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Abstract

Politeness is a key component that can assist in
building a strong customer-agent relationship.
With the ongoing increase in customer-care sys-
tems, it is crucial to have healthy relations with
the users providing satisfaction and a better cus-
tomer experience. In this regard, it is significant
to model the different polite behaviors in an
agent to help the user in reaching the intended
objectives. In our current work, we propose
the task of polite behavior-aware generation
considering the affective state of the user and
the conversational context. We design a Trans-
former based encoder-decoder framework with
three major components i.e., Affective tracker,
Behaviour-aware generators, and Polite gen-
erator. The affective tracker is a context en-
coder that captures the contextual information
along with the affective information in the ut-
terances; the behavior-aware generators inde-
pendently attends to the context information
to compute behavior-aware polite representa-
tions and finally, polite generator generates the
final polite response considering the represen-
tations from different generators. Experimental
results on the CYCCD dataset prove that our
approach generates contextually correct and rel-
evant responses compared to the state-of-the-art
approaches and the baselines.

1 Introduction

The technological advancements in Artificial In-
telligence (AI) and Natural Language Processing
(NLP) have led to the proliferation of conversa-
tional systems (chatbots and personal assistants
like Amazon’s Alexa, Google’s Home, and Apple’s
Siri) in our daily lives. These conversational sys-
tems that aim to assist users in numerous ways like
making reservations, booking flights, scheduling
appointments and many more are prevalent in sev-
eral areas such as hospitality, education, and health
care, to name a few. The success of these systems
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significantly depends on their ability to effectively
communicate with the users. Thus, the research
in recent times has been inclined towards modulat-
ing biases, styles, and control in text generation to
improve these interactions.

Customer care is a typical application area for
automated task-oriented conversational systems.
These systems provide potentially cost-effective
and reliable solutions for customer care. Nowadays,
companies rely heavily on customer care service to
successfully guide and assist customers and estab-
lish long-term and healthy relationships with them.
Customers generally interact with conversational
agents with diverse expectations and attitudes (Føl-
stad and Skjuve, 2019). In such situation, if the
agent fails to satisfy their expectations or fix their
issue as desired, they may get frustrated or furi-
ous quickly (Jain et al., 2018). To avoid this, it
is imperative for customer care agents to mimic
human-like (Fink, 2012) behaviour during the con-
versation.

Politeness and empathy, which encompass so-
cial belongingness are a few fundamental socio-
linguistic cues of humans (Brown et al., 1987;
Maslow, 1943). The use of social language by the
agents facilitates building rapport and emotional
connection with the customers. Politeness has been
investigated recently (Golchha et al., 2019; Firdaus
et al., 2022a; Priya et al., 2023a; Mishra et al.,
2023a, 2022a; Firdaus et al., 2022b; Mishra et al.,
2022b, 2023c,b; Priya et al., 2023b) to ensure user
satisfaction and to build strong user relations. Po-
liteness could have different behavioral aspects lin-
guistically such as one could be apologetic, ap-
preciative, empathetic, or could be respectful by
always greeting and assuring. Such behavioral pat-
terns could lead to different responses that are con-
textually plausible and interactive.

Emotion and sentiment of the user are essential
for meeting the user’s wants appropriately and facil-
itating the creation of smooth and amicable conver-
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Dialog
Context

Customer
Sentiment

Customer
Emotion

Generic
Response

Polite
Response

Polite
behaviour

I need a software update urgently, but
I am unable to connect to the network.

Negative Frustrated What is happening with your internet?
Please don’t worry, we can help!

Kindly tell what is happening with your internet?
Assurance

Hey, i got stomach ache from your
inflight meal on monday.

Negative Anger Send us a dm.
That’s really sad to hear.

We are sorry, please send us a dm.
Apology

Hi! I want help. Neutral Hopeful What are you looking for?
Hey good morning! Good to have you with us,
please let us know what are you looking for?

Greet

Dear this new update is awesome,
got great new apps!

Positive Joy The update has many features. Thank you very much, please checkout the exciting features in the update. Appreciation

I lost my bag. Negative Sad We will look into the matter.
That’s really disappointing to hear. Please have patience

until we look into the matter.
Empathy

Table 1: Examples of variation in polite behaviour in accordance with user’s affective state (emotion and sentiment)

sations (Beale and Creed, 2009; Shi and Yu, 2018;
Firdaus et al., 2020a, 2022c, 2023; Singh et al.,
2022; Samad et al., 2022; Madasu et al., 2022; Fir-
daus et al., 2022c,d). The usage of user feedback in
the form of emotion and sentiment is essential for
generating contextually coherent polite responses
reflecting relevant polite behaviour in the responses
as depicted in Table 1. For the first example in Ta-
ble 1, it can be seen that the user’s emotion and
sentiment are negative. The appropriate response
in such a scenario could either exhibit empathy or
apologize or provide assurance. For this particular
example, the polite behaviour is assurance which
could help in smoother conversations with the user.

In our current work, we take a step ahead and
address the task of behaviour-aware polite response
generation. To the best of our knowledge, this is
one of the very first attempts that addresses the
linguistically driven different behavioural patterns
of the polite generation. We build an end-to-end
transformer-based encoder-decoder architecture for
the task of behaviour-aware polite response gen-
eration. Our proposed architecture captures the
complete affective information in the form of emo-
tion and sentiment from the conversational context
and uses this knowledge for generating behaviour-
aware polite customer care responses.

In summary, the key contributions of our work
are three-fold. We first introduce the task of
behaviour-guided polite response generation for
customer-care systems. Second, we design a
transformer-based encoder-decoder network hav-
ing three crucial components, i.e., an affective
tracker, behaviour-aware generators, and a final
polite generator to capture the emotional quo-
tient from the context and generate behaviour-
wise response representations and finally gener-
ate the polite response using the weighted-sum ap-
proach. Lastly, experimental analysis on the CY-
CCD dataset shows that our approach performs
better than all the existing baselines and generates
more informative and varying responses.

2 Related Work

Natural language generation (NLG) module has
been gaining prominence in a variety of appli-
cations, including dialogue systems (Shen et al.,
2018; Zhang et al., 2018), question answering sys-
tems (Indurthi et al., 2017; Duan et al., 2017), and
various other natural language interfaces. Users’
feelings in the form of sentiments and emotions
have been exploited in (Acosta, 2009; Pittermann
et al., 2010; Shi and Yu, 2018; Firdaus et al., 2021b;
Dias et al., 2022; Firdaus et al., 2021a, 2020b,d) to
give humanly essence to the system, thereby facili-
tating better user experience. Emotion recognition
and sentiment analysis in customer support system
is essential for understanding and to provide better
customer support (Herzig et al., 2016; Wang et al.,
2020a).

Politeness in customer support systems is impor-
tant for attaining customer satisfaction and reten-
tion (Bickmore and Picard, 2005; Bickmore et al.,
2009; Liao et al., 2016; Wang et al., 2020b). In the
past, (Gupta et al., 2007) explored building more
affective and socially intelligent dialogue systems
by incorporating different politeness strategies in
the responses. Lately, (Niu and Bansal, 2018a) pro-
posed a reinforcement learning (RL)-based model
to induce politeness in chit-chat conversations with-
out parallel data. Golchha et al. (2019); Firdaus
et al. (2020c) presented a method for increasing
user satisfaction by instilling courteous nature in
the customer-care responses by exploiting rein-
forced pointer networks. Madaan et al. (2020) de-
vised a tag and generate framework for transform-
ing non-polite sentences into polite ones. Firdaus
et al. (2022a) transformed generic customer-care
responses into polite ones based on user’s senti-
ment and conversational history using an RL-based
approach. Firdaus et al. (2022b) designed a rein-
forced deliberation network based framework to
inculcate politeness in the responses according to
the personalized user information (age and gender)
and dialog context.
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Our present work is different in the sense that
we aim to incorporate different polite behaviour
in the generated responses according to emotion
and sentiment of the user. The inclusion of user
feedback in the form of emotion and sentiment
provides complete affective information, which in
turn, enhances the quality of generation and makes
the responses contextually coherent with the dialog.

3 Methodology

In this section, we present the problem definition of
our current task and provide a detailed description
of our proposed approach. Our approach focuses
on generating responses based on the speaker’s
emotional state from the conversational context
constrained by the different polite behaviour such
as Appreciation, Empathy, Apology, Greeting, and
Assurance.

3.1 Problem Definition

Our current work aims at generating contextu-
ally appropriate responses based on different po-
lite behaviour. Precisely, the conversation has
an alternating set of utterances from the cus-
tomer (U i) and the customer care agent (Ai).
We represent the conversational context as C =
(U1,A1,U2,A2, · · · ,U i) and each utterance is a
sequence of words w1, w2, . . . , wN .

Similar to (Golchha et al., 2019), we use the
output distribution from DeepMoji (Felbo et al.,
2017) (pre-trained on the emoji prediction task) to
get the emotional embeddings (Eemo) associated
with both the customer and agent utterances. In
addition, we also use the sentiment information
(Esen) along with the emotional embeddings to get
complete affective information. This information
is added with every utterance to assist in generating
the final behaviour-aware polite response.

3.2 Approach

In this section, we describe each component of our
proposed model in detail. Overall, our model is
composed of three components: a Affective tracker,
Behaviour-aware generators and a final Polite gen-
erator as shown in Figure 1. The Affective tracker
is basically the context encoder that provides the
representation of the context and computes a dis-
tribution over the possible sentiment and emotion
categories for the context. The Behaviour-aware
generators independently attend to this distribution
to compute their own representation. Finally, the

Polite generator takes the weighted sum of repre-
sentation from the different generators and gener-
ates the final polite response. We also incorporate
speaker information as embedding in the input with
every utterance. This is used to facilitate the en-
coder to differentiate between the customer and
agent utterances.

Affective Tracker: The context encoder uses
a standard transformer encoder (Vaswani et al.,
2017) for the sentiment and emotion (Affective)
tracker. To capture the hierarchical nature of the
conversation, we use a hierarchical transformer en-
coder to capture the utterance-level and dialogue-
level representations. We use the utterance trans-
former to get the encoded utterance representation.
To learn the representation of each utterance U i,
U i = wi

1, w
i
2, . . . , w

i
N is first mapped into continu-

ous space

Tu = (ti1, t
i
2, . . . , t

i
|U i|);where[t

i
j = e(wi

j) + pj ]
(1)

where, e(wi
j) and pj are the word and positional

embedding of every word wi
j in an utterance, re-

spectively. For words, we use Glove embeddings
and adopt the sine-cosine positional embedding
(Vaswani et al., 2017) as it performs better and
does not introduce additional trainable parameters.

The utterance encoder (a Transformer) con-
verts Tu into a list of hidden representations
hi1, h

i
2, . . . , h

i
|U i|. We use the last hidden repre-

sentation hi|U i| (i.e. the representation at the EOS
token) as the textual representation of the utterance
U i. Specifically, the final utterance representation
EU is the sum of the final textual representation
hi|U i|, the positional embedding Ep (Vaswani et al.,
2017), the speaker embedding Es, the emotion em-
bedding Eemo and the sentiment embedding Esen

of the corresponding utterance.

EU (C) = hi|U i|+Ep(C)+Es(C)+Eemo+Esen

(2)
In a similar fashion, we encode the agent utter-

ances as well.
The final utterance representation is used as in-

put for the dialogue transformer that encodes the
dialog context into a context representation. In
order to compute the weighted sum of the output
tensor, we add a query token QRY at the start
of each input sequence, similar to BERT (Devlin
et al., 2018). If a transformer-context encoder is
designated as TRSenc, then the relevant context
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Figure 1: Architectural diagram of our proposed behaviour-aware polite generator

representation is:

HC = TRSenc(E
U ([QRY ;C)])) (3)

where [;] denotes concatenation, H ∈ RLmodel

where L is the dialogue length. Then, we deter-
mine the final representation of the token QRY as
q = H0 where q ∈ Rdmodel , which is then used as
the query for generating the sentiment and emotion
distribution.

Behaviour-aware Generators: The behaviour-
aware generators mainly consist of (1) a shared
behaviour generator that learns shared information
for all the emotions and their corresponding polite
behaviour and (2) n independently parameterized
Transformer decoders (Vaswani et al., 2017) that
learns how to appropriately react in a polite-manner
given a particular affective state.

A standard transformer decoder layer block, ab-
breviated as TRSdec, models all of the genera-
tors and is composed of three sub-components:
a position-wise fully connected feed-forward net-
work, multi-head attention over the output of the
Affective tracker, and a multi-head self-attention
over the response input embedding.

As a result, we specify the generator’s set as G =
[TRS0

dec, ..., TRSn
dec]. Each generator constructs

its own polite response representation Pi using the
target sequence altered by one r0:t−1.

Pi = TRSi
dec(H

C , ER(r0:t−1)) (4)

where TRSi
dec refers to the ith generator, includ-

ing the shared one. From a conceptual standpoint,
we anticipate that the shared generator, TRS0

dec,
will produce a general representation that will aid
the model in capturing the discourse context. On

the other hand, we anticipate that each behaviour-
aware generator will develop its ability to react in
a designated polite behaviour based upon a certain
emotion and sentiment. In order to simulate this
phenomenon, we give each behaviour-aware gener-
ator a varied weight based on the user’s emotional
distribution, while giving the shared listener a set
weight of 1.

To illustrate, we create a Key-Value Memory
Network (Miller et al., 2016) and represent each
memory slot as a pair of vectors (ki, Pi), where ki
∈ Rdmodel signifies the key vector and Pi is from
Equation 4. The key vectors k are then addressed
using the encoder-informed query q by perform-
ing a dot product and then a Softmax function as
follows:

vi =
eq

T ki∑n
j=1 e

qT ki
(5)

The weight of each listener is determined by us-
ing each vi as the score given to Pi. Given the
speaker’s affective state et, we oversee each weight
vi throughout training by using a cross-entropy loss
function to maximize the likelihood of the emotion
state et:

L1 = −logpet (6)

Finally, the weighted sum of the shared generator
output P0 and the memory values Pi is used to
calculate the combined output representation.

PM = P0 +
n∑

i=1

viPi (7)

Polite Generator: The polite generator is then
implemented using a second transformer decoder
layer, which further transforms the behaviour-
aware generator’s representation and produces the
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final response. On the basis of emotion and senti-
ment, each behaviour-aware generator is thought
to specialize in a certain polite behaviour, and the
polite generator compiles the ideas from different
generators to create the final response.

Therefore, we define another TRSfinal
dec , and an

affine transformation W ∈Rdmodel×|P | to compute:

Pfin = TRSfinal
dec (H,PM ) (8)

St = p(r1:t|C, r0:t−1) = softmax(P T
finW ) (9)

where Pfin ∈ Rdmodel×t is the output of the polite
generator and p(r1:t|C, r0:t−1) is the distribution
over the vocabulary for the next tokens. The re-
sponse prediction is then optimized using a stan-
dard maximum likelihood estimator (MLE):

L2 = −logp(St|C) (10)

Finally, by minimizing the weighted-sum of two
losses, all the parameters are jointly trained end-to-
end to optimize behaviour selection and response
generation:

L = αL1 + βL2 (11)

where α and β are trainable hyperparameters to
balance the two loss functions.

4 Dataset and Experiments

In this section, we present the dataset used for our
experiments followed by training details, baselines,
and evaluation metrics.

4.1 Dataset
For our current work, we use the CYCCD dataset
(Golchha et al., 2019)1 having interactions between
customers and professional customer care agents
of companies on their Twitter handles. The CY-
CCD Twitter data was taken from the dataset made
available on Kaggle by Thought vector. We use
the generic and polite annotated version of the CY-
CCD dataset in a similar manner as (Golchha et al.,
2019). The dataset consists of 140k, 20k and 40k
conversations in training, validation and test set
respectively.

As the CYCCD dataset was not annotated for dif-
ferent polite behaviour, therefore we do the polite-
behaviour annotations for the dataset. To annotate
the CYCCD dataset with behavioural information,
we employ crowd-workers from Amazon Mechan-
ical Turk (AMT) that label every utterance with

1https://github.com/Mauajama/Courteously-Yours

Figure 2: Polite-behaviour distribution in the CYCCD
dataset

the provided set of labels (i.e., assurance, empathy,
apology, greeting, appreciation). For labelling the
utterances, the workers were asked to follow the
instructions and guidelines provided for annotation.

Some of the significant guidelines for annotation
were as follows: (i). Every utterance of a given
dialogue was to be marked with the provided la-
bels; (ii) In addition, the workers were asked to
provide the overall behaviour label for every sen-
tence in an utterance as well. For cases where we
found different annotations in polite behaviour for
a particular sentence, we remove them from the
dataset, and we also drop the entire conversation
to maintain coherence among the utterances. A
majority voting scheme was used for selecting the
final label for every sentence. We observe a multi-
rater Kappa (McHugh, 2012) agreement ratio of
approximately 75%, which can be considered as
reliable. The polite-behaviour distribution of the
CYCCD dataset is provided in Figure 2.

4.2 Training Details

We used 300-dimensional word embedding and
300 hidden sizes in each and every experiment.
We use word embedding initialized with Glove
(Pennington et al., 2014) embedding pre-trained on
Twitter and share it across the encoder and decoder.
The rest of the parameters are randomly initialized.
We employ two self-attention layers, each with
two attention heads and a 40-element embedding
dimension. We substitute a 1D convolution with 50
filters of width 3 for the Positionwise Feedforward
sub-layer. We use batch sizes of 1 while testing
while using batches of 16 during training.

In order to train our model, we used the AMS-
Grad (Reddi et al., 2019) as the optimizer to miti-
gate the slow convergence issues and changed the
learning rate following (Vaswani et al., 2017). For
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Model Description PPL BLEU-4 Rouge-L PA

Existing
Approaches

Seq2Seq (Sutskever et al., 2014) 1.112 0.145 0.278 0.38
HRED (Serban et al., 2015) 1.085 0.198 0.308 0.45

Polite-RL (Niu and Bansal, 2018b) 1.028 0.224 0.321 0.69
PT-TGA (Madaan et al., 2020) 1.032 0.251 0.332 0.68
PG-RL (Golchha et al., 2019) 1.018 0.264 0.339 0.73

HT + RL + SE (Firdaus et al., 2022a) 1.004 0.275 0.352 0.77
Proposed
Approach AT + BG + PG 0.987 0.310 0.382 0.81

Ablation
Study

HT 1.015 0.269 0.343 0.70
HT + AT + PG 1.002 0.286 0.365 0.78
HT + BG + PG 0.995 0.288 0.371 0.79

Table 2: Automatic evaluation results. Here, PPL: Perplexity, PA: Politeness accuracy, HT: Hierarchical transformer,
AT: Affective Tracker, BG: Behaviour-aware generator, PG: Polite Generator

simplicity, we set the weight of both losses α and
β to 1. Affective Tracker may assign weights to the
behaviour-generators at random during the initial
training phase and may send noisy gradient flow
back to the incorrect generators, which can hinder
model convergence.

4.3 Baselines

To demonstrate the effectiveness of our proposed
model, we compare it with the previous state-of-
the-art (SoTA) models:
Seq2Seq: It is the standard encoder-decoder frame-
work with an attention mechanism that has been
widely used in the generation, machine translation,
etc. (Sutskever et al., 2014).
HRED: It is a hierarchical encoder-decoder model
proposed for text-based dialogue systems (Serban
et al., 2015).
Polite-RL: We implement the Polite-RL frame-
work to induce politeness in responses in a similar
manner as (Niu and Bansal, 2018b).
PT-TGA: We implement the politeness transfer
framework presented in (Madaan et al., 2020) that
uses a tag and generate approach to incorporate
politeness.
PG-RL: We also take the reinforced pointer gener-
ator network employed in (Golchha et al., 2019) as
one of the baselines to infuse politeness in generic
responses.
HT+RL+SE: We also compare with the reinforced
transformer network having sentiment information
(Firdaus et al., 2022a) as one of the baselines to
generate polite responses.

4.4 Evaluation Metrics

In this section, we describe both the automatic and
manual evaluation metrics used to evaluate the per-
formance of our proposed model.

Automatic Evaluation Metrics: To evaluate the
model at the relevance and grammatical level, we
report the results using the standard metrics like
Perplexity (Chen et al., 1998), Rouge-L (Lin, 2004)
and BLEU-4 (Papineni et al., 2002). We also report
the Politeness Accuracy as a metric to measure the
degree of politeness in the responses. We compute
the politeness score using a pre-trained classifier,
BERT (Devlin et al., 2018)2 for measuring the de-
gree of politeness in the generated responses simi-
lar to (Niu and Bansal, 2018b). The classifier takes
as input the generated response and generates a
probability value giving us the politeness accuracy
of the generated response.

Manual Evaluation Metrics: We recruit six
annotators (in a similar manner as (Firdaus et al.,
2022c; Tian et al., 2019)) from a third-party com-
pany, having high-level language skills. We sam-
pled 250 responses per model for evaluation with
the utterance and the conversational history pro-
vided for generation. First, we evaluate the quality
of the response on two conventional criteria: Flu-
ency and Relevance. These are rated on a five-scale,
where 1, 3, and 5 indicate unacceptable, moderate,
and excellent performance, respectively, while 2
and 4 are used for unsure.

Secondly, we evaluate the politeness quotient
of a response in terms of Politeness Appropriate-
ness metric that measures whether the politeness
induced in the response is in accordance with the
user’s affective state (both emotion and sentiment)
and the dialogue history. Here, 0 indicates irrel-
evant or contradictory, and 1 indicates consistent
with the provided persona and dialogue context.

We compute Fleiss’ kappa (Fleiss, 1971) to mea-

2The classifier is trained on the Stanford Politeness Cor-
pus (Danescu-Niculescu-Mizil et al., 2013) and achieves an
accuracy of 92%.
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Model Description F R PA

Existing
Approaches

Seq2Seq (Sutskever et al., 2014) 3.82 3.73 48%
HRED (Serban et al., 2015) 3.86 3.78 52%

Polite-RL (Niu and Bansal, 2018b) 3.91 3.79 61%
PT-TGA (Madaan et al., 2020) 4.03 3.85 64%
PG-RL (Golchha et al., 2019) 4.11 4.06 67%

HT + RL + SE (Firdaus et al., 2022a) 4.23 4.17 75%
Proposed
Approach AT + BG + PG 4.35 4.53 80%

Ablation
Study

HT 4.09 4.03 65%
HT + AT + PG 4.25 4.19 76%
HT + BG + PG 4.28 4.22 78%

Table 3: Human evaluation results. Here, F: Fluency,
R: Relevance, PA: Politeness Appropriateness, HT:
Hierarchical transformer, AT: Affective Tracker, BG:
Behaviour-aware generator, PG: Polite Generator

sure inter-rater consistency. The Fleiss’ kappa for
fluency and relevance are 0.53 and 0.49, indicating
moderate agreement. For politeness appropriate-
ness, we obtain 0.65 as the kappa score indicating
substantial agreement.

5 Results and Analysis

In this section, we present the results of both au-
tomatic and manual evaluation. In addition, we
also provide a few examples of our generated re-
sponses to showcase the effectiveness of our pro-
posed model followed by a brief error analysis of
our approach and the baselines.

Automatic Evaluation Results: To illustrate
the efficacy of our model we provide the automatic
evaluation results in Table 2. The table shows the
results of different existing approaches that gener-
ate polite responses followed by the results of our
model and the ablation study for our approach. The
perplexity of our approach is the lowest compared
to the existing approaches, i.e., 0.987 indicating
the responses are fluent and grammatically correct.

The BLEU-4 and Rouge-L metrics provide infor-
mation regarding content preservation to avoid loss
of information or inconsistent generation. From
the table, we see that the Seq2Seq model has the
lowest scores for both the metrics followed by the
HRED approach. This indicates the inability of
LSTM-based models to capture long-term informa-
tion for a consistent and informative generation. In
addition, the reinforced approach Polite-RL shows
slight improvement compared to the basic mod-
els. The PG-RL framework gives better scores for
both BLEU-4 and Rouge-L using pointer generator
network that directly copies the words from the
context. Our approach performs better for both the
metrics with the ability of transformers to capture
better representations from the dialogue context.

We also provide the politeness accuracy of the
generated responses in the table. Our approach
has an improvement of 4% and 8% compared to
the HT+RL+SE and PG-RL frameworks, respec-
tively. Even though the HT+RL+SE approach uses
sentiment information for polite response genera-
tion, we outperform their approach with the help
of affective tracker that captures the overall emo-
tional content from the context for the consistent
and relevant polite generation.

We also provide the ablation study of our ap-
proach in Table 2. The HT approach without the
affective tracker and the behaviour-aware genera-
tors gives the lowest scores for all the metrics. By
adding the affective tracker there is a gain in per-
formance proving the significance of capturing the
overall emotional quotient from the context. We
also show the performance without the affective
tracker, having only the behaviour-aware genera-
tors and the final polite generator. The performance
is slightly better but still lower than the proposed
approach indicating the importance of all the com-
ponents in the proposed method.

Manual Evaluation Results: In Table 3, we
provide the results of human evaluation on the CY-
CCD dataset. From the table, we see that the flu-
ency scores of our proposed method is the highest
compared to all the existing and the ablated models.
The responses are fluent and grammatically correct
making the responses complete.

In the case of the relevance metric, we gain
an improvement of around 0.4% compared to the
HT+RL+SE framework that uses sentiment infor-
mation as feedback to generate consistent and rel-
evant polite responses. We perform better as we
employ the entire emotional content present in the
context using the affective tracker for generating
behaviour-aware polite responses that are in accor-
dance with the context.

Finally, the politeness appropriateness scores are
highest with an increase of 5% and 13% from the
HT+RL+SE and PG-RL frameworks. This could
be contributed to the behaviour-aware generators
that assist in generating correct polite responses
in accordance with the ongoing dialogue. This
also ensures that the different polite behaviours are
important to generate the correct and appropriate
responses. The performance of the proposed ap-
proach is significantly better than all the existing
approaches and the ablated models.

Case Study and Discussion: In Table 4, we
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Context Hey, i got food poisoning from your inflight meal on Sunday
BGapology We are sorry for the inconvenience, we would look into this.
BGempathy That’s sad to hear, we would get you a refund for this.
BGassurance Don’t worry, we will get in touch with the staff and help you with this.
Context Order 2 zinger box meals n got free popcorn chicken, yayyyy
BGgreeting Hello, good morning!!! Have a nice meal.
BGappreciation That’s nice, hope you have a great meal ahead.
BGassurance We hope to surprise you again in the future, keep ordering.
Context I need the software update urgently, the battery lasts literally half a day
BGgreeting Good evening!!! Please DM us the information.
BGapology We apologize, but we will help you with the updates at the earliest.
BGassurance We are here to help! Tell us what you need.
Context Had a flight delay yesterday due to less ground staff, got credit points for the delay and free lunch.
BGgreeting Good evening!!! Have a good flight next time you fly with us.
BGapology We regret the inconvenience, by the flight delay, we will take better care of you in future.
BGempathy We are happy you got free food. Let us know if you need to book flights next time.

Table 4: Examples of polite responses in accordance to the polite behaviour

present a few examples of the generated response.
From the table, we see that for a given context there
are multiple plausible polite responses in accor-
dance with the behaviour and nature of politeness.
Also, the responses are consistent and relevant.

For the first example, “Hey, I got food poison-
ing from your inflight...” could be responded to in
one of the three ways such as the agent could be
apologetic about the situation, empathize with the
customer or assure the user for a better outcome.
In either of the above-mentioned behaviours, po-
liteness is a key component and is well represented
in the generated response showcasing the effective-
ness of our proposed method. For the last example,
“I need the software update urgently, the battery
lasts.. ”, the agent shows variations in polite be-
haviour and helps the user with the said problem
either by just greeting, apologizing, or assuring
the user. From the generated responses, it is clear
that polite behaviour is significant for generating
relevant, interactive, and better responses.

In addition, from the last example in Table 4,
we see that the generator is capable of generating
responses capturing the information in the context.
This concludes the fact that the proposed approach
is not only capable of variating politeness in re-
sponses but also inculcates informative knowledge
from the context. We also perform an error analysis
for the proposed approach to properly evaluate the
performance of our approach in comparison to the
baselines. Some of the errors encountered by the
models are:
Loss of information: For a few responses, we see
that the generated polite response lacks some of
the information presents in the context making the

response inconsistent with the ongoing dialogue.
For example, the ground-truth response is “The or-
der from KFC has been taken and will be delivered
soon” while the generated response is “We will look
into this and call the service center.”
Polite-behaviour inconsistency: In some cases,
we see that the responses fail to capture the correct
polite behaviour and generate responses that are
inconsistent with the context. For the context “The
fries were soggy and the burger was stale” the gen-
erated response is “Thank you for ordering, enjoy
your meal.” The generated response is incorrect as
the agent should either be apologizing for the order
or assuring the customer that the feedback will be
taken care of in the future.

6 Conclusion and Future Work

In our current work, we focus on the variations in
politeness based on the different behavioural pat-
tern linguistically present in polite phrases such
as greeting, apology, appreciation, assurance and
empathy. We design a transformer-based encoder-
decoder network with three major components an
affective tracker, behaviour-aware generators, and
a polite generator to incorporate politeness in re-
sponses according to the context. Experimental
analysis of the CYCCD dataset shows that the pro-
posed approach effectively infuses the behaviour-
wise polite phrases in the responses.

In the future, we intend to use unsupervised tech-
niques to incorporate politeness in responses to
create robust end-to-end systems. Also, the usage
of politeness is important for goal-oriented conver-
sations, therefore we plan to apply politeness to
different domains.
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Limitations

Our paper focuses on incorporating behaviour-
aware politeness in responses according to the dia-
logue context for polite response generation. The
primary limitation is the availability of labeled data
for modeling the variations in politeness for the
different user-related queries. Nevertheless, we
employed crowd workers for the data annotation
which even though is a time-consuming and costly
process yet is the most reliable way of getting the
data annotated. Due to the unavailability of the
polite behaviour-annotated dataset, we conducted
experiments using CYCCD dataset only. In future,
we will attempt to extend the experiments to more
task-oriented datasets. Also, because of limited
computational resources in academia, we weren’t
able to conduct experiments using LLMs such as
GPT2, GPT3, PaLM, LLaMa, etc.
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