
Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023, pages 312–326
November 1–4, 2023. ©2023 Asian Federation of Natural Language Processing

312

IndIE: A Multilingual Open Information Extraction Tool For Indic
Languages

Ritwik Mishra1 , Simranjeet Singh2 , Rajiv Ratn Shah1 , Ponnurangam Kumaraguru3

and Pushpak Bhattacharyya 4

1 IIIT, Delhi 2 NSUT, Delhi 3 IIIT, Hyderabad 3 IIT Bombay
ritwikm@iiitd.ac.in, simranjeets.ec18@nsut.ac.in

rajivratn@iiitd.ac.in, pk.guru@iiit.ac.in, pb@cse.iitb.ac.in

Abstract

Open Information Extraction (OIE) is the pro-
cess of extracting informative facts from open-
domain natural language text. A multilingual
OIE tool, IndIE, has been proposed, which per-
forms chunking, creates a Merged-phrase De-
pendency Tree (MDT), and generates triples
using hand-crafted rules. It is observed that
fine-tuned transformer-based chunker outper-
forms other traditional methods of chunking.
A benchmark called Hindi-BenchIE has also
been developed for automatically evaluating
Hindi triples. The developed OIE tool, IndIE,
has been automatically evaluated on the golden-
triples of 112 Hindi sentences. Compared to
other multilingual methods, the IndIE method
generates more meaningful triples with 0.51
F1-score. It is observed that IndIE generates
more fine-grained triples than other methods.
It is conjectured that IndIE has the ability to
generate meaningful triples for Urdu, Tamil,
and Telugu sentences as well because the de-
veloped chunker is shown to generalize across
various natural languages, and the triple gener-
ation rules are based on dependency relations
that are common to the aforementioned Indic
languages.

1 Introduction

India is a linguistically diverse country. Among
the top 20 most spoken languages globally, six are
native to India (eth, 2021; cen, 2011). Despite
being spoken by billions of people, many Indic
languages are considered low-resource due to the
lack of annotated resources and automated systems
available for them (Hirschberg and Manning, 2015).
Consequently, there has also been a scarcity of tools
for information extraction in Indian languages due
to a lack of research work in the field (Gupta et al.,
2019; Harish and Rangan, 2020).

Introduced in the mid-1960s, the concept of In-
formation Extraction (IE) deals with extracting
structured facts from unstructured text written in

a natural language (WILKS, 1964). Extraction of
informative facts irrespective of the text domain is
called Open Information Extraction (OIE). A stan-
dard convention to represent facts is through triples
<head, relation, tail> where relation denotes the
link between the two entities, head and tail. For
example, consider the sentence “PM Modi to visit
UAE in Jan marking 50 yrs of diplomatic ties", one
of the possible meaningful triple would be <PM
Modi, to visit, UAE>.

The biggest strength of OIE tools is their ability
to extract triples from large amounts of texts in an
unsupervised manner (Gamallo et al., 2012). OIE
also serves as an initial step in building or augment-
ing a knowledge graph out of an unstructured text
(Muhammad et al., 2020; Lin et al., 2020).

A triple can be extracted in many different ways
depending on the word-order constraints in the
given natural language and the expected level of
detail in the triples. Consider the sentence, John
sliced an apple with a knife. Two possible ways
to extract facts from this sentence are: (i) <John,
sliced, an apple with a knife> (ii) <John, sliced,
an apple>, and <John, sliced, with a knife>. Both
ways represent the same fact but with different lev-
els of detail. In the case of languages with free
word order, like Hindi (Mohanan, 1994), one fact
can be represented by many permutations of the
elements of a triple. For example, both the fol-
lowing triples <rAm n�, KAyA, ek s�b> [<rAm ne,
khAya, ek seb>]1 and <ek s�b, KAyA, rAm n�>
[<ek seb, khAya, rAm ne>] represents the same in-
formation as the following English triple: <Ram,
ate, an apple>. However, since the Hindi language
uses postpositions (kaarak) instead of prepositions
(Nagendra, 2019), those word permutations are
prohibited that detach the postposition word from

1Italicized text written in square brackets represents the
ITRANS transliteration, whereas the italicized text in round
brackets represents the English translation of the preceding
Hindi phrase/sentence

313

its intended subject word because the meaning of
the triple changes. For example, the following
triple <ek s�b, n� KAyA, rAm> [<ek seb, ne khAya,
rAm>] conveys that <An apple, ate, Ram>.

Our work is primarily focused on automatically
extracting triples from Hindi sentences since all the
authors of this work are familiar with the language.
However, the proposed tool can extract triples from
other low-resource Indic languages such as Tamil,
Telugu, and Urdu. The main contributions of this
paper are as follows:

1. We create and release an OIE benchmark
dataset for Hindi sentences, Hindi-BenchIE, to
facilitate the automatic evaluation of machine-
generated triples. To our knowledge, it is the
first benchmark that can handle the free-word
order nature of Hindi and diverse triple extrac-
tions from different OIE systems.

2. We fine-tune a transformer model on manually
annotated chunks from six natural languages
(Hindi, English, Urdu, Nepali, Gujarati, and
Bengali). The resulting model is able to per-
form chunking on languages it has not seen
during the fine-tuning phase.

3. In our research, we also observed that when
fine-tuning a pretrained encoder for sequence
labeling tasks like chunking, taking an av-
erage of subword embeddings or taking the
last subword embedding consistently outper-
formed the traditional way of taking the first
subword embedding.

4. We propose a greedy algorithm to extract
triples from Hindi text. All the resources
and source code will be publicly available on
https://github.com/ritwikmishra/IndIE.

2 Related Work

Earlier works have used a combination of shallow
parsing and hand-crafted rules to extract meaning-
ful entities from English language text (Mohanty
et al., 2005; Etzioni et al., 2008; Christensen et al.,
2011; Fader et al., 2011). Mausam et al. (2012)
used hand-crafted rules and dependency parsing to
develop OLLIE, which captured relations mediated
by non-verbal phrases like “is the president of " ex-
tracted triples from English sentences. OLLIE was
found to be performing at par with an SRL-based
triple extractor. While most of the works dealt with
extracting facts in the form of triples, KrakeN was

developed to extract facts as N-ary tuples using
dependency parsing (Akbik and Löser, 2012). One
drawback of earlier rule-based OIE methodologies
was their strictly extractive nature, i.e., triples could
contain only those explicitly mentioned words in
the sentence. Hence, appositive relationships2 were
not extracted by such tools (Zhan and Zhao, 2020).
The method we used to extract such appositive re-
lationships is discussed in section 3.3.

Del Corro and Gemulla (2013) developed
ClausIE, which identified clauses in an English
sentence and then extracted facts by classifying
the identified clauses using rules. In order to iden-
tify the relations or entities, dependency parsing of
sentences was a crucial step in ClausIE and many
other works (White et al., 2016; Zhang et al., 2018;
Gamallo et al., 2012; Gamallo and Garcia, 2015).
Built as an improvement to ClausIE, the MinIE
(Gashteovski et al., 2017) tool generated much
more fine-grained and concise facts as compared
to ClausIE. The triples generated by MinIE had
dictionary-like attributes containing information
about certainty, polarity, and knowledge source.
Due to the availability of manually annotated data
for the English, much of the recent OIE research
is based on deep neural architectures where the
triple extraction problem is divided into the follow-
ing two sub-problems: (a) Relation extraction and
(b) Argument (head/tail) extraction using features
from the extracted relation (Ro et al., 2020). Span
selection (using sequence labeling paradigm) is a
common practice to extract relations and their cor-
responding arguments in such OIE methods (Zhan
and Zhao, 2020).

The development of OIE tools for languages
other than English is impeded by the need for an-
notated resources available for them. However,
the field of language-independent (multilingual)
OIE started in 2015 with two methods. The first
method was developed by Manaal and Kumar
(M&K) (Faruqui and Kumar, 2015), where the
authors translated the source language to English
using Google translate and then extracted triples
using the OLLIE tool. The English triples were pro-
jected back to their source language through word
alignments. It could handle as many languages as
Google can translate, but machine translation has
not been regarded as a sustainable solution for OIE

2It is a grammatical construction where two noun phrases
are written adjacent to each other to convey additional in-
formation. For example: My brother, Bob, likes ice cream

314

due to translation errors (Claro et al., 2019). The
second method was a rule-based triple extractor
called ArgOE (Gamallo and Garcia, 2015). In or-
der to generate triples, it expects dependency parse
of a sentence in CoNLL format as input. However,
the extracted triples contain only verb-mediated
relations. PredPatt (White et al., 2016) was de-
veloped a year later, which also relied on a depen-
dency parse tree and hand-crafted rules to identify
predicate-argument structure in a sentence. An-
other work called Multi2OIE modeled the problem
of identifying predicate-argument structure through
two sequence-labeling tasks using mBERT embed-
dings and multi-head attention blocks (Ro et al.,
2020). The first task identified all the predicates
in a sentence, and the second task identified all
arguments associated with each predicate. One lim-
itation in identifying predicates with the sequence
labeling paradigm is its inability to identify over-
lapping predicates. For example, consider the fol-
lowing sentence “Nehru became the prime minister
of India in 1947". Depending on the level of detail
(granularity) in triples, two predicates that can be
extracted among numerous possible predicates are
“became" and “became the prime minister".

Kolluru et al. (2022) introduced a novel approach
to multilingual Open Information Extraction that
leverages Natural Language Generation (NLG)
techniques and cross-lingual projections. Their
method is capable of extracting overlapping rela-
tions (predicates) and triple arguments. However,
their proposed AACTrans algorithm required par-
allel corpora for training, and they utilized off-the-
shelf translation systems in their experiments. In or-
der to compare the performance of IndIE, we have
taken the five methods mentioned above (M&K, Ar-
gOE, PredPatt, Multi2OIE, and Gen2OIE) as our
baselines since they are on similar lines as that of
our work.

3 Methodology

Our method takes raw text as input and uses the
Stanza library (Qi et al., 2020) (version 1.1.1) to
perform sentence segmentation and dependency
parsing. The primary motivation behind using the
Stanza library was its ability to perform shallow
parsing on multiple Indic languages. Figure 1 de-
scribes the overall procedure of generating triples.
It is divided into the following three primary steps:
(a) performing chunking and identifying the se-
mantic phrases in the given sentence, (b) creating a

Merged-phrases Dependency Tree using the depen-
dency parse tree, and (c) generating triples through
our hand-crafted rules. In the following subsec-
tions, we discuss the three steps in a more detailed
manner.

3.1 Chunking

The process of chunking can be defined by captur-
ing non-overlapping multi-word entities in a sen-
tence and classifying them into different syntactic
phrases (Tjong Kim Sang and Buchholz, 2000).
Chunking is modeled as a sequence labeling task
where one chunk tag is predicted for every to-
ken of the given sentence. Each chunk tag con-
sists of (i) a boundary label and (ii) a chunk la-
bel. The chunk labels can be classified into differ-
ent syntactic categories, like Noun-Phrases (NP),
Verb-Phrases (VP), Adjective-Phrases (JJP), etc.
(Bharati et al., 2006). Whereas different notations,
like BIO or BIOES, can be used to represent the
non-overlapping boundary labels. We use BI nota-
tion to mark boundary labels because earlier works
have shown its superior precision over other nota-
tions (Singh et al., 2005; Sharma et al., 2016).

3.1.1 Dataset
We develop a multilingual chunking tool by fine-
tuning a pre-trained transformer on multilingual
chunk annotated data. Our chunker is fine-tuned
on chunk annotated sentences from Jha (2010)3

and Bhat et al. (2017)4. The former data source
comprises 70K chunk-labelled sentences in En-
glish, Hindi, Bengali, Nepali, and Gujarati each,
whereas the latter data source consists of 16K and
5K chunk-labelled sentences in Hindi and Urdu,
respectively. The primary motivation behind us-
ing two data sources is to have a large amount of
fine-tuning data. The two data sources gave us 0.37
million chunk annotated sentences in total.

3.1.2 Model
Using transformers library (Wolf et al., 2020), we
fine-tune different pretrained transformer-based
models for the task of chunking because earlier
works have shown their superior ability to perform
well on shallow parsing tasks (Tran et al., 2020;
Doostmohammadi et al., 2020; Li et al., 2021).
The word embeddings are obtained by taking an
unweighted average of all its subword embeddings.
To compare the performance of a transformer-based

3from http://tdil-dc.in
4from https://universaldependencies.org/

315

Figure 1: Overall architecture of the IndIE tool. The three primary steps are (a) Chunk tag prediction, (b) Creating
Merged-phrases Dependency Tree (MDT), and (c) Triple generation. The three steps are run for each sentence
segmented by the Stanza library (Qi et al., 2020).

chunker, we train a Conditional Random Field
(CRF) model using the scikit-learn (Pedregosa
et al., 2011) library. We also implemented a second-
order Hidden Markov Model (HMM) with Viterbi
decoding to predict the chunk tags. Both the mod-
els are the traditional methods used for chunking
in Indic languages (Bharati and Mannem, 2007).
Appendix B contains the implementation details
for the baseline models.

A given text is parsed by the Stanza library
(Qi et al., 2020), which performs sentence seg-
mentation, POS tagging, and dependency parsing.
Each segmented sentence is passed to our chunker,
which predicts the chunk tags for each token. The
predicted chunk tags identify the non-overlapping
phrases (or multi-word expressions). A syntacti-
cally rich phrase is constructed by concatenating
all the attributes of its member tokens. Each phrase
is stored in a list in order of its appearance in the
sentence. The list of phrases is then passed to the
next step, which creates the Merged-phrases De-
pendency Tree.

3.2 Merged-phrases Dependency Tree (MDT)
Dependency trees have been used extensively in
OIE to aid in the generation of triples from raw text
(White et al., 2016; Zhang et al., 2018; Gamallo
et al., 2012; Gamallo and Garcia, 2015; Del Corro
and Gemulla, 2013). A traditional dependency tree
is constructed at a token level, i.e., the leaves of
the tree are the tokens present in the sentence, and
the edges connecting them represent the depen-
dency relation between the two tokens. A Merged-
phrases Dependency Tree (MDT) is a coarse tree
where each node contains a phrase or a multi-word
expression from the sentence. An online tool by

explosion.ai5 illustrates the difference very well.
One head is identified in each phrase (similar to
Dobrovolskii (2021)), and the dependency relation
between two heads is used as the dependency rela-
tion between the two corresponding phrases. The
token-level dependency tree serves as a guiding
tool to identify the dependency relationships be-
tween the identified phrases. Figure 2 illustrates
the comparison between a traditional dependency
tree and a generated MDT using an example of
a Hindi sentence. It differs from a constituency
tree as it does not conserve the syntactic relation-
ships between the head and the rest of the tokens
in each phrase. To the best of our knowledge, there
is no publicly available tool for either constituency
tree parsing or MDT parsing of sentences in Indic
languages. Therefore, we developed a rule-based
method to generate MDT from a traditional depen-
dency tree.

The phenomenon of Complex Predicates (CPs)
is common in Hindi, where a single action is rep-
resented by a noun-verb combination (called con-
junct verbs) or a verb-verb combination (called
compound verbs) (Burton-Page, 1957; Fatma,
2018). An MDT proves to be more useful in rep-
resenting a sentence where the traditional depen-
dency tree fails to parse CPs in languages like
Hindi. For example, consider the sentence prAr\EBk
KgolEvdo\ kA mAnnA TA Ek p� LvF b}hmA\X k�
k�\dý m�\ h{ [prarambhik khagolvido ka mAn-na tha
ki prithvi brahm-And ke kendr me hae] (Early as-
tronomers believed that Earth is in the center of
the universe), where the action of believed is rep-
resented by the Hindi compound verb mAnnA TA

5https://explosion.ai/demos/displacy/

https://explosion.ai/demos/displacy/

316

[mAn-na tha]. In the token-level dependency tree
of this sentence, the following parent→ child struc-
ture is generated: TA [tha] (past-tense-inflection)
nsubj−−−→ mAnnA [mAn-na] (to believe), which is incor-
rect; the correct structure would be mAnnA [mAn-
na] (to believe) aux−−→ TA [tha] (past-tense-inflection).
A chunker identifies compound verbs as a single
Verb Phrase, thus generating a meaningful MDT. It
has also been observed that, without a Multi-word
Entity Recognition tool, identification of triple ar-
guments becomes difficult by using dependency
parsing alone (Gamallo et al., 2012). Gulordava
and Merlo (2016) also have shown that the perfor-
mance of a dependency parser degrades for natural
languages having free word-order.

3.3 Triple generation

We use hand-crafted rules for capturing the head,
relation, and tail from the MDT of a sentence. Sim-
ilar to Mesquita et al. (2013), our hand-crafted
rules are constructed by studying all the possible
dependency relations in Hindi6. The rules are de-
veloped by carefully analyzing 80 different Hindi
sentences, covering 26 out of 27 possible depen-
dency relations in Hindi. One dependency rela-
tion that is not covered in our chosen Hindi sen-
tences is vocative. Since it occurs only in 6 out of
16K dependency-annotated sentences in the data
by Bhat et al. (2017), we observed that the Stanza
dependency parsing tool fails to predict vocative
relation in Hindi. In the dependency annotated
data7 of Tamil, Telugu, and Urdu, the percentage
of nodes that are connected to their parents using
a Hindi dependency relation are 96%, 98%, and
nearly 100%, respectively. Hence, the authors are
of the opinion that triple extraction rules based on
Hindi dependency relations have wide coverage
and could find their applicability in other Indic lan-
guages.

In the final set of rules, there are more than
100 decision-making statements (such as if-else).
Therefore, we will not be explaining all the triple
extraction rules here for the sake of brevity. Ap-
pendix E contains an abstracted algorithm illustrat-
ing the triple extraction procedure.

One novel property of our hand-crafted rules
is their ability to capture appositive relationships
between two entities. Earlier multilingual meth-

6https://universaldependencies.org/
treebanks/hi_hdtb/index.html

7from https://universaldependencies.org/

ods were unable to capture such appositive rela-
tionships. For example, in the sentence, frmFlA
V{gor k� b�V� s{P alF KAn ko EmlA pdm rF
p� r-kAr [sharmila taegore ke bete saef ali khAn ko
mila padm shri puraskAr] (Son of Sharmila Tagore,
Saif Ali Khan, was awarded Padma Shri), there
exists an appositive is-a relationship between Saif
Ali Khan and Son of Sharmila Tagore. Our sys-
tem captures such appositive relationships that are
expressed by nominal modifier (nmod) and appo-
sitional modifier (appos) dependency relation in
the MDT. Our method selects the parent of these
relations as <head>, and the child as <tail> of
the triple. Mesquita et al. (2013) used the English
auxiliary verb ‘be’ to represent the <relation> for
appositive relationships in English. We used the
Hindi auxiliary verb h{ [hae] (is/be) to denote the
<relation> of a triple that contains an appositive re-
lationship in a Hindi sentence. The overall dataflow
of the proposed architecture is illustrated in Ap-
pendix A using an example.

4 Triple Evaluation

The quality of generated triples is generally evalu-
ated by getting them annotated by native speakers
of that language. However, the procedure is time
and cost intensive. Moreover, the lack of availabil-
ity of Indic language annotators creates a hurdle in
the manual evaluation process. On the other hand,
automatic evaluation methods based on gold anno-
tations (like CaRB (Bhardwaj et al., 2019)) do not
consider the fact that there can be multiple ways to
extract meaningful triples. Therefore, extending a
work titled BenchIE (Gashteovski et al., 2021), we
developed an automatic evaluation method, Hindi-
BenchIE, based on multiple gold annotations to
evaluate Hindi triples generated by any OIE tool.

Hindi-BenchIE

A natural language sentence is generally composed
of one or more facts. In the original work of
BenchIE (Gashteovski et al., 2021), multiple triples
were written manually (called golden triples) to
represent a single fact of the sentence. In our pro-
posed benchmark, Hindi-BenchIE, we extend the
BenchIE notations by introducing the following
two subcategories of golden triples: (a) essential-
triples and (b) compensatory-triples. An essential-
triple is a triple that contains all the information
needed to represent a fact. There might be some
phrases in an essential-triple without which the

https://universaldependencies.org/treebanks/hi_hdtb/index.html
https://universaldependencies.org/treebanks/hi_hdtb/index.html

317

Figure 2: A comparison between a traditional dependency tree (left) and a Merged-phrases Dependency Tree
(right) for the given Hindi sentence: sAinA n�hvAl (j�m : 17 mAc 1990) BArtFy b{XEm\Vn EKlAwF

h{\ । [saina nehwAl (janm 17 mArch 1990) bhArtiye badminton khilAri hae] which translates to

Saina Nehwal (born:17 March 1990) is (an) Indian badminton player . where predicted chunk labels are

Noun Phrase (NP) , Verb Phrase (VP) , and Miscellaneous (BLK)

rest of the triple remains meaningful. We term
such phrases as vulnerable-phrases in this work.
However, an ideal OIE benchmark should ensure
that no information is lost in the automatically gen-
erated triples. Moreover, if any information is lost,
then the given OIE methodology should be penal-
ized for it. Therefore, a compensatory-triple con-
tains the information that is lost in the absence of
a vulnerable-phrase in the generated triple. More-
over, Hindi-BenchIE supports the interchangeabil-
ity of head and tail in a triple since Hindi is a free
word-order language. These modifications facili-
tate annotation, as manually extracting triples for
free word-order languages would otherwise require
significant human effort.

In order to differentiate apposition relationships,
we use an explicit keyword named ‘property’ as a
relation. In this work, a single-annotator manually
extracted golden-triples for 112 Hindi sentences
in different clusters. We release8 the manually ex-
tracted triples for Hindi sentences since such re-
sources are scarce in the field of multilingual OIE
(Claro et al., 2019).

The number of True Positives and False Positives
is calculated over all the golden-triples of the corre-
sponding sentence (much like the BenchIE). In our
work, False Negatives are calculated as the num-
ber of missing essential-triples, and the number of
missing compensatory-triples that corresponds to a
missing vulnerable-phrase (if any).

8https://github.com/ritwikmishra/hindi-benchie

5 Results

In order to compare our fine-tuned chunker with
other traditional methods, we divided the chunk an-
notated data into training-set and test-set in a 50:50
ratio. We observed that the overall accuracy of
our fine-tuned xlm-roberta-base (Conneau et al.,
2020) chunker (91%) was superior to the other
baselines of CRF (84%) and HMM (12%). The
low performance on HMM is due to the sparsity
in the emission matrix because of Out Of Vocab-
ulary (OOV) words. Over multiple random splits,
we observed that more than 80% of the test-set
word bigrams were absent in the HMM training
set. Due to the poor performance of HMM, we de-
cided to use only the CRF for further comparisons.
To test our chunker’s multilingual nature, we cu-
rated language-specific test-sets and removed them
from the training-set. This approach aligns with
the principles of Leave One Language Out (LOLO)
strategy, a technique documented in prior research
(Ahuja et al., 2022; Srinivasan et al., 2021). Com-
pared to CRF, the transformer-based chunker gave
better accuracy on the languages it had never seen
during the learning or fine-tuning phase. Table 1
compares our fine-tuned chunker and CRF chunker.

We also observed that a single linear layer and
an unweighted average of subword embeddings
gave the best chunking accuracy. It is important
to note, however, that employing subword embed-
ding averaging introduces a temporal overhead into
the chunking process. As an alternative to the un-
weighted average, we observed that taking the last

318

Model Hindi English Urdu Nepali Gujarati Bengali
XLM 78% 60% 84% 65% 56% 66%
CRF 67% 56% 71% 58% 53% 53%

Table 1: A comparison of (fine-tuned) XLM chunker
and CRF chunker on the languages which are removed
from training-set. The numbers represent the accuracy
obtained by each model when sentences from the given
language are used only in the test-set. We observe that
XLM chunker always perform better on unseen lan-
guages.

subword embedding is consistently better than the
the conventional approach of taking the first sub-
word embedding, a practice suggested by (Devlin
et al., 2018) for Named Entity Recognition (NER)
task, which is similar to chunking as both are se-
quence labeling tasks. For a comprehensive pre-
sentation of the results derived from our chunker
ablation studies, please refer to Appendix C.

5.1 IndIE vs Others

To compare the performance of our triple extrac-
tor (IndIE), we used the following five baselines:
(i) M&K (Faruqui and Kumar, 2015), (ii) ArgOE
(Gamallo and Garcia, 2015), (iii) PredPatt (White
et al., 2016), (iv) Multi2OIE (Ro et al., 2020), and
(v) Gen2OIE (Kolluru et al., 2022) , because of
their multilingual nature. The source code for
M&K is not publicly available, but the authors have
released a dataset of sentences and the correspond-
ing triples generated by their method9. We ran-
domly sampled sentences from M&K to create the
Hindi-BenchIE benchmark. We used a fixed seed in
order to make the random sampling reproducible.

It is essential to convey here that PredPatt is not
designed as a triple extractor. The output generated
by the method resembles an entity extractor. Ap-
pendix D shows the output of PredPatt on a Hindi
sentence and the rules we developed to convert
PredPatt output to triples format.

Our method, IndIE, performs better than other
methods on Hindi-BenchIE golden set. Table 2
compares different OIE methods’ performance. In
this metric, failing to generate any triple on a given
sentence penalizes the recall value of that method.
In such cases, the smallest number of essential-
triples are added to the False Negatives while cal-
culating the recall. The overall results indicate
that our proposed method, IndIE, extracted more
meaningful triples from Hindi sentences than other

9https://www.kaggle.com/shankkumar/
multilingualopenrelations15

multilingual OIE tools.

6 Discussion

Motivated by qualitative observations, Table 3
presents quantitative insights about the generated
triples from various methods. We observed that
methods such as ArgOE and PredPatt generated
more coarse triples than other methods. Coarse
triples have a high sentence coverage percentage.
They identify the root action in the sentence, and
the remaining text is placed in the argument of
triple. For example, for the following sentence
007 k� g� pt nAm s� prEsd yh ej�\V �l�Em\g
kF bArh p� -tko\ v do lG� kTAao\ m�\ mOj� d h{।
[007 ke nAm se prasidha yeh Ejant phleming ki
bArah pustakon va do laghukathaon me maaujUd
hae] (Renowned by the name of 007, this agent
appears in twelve books and two short stories by
Fleming.). The triple extracted by ArgOE is as fol-
lows: <007 k� g� pt nAm s� prEsd yh ej�\V, h{,
�l�Em\g kF bArh p� -tko\ v do lG� kTAao\ m�\
mOj� d> [<007 ke nAm se prasidha yeh Ejant, hae,
phleming ki bArah pustakon va do laghukathaon
me maaujUd>] (<Renowned by the name of 007
this agent, is, present in twelve books and two short
stories by Fleming>). Fine-grained triples are es-
sential for downstream tasks, such as creating a
knowledge-base from raw text (Zhang et al., 2021),
whereas coarse triples could result in overspecific
relations or entities.

The yield of triples by Gen2OIE method is bet-
ter than other methods. However, since the source
code of M&K is unavailable, we cannot determine
the number of sentences for which the method re-
turns no triples. Since M&K and Gen2OIE method
generates triples in English and then uses word
alignments to obtain Hindi triples, they often gener-
ate non-meaningful Hindi triples because the incor-
rect word alignments separate the postpositional
word (kaarak) from its preceding word. As a result,
more triples are generated with misplaced kaarak.
For example, for the given sentence jb koI mt{ky
nhF\ h� aA to Ev�m n� ek hl socA। [jab koi
mataekya nahin hua to vikram ne ek hal sochA]
(When there was no consensus, Vikram thought of a
solution.), the Gen2OIE method generated a triple
as <Ev�m, socA, n� ek hl> [<vikram, sochA,
ne ek hal>] (Ungrammatical). Similar to Gen2OIE,
the IndIE can generate overlapped arguments in the
extracted triples. For instance, the two triples gener-
ated for the following sentence m{\ fNd kF aA(mA

https://www.kaggle.com/shankkumar/multilingualopenrelations15
https://www.kaggle.com/shankkumar/multilingualopenrelations15

319

ArgOE M&K Multi2OIE PredPatt Gen2OIE IndIE
Precision 0.17 0.07 0.005 0.22 0.23 0.49

Recall 0.04 0.08 0.01 0.05 0.35 0.53
F1-score 0.07 0.08 0.008 0.09 0.28 0.51

Table 2: Performance of different OIE methods on Hindi-BenchIE golden set. It is observed that IndIE outperforms
other methods on the Hindi-BenchIE golden set.

ArgOE M&K Multi2OIE PredPatt Gen2OIE IndIE
Triples 51 199 59 48 278 277

Sentences with no triples 69 NA 68 66 0 2
Avg. Tokens in a Triple 12 10 7 12 10 7

Avg. Sentence Coverage of a Triple 73% 64% 49% 76% 66% 46%
Triples with misplaced kaarak 1.9% 44% 20% 39% 16% 0.7%

Table 3: Triple statistics of different OIE methods on Hindi-BenchIE golden set of 112 sentences. Non-unique
tokens are considered while counting the number of tokens in a triple. Sentence coverage is calculated by
1−|unique(sent)−unique(triple)|/|unique(sent)| . It can be observed that IndIE triples have the least sentence
coverage and kaarak errors. Hence, IndIE generates more fine-grained triples than other methods.

smJkr hF is r� tttv kF upAsnA krtA
h� \। [main shabd ki Atma samajhkar hee is shreshth
tatv ki upAsna karta hun] (I worship this supreme
element after understanding the soul of the word.)
are as follows <m{\,upAsnA krtA h� \,is r� tttv

kF> [<main, upAsna karta hun, is shrestha tatv ki>]
(<I, worship, this supreme element>) and <is r�
tttv kF upAsnA krtA h� \,smJkr hF,aA(mA>
[<is shreshtha tatv ki upAsna karta hoon, sama-
jhkar hee, Atma>] (<worship this supreme element,
after understanding, soul>).

In our experiments, the zero-shot Multi2OIE
method performs poorly on every metric, which
is expected since neural methods are known to
generate incorrect facts as compared to rule-based
methods (Gashteovski et al., 2021). Therefore, a
promising direction is to train a neural OIE method
based on the output of a rule-based OIE tool for a
given language.

6.1 Limitations

The utilization of hand-crafted rules in the triple
extraction process imposes constraints on the scal-
ability and versatility of the IndIE pipeline. Fur-
thermore, while we provide a rationale support-
ing the potential application of the IndIE tool to
other Indic languages, we encountered challenges
in creating a benchmark akin to Hindi-BenchIE
due to a scarcity of annotators for these languages.
Consequently, the performance of IndIE on other
Indic languages remains a matter of conjecture.
The number of sentences in our automatic evalua-

tion benchmark, Hindi-BenchIE, is much smaller
than the original work of BenchIE. Since manually
generating triples requires more effort than triple
annotation, the single-annotator of Hindi-BenchIE
was able to generate more than 500 triples for 112
Hindi sentences only. Hence, we believe that the
benchmark can be further refined with the efforts of
the Indic-nlp community. We also acknowledge the
fact that the multilingual nature of IndIE is limited
to the intersection between the set of languages on
which xlm-roberta-base has been pretrained and the
set of languages supported by the Stanza library.

7 Conclusion

The low resource nature of Indic languages has
been an impediment in the development of their
NLP tools. In this work, we developed an Open
Information Extraction (OIE) tool, IndIE, that gen-
erates triples from unstructured Hindi sentences.
It first predicts the chunk tags for the given sen-
tence and then creates a Merged-Phrase Depen-
dency Tree (MDT) to generate the triples using
the hand-crafted rules. We used a multilingual pre-
trained transformer model and fine-tuned it with
chunk annotated sentences from English and five
Indic languages. It was observed that, in sequence
labeling tasks (such as chunking), taking the aver-
age of subword token embeddings is more valuable
than other paradigms. We created Hindi-BenchIE,
a benchmark for automatically evaluating Hindi
triples based on a set of 112 Hindi sentences to
compare the performance of various multilingual

320

OIE tools. It was observed that the IndIE gener-
ates more informative and fine-grained triples than
other baselines.

7.1 Future Work
We plan to explore different methods to merge the
fine-grained triples to make them more informative.
Further linguistic efforts are needed to analyze and
capture the appositive relationships in Agglutina-
tive Indic languages such as Tamil and Telugu. Ex-
panding the golden triples in Hindi-BenchIE and
developing similar benchmarks for other Indic lan-
guages is also an important direction to keep the
field of OIE in Indic languages alive. Co-reference
resolution is an important area to explore to gener-
ate more meaningful triples with resolved pronom-
inal references. Moreover, the viability of OIE-
based approaches needs to be explored where the
length of input text sequence exceeds the capabil-
ity of transformer-based models, like open-domain
Question-Answering and document-level textual
similarity.

Acknowledgements

Ritwik Mishra wishes to extend his appreciation to
the University Grant Commission (UGC) of India
for their partial support through the UGC Junior
Research Fellowship (JRF) program. He would
also like to express his gratitude to ACM-India
for his selection as a recipient of the Anveshan-
Setu fellowship and for assigning Prof. Pushpak
Bhattacharya as his mentor. Rajiv Ratn Shah is
partly supported by the Infosys Center for AI, the
Center of Design and New Media, and the Center
of Excellence in Healthcare at IIIT Delhi.

References
2011. Census of india.

2021. What are the top 200 most spoken languages?

Kabir Ahuja, Antonios Anastasopoulos, Barun Patra,
Graham Neubig, Monojit Choudhury, Sandipan Dan-
dapat, Sunayana Sitaram, and Vishrav Chaudhary.
2022. The sumeval 2022 shared task on performance
prediction of multilingual pre-trained language mod-
els. In Proceedings of the First Workshop on Scaling
Up Multilingual Evaluation, pages 1–7.

Alan Akbik and Alexander Löser. 2012. Kraken: N-ary
facts in open information extraction. In Proceedings
of the Joint Workshop on Automatic Knowledge
Base Construction and Web-scale Knowledge
Extraction (AKBC-WEKEX), pages 52–56.

Akshar Bharati and Prashanth R Mannem. 2007. Intro-
duction to shallow parsing contest on south asian
languages. In Proceedings of the IJCAI and the
Workshop On Shallow Parsing for South Asian
Languages (SPSAL), pages 1–8. Citeseer.

Akshar Bharati, Rajeev Sangal, Dipti Misra Sharma, and
Lakshmi Bai. 2006. Anncorra: Annotating corpora
guidelines for pos and chunk annotation for indian
languages. LTRC-TR31, pages 1–38.

Sangnie Bhardwaj, Samarth Aggarwal, and Mausam
Mausam. 2019. CaRB: A crowdsourced benchmark
for open IE. In Proceedings of the 2019 Conference
on EMNLP-IJCNLP, pages 6262–6267, Hong Kong,
China. Association for Computational Linguistics.

Riyaz Ahmad Bhat, Rajesh Bhatt, Annahita Farudi,
Prescott Klassen, Bhuvana Narasimhan, Martha
Palmer, Owen Rambow, Dipti Misra Sharma, Ash-
wini Vaidya, Sri Ramagurumurthy Vishnu, et al. 2017.
The hindi/urdu treebank project. In Handbook of
linguistic annotation, pages 659–697. Springer.

John Burton-Page. 1957. Compound and conjunct verbs
in hindi1. Bulletin of the School of Oriental and
African Studies, 19(3):469–478.

Janara Christensen, Stephen Soderland, and Oren Et-
zioni. 2011. An analysis of open information extrac-
tion based on semantic role labeling. In Proceedings
of the sixth international conference on Knowledge
capture, pages 113–120.

Daniela Barreiro Claro, Marlo Souza, Clarissa
Castellã Xavier, and Leandro Oliveira. 2019. Multi-
lingual open information extraction: Challenges and
opportunities. Information, 10(7):228.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
ACL.

Luciano Del Corro and Rainer Gemulla. 2013. Clausie:
clause-based open information extraction. In
Proceedings of the 22nd international conference on
World Wide Web, pages 355–366.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Vladimir Dobrovolskii. 2021. Word-level coref-
erence resolution. In Proceedings of the 2021
Conference on Empirical Methods in Natural
Language Processing, pages 7670–7675.

Ehsan Doostmohammadi, Minoo Nassajian, and Adel
Rahimi. 2020. Persian ezafe recognition using
transformers and its role in part-of-speech tagging.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 961–971.

https://censusindia.gov.in/2011census/C-17.html
https://ethnologue.com/guides/ethnologue200
https://doi.org/10.18653/v1/D19-1651
https://doi.org/10.18653/v1/D19-1651
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

321

Oren Etzioni, Michele Banko, Stephen Soderland, and
Daniel S Weld. 2008. Open information extrac-
tion from the web. Communications of the ACM,
51(12):68–74.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the 2011 conference on
empirical methods in natural language processing,
pages 1535–1545.

Manaal Faruqui and Shankar Kumar. 2015. Multilin-
gual open relation extraction using cross-lingual pro-
jection. In North American Chapter of the ACL:
Human Language Technologies, pages 1351–1356.

Shamim Fatma. 2018. Conjunct verbs in hindi. Trends
in Hindi Linguistics, pages 217–244.

Pablo Gamallo and Marcos Garcia. 2015. Multilin-
gual open information extraction. In Portuguese
Conference on Artificial Intelligence, pages 711–
722. Springer.

Pablo Gamallo, Marcos Garcia, and Santiago Fernández-
Lanza. 2012. Dependency-based open information
extraction. In Proceedings of the joint workshop on
unsupervised and semi-supervised learning in NLP,
pages 10–18.

Kiril Gashteovski, Rainer Gemulla, and Luciano del
Corro. 2017. Minie: minimizing facts in open infor-
mation extraction. Association for Computational
Linguistics.

Kiril Gashteovski, Mingying Yu, Bhushan Kotnis, Car-
olin Lawrence, Goran Glavas, and Mathias Niepert.
2021. Benchie: Open information extraction eval-
uation based on facts, not tokens. arXiv preprint
arXiv:2109.06850.

Kristina Gulordava and Paola Merlo. 2016. Multi-
lingual dependency parsing evaluation: a large-scale
analysis of word order properties using artificial data.
Transactions of the Association for Computational
Linguistics, 4:343–356.

Vaishali Gupta, Nisheeth Joshi, and Iti Mathur. 2019.
Advanced machine learning techniques in natural lan-
guage processing for indian languages. In Smart
Techniques for a Smarter Planet, pages 117–144.
Springer.

BS Harish and R Kasturi Rangan. 2020. A comprehen-
sive survey on indian regional language processing.
SN Applied Sciences, 2(7):1–16.

Julia Hirschberg and Christopher D Manning. 2015.
Advances in natural language processing. Science,
349(6245):261–266.

Kushal Jain, Adwait Deshpande, Kumar Shridhar, Fe-
lix Laumann, and Ayushman Dash. 2020. Indic-
transformers: An analysis of transformer lan-
guage models for indian languages. arXiv preprint
arXiv:2011.02323.

Girish Nath Jha. 2010. The TDIL program and
the Indian langauge corpora intitiative (ILCI). In
Proceedings of the Seventh International Conference
on Language Resources and Evaluation (LREC’10),
Valletta, Malta. European Language Resources Asso-
ciation (ELRA).

Keshav Kolluru, Muqeeth Mohammed, Shubham Mit-
tal, Soumen Chakrabarti, et al. 2022. Alignment-
augmented consistent translation for multilingual
open information extraction. In Proceedings
of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 2502–2517.

Hongwei Li, Hongyan Mao, and Jingzi Wang. 2021.
Part-of-speech tagging with rule-based data prepro-
cessing and transformer. Electronics, 11(1):56.

Xueling Lin, Haoyang Li, Hao Xin, Zijian Li, and Lei
Chen. 2020. Kbpearl: a knowledge base population
system supported by joint entity and relation linking.
Proceedings of the VLDB Endowment, 13(7):1035–
1049.

Mausam, Michael Schmitz, Stephen Soderland, Robert
Bart, and Oren Etzioni. 2012. Open language learn-
ing for information extraction. In Proceedings of
the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 523–534, Jeju Is-
land, Korea. Association for Computational Linguis-
tics.

Filipe Mesquita, Jordan Schmidek, and Denilson
Barbosa. 2013. Effectiveness and efficiency of
open relation extraction. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 447–457.

Tara Mohanan. 1994. Case ocp: A constraint on word
order in hindi. Theoretical perspectives on word
order in South Asian languages, 185:216.

Rajat Mohanty, Anupama Dutta, and Pushpak Bhat-
tacharyya. 2005. Semantically relatable sets: build-
ing blocks for representing semantics. In MT
Summit, volume 5. Citeseer.

Iqra Muhammad, Anna Kearney, Carrol Gamble, Frans
Coenen, and Paula Williamson. 2020. Open infor-
mation extraction for knowledge graph construction.
In International Conference on Database and Expert
Systems Applications, pages 103–113. Springer.

Jaya S Nagendra. 2019. Basic grammar, hindi. In
A Brief History of Languages, volume 1, page 190.
Atlantic.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

http://www.lrec-conf.org/proceedings/lrec2010/pdf/874_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/874_Paper.pdf
https://aclanthology.org/D12-1048
https://aclanthology.org/D12-1048

322

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceedings
of the Eighth International Conference on Language
Resources and Evaluation (LREC’12), pages 2089–
2096.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many hu-
man languages. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics: System Demonstrations.

Youngbin Ro, Yukyung Lee, and Pilsung Kang. 2020.
Multi2oie: Multilingual open information extrac-
tion based on multi-head attention with bert. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,
pages 1107–1117.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in bertology: What we know about
how bert works. Transactions of the Association for
Computational Linguistics, 8:842–866.

Arnav Sharma, Sakshi Gupta, Raveesh Motlani, Piyush
Bansal, Manish Shrivastava, Radhika Mamidi,
and Dipti Misra Sharma. 2016. Shallow pars-
ing pipeline-hindi-english code-mixed social me-
dia text. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1340–1345.

Akshay Singh, Sushma Bendre, and Rajeev Sangal.
2005. Hmm based chunker for hindi. In Companion
Volume to the Proceedings of Conference including
Posters/Demos and tutorial abstracts.

Anirudh Srinivasan, Sunayana Sitaram, Tanuja Ganu,
Sandipan Dandapat, Kalika Bali, and Monojit Choud-
hury. 2021. Predicting the performance of multilin-
gual nlp models. arXiv preprint arXiv:2110.08875.

EF Tjong Kim Sang and S Buchholz. 2000. Introduction
to the conll-2000 shared task: Chunking. ACL.

Thi Oanh Tran, Phuong Le Hong, et al. 2020. Im-
proving sequence tagging for vietnamese text using
transformer-based neural models. In Proceedings
of the 34th Pacific Asia Conference on Language,
Information and Computation, pages 13–20.

Aaron Steven White, Drew Reisinger, Keisuke Sak-
aguchi, Tim Vieira, Sheng Zhang, Rachel Rudinger,
Kyle Rawlins, and Benjamin Van Durme. 2016. Uni-
versal decompositional semantics on universal depen-
dencies. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
pages 1713–1723.

YORICK WILKS. 1964. Text searching with tem-
plates. Cambridge Language Research Unit Memo,
ML, (165).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Junlang Zhan and Hai Zhao. 2020. Span model for
open information extraction on accurate corpus. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 9523–9530.

Sheng Zhang, Xutai Ma, Rachel Rudinger, Kevin Duh,
and Benjamin Van Durme. 2018. Cross-lingual de-
compositional semantic parsing. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 1664–1675.

Zixuan Zhang, Nikolaus Parulian, Heng Ji, Ahmed
Elsayed, Skatje Myers, and Martha Palmer.
2021. Fine-grained information extraction
from biomedical literature based on knowledge-
enriched abstract meaning representation. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 6261–6270.

A Illustration

The overall dataflow of the proposed architecture is
illustrated using the following raw (multi-sentence)
text in Hindi: fmFlA V{gor k� b�V� s{P alF
KAn ko 2010 m�\ pdm rF p� r-kAr EmlA। vh
ek BArFty aEBn�tA h{। [sharmila taegor ke bete
saef ali khAn ko 2010 me padm shri puraskAr mila.
veh ek bhArtiye abhinetA hae] (Son of Sharmila
Tagore, Saif Ali Khan, was awarded with Padma
Shri award in 2010. He is an Indian actor). The
raw text is fed to the Stanza library for sentence
segmentation and dependency parsing of each sen-
tence. In stage (a) of the architecture, as shown
in Figure 1, segmented sentences are passed to the
chunking model to predict the chunk tags for each
word of the given sentence. Predicted chunked
phrases from the stage (a) are as follows:

Sentence 1 - {fmFlA V{gor k� [sharmila tae-
gore ke] (Sharmila Tagore’s)}_NP ,
{b�V� [bete] (son)}_NP , {s{P alF
KAn ko [saef ali khAn ko] (to
Saif Ali Khan)}_NP , {2010 m�\
[2010 me] (in 2010)}_NP , {pdm rF

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

323

Figure 3: The generated MDTs after sentence segmenta-
tion, chunking, and dependency parsing of the following
raw text: fmFlA V{gor k� b�V� s{P alF KAn ko 2010
m�\ pdm rF p� r-kAr EmlA। vh ek BArFty aEBn�tA
h{। [sharmila taegor ke bete saef ali khAn ko 2010 me
padm shri puraskAr mila. veh ek bhArtiye abhinetA hae]
(Son of Sharmila Tagore, Saif Ali Khan, was awarded
with Padma Shri award in 2010. He is an Indian actor).

p� r-kAr [padm shri puraskAr]
(Padma Shri award)}_NP , {EmlA
[mila] (awarded)}_VGF

Sentence 2 - {vh [veh] (He)}_NP , {ek BArFty
aEBn�tA [ek bhArtiye abhinetA]
(an Indian actor)}_NP , {h{ [hae]
(is)}_VGF

The chunked phrases and dependency tree for
each sentence are passed to the stage (b) of the ar-
chitecture to construct MDT for each sentence. Fig-
ure 3 illustrates the MDTs generated at the output of
stage (b). For each sentence, triples are generated
using its corresponding MDT and our hand-crafted
rules. All the triples extracted by the IndIE tool for
the aforementioned raw text are shown in Table 4.
The output of stage (c) consists of the following
three types: (i) a list of segmented sentences, (ii)
extracted triples, and (iii) execution time for each
sentence.

<head> <relation> <tail>

Sentence 1

pdm rF p� r-kAr
[padm shri puraskAr]
(Padma Shri award)

EmlA
[mila]

(awarded)

s{P alF KAn ko
[saef ali khAn ko]
(to Saif Ali Khan)

2010 m�\
[2010 me]
(in 2010)

EmlA
[mila]

(awarded)

pdm rF p� r-kAr
[padm shri puraskAr]
(Padma Shri award)

s{P alF KAn ko
[saef ali khAn ko]
(to Saif Ali Khan)

h{
[hae]
(is)

b�V�
[bete]
(son)

b�V�
[bete]
(son)

h{
[hae]
(is)

fmFlA V{gor k�
[sharmila taegore ke]
(Sharmila Tagore’s)

Sentence 2
vh

[veh]
(He)

h{
[hae]
(is)

ek BArFty aEBn�tA
[ek bhArtiye abhinetA]

(an Indian actor)

Table 4: Triples extracted through hand-crafted rules
of the proposed IndIE tool for the following raw text
in Hindi: fmFlA V{gor k� b�V� s{P alF KAn ko
2010 m�\ pdm rF p� r-kAr EmlA। vh ek BArFty
aEBn�tA h{। [sharmila taegor ke bete saef ali khAn
ko 2020 me padm shri puraskAr mila. veh ek bhArtiye
abhinetA hae] (Son of Sharmila Tagore, Saif Ali Khan,
was awarded with Padma Shri award in 2010. He is an
Indian actor).

B Chunking Baselines

We used the scikit-learn scikit-learn python library
to implement10 the CRF model. The following
features were used for each word of the sentence:
(a) bias ← 1.0, (b) word text, (c) POS tag of the
word, (d) POS tags of preceding two words, and
(e) POS tags of succeeding two words. The values
of L1 and L2 regularization were obtained through
grid search. We used the word text and its POS tag
as features for the HMM model.

Our fine-tuned chunker is an end-to-end model
for chunking because it takes input in raw text.
However, CRF and HMM model expects already
POS tagged sentences. The chunk annotated sen-
tences from the Bhat et al. (2017) are POS tagged
in upos format (Petrov et al., 2012), whereas sen-
tences from the Jha (2010) are POS tagged with
a scheme called AnnCorra (Bharati et al., 2006).
It is an extension to the Penn tagset and tailored
for Indian languages. In the absence of a publicly
available POS tagger for AnnCorra, we created a
mapping from AnnCorra to upos tagset for stan-
dardizing the POS tags in the entire dataset. We
passed all the Hindi and English sentences from
the (?) dataset through Stanza library, generating
POS tags in upos format. Therefore, we create
a mapping from AnnCorra (Penn tagset) to upos
tagset which helped us in standardizing the POS

10https://sklearn-crfsuite.readthedocs.
io/en/latest/tutorial.html

https://sklearn-crfsuite.readthedocs.io/en/latest/tutorial.html
https://sklearn-crfsuite.readthedocs.io/en/latest/tutorial.html

324

tag format across all sentences.

C Chunking Ablation

We experimented with three approaches to handle
sub-word token embeddings and observed that av-
eraging sub-word token embeddings gave better
accuracy as compared to the first sub-word token
embedding or last sub-word token embedding, as
shown in Table 5. Since averaging the sub-word
token embeddings requires additional processing,
its fine-tuning time (6 hours/epoch) and inference
time (29 milliseconds/sentence) is more than fine-
tuning time (45 minutes/epoch) and inference time
(17 milliseconds/sentence) for the other two ap-
proaches. Hence, if accuracy is preferred over in-
ference time, then we recommend taking an aver-
age of sub-word token embeddings for a sequence
labeling task; otherwise simply taking the last sub-
word token embedding gives better performance
with equal inference time than the traditional tech-
nique of taking the first sub-word token embedding.
In our experiments, we used the embeddings from
last_hidden_state of the model. However,
since some methods in the literature suggest that
early layers of a transformer are responsible for
learning shallow features of the text (Rogers et al.,
2020), we experimented by taking average embed-
dings of the first two hidden layers of the model
as well. It turns out that using embeddings from
early layers actually decreased the accuracy (86%)
for the chunking task. Confirming the findings of
Jain et al. (Jain et al., 2020), we observed that xlm-
roberta-base (Conneau et al., 2020) gave the best
accuracy (92%) over other pretrained models.

D PredPatt

Figure 4 shows the output of PredPatt on a Hindi
sentence. Table 6 contains the rules we developed
to convert PredPatt output to triples format.

E Algorithm

Figure 4: Output of PredPatt on a Hindi sentence aB}k
aAEd kF KAno\ m�\ mombEttyA BF pry� kt hotF h{
[abhrak Adi ki khAno me mombattiya bhi prayukt hoti
hae] (In the mines of Mica candles are also used). In
the given sentence, candles is the Entity1, and it is rep-
resented with ‘?a’ notation.

325

Triple generator algorithm from Merged-phrase Dependency Tree (MDT)

1: function EXTRACT(MDT, t,Q)
2: if ‘cop’ ∈ t.children.dep_rel then
3: if |t.children| ≤ 2 then
4: Head, Tail← FIND_HEAD(MDT, t) , t
5: Rel← x where (x ∈ t.children ∧ x.dep_rel = ‘cop’)
6: else
7: Head, Tail← FIND_HEAD(MDT, t) , FIND_TAIL(MDT, t)
8: Rel← t+ x where (x ∈ t.children ∧ x.dep_rel = ‘cop’)
9: end if

10: else if ‘advcl’ == t.dep_rel then
11: Head← q.Tail + q.Rel where (q ∈ Q ∧ t.parent ∈ q)
12: Rel, Tail← t , FIND_TAIL(MDT, t)
13: else if ‘acl’ == t.dep_rel then
14: Head← t.closest_phrase(q.Tail, q.Head) where (q ∈ Q ∧ t.parent ∈ q)
15: Rel, Tail← t , FIND_TAIL(MDT, t)
16: else if ‘conj’ == t.dep_rel then
17: if ∃q ∈ Q such that q.Head == t.parent then
18: Head,Rel, Tail← t , q.Rel , q.Tail
19: else if ∃q ∈ Q such that q.Tail == t.parent then
20: Head,Rel, Tail← q.Head , q.Rel , t
21: end if
22: else
23: if t.is_clausal() == True then
24: Head,Rel, Tail← t.pronoun , t.verb , t− (t.pronoun ∩ t.verb)
25: else
26: if t.is_a_relationship() == True then //appositive relationship
27: Head,Rel, Tail← t , FIND_TAIL(MDT, t) , t.is_a_label
28: else
29: Head,Rel, Tail← FIND_HEAD(MDT, t) , t , FIND_TAIL(MDT, t)
30: end if
31: end if
32: end if
33: if Head,Rel, Tail then
34: Q.add([Head, Rel, Tail])
35: end if
36: if t.contain_args() == True then
37: Q← EXTRACT(MDT, t)
38: else
39: for each tc ∈ t.children do
40: Q← EXTRACT(MDT, tc)
41: end for
42: end if
43: return Q
44: end function
triples← EXTRACT(MDT, troot, {})

326

Classification Layers
First sub-word token

embedding
Last sub-word token

embedding
Average embedding of

all sub-word tokens
1 82±10 (50±20) 89±0.5 (62±1.0) 91±0.0 (65±0.5)
2 86±1.8 (51±6.2) 89±0.5 (54±7.4) 90±0.5 (54±4.5)
3 79±14 (43±13) 82±11 (41±12) 90±0.5 (48±2.2)

Table 5: A comparison of three approaches for solving the sub-word token embeddings for chunking task. Four
different random seeds were used to calculate the mean and standard deviation for the given samples. All the
experiments were run on the combined data of Jha et al. (Jha, 2010) and Bhat et al.(Bhat et al., 2017). The numbers
written outside round brackets represent the accuracy, whereas numbers inside round brackets represent the macro
average.

Rule No. Sentence Structure Extracted Triple
1 ^ phrase1 Entity1 phrase2 $ <phrase1 , phrase2 , Entity1>

2

^ Entity1 phrase1 Entity2 phrase2 $

<Entity1 , phrase1 , Entity2>
^ Entity1 Entity2 phrase1 $
^ phrase1 Entity1 Entity2 $
^ Entity1 phrase1 Entity2 $

3
^ phrase1 Entity1 Entity2 phrase2 $

<Entity1 , phrase2 , Entity2>^ phrase1 Entity1 phrase2 Entity2 $
^ phrase1 Entity1 phrase2 Entity2 phrase3 $

4 Any other sentence structure Discard

Table 6: The rules we used to extract triples from PredPatt output. Considering the sentence given in Figure 4, Rule
number 1 is applied to the sentence. The symbol ^ indicates the start of the sentence, and the symbol $ indicates the
end of the sentence.

