302477
https://doi.org/10.1109/SIU49456.2020.9302477
https://doi.org/10.1109/SIU49456.2020.9302477

289

A Model Details

A.1 NMT Baseline
For tokenization, we used BerTurk-cased
(Schweter, 2020) tokenizer, passed to the NMT
model. The transformer model has 6 encoders
with embedding size 512, 6 decoder layers, and
8 heads. A dropout of 0.1 is used directly after
the positional embeddings. For training, an Adam
(Kingma and Ba, 2014) optimizer with β1 = 0.9,
β2 = 0.98, and ε = 1e − 9, and a learning rate
of 1e − 4 is used. We used batch size of 32, and
trained the model for 100 epochs on a single
V100. We use a standard cross-entropy loss during
training, as follows:

LGEC(ŷ, y) = −
N∑

n=1

V∑
c=1

log
exp(ŷn,c)yn,c∑V
i=1 exp(ŷn,i)

(1)
Here, N is the batch size, V is the number of error
classes, x is the model output, and y is the target.
For the data size experiments, we used the same
architecture but with slightly different hyperparam-
eters. For both the 75% and 100% experiments, the
model was trained for 100 epochs. For the 50%
experiment, we only trained for 50 epochs. When
training 10% and 25%, the Adam optimizer is used
with the same β values, a learning rate of 5e − 4,
and a weight decay of 1e− 4, for 100 epochs. The
zero-shot testing on the BOUN (Arikan et al., 2019)
dataset is tokenized with the same tokenizer, and
the best pre-trained model from GECTurk is used
for evaluation.

A.2 Sequence Tagger
For training, we used the AdamW (Loshchilov and
Hutter, 2019) optimizer for 3 epochs, using batch
size 16, learning rate 2e − 5, weight decay 0.01,
β1 = 0.9, and β2 = 0.999.

A.3 Prefix Tuning
We used the standard mGPT tokenizer and the
OpenPrompt prefix tuning template. All experi-
ments use 5 soft tokens at the beginning. Teacher
forcing is used during training, and both the cor-
rection and detection tasks are formulated as a se-
quence generation problem. Following the settings
from Acikgoz et al. (2022), we don’t use weight
decay for the bias and LayerNorm weights. The
AdamW optimizer is used, with an initial learning
rate of 5e−5, linearly decaying to 0 over the entire
training. We clip the norm of the gradient at 1.0.

Figure 3: Number of sentences with each writing rule
type.

Due to the computational requirements of mGPT,
we only train on GECTurk for a single epoch on
all experiments. However, on the smaller BOUN
dataset, we train for 5 epochs. For inference, we
also follow the hyperparameters from Acikgoz et al.
(2022), using a temperature of 1.0, top p of 0.9, no
repetition penalty, and a beam search of 5 beams.
For all experiments, a batch size of 3 was used. The
max sequence length, including soft tokens, is set
to 512.

B GECTurk Error Frequencies

Fig. 3 shows the frequencies of each error type in
GECTurk dataset.

C Effect of Dataset Size

In order to obtain a better understanding of how
important the dataset size is for this task, we con-
ducted training on 1, 10, 25, 50, 75, and 100 per-
cent of GECTurk and evaluated each model using
the same evaluation measures. Fig. 4 shows how
the performance of the models vary with more train-
ing data. NMT reaches its top point with around
75% of the training data, while SeqTag and mGPT
achieve high F0.5 scores with 25% of the training
split. However, as discussed before, correction
scores can be misleadingly high, since high fre-
quency and easy to correct errors will push the re-
sults much higher. Hence we also plot the F1 scores
for the detection task both on TurkishGEC and
BOUN datasets in Fig. 5. The plot shows that the
GECTurk dataset is richer than the BOUN, since
SeqTag and mGPT F1 performances are much
steeper on the former.

290

Figure 4: Correction performance of each model trained
on varying sizes of GECTurk

Figure 5: F1 score performance of SeqTag and mGPT
on GECTurk and Boun training splits.

Ne yani Atatürk kadına
ilgi duymuyor muydu?
;11;5;6

S Ne yani Atatürk kadına ilgi
duymuyormuydu?
A 5 6|||rule_11|||duymuyor
muydu?|||REQUIRED|||-NONE-||
|0

M-GPT

Figure 6: Example output of the mGPT model. The
first line performs the grammatical error correction, and
subsequent lines allow for detection. The annotations
are included for comparison with model outputs, but are
not actually provided to the model.

