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Abstract

We explore the problem of few-shot named
entity recognition (NER) by introducing two
ideas to improve label representations. Re-
cently, the use of token representations with a
distance metric has been shown to be effective
in few-shot NER, and we take an approach to
use label representations along with token rep-
resentations. Firstly, we add support examples
to a label name (e.g., “person; example: Fed-
eric Krupp, Gao, Honecker, Bush, Deverow”)
when obtaining a label representation. Sec-
ondly, we estimate a transition score among
labels with a bilinear function among label rep-
resentations. The proposed approach is eval-
uated on 4 open few-shot NER datasets and
we found that the approach can improve the
performance of one-stage few-shot NER.

1 Introduction

The advance of large language models (e.g., BERT,
GPT) has brought some of natural language under-
standing tasks to be tackled with few training sam-
ples. One such task that has especially gathered an
attention from researchers is named entity recogni-
tion (NER) where a simple nearest neighbor classi-
fication using an NER model and a distance metric
has shown to achieve a moderate performance in
a few-shot setting (Yang and Katiyar, 2020). Ma
et al. (2022a) proposed a related but slightly dif-
ferent approach where they prepare an additional
BERT to encode labels into representations.

We extend an idea to use label representations
to improve few-shot NER. A simple approach to
obtain label representations is to encode just label
names (Ma et al., 2022a), and we add randomly
sampled label examples to label names and encode
the combined label names and examples to improve
label representations. Figure 1 illustrates our ap-
proach to use label examples as the supports of
label names. In this approach, an input text and all
labels are encoded with a dual encoder architecture.

For each token, similarities against all labels are
calculated to decide a label. The extension to add
label examples may seem like a naive approach to
improve label representations but this approach fol-
lows previous findings to obtain fine-grained label
representations. Firstly, in the context of zero-shot
NER, Aly et al. (2021) explored the effectiveness
of using label descriptions to encode labels. They
have found that the use of label name is a strong
baseline to represent a label and a label description
can further improve the performance of zero-shot
NER depending on its quality. One downside of
using label descriptions is that fine-grained descrip-
tions are not always available in an NER dataset.
Secondly, an approach to use multiple examples
to estimate a label is a well-known approach of
Prototypical Networks (Snell et al., 2017). In a
typical Prototypical Networks setting, a label pro-
totype can be represented as an average of multiple
examples.

We further extend the approach to use label rep-
resentations in few-shot NER by estimating a label
dependency between two labels. A straightforward
approach to model label dependencies in NER is
to add a Conditional Random Field (CRF, Lafferty
et al., 2001) layer after a token encoder (Lample
et al., 2016). However, this CRF layer is known
to be difficult to transfer since it directly learns a
K ×K transition matrix over K labels (Yang and
Katiyar, 2020; Hou et al., 2020). We estimate a
transition score between two labels with a train-
able function which maps two label representations
into a single scalar score. We show that this esti-
mation works quite effectively in the dual encoder
architecture.

In summary, the contributions of this paper are
the followings:

1. We propose an approach to sample support
examples to improve label representations for
few-shot NER and confirm its effectiveness
on 4 few-shot NER datasets.
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Figure 1: The overview of our approach to encode label representations by adding randomly sampled support
examples. Encoder is a large language model such as BERT, sim is a similarity function among representations, vn

is the token representation of n-th token, l is label representations and BCRF is Bilinear-trainsition CRF (§3.3).

2. We define a trainable function between two
label representation to estimate a transition
score of the two labels and show its transfer
capability in a few-shot setting.

2 Related Work

2.1 One-stage Few-shot NER

The use of distance metric has shown to be ef-
fective in a few-shot setting, where Wiseman and
Stratos (2019) and Yang and Katiyar (2020) found
that a nearest neighbor search among token repre-
sentations can be a promising approach for few-
shot NER. Fritzler et al. (2019) and Hou et al.
(2020) have explored Prototypical Networks to
model token-level entity prototypes in few-shot
NER. These ideas are further investigated to train
a model with a contrastive learning objective (Das
et al., 2022). Like these approaches, our approach
is in the paradigm of one-stage few-shot NER
where named entities are recognized simply as the
labels of input tokens.

2.2 Two-stage Few-shot NER

Recently, the paradigm of two-stage few-shot NER
(Wang et al., 2022a) where entity spans are ex-
tracted in the first stage and their types are recog-
nized in the second stage are investigated to ex-
tend the one-stage few-shot NER. In this paradigm,
span or entity prototypes are defined (Wang et al.,
2022b; Ji et al., 2022; Ma et al., 2022b; Wang et al.,
2022a) to achieve stronger performances with the
complexity of an additional stage.

2.3 Label Representation in NER
The use of label description has been also explored
in a low-resource NER. Aly et al. (2021) explored
the effect of label description in a zero-shot NER
and Wang et al. (2021) has utilized label descrip-
tions along with entity representations in a few-shot
and a zero-shot NER. Ma et al. (2022a) has shown
that simply using label names is quite effective in
few-shot NER. Our approach extends these ideas
to use support samples to improve label representa-
tion in few-shot NER.

3 Method

3.1 Dual Encoder Model
We followed the approach of dual encoders that was
taken by Aly et al. (2021) and Ma et al. (2022a)
as the base architecture of our model. As shown
in Figure 1, we prepare an encoder for an input
tokens and an encoder for labels. Given input to-
kens uI , the tokens are encoded with a language
model v = LMtoken(uI). The tokens of given
labels uL are similarly encoded with another lan-
guage model m = LMlabel(uL), and the represen-
tations of CLS1 are pooled as label representations
l. For each token representation vn, similarities
against all label representations are calculated with
a similarity function as on = sim(vn, l). These
token-label similarities are used to calculate a loss
against true labels. As done in previous studies, we
first pre-finetune this model on a large scale NER

1A special token of a language model that is prepended to
an input text.
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Algorithm 1 Support example sampling
Require: input_text x, label y, training_texts X , # of exam-

ple n
1: S ← ϕ
2: while |S| < n do
3: // Sample a text including y from X
4: xy ← sample_text(X, y)
5: if xy ̸= x then
6: if y ̸= O then
7: sy ← sample_entity(xy)
8: else
9: sy ← sample_word(xy)

10: end if
11: S ← S ⊎ {sy}
12: end if
13: end while
14: return S

dataset (e.g., OntoNotes 5.0) and then fine-tune it
on a few-shot NER dataset.

3.2 Support Example Sampling

The dual encoder model encodes label tokens to
obtain label representations. Our idea improves
label representations by extending label tokens with
support examples. Algorithm 1 shows processes
to sample support examples S for input text x and
label y. In the case of PER label in Figure 1, n = 5
examples of Federic Krupp, Gao, Honecker, Bush
and Deverow are sampled from entire training data
X2. These examples are then combined with the
label name person with the fixed text snippet of “;
example:”3. One exceptional label that needs to
be considered in this sampling is O label. Since O
is not a label for named entity and does not have
an entity boundary, we decided to samples a non-
entity word from text xy.

3.3 Estimation of Transition Score

Lample et al. (2016) have shown that a CRF layer
can be added to a token encoder to improve NER.
However, the few-shot transfer of this CRF layer is
known to be difficult since the prediction score is
defined as s(x,y) =

∑
iAyi,yi+1 +

∑
i Pi,yi where

i is a token index, A is a transition matrix and P is
an emission matrix. A typical approach to realize
A is to prepare a trainable K × K matrix when
there are K labels. We estimate a transition score
among two labels Ayi,yi+1 simply with a bilinear

2This sampling is done for every training batch. This
random process is important for the dual encoder model to
avoid overfitting to certain examples.

3In 1-shot NER, this algorithm can fail to sample examples.
In such case, we used the text snippet of “; example: none”.

function as

Ayi,yi+1 = lTi W li+1 + b (1)

where W is a trainable weight matrix of size D×D,
b is a bias and D is the embedding size of the la-
bel encoder. We call a score estimated with this
approach Bilinear-transition CRF (BCRF) score.
The estimation of a transition score has been inves-
tigated in a more resource rich setting in Hu et al.
(2020). Our BCRF score takes a simple estima-
tion approach since we focus on a resource poor
few-shot setting.

4 Experiment

4.1 Datasets and Baselines

We evaluate the effectiveness of our approach us-
ing 4 datasets: Few-NERD (Ding et al., 2021),
CoNLL-2003 (Tjong Kim Sang and De Meul-
der, 2003), WNUT-2017 (Derczynski et al., 2017)
and i2b2-2014 (Stubbs and Özlem Uzuner, 2015).
Few-NERD is a large-scale dataset specialized for
the evaluation of few-shot NER. CoNLL-2003,
WNUT-2017 and i2b2-2014 are datasets that were
used in a few-shot domain transfer setting in pre-
vious studies (Yang and Katiyar, 2020; Ma et al.,
2022a; Das et al., 2022; Ji et al., 2022).

We compare our approach against various state-
of-the-art one-stage baselines (§2.1) and two-stage
baselines (§2.2). For the one-stage baselines, we
compare against ProtoBERT (Snell et al., 2017),
StructShot (Yang and Katiyar, 2020), LabelSem
(Ma et al., 2022a) and CONTaiNER (Das et al.,
2022). For the two-stage baselines, we com-
pare against ESD (Wang et al., 2022b), MAML-
ProtoNet (Ma et al., 2022b), EPNet (Ji et al., 2022)
and SpanProto (Wang et al., 2022a). For the scores
of ProtoBERT, StructShot and CONTaiNER, we
refer to the values reported in Das et al. (2022). For
the scores of LabelSem, ESD, MAML-ProtoNet,
EPNet and SpanProto, we refer to the values re-
ported in the original papers.

4.2 Model Configuration

We first pre-finetuned the dual encoder model
(§3.1) on a large-scale NER dataset. The training
section is used for Few-NERD and OntoNotes 5.0
(Weischedel et al., 2013) is used for CoNLL-2003,
WNUT-2017 and i2b2-2014. BERT base (cased) is
used as language models and dot product is used as
the similarity function of the model. IO scheme is
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INTRA INTER
5-way 10-way 5-way 10-way

Stage Model 1~2-S 5~10-S 1~2-S 5~10-S 1~2-S 5~10-S 1~2-S 5~10-S
ProtoBERT 23.45 41.93 19.76 34.61 44.44 58.80 39.09 53.97

one StructShot 35.92 38.83 25.38 26.39 57.33 57.16 49.46 49.39
CONTaiNER 40.40 53.71 33.82 47.51 56.10 61.90 48.36 57.13
DualEnc++proposed 50.81 64.20 46.89 58.64 63.98 72.04 62.31 69.95
-BCRF 49.51 61.09 43.90 54.86 61.56 69.88 58.90 67.10
-SupEx 49.71 63.95 46.26 58.41 62.76 72.06 61.62 69.95
-SupEx, +BCRF[R] 17.14 39.55 12.51 29.39 23.07 51.83 17.06 42.27
ESD 36.08 52.14 30.00 42.15 59.29 69.06 52.16 64.00

two MAML-ProtoNet 52.04 63.23 43.50 56.84 68.77 71.62 63.26 68.32
EPNET 43.36 58.85 36.41 46.40 62.49 65.24 54.39 62.37
SpanProto 54.49 73.10 45.39 64.63 73.36 82.68 66.26 78.69

Table 1: The episode evaluation F1 scores on Few-NERD over 5000 episodes. The shaded models are the proposed
model with alternative configurations (§5): -SupEx is without support examples, -BCRF is trained on cross-entropy
loss, +BCRF[R] is trained on BCRF with randomly initialized label embeddings. The bold values are the best scores
and the underlined values are the second-best scores for each N -way K-shot setting.

1-shot 5-shot
Stage Model CoNLL WNUT i2b2 CoNLL WNUT i2b2

ProtoBERT 49.9±8.6 17.4±4.9 13.4±3.0 61.3±9.1 22.8±4.5 17.9±1.8

StructShot 62.4±10.5 24.2±8.0 21.4±3.5 74.8±2.4 30.4±6.5 30.3±2.1

one CONTaiNER 61.2±10.7 27.5±1.9 21.5±1.7 75.8±2.7 32.5±3.8 36.7±2.1

LabelSem (68.4±6.7) (38.3±1.7) (61.9±4.3) (76.6±2.1) (40.8±2.1) (76.8±2.0)
DualEnc++proposed 71.0±3.8 36.1±4.9 44.4±5.1 74.8±5.1 40.3±2.3 46.5±4.9

two EPNet 64.8±10.4 32.3±4.8 27.5±4.6 78.8±2.7 38.4±5.2 44.9±2.7

Table 2: The F1 scores on CoNLL-2003, WNUT-2017 and i2b2-2014. The scores of the proposed models are
average with standard deviation on 10 different K-shot samples. The bold values are the best scores and the
underlined values are the second-best scores for each K-shot setting with the greedy sampling algorithm (Yang and
Katiyar, 2020). The values with parenthesis are the scores with the downsampling algorithm (Hou et al., 2020).

used as the tagging scheme of NER. The Viterbi al-
gorithm is used to decide the best label sequence as
in the decoding process of CRF. The further detail
of the training configuration, label configuration
and dataset statistics are shown in §A.1, §A.2 and
§A.3, respectively.

4.3 Evaluation
Table 1 shows the result on Few-NERD over IN-
TRA and INTER configurations. In Few-NERD,
coarse-grained entity types are shared (INTER) or
not shared (INTRA) among the training data and
the test data. DualEnc++ has shown best scores
on all 8 settings against one-stage previous mod-
els. For the comparison against two-stages models,
DualEnc++ has shown best or second-best scores
on 5 settings. Table 2 shows the results on CoNLL-
2003, WNUT-2017 and i2b2-2014.

5 Discussions

5.1 The Effects of Support Examples and
BCRF

We examined the effects of two ideas with an abla-
tion study on Few-NERD. The -SupEx and -BCRF

scores in Table 1 shows the result of ablation study.
BCRF and support examples have shown effective
on all 8 settings. We further confirmed the per-
formance of BCRF without the label encoder by
using randomly initialized label embeddings as in
Hu et al. (2020) (-SupEx, +BCRF[R]). The low
performance of this setting indicates the strength
of BCRF combined with the label encoder.

5.2 The Effects of n Support Examples

The labels encoder encodes n support examples
to obtain label representations. In the experiment
(§4.3), we chose n = 5 so that our approach can
consider enough examples in the 5~10 shot settings
of Few-NERD. We have additionally tried n = 1, 3
on Few-NERD and found the result to be quite
stable regardless of the value of n. The standard de-
viation of F1 score was largest on INTRA 10-way
1~2 shot with the value of 47.27± 0.33. The more
detailed effect of the number of support examples
can be confirmed in §A.4.
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6 Conclusion

We proposed two ideas to improve label representa-
tions that can be effective for few-shot NER. These
ideas have shown effectiveness to achieve strong
performances compared against previous one-stage
approaches and comparable performances to some
of two-stage approaches. As future work, we would
like to explore whether these ideas can be applied
to span representations which have shown superior-
ity compared to simpler token representations that
we have explored in this study.

Limitations

Our approach has shown strong performances on 4
widely used few-shot NER datasets. Additional
datasets and transfer settings have been tested
in previous studies (Fritzler et al., 2019; Yang
and Katiyar, 2020; Wang et al., 2021; Ma et al.,
2022a; Das et al., 2022; Ma et al., 2022b; Ji et al.,
2022) and our approach can be suboptimal on
them. The result of few-shot domain transfer set-
tings in CoNLL-2003, WNUT-2017 and i2b2-2014
depends on randomly sampled few-shot samples.
Since these random samples differ among our ap-
proach and previous studies, the comparison is not
a fair comparison in an exact manner. This vari-
ance in random samples is alleviated in Few-NERD
since the episode evaluation use pre-sampled 5000
episodes. The evaluation of our approach requires
certain amount of computational resources to run,
especially in Few-NERD. Even though a single
episode evaluation can be done quite quickly (e.g.,
3 minutes), the full evaluation on Few-NERD will
take 3× 5000× 8 minutes ≈ 2000 hours on single
gpu.

Ethics Statement

The language resources used in our paper are all
publicly available from the corresponding web-
sites. The licenses of the resources are: CC BY-
SA 4.0 for Few-NERD, LDC User Agreement for
Non-Members4 for OntoNotes 5.0, CoNLL-2003
license5 for CoNLL-2003, CC-BY 4.0 for WNUT-
2017 and i2b2 Data Use Agreement6 for i2b2-2014.
The resources consist of online encyclopedia (Few-
NERD), newswire (CoNLL-2003, OntoNotes 5.0),

4https://catalog.ldc.upenn.edu/LDC2013T19
5https://www.clips.uantwerpen.be/conll2003/

ner/
6https://n2c2.dbmi.hms.harvard.edu/data-sets

broadcast news (OntoNotes 5.0), broadcast con-
versation (OntoNotes 5.0), telephone conversation
(OntoNotes 5.0), web data (OntoNotes 5.0), social
media (WNUT-2017) and clinical narratives (i2b2-
2014). Protected health information in the clinical
narratives are de-identified and we have made the
agreement with the data provider on a research and
development use of them.
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Dataset #train #dev #test
OntoNotes 5.0 59.9K 8.5K 8.3K
Few-NERD 131.8K 18.8K 37.6K
CoNLL-2003 14.0K 3.3K 3.5K
WNUT-2017 3.4K 0.8K 1.1K
i2b2-2014 51.5K 23.2K 48.5K

Table 3: The number of sentences included in the
datasets of the experiment (§4).

(cased). Transformers library7 and PyTorch8 are
used to implement the proposed model. The num-
ber of support examples is set to n = 5. NVIDIA
Tesla V100 with 32GB memory is used to train and
evaluate the proposed model. The training time of
the proposed model is short: 1–8 minutes for a 100
epochs fine-tuning on a target dataset.

A.2 Label Configuration

The model uses label names along with support ex-
amples to obtain label representations (§3.2). We
used the label names defined in Ma et al. (2022a)
for CoNLL-2003, WNUT-2017 and i2b2-2014. For
example, “person” is used as the label name of
“PER” in CoNLL-2003. We combined the coarse
type and the fine type of a named entity with hy-
phen in Few-NERD which is available in Table 8
of Ding et al. (2021). For example, “Location-GPE”
is used for the named entity with the coarse type
of “Location” and the fine type of “GPE”. We ad-
ditionally prepared “start of sentence” and “end of
sentence” label names for BCRF which are used in
the first token of a sentence and the last token of a
sentence, respectively.

A.3 Dataset Statistics

Table 3 shows the number of sentences included in
OntoNotes 5.0, Few-NERD, CoNLL-2003, WNUT-
2017 and i2b2-3014. For OntoNotes 5.0, we used
the splits of CoNLL-20129 following the setting
of Yang and Katiyar (2020). The language of the
datasets is English for all datasets. All datasets
are designed to evaluate NER, and Few-NERD is
specifically designed for few-shot settings. Note
that the actual training splits of the experiment (§4)
are samples of the training split in Table 3.

7https://huggingface.co/transformers
8https://pytorch.org/
9http://conll.cemantix.org/2012/data.html

Figure 2: The F1 scores on Few-NERD with varying
number of support examples.

A.4 The Number of Support Examples and
Its Effects

Figure 2 shows the changes in F1 score when the
number of support examples are in n = 1, 3, 5. The
performance is quite stable regardless of the value
of n in our approach, and the standard deviation
of F1 score was largest on INTRA 10-way 1~2
with the value of 47.27 ± 0.33 and was smallest
on INTRA 10-way 5~10 shot with the value of
58.62± 0.03.
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