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Abstract
Adversarial examples, deliberately crafted us-
ing small perturbations to fool deep neural net-
works, were first studied in image processing
and more recently in NLP. While approaches
to detecting adversarial examples in NLP have
largely relied on search over input perturba-
tions, image processing has seen a range of
techniques that aim to characterise adversarial
subspaces over the learned representations.

In this paper, we adapt two such approaches
to NLP, one based on nearest neighbors and
influence functions and one on Mahalanobis
distances. The former in particular produces
a state-of-the-art detector when compared
against several strong baselines; moreover, the
novel use of influence functions provides in-
sight into how the nature of adversarial exam-
ple subspaces in NLP relate to those in image
processing, and also how they differ depending
on the kind of NLP task.

1 Introduction

The high sensitivity of deep neural networks
(DNNs) to slight modifications of inputs is widely
recognised and makes DNNs a convenient target
for adversarial attacks (Szegedy et al., 2014). Cre-
ating malicious inputs or adversarial examples by
adding small perturbations to the model’s inputs
can cause the model to misclassify the inputs that
would be predicted correctly otherwise. Such ad-
versarial attacks are highly successful in both im-
age and Natural Language Processing (NLP) do-
mains.

In the image domain, due to the straightfor-
wardness of creating adversarial images by cali-
brating noise to the original records, researchers
have explored many high-performing adversarial
attacks (Papernot et al., 2016b; Moosavi-Dezfooli
et al., 2016; Carlini and Wagner, 2017, for exam-
ple). The perturbations of the input images degrade
the model’s performance with a high success rate
and are generally imperceptible to a human.

Work in the NLP space has followed that in im-
age processing. Here, in addition to the goal of
impacting the model’s prediction, adversarial text
examples need to be syntactically and semantically
sound to the reader. Consequently, adversarial at-
tack techniques on text use semantics-preserving
textual changes at the character level, word level
and phrase level or sentence level (Pruthi et al.,
2019; Alzantot et al., 2018; Li et al., 2020, for ex-
ample). Table 1 illustrates two examples, showing
different types of attack formulation in NLP.

In the image domain, defence against adversar-
ial attack can be ‘proactive’ or ‘reactive’ (Cohen
et al., 2020), where proactive defence refers to im-
proving the model’s robustness (Madry et al., 2018;
Gopinath et al., 2018; Cohen et al., 2019) and reac-
tive defence focuses on detecting real adversarial
examples before they are passed to neural networks
(Feinman et al., 2017; Ma et al., 2018; Lee et al.,
2018; Papernot and McDaniel, 2018). Broadly
speaking, for reactive methods, the detection of
adversarial examples involves taking a conceptu-
alisation of the space of learned representations
and the adversarial subspaces within them (Tanay
and Griffin, 2016; Tramèr et al., 2017), and then
characterising the differences in some function of
the learned representations between the actual and
the adversarial inputs produced by the DNN; for
example, Ma et al. (2018) applied a local intrinsic
dimensionality (LID) measure to the learned repre-
sentations and used that to successfully distinguish
normal and adversarial images.

In the NLP space, relatively fewer adversarial
defence techniques have been proposed. Among
them, many focus on enhancing the models’ robust-
ness proactively through adversarial training (Jia
et al., 2019; Pruthi et al., 2019; Jin et al., 2020);
generating textual samples for proactive adversarial
training is computationally expensive because of
necessary search and constraints based on sentence
encoding (Yoo and Qi, 2021). Reactive adversarial
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text detection techniques have mostly been differ-
ent from their image counterparts, in that they typi-
cally modify the input by e.g. repeatedly checking
word substitutions (Mozes et al., 2021; Wang et al.,
2022; Zhou et al., 2019) rather than trying to char-
acterise the learned representations; consequently,
they focus on detecting synonym-substitution ad-
versarial examples. An exception is the work of
Liu et al. (2022), which both adapts LID to the
text space and proposes the new MultiDistance
Representation Ensemble (MDRE) method; their
state-of-the-art results suggest that the detection
methods based on learned representations drawn
from the image processing domain are a promising
source of ideas for NLP.

The particular focus of the present paper is the
use of influence functions in adversarial detection
methods, proposed for image processing by Co-
hen et al. (2020). They propose that distances to
nearest neighbors (used by previous methods) and
influence functions, which measure the impact of
every training sample on validation or test set data,
can be used complementarily to detect adversar-
ial examples: they argue, with support from the
strong results from their method, that adversarial
examples locate in different regions of the learned
representation space of their neighbors with respect
to influence functions, compared to original data-
points (Fig 1). Specifically, in the image space, for
original datapoints, nearest neighbors and influence
function training points overlap, but for adversarial
examples, they do not. Influence functions have
only relatively recently begun to be explored in
NLP, with Han et al. (2020) finding that, with the
variety of classification tasks in NLP, the informa-
tion provided by influence functions differs from
image processing and is task-dependent. In this pa-
per, noting significant differences between inputs
in NLP and image processing (continuous versus
discrete) and attack types, we explore whether and
how they can help in NLP in detecting adversarial
examples using learned representations, and what
this can tell us about the nature of adversarial sub-
spaces.

We also adapt a second method from the image
processing literature, by Lee et al. (2018), which
uses a Mahalanobis-based confidence score; this
was a strong baseline for Cohen et al. (2020), giving
an additional perspective on the nature of adversar-
ial subspaces in NLP.

The contributions of this paper are as follows:

Figure 1: Adversarial examples characterised by diver-
gence in learned representations between nearest neigh-
bors and training points selected by influence functions,
unlike original examples (from (Cohen et al., 2020)).

• An adaptation of two adversarial detection tech-
niques from the image processing literature, MA-
HAL confidence (Lee et al., 2018) and Nearest
Neighbor Influence Functions (NNIF) (Cohen
et al., 2020), into the text domain; we show that
we can achieve SOTA results relative to several
strong, recent baselines.

• An analysis of how influence functions work in
this context, contributes to understanding both
the nature of adversarial subspaces in the text
space and what information influence functions
can provide.

2 Related Work

Adversarial Defences for Image An intuitive ad-
versarial defence is to train a deep neural network
to be robust against adversarial input samples by
e.g. mixing adversarial samples with the training
data (Goodfellow et al., 2015; Madry et al., 2018;
Xie et al., 2019); popular platforms like Cleverhans
(Papernot et al., 2016a) are available to support ro-
bust training. However, such defences, termed as
‘proactive’, are expensive and vulnerable to optimi-
sation attacks (Cohen et al., 2020).

In contrast, others have proposed ‘reactive’ de-
fences that identify the variations in the represen-
tations learned by the DNN on the original input
images to separate the adversarial samples; typi-
cally, these posit that adversarial examples can be
characterised as belonging to particular subspaces
(Tramèr et al., 2017), and the different approaches
aim to capture the nature of these subspaces in
different ways, with detectors such as logistic re-
gression classifiers built over the learned represen-
tations. Feinman et al. (2017) built detectors us-
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Original Text at last, a movie that handles the probability of alien visits with
the appropriate depth and loving warmth. Positive

Char-level
(Pruthi et al., 2019)

at last, a movie that handles the probability of alien visits with
the appr0priate depth and loving warDmth Negative

Word-level
(Alzantot et al., 2018)

at last, a movie that handles the probability of alien trips with
the adequate depth and loving warmth Negative

Table 1: Examples of textual adversarial instances on IMDB and the prediction of BERTBASE on them

ing kernel density estimation on the last hidden
layer of a DNN. Ma et al. (2018) characterised the
dimensional properties of adversarial subspaces
using Local Intrinsic Dimensionality (LID), ap-
plied to the distribution of distances to neighbors
in the region around a sample. Papernot and Mc-
Daniel (2018), noting that DNNs are poorly cali-
brated (Guo et al., 2017), proposed Deep k-Nearest
Neighbors (DKNN), a KNN classifier constructed
over the hidden layers of a DNN classifier; such
a DKNN classifier could match the performance
of the DNN while also providing better confidence
estimates of prediction, and these confidence esti-
mates are used in identifying adversarial examples.
Lee et al. (2018) constructed Mahalanobis distance-
based confidence scores from DNNs, using these
scores to construct a detection classifier. Cohen
et al. (2020) investigated the use of influence func-
tions in adversarial image detection that explain
the decisions of a model by identifying influential
training examples, and comparing these points to
those found in a DKNN approach, using the differ-
ences in distributions between real examples and
adversarial ones to construct classifiers that outper-
formed the approaches above. In this paper, we
focus on the last two and adapt them to NLP.
Adversarial Defences for Text Improving adver-
sarial robustness remains a widely used mecha-
nism in defending textual adversaries (Li et al.,
2016, 2017; Ribeiro et al., 2018; Jones et al., 2020).
In NLP, however, there have been fewer reactive
methods. To prevent character-level and word-level
adversarial perturbations Zhou et al. (2019) pro-
posed the learning to discriminate perturbations
(DISP) framework that detects and replaces suspi-
cious words. Mozes et al. (2021) emphasised word
frequencies in the texts in determining adversarial
perturbations, arguing that adversarially infused
words are less likely to occur, and constructed a
rule-based, model-agnostic frequency-guided word
substitutions (FGWS) algorithm. The approach of
Wang et al. (2022) voted the prediction label for a
set of samples generated by random word substitu-
tions from a sentence and matched the voted pre-

diction label with the original sentence’s prediction
label to detect word-level adversaries. Anomaly
Detection with Frequency-Aware Randomization
(ADFAR) as proposed by Bao et al. (2021) adds
anomaly detection as an additional optimization
training objective and augments the training set
with random rare-frequency word substitutions of
the original sentences. Rather than focus on word
substitution as the above methods, Mosca et al.
(2022) trained an adversarial detector on Shapley
additive explanations (Fidel et al., 2020).

In NLP, only Liu et al. (2022) has used the idea
of constructing detectors over learned representa-
tions as in the image domain, which explored the
idea of adapting the LID (Ma et al., 2018) method
above. In addition, they proposed the MultiDis-
tance Representation Ensemble Method (MDRE)
algorithm that puts together learned representations
from multiple DNN models to detect adversarial
texts. Unlike other approaches, the same detector
could apply to different types of attacks (character-
based, word-based, syntax-based) and MDRE in
particular improved over baseline methods across
the range of attacks. This motivates our adaptation
of more recent techniques from the image domain.
Influence Functions The influence function (IF) is
a statistical method that captures the dependence
of an estimator on any one of the sample (training)
points. Koh and Liang (2017) were the first to adapt
IFs to image DNNs as a method for interpreting
the model’s decision: the IF finds the most influ-
ential training samples, both helpful and harmful,
contributing to each prediction. The essence of the
approach is to consider a point z from the training
set and compute the change to parameters θ if z
were upweighted by a small ϵ; they then defined
closed-form expressions I(z, ztest) to identify the
most influential points z on a test point ztest .

IFs were first applied to NLP deep architectures
by Han et al. (2020), and compared with estab-
lished gradient-based saliency maps as a way of
interpreting input feature importance, using sen-
timent classification and natural language infer-
ence (NLI) as testbeds. Their first finding was
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that IFs are reliable for deep NLP architectures.
Their second interesting finding was that while IFs
and saliency measures were consistent for senti-
ment classification, they differed for NLI: they con-
cluded that for more complex understanding tasks
like NLI, IFs captured more useful interpretive in-
formation. They also found IFs to be useful for
identifying and quantifying the effect of data ar-
tifacts on model prediction. A few other works
have continued investigating the usefulness of IFs
in NLP, such as Guo et al. (2021), who proposed
a faster method for IF computation by restricting
candidates to top-k nearest neighbors.

3 Methods

3.1 NNIF Detector

We follow Cohen et al. (2020)’s Nearest Neighbor
Influence Function (NNIF) method and apply it to
NLP architectures. The essence of it is, for some
point z that may be regular or adversarial, to iden-
tify the training points that are most influential and
those that are nearest neighbors to z, and to build a
classifier based on those that will predict whether
z is regular or adversarial based on differences in
relative distributions (Fig 1).

We take a DNN classifier and dataset for some
particular task (e.g. sentiment classification); we
refer to this DNN as the TARGET MODEL. For
each test sample ztest , we compute the influence
scores I(z, ztest) for all training points z, given the
target model, and select the top M most helpful
and M most harmful (details App B). We then con-
struct a DKNN classifier in the style of Papernot
and McDaniel (2018), using the hidden layers of
the target model and the training points. For each
ztest we find the ranks R and distances D using
this DKNN for the training examples identified by
the IFs; we denote by RM↑,DM↑,RM↓,DM↓ the
ranks and distances of the 2M most helpful and
harmful training examples, respectively. We finally
construct a logistic regression classifier with fea-
tures (RM↑,DM↑,RM↓,DM↓) to detect whether
an input is adversarial or not.

Where the target model of Cohen et al. (2020)
is a ResNet model, ours is a large language model
(LLM) base with additional layers that are fine-
tuned for the chosen tasks (§4.3). The hidden layers
we use for NNIF are then the pre-final additional
layers on top of the DNN (§4.5).

3.2 MAHAL Detector
Here we follow Lee et al. (2018), who build a de-
tector that captures the variation in the probability
density of the class-conditional Gaussian distribu-
tion of the learned representation by the model.
Motivated, like Papernot and McDaniel (2018), by
the problem that DNNs are poorly calibrated (Guo
et al., 2017), they replace the final softmax layer
with a Gaussian Discriminant Analysis (GDA) soft-
max classifier.

For a set of training points
{(x1, y1), ..., (xn, yn)} with the label
y ∈ {1, 2, . . . , C}, the class mean µ̂c and
covariance ∑̂ are computed for each class
c to approximate the generative classifier’s
parameters from the pre-trained target DNN
f(x). Next, from the obtained class-conditional
Gaussian distribution, the Mahalanobis distance
between a test sample x and its closest distri-
bution is measured to find the confidence score
M(x) = maxc−(f(x) − µ̂c)

T ∑̂−1
(f(x) − µ̂c).

Finally, we label the Mahalanobis scores for the
test samples as positive and adversarial samples
as negative and input this feature set to an LR
detector.

Lee et al. (2018) propose two calibration tech-
niques to improve the detection accuracy and make
regular and out-of-distribution samples more sep-
arable: (1) input pre-processing, where they add
a small noise in a controllable manner to the test
samples; and (2) feature ensemble, which combines
the confidence scores from all the hidden layers
of the DNN including the final features. Both to-
gether substantially improve the performance of
the base approach; each individually reaches al-
most the combination of the two. As for our NNIF
detector in §3.1, our target DNN will have several
hidden layers, and we explore models both with
final layer-only representations and feature ensem-
bles over all hidden layers. The input preprocessing
of (1) is appropriate to the continuous space of im-
ages, but not in an obvious way to text, so we do
not use that.

4 Experimental Setup
We broadly follow the setup of Liu et al. (2022), as
the prior NLP work that has used learned represen-
tations to detect adversarial examples.

4.1 Tasks and Datasets
We work on the sentiment analysis and the natural
language inference tasks, two widely tasks used in
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the adversarial example generation (Pruthi et al.,
2019; Alzantot et al., 2018; Ribeiro et al., 2018;
Ren et al., 2019; Iyyer et al., 2018; Yoo and Qi,
2021; Li et al., 2020, 2021; Jin et al., 2020). In
addition, these are the two tasks that were used for
the investigation of the use of influence functions
in NLP (Han et al., 2020).

Sentiment Analysis For the sentiment analysis,
we use the IMDB dataset (Maas et al., 2011) that
has 50,000 movie reviews, split into 25,000 train-
ing and 25,000 test examples with binary labels
indicating positive or negative sentiment. IMDB
dataset has 262 words per review on average. In
all experiments, we use 512 maximum sequence
lengths for the language models on IMDB.

Natural Language Inference The Multi-Genre
NLI (MULTINLI) dataset (Williams et al., 2018),
used for the natural language inference (NLI) task,
contains pairs of sentences annotated with textual
entailment information. The test examples are mis-
matched with train examples and are collected from
different sources. The dataset has 392,702 training
and 9,832 testing examples labelled as three classes:
entailment, neutral, and contradiction. Each text
of the dataset has 34 words on average. On this
dataset, we set the maximum sequence length to
256.

4.2 Attack Methods
We use the implementations from Liu et al. (2022)
of two widely used attack methods that apply
character-level and word-level perturbations to con-
struct adversarial examples. We take a BERTBASE
model (§4.3) as the target model. An adversarial
attack is successful when the adversaries have dif-
ferent predictions than the target mode’s original
predictions. Our two methods are (more details in
§A.1):
• CHARATT (Pruthi et al., 2019). This is a

character-level attack that tweaks the original
texts by randomly swapping, dropping and
adding characters or adding a keyboard mistake.

• WORDATT (Alzantot et al., 2018). This is a
word-level attack that allows the attacker to alter
practically every word from the sentence if re-
quired with the context-preserving synonymous
words. This implementation follows Jia et al.
(2019) in speeding up the synonym search.

4.3 Target Model
Following (Liu et al., 2022), we use a pre-trained
BERT-base-cased model, adding a fully connected

dense layer of 768 nodes, a layer of 50% dropout,
and another dense layer of 768 nodes. The dataset
split is 80-20 train-test. We train the model for
3 epochs with 5e−5 learning rate and AdamW
optimization without freezing any layer of the
backbone model. This BERTBASE model achieves
92.90% and 82.01% test accuracies on the IMDB
and MULTINLI datasets respectively. The accu-
racies of the clean model and the model under at-
tack are given in Table 6; we note that in all the
cases, CHARATT degrades the classifier’s perfor-
mance comparatively more than WORDATT. Sizes
for IMDB and MULTINLI datasets and number of
generated adversarial texts from them are in Table
5.

4.4 Detectors
For data to train the adversarial example detectors
on, we follow standard practice in image process-
ing (Ma et al., 2018; Cohen et al., 2020) and Liu
et al. (2022) and use only those examples that are
correctly classified by the target model (§4.3) from
the overall test set. Adversarial attacks are then
applied to these examples; the originals (labelled
positive) and their adversarial alternatives (nega-
tive) then form the DETECTION DATASET. Due
to the computational intensity of estimating the
influential training records for the NNIF method,
we limit our detectors to having 10k records (5k
tests and 5k adversarial texts) and follow a similar
data size for all the other detection methods for
comparability. We split the detection dataset 80-20
train-test, and construct and evaluate logistic re-
gression classifiers as detectors over this detection
dataset split for our proposed methods (§4.5) and
baselines (§4.6).

4.5 NNIF and Mahalanobis Methods
NNIF We adapt the standard NNIF implementa-
tion of Cohen et al. (2020). For influence score
calculation, Cohen et al. (2020) uses the Darkon
module for the image; we instead incorporate the in-
fluence function calculation from Han et al. (2020)1

which uses Linear time Stochastic Second-Order
Algorithm (Agarwal et al., 2017) for faster con-
vergence, and makes several adaptations to NLP.
We build the DkNN containing one layer with l2
distance and brute-force search.

Because IF calculations are expensive, like Co-
hen et al. (2020) and Han et al. (2020) we only
1https://github.com/xhan77/

influence-function-analysis

https://github.com/xhan77/influence-function-analysis
https://github.com/xhan77/influence-function-analysis
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sample from among all neighbors: we compute
the IF on 6K training datapoints uniformly ran-
domly sampled (Cohen et al. (2020) sample 10K
neighbors from 49K training points). We choose
M = 500 for our main results, which is at the top
end of the range of values of M selected by Cohen
et al. (2020); we show in §5.2 that, unlike the image
processing domain, results in our experiments are
broadly monotonically increasing as M increases.

Note that we don’t use the faster variant of IF
computation of Guo et al. (2021), as NNIF requires
separate perspectives from IFs and kNNs, and FAS-
TIF restricts IF search to subsets of kNNs.
MAHAL As per §3.2, we compute the mean and
covariance for each class and calculate the Maha-
lanobis distance score for each normal instance and
its adversarial counterpart. Like Ma et al. (2018),
we consider both using only the final layer of the
model and stacking scores from each layer of the
model (feature ensembling). Feature ensembling is
always better, so we only include those in the main
results, but do separately analyse the contribution
of the feature ensembling.
Code For both of these, our code uses the imple-
mentation of Cohen et al. (2020) as a starting point
and adapts as above.2

4.6 Baseline Detection Methods

We evaluate six adversarial text detection methods
as our baseline detectors. The first four are from
Liu et al. (2022) (we omit the language model, as it
operates essentially at the chance), while the other
two are also recent high-performing systems.3 We
give more details on the methods in §A.2.
DISP (Zhou et al., 2019). This is a system that aims
to correct any adversarial perturbations before an
example is passed to a classifier. Liu et al. (2022)
adapt this to detecting the adversarial examples.
FGWS (Mozes et al., 2021). This algorithm uses
a word frequency threshold and calibrated replace-
ment approach to detect adversarial examples. It is
only designed to work against word-level attacks.
LID (Liu et al., 2022). From among image process-
ing detection methods, Liu et al. (2022) adapted
the Local Intrinsic Dimensionality (LID) approach
of Ma et al. (2018). This technique creates a dis-
tribution over local distances for a test record con-
cerning its neighbors from the training set; it then
2Code: https://github.com/SJabin/NNIF.
3We do not include ADFAR (Bao et al., 2021), as it works

and performs similarly to (and was proposed concurrently
with) RSV, but has a more complex code implementation.

Dataset Detector CHAR
ATTACK

WORD
ATTACK

IMDB

DISP * 0.8936 0.7714
FGWS — 0.7546
LID 0.814 0.675
MDRE 0.846 0.7025
RSV — 0.8876
SHAP 0.812 0.764
NNIF 1.0 0.899
MAHAL 0.9167 0.8147

MULTINLI

DISP * 0.7496 0.6137
FGWS — 0.6112
LID 0.7035 0.5838
MDRE 0.687 0.6231
RSV — 0.6054
SHAP 0.614 0.697
NNIF 0.745 0.7351
MAHAL 0.6972 0.6211

Table 2: Accuracy of detection classifiers (best, second).
DISP results reported from Liu et al. (2022).

applies these to the outputs of each layer from the
target model to create a detection classifier.
MDRE (Liu et al., 2022). This has similarities to
LID above but uses Euclidean distance rather than
the LID measure, and creates an ensemble using
different Transformer models (like Liu et al. (2022),
we use BERTBASE, RoBERTaBASE, XLNetBASE,
BARTBASE).
RSV (Wang et al., 2022). In this Randomized Sub-
stitution and Vote approach, the assumption is that
a word-level attacker aims to find an optimal syn-
onym substitution that mutually influences other
words in the sentence. Hence, Wang et al. (2022)
randomly replaces words from the text with syn-
onyms in order to destroy the mutual interaction
between words and eliminate adversarial perturba-
tion. Like FGWS, this is only designed to work
against word-level attacks.
SHAP (Mosca et al., 2022). In this approach, an
adversarial detector is trained using the SHapley
Additive exPlanations (SHAP) values of the train-
ing data for each test data item using the SHAP
explainer (Fidel et al., 2020). They experiment
on multiple classifiers as the detectors: logistic re-
gression, random forest, support vector and neural
network. In our main results, we report the best
classifier for each dataset and attack.

5 Evaluation
5.1 Main Results
Results on the detector baselines are in Table 2.
(All SHAP detector classifiers in Table 8.) Overall,
NNIF is the best, performing with 100% accuracy
on CHARATT for sentiment analysis (more than

https://github.com/SJabin/NNIF
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Figure 2: The correspondence between the helpful train-
ing records based on IFs in the embedding space of a
DNN trained on the IMDB dataset. We present (using
t-SNE) the embedding space of a DNN for an actual
example (black star) with its adversarial version (purple
cross) along with their 25 nearest neighbors (blue) and
most helpful samples based on the IF (red).

8% better than the second) and 90% on WORDATT

(more than 1% better than the second, RSV, which
is tailored to word-level attacks). For MULTINLI
WORDATT, it is around 4% better than the second
best. The only one where it is not best, CHARATT,
is only very slightly below the best performer DISP.
(We note that for DISP we report the accuracy val-
ues from Liu et al. (2022). This means that the
DISP detector used more data in its training set,
and so has an advantage in this respect.) MAHAL

also performs quite strongly, either better or similar
to the baseline detectors, although not as strongly
as NNIF; this mirrors the findings in image pro-
cessing. MDRE results are lower than in Liu et al.
(2022) as a consequence of using less data for train-
ing all detection classifiers, as discussed in §4.4.

In terms of aggregate task performance, in all our
experiments, the detection accuracy on the natural
language inference task is lower than the sentiment
analysis task in general. As the MULTINLI dataset
is a three-class problem and additionally uses mis-
matched test sentences, the detection is innately
harder.
5.2 Analyses
Regions around adversarial examples The as-
sumption underpinning the Cohen et al. (2020)
method is that influential training samples and near-
est neighbors should overlap for normal examples,
but less so for adversarial examples: having two
views on ‘nearby’ points is key, illustrated in Fig 1.

Dataset Attack Penultimate
layer

Feature
Ensemble

IMDB CHARATT 0.5967 0.9167
WORDATT 0.536 0.8147

MULTINLI CHARATT 0.5172 0.6972
WORDATT 0.4983 0.6212

Table 3: Detection accuracy of Mahalanobis detector
in two settings: penultimate layer (no calibration) and
feature ensemble.

We produce an analogous figure in Fig 2 for a ran-
domly selected IMDB test point and its adversarial
counterpart generated by WORDATT. We plot 25
nearest neighbors and 25 most helpful IF points us-
ing t-SNE (van der Maaten and Hinton, 2008). Ide-
ally, normal neighbors and influence points (blue)
should be more tightly grouped and closer to the
test point (star); Cohen et al. (2020) expect that for
the adversarial point (cross), the neighbors (orange
down triangle) should often be separated from the
influence points (red up triangle). We see this to
some extent in Fig 2 with many adversarial neigh-
bors near the normal point but adversarial influence
points near the adversarial point.

This is more difficult to see than in the idealised
schematic of Fig 1, so for one view of differences in
this pair of points we separate IFs and NNs in Fig 3
with recalculated t-SNE for each. It is apparent that
the IFs by themselves do a good job of separating
normal from adversarial examples here, while the
NNs are more mixed. We give representative ex-
amples for the other datasets and attacks in App C.
The same pattern is true for the IMDB example on
WORDATT. For both MULTINLI, however, the IFs
are less clearly separating the points, so the NNIF
method relies on combining the two (NN, IF) views
in the detector.

To verify whether this is more generally true
than just visually for Fig 3, we aim to measure
how separable the samples of these plots are. As a
measure of separability, we train 2000 SVC binary
classifiers, one for each of our 1000 sampled test
and adversarial point pairs, for both IFs and NNs.
Each classifier is trained using GridsearchCV on
the top 100 points in t-SNE space (either IFs or
NNs), so each classifier corresponds to a plot like
those in Fig 3 (App D). Accuracies averaged across
the 1000 classifiers are in Table 4, with p-values
for a one-tailed test of proportions (positing alter-
native hypothesis H1 that the IF classifier is more
accurate). Table 4 indicates that the IF points are
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Figure 3: Normal and adversarial train subspace ob-
served on the IMDB record used in Fig 2 under WOR-
DATT by influence function (top) and DKNN (bottom)

Figure 4: Accuracy of NNIF for different values of M.

generally much more clearly separable and so IF
points contribute especially strongly to the method,
except for MULTINLI against WORDATT, where
they are essentially the same and the method relies
on the two-view aspect of NNIF. This observation
about the relative importance of the IF contribution
was not made by Cohen et al. (2020), and so may
be specific to NLP tasks, although this would re-
quire more investigation to verify. We also note
that our results align with observations of Han et al.
(2020), that in the harder task of MULTINLI (§5.1,
Table 4), IFs provide a different perspective to char-
acterising the datapoint of interest. We give some
text examples in App E.

To look further into the more challenging com-
bination of MULTINLI and CHARATT (as the one
case in Table 2 where NNIF was not the highest
scoring, albeit by a small margin), we consider a
successful and an unsuccessful detection case by
NNIF, with the actual examples given in the appen-

Attack Avg Acc
NNIF

Avg Acc
KNN p-value

IMDB CHARATT 0.6875 0.5626 < .00001
IMDB WORDATT 0.7812 0.5644 < .00001

MULTINLICHARATT 0.6399 0.5625 < .00001
MULTINLIWORDATT 0.5603 0.5632 0.448

Table 4: SVC accuracy of linearly separating the 2D-t-
SNE embedding subspace of neighboring train samples
of 1000 test records and their adversarial versions

Figure 5: Normal and adversarial subspace of the
MULTINLI CHARATT text in Table 10 by IF (top) and
DKNN (bottom)

dices in Tables 11 and 12, and the corresponding
t-SNE plots of IF and NNs in Figs 5 and 6, respec-
tively. The IFs in Fig 5 (the correct example) are
somewhat more clustered, with the red (adversar-
ial) points mostly in the top right, than the IFs in
Fig 6 (the incorrect example); this lines up with
the results of Table 4 in that separability of IF does
seem to matter for MULTINLI +CHARATT.
Varying M in NNIF Fig 4 plots the accuracies of
the NNIF method for both tasks and attacks, for a
range of values of M . The accuracy broadly mono-
tonically increases until plateaus for the IMDB
results, although the MULTINLI results look to be
still increasing. This is a contrast with the image
processing results of Cohen et al. (2020), where
much smaller values of M (e.g. 30) produced bet-
ter results. It is unclear what characteristics of our
tasks (fewer classes, more long-distance dependen-
cies, . . . ) lead to this difference.
Ablation for MAHAL Table 3 shows the accuracies
of MAHAL using only the final layer or the feature
ensemble. As with Lee et al. (2018), the feature
ensemble produces much better results. The im-
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Figure 6: Normal and adversarial subspace by IF (top)
and DKNN (bottom) on the unsuccessful detection by
NNIF of the MULTINLI CHARATT text in Table 12

provement is larger for IMDB, but still important
for MULTINLI, as without the ensemble, detection
is essentially at the chance. Noting that the target
model of Lee et al. (2018) had many more hidden
layers in the ensemble, it is an open question as
to whether introducing additional dense layers into
our LLM-based model might improve detection
while still preserving target model performance.

6 Conclusion and Future Work

We have adapted from image processing two meth-
ods, NNIF (Cohen et al., 2020) and MAHAL (Lee
et al., 2018), that detect adversarial examples us-
ing learned representations. Both perform strongly,
with NNIF the best on three of four task/attack
combinations, and a close second on the fourth,
against several strong baselines.

Our analysis shows that influence function points
make a particularly important contribution to the
NNIF method. The MULTINLI task is more chal-
lenging for all methods; here it is the complemen-
tary nature of information from influence functions
and nearest neighbors, supporting observations by
Han et al. (2020) about the different perspective of
influence functions in this more complex NLP task.

The NNIF method is computationally expensive,
so future work will look at ways to make it more
efficient. Additionally, to gain a fuller understand-
ing of what information influence functions can
provide in NLP tasks, future work will look at a
wider range of tasks and attacks.

7 Limitations

The major limitation is the computationally expen-
sive calculation of influence functions in our NNIF
method. For this, following Cohen et al. (2020) we
restrict the data size to 10k (5k test, 5k adversarial)
for NNIF and follow a similar approach for other
methods for comparability. This helps faster expla-
nation generation in SHAP as well. We use a small
architecture as recommended in Han et al. (2020)
for the BERTBASE model for NNIF and other de-
tectors. As noted in the paper, we recognise that
there is the FASTIF method of Guo et al. (2021) for
speeding up influence function calculation, but be-
cause of the restriction of influence function points
to nearest neighbors, it is not suitable for our appli-
cation.

We use only two datasets/tasks and two attack
methods, partly because of the computational ex-
pense of NNIF. While they are commonly used
in the adversarial example literature as well as
the analysis of influence functions in NLP by
Han et al. (2020) and represent different levels of
task complexity and attack type, a wider range of
datasets/tasks and attack methods is needed for a
full characterisation of influence functions and the
nature of adversarial subspaces.

For all experiments, we restrict the maximum
sequence length following Liu et al. (2022), which
may influence the detectors’ performance, espe-
cially for the NLI task, that requires the model to
learn from a hypothesis and premise text pairs.

For the detector baselines, we used the most
available methods. There are two recent contempo-
raneous methods by Wang et al. (2022) and (Bao
et al., 2021) that explore the idea that adversarial
perturbations are typically rare-frequency words,
and create augmented training sets by replacing
those words in each sentence with synonyms. For
the detection, Wang et al. (2022) matches the voted
prediction with the obtained prediction and (Bao
et al., 2021) trains the model on a separate auxiliary
learning objective. Between these two works, we
choose the RSV from Wang et al. (2022) in our
work. For RSV, we follow the similar setting from
Wang et al. (2022) in choosing the vote number,
word substitution rate and stop word selection for
both IMDB and MULTINLI. A different setting for
MULTINLI may improve the result.
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A Experimental Setup Details

The size of the datasets and the number of adversar-
ial samples generated by each of the attack meth-
ods are given in Tab. 5. Obtained accuracies of
the BERTBASE model are in Tab. 6 and the other
models used in MDRE are in Tab. 7

A.1 Attack Methods

CHARATT. We implement CHARATT as proposed
by Pruthi et al. (2019). It tweaks the original texts
by randomly swapping, dropping and adding char-
acters or adding a keyboard mistake. Swapping
refers to exchanging places of two adjacent inter-
nal characters. Dropping removes a character and
Adding inserts a new character at a randomly se-
lected position. Keyboard mistakes is for substitut-
ing a character with one of its adjacent characters
in keyboards.

In our experiments, we allow a maximum of half
the words from the original text to be perturbed, so
the maximum number of possible attacks on the
IMDB and MULTINLI datasets is 256 and 128 per
sentence, respectively.

WORDATT. Alzantot et al. (2018) proposed an
effective and widely used adversarial attack that
we incorporate in our work as WORDATT.

This method allows the attacker to alter practi-
cally every word from the sentence if required with
the context-preserving synonymous words. The
synonym search is done over a large search space
that includes the GloVe word vectors (Pennington
et al., 2014), counter-fitting word vectors (Mrkšić
et al., 2016), and the Google 1 billion words lan-
guage model (Chelba et al., 2014). Then, following
the natural selection methods, crossover and muta-
tion techniques from the population-based genetic
algorithm are applied to generate the next set of
adversarial sentences. On each iteration, several
adversarial texts that are unsuccessful in changing
the model’s prediction are removed from the pool.

However, Jia et al. (2019) found that the al-
gorithm is computationally expensive and recom-
mended using a faster language model and stopping
the semantic drift of the algorithm that refers to ap-
plying the language model on the synonyms picked
from previous iterations as well to choose words
from their neighboring word-space.

We incorporate the above recommendations by
utilising a faster Transformer-XL architecture (Dai
et al., 2019) that is pretrained on the WikiText-103
dataset (Merity et al., 2017) and prohibiting the

semantic drift by finding all test examples words’
neighbors only before attacks. We also restrict the
minimum number of perturbations to one-fifth of
the maximum sequence length which is 102 and 51
for the IMDB and MULTINLI, respectively.

A.2 Baseline Detection Methods

The first four are from Liu et al. (2022) (we omit
the language model, as it operates essentially at
the chance), and we use the implementations from
there.4

Learning to Discriminate Perturbations
(DISP) (Zhou et al., 2019). DISP is one of the
commonly used baselines for adversarial text de-
tection that identifies a set of character-level of
word-level perturbed tokens and then applies an
embedding estimator that predicts embeddings for
each perturbed token and maps them to the actual
word to repair the perturbations.

If the model’s prediction on an adversarial text
restored by DISP remains the same class as the
prediction on its original version, we consider it a
successful detection of an adversarial example.

Frequency-guided word substitutions
(FGWS) (Mozes et al., 2021). Mozes et al. (2021)
verifies that in the case of word-level attacks, the
synonym replacements normally occur in low fre-
quency. They use this concept in a model-agnostic
rule-based adversarial text detection algorithm
Frequency-Guided Word Substitutions (FGWS).

Firstly, the algorithm sets a word frequency
threshold to identify infrequent words that have fre-
quencies lower than this value. Then the algorithm
replaces those words with their high-frequency syn-
onyms and selects the replaced sentences as adver-
sarial samples if the model’s prediction confidence
scores for the replacements change over a threshold.
They use WordNet (Fellbaum, 2005) and GloVe
vectors (Pennington et al., 2014) to find the syn-
onyms. They experiment by taking {0 -th, 10 -th,
· · · , 100 -th} percentile of word frequencies in the
training set as the word-frequency threshold. Fi-
nally, on these selected alternative sentences, if
the prediction confidence differs from their corre-
sponding original sentence’s prediction confidence
by more than a certain amount, the original sen-
tences are determined as adversarial examples.

Local Intrinsic Dimensionality (LID) (Liu
et al., 2022). From the image processing detection
methods, Liu et al. (2022) adapt the Local Intrinsic

4https://github.com/NaLiuAnna/MDRE

https://github.com/NaLiuAnna/MDRE
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Dataset Training. Validation. Testing. Correctly Predicted
Test Examples

Adversarial/Original Examples
character-level word-level

IMDB 20,000 5,000 25,000 23,226 12,299 9,627
MULTINLI 314,162 78,540 9,832 8,062 7,028 3,240

Table 5: The number of examples used in experiments

Dataset Clean CHAR WORD
Accuracy ATTACK ATTACK

IMDB 0.9290 0.3656 0.6999
MULTINLI 0.8201 0.4848 0.6864

Table 6: BERTBASE classifier accuracy on the clean and
adversarial examples

Dimensionality (LID) approach of Ma et al. (2018).
This technique creates a local distance distribution
for a test record to its neighbors from the training
set. They apply this to transformer models by tak-
ing the outputs of each layer from the target model
to represent the training records.

Following Liu et al. (2022), we use the
BERTBASE model and implement a logistic regres-
sion classifier as the detector, and tune the size of
the neighbors k through a grid search over 100,
1000, and the range [10, 42) with a step size 2.

MultiDistance Representation Ensemble
Method (MDRE) (Liu et al., 2022). Motivated
by the notion that adversarial examples are
out-of-distribution samples as recognized in Lee
et al. (2018) and Feinman et al. (2017), Liu
et al. (2022) assume that texts with the same
prediction label lie on similar data submanifold
and adversarial perturbation on these texts put
them to another data submanifold, thus altering the
model’s prediction on them.

They measure the Euclidean distance between
each reference datapoint and the nearest neighbors
from the training datapoints with similar predicted
labels and establish that this distance will be greater
for the adversarial reference point than the nor-
mal one. They further use ensemble learning to
combine distances between representations learned
from multiple DNNs and build a binary logistic
regression model to detect adversarial examples.

Following (Liu et al., 2022), we also use four
learning models: [BERTBASE, RoBERTaBASE,
XLNetBASE, BARTBASE] in our experiments. Ta-
ble 7 reports the clean accuracies of the other target
classifiers used in feature ensembling in MDRE.

Randomized Substitution and Vote
(RSV) (Wang et al., 2022). A word-level

attacker’s target is to find an optimal synonym
substitution that mutually influences other words
in the sentence. Taking this optimization target
of the adversary, Wang et al. (2022) resort to
randomly substituting words from the text with
their synonyms and argue that this random
word substitution destroys the mutual interac-
tion between words and eliminates adversarial
perturbation.

At first, they generate a set of perturbed sam-
ples by randomly replacing some words from a text
with their arbitrary synonyms. Then the model’s
output logits for the processed samples are accu-
mulated and voted to determine a prediction label
for the text samples. If the original text’s predic-
tion doesn’t match the voted prediction label it is
considered as an adversarial example.

We use their code.5

SHapley Additive exPlanations
(SHAP) (Mosca et al., 2022). In this work,
Mosca et al. (2022) adopt an adversarial image
detection method for word-level attacks on text.
They train an adversarial detector with the SHapley
Additive exPlanations (SHAP) values of the
training data for each of the test data using the
SHAP explainer proposed and implemented by
Fidel et al. (2020).

They experiment on multiple classifiers as the
detectors such as logistic regression, random-forest
classifier, support vector classifier and a neural net-
work. They also show that the detector doesn’t
require a large number of training samples for it to
be successful. In our work, we follow the same and
report the best accuracy obtained among the four
detectors.

We use their code.6 Accuracies of all the detec-
tors are in Table 8.

B Computing Influence Function

For a datapoint zi = (xi, yi) from the training
set {(x1, y1), . . . , (xi, yi) ∈ (X,Y )} and model
parameters θ ∈ Θ, the loss of the model be L(z, θ)

5https://github.com/JHL-HUST/RSV
6https://github.com/huberl/adversarial_

shap_detect_Repl4NLP

https://github.com/JHL-HUST/RSV
https://github.com/huberl/adversarial_shap_detect_Repl4NLP
https://github.com/huberl/adversarial_shap_detect_Repl4NLP
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Dataset Attack Method BERTBASE RoBERTaBASE XLNetBASE BARTBASE

IMDB
Clean 0.9290 0.9532 0.9336 0.9429
CHARATT 0.3656 0.8613 0.5770 0.8286
WORDATT 0.6999 0.8714 0.7918 0.8425

MULTINLI
Clean 0.8201 0.8671 0.8630 0.8455
CHARATT 0.4848 0.7104 0.6670 0.6457
WORDATT 0.6864 0.7068 0.6870 0.6296

Table 7: Different classifier accuracies on both clean and adversarial dataset for MDRE.

Dataset Attack Logistic
Regression

Random
Forest SVC DNN

IMDB CHARATT 0.740 0.804 0.803 0.812
WORDATT 0.605 0.764 0.684 0.75

MULTINLI CHARATT 0.588 0.614 0.613 0.61
WORDATT 0.528 0.697 0.633 0.621

Table 8: Detection accuracy obtained from four
detector classifiers used in SHAP.

and the optimized parameters are:

θ′ = argmin
θ∈Θ

1

n

n∑
i=1

L(zi, θ)

The influence score is then calculated by observ-
ing the impact of a modification in the weight of a
train datapoint on the decision of the prediction for
the test datapoint. Assume we upweigh the training
datapoint z by a small ϵ amount, which produces
below θ′:

θ′ϵ,z = argmin
θ∈Θ

1

n

n∑
i=1

L(zi, θ) + ϵL(z, θ)

Then, according to Koh and Liang (2017), the
influence of the boosted z on the parameters θ′ can
be defined by:

dθ′ϵ,z
dϵ

|ϵ=0 = −H−1
θ′ ∇θL(z, θ

′) (1)

where H ′
θ =

1
n

∑n
i=1∇2

θL(zi, θ
′) is the Hessian

of the model.
Applying the chain rule to the Eq. 1 can be de-

rived to the below form that measures the influence
Iup,loss of z on the loss of a test point ztest:

Iup,loss(z, ztest) =

−∇θL(ztest, θ
′)H−1

θ ∇θL(z, θ
′) (2)

The NNIF method uses the Iup,loss score.

Parameters Values

C [ 1, 10, 1000, 10000]
gamma [1, .1, .01, 0.001, ’auto’]
kernel [’linear’, ’rbf’, ’poly’, ’sigmoid’]

Table 9: Gridsearch parameters for building SVC.

C Illustrations of Regions Around Test
and Adversarial Points

Looking at the training samples that influence the
prediction of a test datapoint, gives us an illustra-
tion of the decision subspace of the DNN on it. To
illustrate the subspace, we measure the top 25 in-
fluential (IF) and nearest neighbor (NN) training
embeddings for a test record and its adversarial
counterpart for each attack and plot them along
with the test and adversarial points. All embed-
dings are reduced to two dimensions by using t-
SNE. Figures 7 and 8 show an example each for
the IMDB and MULTINLI datasets, respectively.
On each figure, the top row depicts the IF-based
training points and the bottom row shows the NN-
based training points.

D Separability of Points: IF vs NN

We build SVC classifiers on the neighboring train
embeddings to evaluate how well the influence
function is describing the learned subspace of the
DNN than the DKNN. The best SVC classifiers
over NNs and IF points for each of the 1000 test and
adversarial example pairs are estimated through
GridSearch over the parameters as depicted in Ta-
ble 9.

E Experimental Results Examples

NNIF combines the DKNN ranking on top of the
influence scores to select the best training instances
for a test datapoint. In Tables 10, 11 and 12 we il-
lustrate examples for WORDATT and CHARATT re-
spectively, showing the top three helpful and harm-
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(a) CHARATT (b) WORDATT

Figure 7: Embedding subspace (applied t-SNE) of a test sample from the IMDB dataset (black-square) and its
adversarial version (purple-cross) generated by three types of attacks. The top set of images shows the 25 most
influential training samples and the bottom set shows the top 25 nearest neighbors (KNN).

(a) CHARATT (b) WORDATT

Figure 8: Embedding subspace (applied t-SNE) of a test sample from the MULTINLI dataset (black-square) and its
adversarial version (purple-cross) generated by three types of attacks. The top set of images shows the 25 most
influential training samples and the bottom set shows the top 25 nearest neighbors (KNN).
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ful training instances for the detection of the adver-
sarial attack. We also show the DKNN rankings of
the top training instances filtered by the IF scores
in the table.

As DISP performs better in one of the experi-
mental settings in Liu et al. (2022), we further pick
one example sentence from the paper that DISP
detects correctly and observe NNIF’s performance
on it. NNIF is also able to detect the sentence cor-
rectly. In Table 13 we show the influential instances
for this prediction as well.
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Original text - label Entailment - prediction Entailment

Premise: Address your remarks to the chair illustrates metonymy a figure of speech in which something is called by the name of something
else associated with it.
Hypothesis: Using one word to refer to something that is associated with it is a figure of speech.

WORDATT- prediction Contradiction

Premise: Address your remarks to the chair draws metonymy a digit of speech in which something is called by the name of something
else associated with it .
Hypothesis: Using one word to refer to something that is associated with it is a digit of speech

Top Helpful NNIF Rank

1 Premise: my adult women friends are anguishing over over some of these choices.
Hypothesis: I don’t have any woman friends.

2185

2 Premise: Vrenna, now! Jon kicked the barrel and it broke open.
Hypothesis: Jon told Vrenna what to do.

4956

3 Premise: I brought my Gauntlet to bear; electricity leaping out.
Hypothesis: My gauntlet was magical and electricity jumped out of it.

5473

Top Harmful NNIF Rank

1 Premise: Examining the elements of the definition also may help make this distinction clear.
Hypothesis: Ignoring the elements of the definition also may help make this distinction clear.

4308

2 Premise: the uniformed services, recognize that promotional material received by a uniformed service member traveling on official
business at government expense belongs to the government and must be relinquished in accordance with service regulations.
Hypothesis: The material belongs to the government even after the hand out.

5819

3 Premise: The emergency department at Harborview probably sees 50 times as many patients with alcohol
problems as the psychiatry or family medicine departments.
Hypothesis: The family medicine departments do not treat alcohol problems.

2221

Table 10: Top three helpful and harmful train instances based on IF score and further ranking of them by DKNN for
a correctly predicted adversarial text by NNIF for MULTINLI WORDATT

Original text - label Entailment - prediction Entailment

Premise: Although a seemingly mundane, tactical aspect of business, a firm’s inventory strategy reflects its approach to managing risk.
Hypothesis: It is possible to determine a firm’s risk management philosophy by examining their inventory strategy.

CHARATT- prediction Neutral

Premise: Although a seemingly mundane , tactcial aspect of business , a firm ’s itnventory strategxy reflects its approach to managing risk.
Hypothesis: It is possible to determine a firm ’s risk management philkosophy by examining their inventory strategxy.

Top Helpful NNIF Rank

1 Premise: Online investment guru Tokyo Joe was sued by the SEC in a civil fraud case.
Hypothesis: Tokyo Joe has been sued before.

5091

2 Premise: Wesray’s purchase of Avis was trendy in three ways.
Hypothesis: There are three reasons why Wesray’s purchase of Avis is trendy.

266

3 Premise: yeah i don’t mind that um my husband never cared for fast food so we didn’t go that often but you know i have no
problem with uh going to a McDonald’s or a Wendy’s.
Hypothesis:My husband and I did not eat that much fast food.

5630

Top Harmful NNIF Rank

1 Premise: In accordance with the prescribed statutory process, on August 17, 2001, we reported to the Congress,
the President, the Vice President, and other officials that the NEPDG had not provided the requested records.
Hypothesis: We told Congress that the NEPDG had failed to give us the records.

1346

2 Premise: The case for not acting until you have to was put most vividly by Senate Assistant Majority Leader Don Nickles
of Oklahoma, in a remark that also captures the hard-nosed attitude regarding humanitarian concerns.
Hypothesis: The statement summarized their sentiment.

1044

3 Premise: Predicting that he would get a lot of heat for treating the minister with respect, Novak said that Farrakhan was more measured
and a lot less confrontational and provocative than a lot of the politicians we talk to regularly on this program.
Hypothesis: Predicting he would get a lot of hear for respecting the minister, Novak said Farrakhan was measured
and less confrontational.

5623

Table 11: Top three helpful and harmful train instances based on IF score and further ranking of them by DKNN for
a correctly predicted adversarial text by NNIF for MULTINLI CHARATT



410

Original text - label Neutral - prediction Neutral

Premise: And, instead of providing an open-ended guarantee on prices to its distributors, the company would guarantee the price for
only two weeks after purchase by the distributor, refusing to take back computers unless they malfunctioned.
Hypothesis: The distributor could potentially lose out due to this method.

CHARATT- prediction Contradiction

Premise: And , instead of providing an openedned guaantee on pices to its disrtibutors , the comapny wuld guaantee the price for
only two weeks after purchase by the distributor, refusing to take badk computers ulness they malfunctioned .
Hypothesis: Tehe distributor could poteIntially lose out de to this mehgod .

Top Helpful NNIF Rank

1 Premise: No it was gas because you washed your legs all over because you did it in shorts.
Hypothesis: Your legs were washed all over due to having done it in shorts.

2373

2 Premise: Leaving the British official who twice searched his luggage none the wiser, he managed by meticulous observation to memorize the
principal features of the power loom well enough to produce his own version of it on his return to Boston.
Hypothesis: He failed at retaining the information in his head but managed to build a rough prototype of the power loom anyway.

4706

3 Premise: Bin Ladin shares Qutb’s stark view, permitting him and his followers to rationalize even unprovoked mass murder as
righteous defense of an embattled faith.
Hypothesis: Bin Ladin views his actions as a defense of his faith.

925

Top Harmful NNIF Rank

1 Premise: As graduates of the class of 1990, we would like to leave behind something tangible, in appreciation for the support and
encouragement we have received from other students in the School of Engineering and Technology.
Hypothesis: We want leave a concrete symbol of our appreciation to the school.

1336

2 Premise: Fortunately, not all reports are as disturbing as Hochschild’s.
Hypothesis: Thankfully, not all reports are as terrifying as Hochschild’s.

4817

3 Premise: Of the two, the W geographical listings seem more W lists Aylesbury, which, through some grievous, egregious fault, is not
in the geographical section of the L but does appear in the A-Z section (because of the ducks).
Hypothesis: For some reason, the ducks put the topic in the A-Z section.

268

Table 12: MULTINLI CHARATT adversarial text that the NNIF fails to detect; showing top three helpful and
harmful train instances based on IF score and further ranking of them by DKNN
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Original text - label Entailment prediction Entailment

Premise: Finally, it might be worth mentioning that the program has the capacity to store in a temporary memory buffer about
100 words (proper names, for instance) that it has identified as not stored in its dictionary.
Hypothesis: It’s possible to store words in a temporary dictionary, if they don’t appear in a regular dictionary.

WORDATT- prediction Neutral

Premise: Finally, it might be worth mentioning that the program has the capacity to store in a temporary memory buffer about
100 words (proper names, for instance) that it has identified as not stored in its dictionary.

Hypothesis: It’s possible to shopping words in a temporary dictionary, if they don’t appear in a regular dictionary.

Repaired text by DISP

Premise: Finally, it might be worth that that the program has the capacity to store in a temporary memory buffer about
100 words (proper names, for instance) that it has identified as not stored in its dictionary.

Hypothesis: It’s possible to do words in a temporary dictionary, if they don’t appear in a regular dictionary.

Repaired text by FGWS

Premise: Finally, it might be worth name that the program has the capacity to store in a temporary memory pilot about
100 words (proper names, for instance) that it has identified as not stored in its dictionary.

Hypothesis: It’s possible to shopping words in a temporary dictionary, if they don’t appear in a regular dictionary.

Top Helpful NNIF Rank

1 Premise: yeah i mean they’re they’re throwing more money at it now than ever before and things are getting worse.
Hypothesis: The money is going to the wrong things, so it’s not fixing the problem.

1295

2 Premise:I put $75 on the New England Patriots as a 2.5-point underdog and $50 on a Boston Red Sox playoff
game against the Cleveland Indians.
Hypothesis: I bet a total of $125 dollars on the New England Patriots and the Boston Red Sox.

3870

3 Premise: Graffiti written by Russian soldiers can be seen in the caves of Antiparos.
Hypothesis: Russian soldiers drew graffiti on the walls of The Louvre.

4122

Top Harmful NNIF Rank

1 Premise: But I am most serious.
Hypothesis: I’m not joking at all.

808

2 Premise: the uniformed services, recognize that promotional material received by a uniformed service member
traveling on official business at government expense belongs to the government and must be relinquished in
accordance with service regulations
Hypothesis: TThe material belongs to the government even after the hand out.

2835

3 Premise: According to NIST, accreditation is the formal authorization by the management
official for system operation and an explicit acceptance of risk.
Hypothesis: Accreditation is the formal authorization by the management official for system operation
and an explicit acceptance of risk, according to NIST.

2908

Table 13: Example sentence from Liu et al. (2022) that is predicted correctly by NNIF, DISP, LID, MDRE and
incorrectly by FGWS


