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Abstract

Document-level relation extraction (DocRE)
aims to extract relations of all entity pairs in a
document. A key challenge in DocRE is the
cost of annotating such data which requires
intensive human effort. Thus, we investigate
the case of DocRE in a low-resource setting,
and we find that existing models trained on
low data overestimate the NA (“no relation”)
label, causing limited performance. In this
work, we approach the problem from a cali-
bration perspective and propose PRiSM, which
learns to adapt logits based on relation seman-
tic information. We evaluate our method on
three DocRE datasets and demonstrate that
integrating existing models with PRiSM im-
proves performance by as much as 26.38 F1
score, while the calibration error drops as much
as 36 times when trained with about 3% of
data. The code is publicly available at https:
//github.com/brightjade/PRiSM.

1 Introduction

Document-level relation extraction (DocRE) is a
fundamental task in natural language understand-
ing, which aims to identify relations between enti-
ties that exist in a document. A major challenge in
DocRE is the cost of annotating such documents,
requiring annotators to consider relations of all pos-
sible entity combinations (Yao et al., 2019; Zaporo-
jets et al., 2021; Tan et al., 2022b). However, there
is a lack of ongoing studies investigating the low-
resource setting in DocRE (Zhou et al., 2023), and
we discover that most of the current DocRE mod-
els show subpar performance when trained with a
small set of data. We argue that the reason is two-
fold. First, the long-tailed distribution of DocRE
data encourages models to be overly confident in
predicting frequent relations and less sure about
infrequent ones (Du et al., 2022; Tan et al., 2022a).
Out of the 96 relations in DocRED (Yao et al.,
2019), a widely-used DocRE dataset, the 7 most fre-
quent relations account for 55% of the total relation

Figure 1: An overview of our proposed method. Top
represents the original DocRE framework. PRiSM (bot-
tom) leverages relation descriptions to compute scores
for each relation triple. These scores are then used to
reweight the prediction logits.

triples. Under the low-resource setting, chances to
observe infrequent relations become much harder.
Second, DocRE models predict the NA (“no rela-
tion”) label if an entity pair does not express any
relation. In DocRED, about 97% of all entity pairs
have the NA label. With limited data, there is a
much less signal for ground-truth (GT) labels dur-
ing training, resulting in models overpredicting the
NA label instead.

High confidence in common relations and the NA
label and low confidence in rare relations suggest
that models may be miscalibrated. We hypothe-
size that lowering the former and raising the latter
would improve the overall RE performance. At a
high level, we wish to penalize logits of frequent
labels (including NA) and supplement logits of in-
frequent labels such that models are able to predict
them without seeing them much during training.
To implement such behavior, we leverage relation
semantic information, which has proved to be effec-
tive in low-resource sentence-level RE (Yang et al.,
2020; Dong et al., 2021; Zhang and Lu, 2022).

In this work, we propose the Pair-Relation
Similarity Module (PRiSM) that learns to adapt log-
its by exploiting semantic information from label
descriptions, as depicted in Figure 1. Specifically,
we compute a similarity function for each entity
pair embedding, constructed from two entities of
interest, with relation embeddings, built from corre-
sponding label descriptions. PRiSM then learns re-

https://github.com/brightjade/PRiSM
https://github.com/brightjade/PRiSM
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lation representations to output adaptive scores for
each relation triple. Note that previous work mostly
utilized relation representations for self-supervised
learning (Dong et al., 2021; Du et al., 2022; Zhou
et al., 2023), whereas PRiSM uses them to directly
adjust logits, which brings a calibration effect. To
elaborate further, let us say that classification logits
are statistical scores and similarities are semantic
scores. We have four scenarios: 1) relation is com-
mon and GT, 2) relation is common but not GT,
3) relation is uncommon but GT, and 4) relation
is uncommon and not GT. In Cases 1 and 4, both
statistical and semantic scores are either high or
low, and thus, appending PRiSM mostly would
not affect the original RE predictions. In Case 2,
the statistical score is high, but the semantic score
is low, possibly negative to penalize the statisti-
cal score. This is the case of PRiSM decreasing
the confidence of common relations and NA label.
In Case 3, the statistical score is low, but the se-
mantic score is high, which is the case of PRiSM
increasing the confidence of uncommon relations.
As such, PRiSM incorporates both statistical and
semantic scores such that the confidence is adjusted
regardless of the relation frequency.

Our technical contributions are three-fold. First,
we propose PRiSM, a relation-aware calibration
technique that improves model performance and
adjusts model confidence on low-resource DocRE.
Second, we demonstrate the performance improve-
ment across various state-of-the-art models inte-
grated with PRiSM. Third, we validate the effec-
tiveness of our method on widely-used long-tailed
DocRE datasets and calibration metrics.

2 Methodology

2.1 Problem Formulation

Given a document d, a set of n annotated entities
E = {ei}ni=1, and a pre-defined set of relations
R ∪ {NA}, the task of DocRE is to extract the re-
lation triple set {(eh, r, et)|eh ∈ E , r ∈ R, et ∈
E} ⊆ E ×R× E from all possible relation triples,
where (eh, r, et) denotes that a relation r holds be-
tween head entity eh and tail entity et. An entity ei
may appear k times in the document in which we
denote corresponding instances as entity mentions
{mij}kj=1. A relation r exists between an entity
pair (eh, et) if any pair of their mentions express
the relation, and if they do not express any relation,
the entity pair is then labeled as NA.

2.2 Document-Level Relation Extraction
Given a document d as an input token sequence
x = [xt]

l
t=1, where l is the length of the token se-

quence, we explicitly locate the position of entity
mentions by inserting a special token “*” before
and after each mention. The presence of the entity
marker has proved to be effective from previous
studies (Zhang et al., 2017; Shi and Lin, 2019;
Baldini Soares et al., 2019). The entity-marked
document is then fed into a pre-trained language
model (PLM) encoder, which outputs the contex-
tual embeddings: [h1,h2, ...,hl] = Encoder(x).
We take the embedding of “*” at the start of each
mention as its mention-level representation hmij

of the entity ei. For extracting the entity-level rep-
resentation, we apply the logsumexp pooling over
all mentions {mij}kj=1 of the entity ei:

hei = log

k∑
j=1

exp
(
hmij

)
. (1)

The logsumexp pooling is a smooth version of
max pooling and has been shown to accumu-
late weak signals from each different mention
representation, which results in a better perfor-
mance (Jia et al., 2019). We pass the embeddings
of head and tail entities through a linear layer fol-
lowed by non-linear activation to obtain the hidden
representations: zh = tanh(Whheh + bh) and
zt = tanh(Wthet + bt), where Wh,Wt, bh, bt
are learnable parameters. Then we calculate a score
for relation r between entities h and t by taking a
bilinear function:

s(h,r,t) = z⊤
h Wrzt + br, (2)

where Wr, br are learnable parameters.

2.3 PRiSM
Following previous work (Zhang and Lu, 2022),
we feed relation descriptions to a PLM encoder
to obtain the relation embedding zr for relation
r. The details of the relation descriptions used
can be found in Appendix A.4. We then con-
struct the entity pair-level representation z(h,t) by
mapping the head and tail embeddings to a linear
layer followed by non-linear activation: z(h,t) =
tanh(W(h,t)[zh; zt]+b(h,t)), where zh, zt are con-
catenated and W(h,t), b(h,t) are learnable param-
eters. An adaptive score for relation r between
entities h and t is computed by taking a similar-
ity function between the entity pair embedding
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DocRED Re-DocRED
Dev Test Dev Test

Model Ign F1 F1 Ign F1 F1 Ign F1 F1 Ign F1 F1

3% training examples (N = 100)
BERTBASE 10.27± 1.82 10.44± 1.90 11.36 11.50 28.65± 2.87 29.40± 3.19 28.77± 3.34 29.44± 3.67
BERTBASE + PRiSM 35.06± 0.94 37.02± 0.88 35.79 37.88 47.39± 0.79 49.09± 0.90 46.90± 1.59 48.57± 1.73
RoBERTaBASE 20.70± 1.91 21.31± 1.87 21.74 22.25 39.66± 2.25 40.74± 1.89 39.42± 2.80 40.53± 2.43
RoBERTaBASE + PRiSM 32.40± 0.85 34.49± 0.76 32.20 34.32 47.71± 1.03 49.40± 1.14 47.31± 0.96 49.04± 1.05
SSAN-BERTBASE 10.92± 0.88 11.18± 0.89 11.93 12.16 28.89± 1.68 29.01± 1.69 28.64± 1.89 29.29± 1.94
SSAN-BERTBASE + PRiSM 32.86± 2.35 34.76± 2.50 34.00 36.03 46.49± 1.16 48.11± 1.40 46.51± 1.77 48.11± 2.00
ATLOP-BERTBASE 38.99± 2.30 40.50± 2.07 40.88 42.37 49.45± 2.09 50.60± 1.95 49.24± 2.25 50.32± 2.13
ATLOP-BERTBASE + PRiSM 40.59± 0.68 42.09± 0.66 40.94 42.43 50.10± 0.53 51.12± 0.64 50.15± 1.11 51.14± 1.17
10% training examples (N = 305)
BERTBASE 39.84± 0.92 41.55± 0.99 40.98 42.98 52.34± 0.66 53.54± 0.80 52.34± 0.68 53.54± 0.84
BERTBASE + PRiSM 46.01± 0.12 48.02± 0.13 45.52 47.83 58.10± 0.31 59.86± 0.27 57.75± 0.65 59.53± 0.51
RoBERTaBASE 43.42± 1.09 45.20± 1.09 43.78 45.63 54.82± 1.85 56.10± 1.80 55.36± 2.18 56.67± 2.06
RoBERTaBASE + PRiSM 46.60± 0.20 48.57± 0.29 47.02 49.22 59.51± 0.36 61.19± 0.32 59.08± 0.61 60.80± 0.52
SSAN-BERTBASE 40.00± 1.62 41.65± 1.63 41.11 43.03 53.57± 0.83 54.86± 0.81 53.67± 1.55 54.94± 1.52
SSAN-BERTBASE + PRiSM 46.14± 0.15 48.18± 0.09 45.48 47.72 58.47± 0.39 60.17± 0.36 58.21± 0.31 59.93± 0.19
ATLOP-BERTBASE 49.93± 1.11 51.61± 1.16 50.04 51.85 60.38± 0.46 61.52± 0.29 60.46± 0.55 61.54± 0.29
ATLOP-BERTBASE + PRiSM 50.20± 0.68 51.83± 0.64 50.29 52.17 60.58± 0.18 61.68± 0.17 60.90± 0.37 61.97± 0.40
100% training examples (N = 3053)
BERTBASE 57.15± 0.17 59.18± 0.05 57.02 59.35 71.70± 0.61 73.17± 0.55 71.01± 0.88 72.48± 0.78
BERTBASE + PRiSM 57.82± 0.10 59.93± 0.15 57.17 59.52 72.92± 0.07 74.25± 0.07 72.35± 0.07 73.69± 0.11
RoBERTaBASE 58.24± 0.36 60.19± 0.38 58.00 60.10 74.00± 0.20 75.20± 0.20 73.56± 0.04 74.75± 0.04
RoBERTaBASE + PRiSM 58.73± 0.09 60.70± 0.02 58.36 60.51 74.50± 0.09 75.71± 0.06 74.17± 0.10 75.38± 0.10
SSAN-BERTBASE 57.59± 0.35 59.62± 0.24 57.71 59.79 72.59± 0.15 74.01± 0.15 71.95± 0.11 73.37± 0.11
SSAN-BERTBASE + PRiSM 58.20± 0.20 60.27± 0.14 58.02 60.27 73.22± 0.10 74.65± 0.07 72.37± 0.19 73.80± 0.18
ATLOP-BERTBASE 59.22± 0.17 61.18± 0.10 58.99 61.08 72.78± 0.46 73.73± 0.37 72.60± 0.41 73.51± 0.38
ATLOP-BERTBASE + PRiSM 59.51± 0.09 61.31± 0.05 58.80 60.77 72.85± 0.29 73.80± 0.35 72.61± 0.59 73.53± 0.53

Table 1: Performance (%) on DocRED and Re-DocRED. Better scores between with and without PRiSM are in
bold. The test results for DocRED are obtained by submitting the best dev model predictions to CodaLab1.

Model Macro Macro@500 Macro@200 Macro@100
N = 100
BERTBASE 0.36± 0.05 0 0 −
BERTBASE + PRiSM 7.77± 1.87 4.08± 0.43 0.44± 0.33 −
RoBERTaBASE 1.18± 0.28 0 0 −
RoBERTaBASE + PRiSM 6.41± 0.77 2.31± 0.82 0.38± 0.28 −
N = 305
BERTBASE 9.31± 1.59 3.70± 1.46 0.29± 0.17 0
BERTBASE + PRiSM 20.19± 0.70 14.91± 0.64 7.73± 0.17 2.19± 1.16
RoBERTaBASE 14.80± 0.51 9.13± 0.61 3.74± 0.35 0.83± 0.89
RoBERTaBASE + PRiSM 21.03± 0.27 15.69± 0.48 8.37± 0.16 2.63± 1.25
N = 3053
BERTBASE 38.31± 0.39 34.06± 0.45 26.07± 0.72 19.73± 0.96
BERTBASE + PRiSM 38.89± 0.52 34.57± 0.59 26.51± 0.65 19.57± 0.71
RoBERTaBASE 38.67± 1.12 34.28± 1.22 26.14± 1.44 18.69± 1.70
RoBERTaBASE + PRiSM 39.12± 0.57 34.72± 0.69 26.45± 1.01 19.23± 1.55

Table 2: Dev performance (%) on low-frequency rela-
tions in DocRED. Test results cannot be reported be-
cause the labels are not accessible.

and relation embedding: s′(h,r,t) = sim(z(h,t), zr),
where sim(·) is cosine similarity. Formally, the
probability of relation r between entities h and t
is simply an addition of two scores followed by
sigmoid activation:

P (r | eh, et) = σ(s(h,r,t) + λs′(h,r,t)), (3)

where λ is the scale factor. Finally, we optimize our
model with the binary cross-entropy (BCE) loss:

L = − 1

T

∑
<h,t>

∑
r

BCE(P (r|eh, et), ȳ(h,r,t)),

(4)
where ȳ is the target label and T is the total number
of relation triples.

3 Experiments

3.1 Dataset
We evaluate our framework on three public DocRE
datasets. DocRED (Yao et al., 2019) is a widely-
used human-annotated DocRE dataset constructed
from Wikipedia and Wikidata. Re-DocRED (Tan
et al., 2022b) is a revised dataset from DocRED,
addressing the incomplete annotation problem.
DWIE (Zaporojets et al., 2021) is a multi-task
document-level information extraction dataset con-
sisting of news articles collected from Deutsche
Welle. Dataset statistics are shown in Table 5.

3.2 Implementation Details
Our framework is built on PyTorch and Hugging-
face’s Transformers library (Wolf et al., 2020).
We use the cased BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) for encod-
ing the text and optimize their weights with
AdamW (Loshchilov and Hutter, 2019). We tune
our hyperparameters to maximize the F1 score on
the development set. The additional implementa-
tion details are included in Appendix B. During
inference, we predict all relation triples that have
probabilities higher than the F1-maximizing thresh-
old found in the development set. We conduct our
experiments with three different random seeds and
report the averaged results. Following Yao et al.

1https://codalab.lisn.upsaclay.fr/

https://codalab.lisn.upsaclay.fr/
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Figure 2: Reliability diagram for BERTBASE when trained with 3% of DocRED data.

Dev Test
Model F1 Macro F1 Macro
N = 100
BERTBASE 11.97± 1.78 1.79± 0.27 12.41± 2.29 1.87± 0.32
BERTBASE + PRiSM 45.20± 1.60 10.34± 1.91 44.31± 1.47 9.47± 1.46
RoBERTaBASE 50.27± 1.57 8.55± 0.56 48.29± 1.74 8.95± 0.86
RoBERTaBASE + PRiSM 55.51± 1.11 12.76± 2.03 54.23± 1.24 13.80± 0.64
N = 305
BERTBASE 52.98± 0.76 15.68± 1.71 52.05± 0.60 14.80± 0.63
BERTBASE + PRiSM 58.23± 0.40 24.62± 0.59 57.05± 0.23 22.43± 0.88
RoBERTaBASE 65.45± 1.94 21.72± 1.29 62.39± 1.29 20.39± 0.76
RoBERTaBASE + PRiSM 71.18± 1.98 28.36± 1.53 67.12± 2.02 25.82± 0.34
N = 587
BERTBASE 62.06± 0.33 25.17± 0.37 60.78± 0.25 22.93± 0.40
BERTBASE + PRiSM 66.81± 0.56 28.17± 0.54 66.53± 0.52 29.31± 1.13
RoBERTaBASE 76.23± 0.72 31.71± 0.13 74.07± 0.77 28.72± 1.54
RoBERTaBASE + PRiSM 78.43± 0.12 32.85± 0.37 78.13± 0.61 33.66± 1.24

Table 3: Performance (%) on the DWIE dataset.

(2019), all models are evaluated on F1 and Ign F1,
where Ign F1 excludes the relations shared by the
training and development/test sets. Moreover, we
measure Macro, which computes the average of
per-class F1, and Macro@500, Macro@200, and
Macro@100, targeting rare relations where the fre-
quency count in the training dataset is less than
500, 200, and 100, respectively.

3.3 Experimental Results

To simulate the low-data setting, we reduce the
number of training documents N to 100 and 305,
which is about 3% and 10% of the original data. To
create each of the settings, we repeat random sam-
pling until the label distribution resembles that of
the full data. As shown in Table 1, we observe that
performance increases consistently across different
models when appended with PRiSM. Particularly,
PRiSM improves performance by a large margin
when trained with just 3% of data, as much as 24.43
Ign F1 and 26.38 F1 on the test set of DocRED for
BERTBASE. We also test PRiSM on RoBERTaBASE
and two state-of-the-art models SSAN (Xu et al.,
2021) and ATLOP (Zhou et al., 2021) and notice a
similar trend, indicating that our method is effec-
tive on various existing models. We additionally
evaluate PRiSM using macro metrics in Table 2
and observe that adding PRiSM improves perfor-
mance on infrequent relations, especially in the
low-data setting. Lastly, we validate our method on

N = 100 N = 305
Method F1(↑) ECE(↓) ACE(↓) F1(↑) ECE(↓) ACE(↓)
Uncalibrated 10.82 0.359% 0.379% 42.56 0.137% 0.164%
TS 38.19 0.144% 0.173% 48.49 0.053% 0.062%
CDA-TS 37.82 0.139% 0.167% 48.54 0.057% 0.078%
PRiSM (ours) 37.84 0.010% 0.020% 48.10 0.023% 0.020%

Table 4: Comparison of calibration errors (with 10 bins)
under a low-resource setting of DocRED.

a different dataset DWIE, as illustrated in Table 3.

3.4 Calibration Evaluation

We measure model calibration on two metrics: ex-
pected calibration error (ECE) (Naeini et al., 2015)
and adaptive calibration error (ACE) (Nixon et al.,
2019). ECE partitions predictions into a fixed num-
ber of bins and computes a weighted average of
the difference between accuracy and confidence
over the bins, while ACE puts the same number of
predictions in each bin. We compare with general
calibration methods such as temperature scaling
(TS) (Guo et al., 2017) and class-distribution-aware
TS (CDA-TS) (Islam et al., 2021). As reported in
Table 4, PRiSM outperforms other methods in both
metrics, while also maintaining a comparable RE
performance. We also visualize with a reliability
diagram (DeGroot and Fienberg, 1983; Niculescu-
Mizil and Caruana, 2005) in Figure 2. We observe
that PRiSM effectively lowers the confidence of the
NA label and raises the confidence of low-frequency
relations (bottom 89). For high-frequency relations
(top 7), confidence is adjusted in both ways. In any
case, PRiSM displays the most stable, closest line
to the perfect calibration (blue line).

4 Related Work

With the introduction of DocRED (Yao et al., 2019),
many approaches were proposed to extract rela-
tions from a document (Wang et al., 2019; Ye et al.,
2020; Zhang et al., 2021; Xu et al., 2021; Zhou
et al., 2021; Xie et al., 2022). The long-tailed data
problem of DocRE has been addressed in some
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studies (Du et al., 2022; Tan et al., 2022a), as well
as low-resource DocRE (Zhou et al., 2023); how-
ever, most require additional pretraining, which is
compute- and cost-intensive, while PRiSM only
requires adjusting logits in existing models. Low-
resource RE has been extensively studied at the
sentence level, and we specifically focus on lever-
aging label information (Yang et al., 2020; Dong
et al., 2021; Zhang and Lu, 2022) in which PRiSM
applies it to the document level. In contrast to prior
work in calibration (Guo et al., 2017; Islam et al.,
2021), our approach is relation-aware, updating
logits at a much finer granularity.

5 Conclusion and Future Work

In this work, we propose a simple modular frame-
work PRiSM, which exploits relation semantics to
update logits. We empirically demonstrate that our
method effectively improves and calibrates DocRE
models where the data is long-tailed and the NA la-
bel is overestimated. For future work, we can apply
PRiSM to more tasks such as event extraction and
dialogue state tracking, which also enclose long-
tailed data and overestimation of “null” labels.

Limitations

Although our approach is resilient to data scarcity,
quite a few annotated documents are still required
for the model to learn the pattern. The ultimate
goal of DocRE is undoubtedly to build a model
that is able to perform well on zero-shot, but we
believe our approach takes a step toward that di-
rection. Moreover, we process the long documents
(> 512 tokens) in a very naive way, as described
in Appendix A.3, and we think that exploration of
long-sequence modeling on longer document data
could further enrich the field of DocRE.
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Appendix

A Additional Dataset Details

A.1 Data Statistics

We report the statistics for the datasets in Table 5.
The test set of DocRED is not included in calculat-
ing % NA due to its inaccessibility. 14 documents
in DWIE are filtered out because of missing labels,
and 1 document is removed because the annotated
entities did not exist in the input document.

Statistics DocRED Re-DocRED DWIE
# Train 3,053 3,053 587
# Dev 1,000 500 100
# Test 1,000 500 100
# Relation Types 97 97 66
% NA 97.05% 94.02% 97.87%

Table 5: Dataset statistics. # Relation Types includes
the NA label. % NA indicates a ratio of entity pairs
having the NA label over all entity pairs.

A.2 Class Distribution

We count the number of ground-truth relations in
the train sets and visualize their class distribution in
Figure 3. We observe that the re-annotation of Re-
DocRED further skewed the class distribution, and
the DWIE dataset seems to demonstrate a relatively
less imbalanced distribution. Nevertheless, a few
classes still exhibit high frequency, which PRiSM
can handle effectively.
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Figure 3: Dataset class distribution.

A.3 Processing Long Document
For DocRED and Re-DocRED, most of the docu-
ments contain less than 512 tokens, and thus we
follow the previous work and truncate all of the
inputs to 512 tokens, which is the maximum se-
quence length of BERT. However, we notice that
the DWIE dataset mostly contains documents much
longer than 512 tokens (as shown in Figure 4) in
which the truncation hurts the performance sig-
nificantly. Therefore, we choose the most naive
way of splitting the input document into multiple
chunks of length 512 and passing them through the
encoder multiple times. The performance improve-
ment over the truncation method is demonstrated
in Table 6.

Figure 4: Lengths of input documents in training sets.

Method Dev F1 Test F1

N = 100
Truncation 36.53± 2.09 35.39± 0.71
Chunking (ours) 45.20± 1.60 44.31± 1.47
N = 305
Truncation 53.65± 0.63 51.30± 0.62
Chunking (ours) 58.23± 0.40 57.05± 0.23
N = 587
Truncation 61.34± 0.52 59.17± 1.86
Chunking (ours) 66.81± 0.56 66.53± 0.52

Table 6: Performance comparison of long document
processing methods. The model is fixed with BERTBASE
+ PRiSM evaluating on the DWIE dataset.

A.4 Relation Descriptions
We provide a small set of relations and their de-
scriptions in DocRED and DWIE in Table 7 and
8. For DocRED, a full list can be found either in
their paper (Yao et al., 2019) or link2. For DWIE,

2https://www.wikidata.org/wiki/Wikidata:
Main_Page
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a full list is not available publicly; however, we
were able to obtain a draft of the annotation docu-
mentation from the author. Unannotated relation
descriptions were crafted with the help of a large
language model (OpenAI, 2023).

Relation Name Description
head of government head of the executive power of this town, city, mu-

nicipality, state, country, or other governmental
body

country sovereign state of this item; don’t use on humans
place of birth most specific known (e.g. city instead of country,

or hospital instead of city) birth location of a per-
son, animal or fictional character

country of citizenship the object is a country that recognizes the subject
as its citizen

member of sports team sports teams or clubs that the subject currently
represents or formerly represented

Table 7: DocRED relation descriptions.

Relation Name Description
based_in0 Relations between organizations and the countries

they are based in
in0 Relations between geographic locations and the

countries they are located in
citizen_of Relations between people and the country they

are citizens of
based_in0-x Relations between organizations and the nominal

variations of the countries they are based in
citizen_of-x Relations between people and the nominal varia-

tions of the countries they are citizens of

Table 8: DWIE relation descriptions.

B Additional Details for PRiSM

B.1 Detailed Experimental Setup

Device. For all our experiments, we trained the
networks on a single NVIDIA TITAN RTX GPU
with 24GB of memory.

Model Size. PRiSM shares parameters with the
PLM used when learning relation representations.
The only additional parameter weights come from
a linear layer constructing pair representations and
an extra embedding space initialized for relation
tokens. The number of trainable parameters for
each model is illustrated in Table 9.

Model # Parameters
BERTBASE 108,310,272
BERTBASE-DocRE 114,259,297
BERTBASE-DocRE + PRiSM 115,514,209
RoBERTaBASE 124,645,632
RoBERTaBASE-DocRE 130,594,657
RoBERTaBASE-DocRE + PRiSM 131,849,569

Table 9: Comparison of model parameters. DocRE
includes a bilinear layer and two linear layers for con-
structing head and tail representations.

GPU Hours. Adding PRiSM takes a slightly
longer computation time than the existing DocRE
models due to having to pass the PLM twice. Note
that PRiSM is built for a low-resource setting in
which the computation time does not seem to differ
as much. The comparison of GPU hours is reported
in Table 10.

Model Training Hours
3% training examples
BERTBASE 0.8
BERTBASE + PRiSM 0.8
10% training examples
BERTBASE 0.8
BERTBASE + PRiSM 1.0
100% training examples
BERTBASE 2.7
BERTBASE + PRiSM 3.5

Table 10: GPU hours for DocRED training. Time for
evaluating and saving the model every epoch is included.

Hyperparameters. We perform a grid search on
finding the best hyperparameter configuration and
report the tuning range used for our experiments
in Table 11. The evaluation on the validation set
is performed for every epoch and the tolerance
increases by 1 when the validation F1 is worse than
the previous evaluation. The training stops early
when the count reaches the max tolerance.

Model Dataset Hyperparameter Range Best

BERTBASE,
RoBERTaBASE

(Re-)DocRED

batch size { 4, 8 } 4
learning rate { 1e-5, 2e-5, 3e-5,

4e-5, 5e-5, 1e-4 }
3e-5

warmup ratio { 0, 0.06, 0.1 } 0.06
λ { 1, 5, 10, 100 } 10

max grad norm { 1.0 } 1.0
max tolerance { 5 } 5

epoch { 30 } 30

BERTBASE,
RoBERTaBASE

DWIE

batch size { 4, 8 } 4
learning rate { 1e-5, 2e-5, 3e-5,

4e-5, 5e-5, 1e-4 }
5e-5

warmup ratio { 0, 0.06, 0.1 } 0.06
λ { 1, 5, 10, 100 } 10

max grad norm { 1.0 } 1.0
max tolerance { 5 } 5

epoch { 30 } 30

Table 11: Hyperparameter tuning range and best values
used in the experiments.

B.2 Evaluation Details

We elaborate on the details of calculating calibra-
tion errors. We utilize two metrics in our paper.
ECE (Naeini et al., 2015) divides the probability
interval into a fixed number of bins, calculates the
difference between the accuracy of the predictions
and the mean of the probabilities (confidence) in
each bin, and computes a weighted average over
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Figure 5: Reliability diagram for BERTBASE when trained with 10% of DocRED data.
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Figure 6: Reliability diagram for BERTBASE when trained with 100% of DocRED data.

the bins. Formally, the equation can be written as

ECE =
B∑
b=1

nb

T
|acc(b)− conf(b)|, (5)

where nb is the number of predictions in bin b, B is
a hyperparameter for the total number of bins, and
T is the total number of samples. On the other hand,
ACE (Nixon et al., 2019) divides up the probability
interval by having the same number of predictions
in each bin, thereby mitigating the issue of only cal-
ibrating the most confident samples. The equation
is written as

ACE =
1

KR

K∑
k=1

R∑
r=1

|acc(r, k)−conf(r, k)|, (6)

where acc(r, k) and conf(r, k) are the accuracy and
confidence of adaptive calibration range r for class
label k, respectively.

B.3 Additional Calibration Results
We visualize the calibration of the rest of the data
setting (i.e., 10% and 100% training data) with
reliability diagrams in Figure 5 and 6. We notice
that PRiSM is still effective with 10% of training
data, but with full data, the performance gain is
minimal; that is, the line barely moves toward the
perfect calibration line.

We understand that calibration results on mod-
els other than the BERTBASE may be important

N = 100 N = 305
Method F1(↑) ECE(↓) ACE(↓) F1(↑) ECE(↓) ACE(↓)
DocRED results
BERT 10.82 0.359% 0.379% 42.56 0.137% 0.164%
BERT + PRiSM 37.84 0.010% 0.020% 48.10 0.023% 0.020%
RoBERTa 22.55 0.671% 0.691% 45.83 0.237% 0.259%
RoBERTa + PRiSM 35.10 0.015% 0.025% 48.70 0.022% 0.020%
SSAN-BERT 11.93 0.368% 0.390% 42.82 0.128% 0.152%
SSAN-BERT + PRiSM 36.96 0.019% 0.019% 48.28 0.023% 0.023%
Re-DocRED results
BERT 32.75 0.367% 0.407% 54.44 0.185% 0.190%
BERT + PRiSM 49.90 0.038% 0.048% 60.17 0.056% 0.036%
RoBERTa 42.40 0.722% 0.718% 57.61 0.191% 0.208%
RoBERTa + PRiSM 50.34 0.055% 0.051% 61.55 0.047% 0.033%
SSAN-BERT 30.28 0.362% 0.407% 55.60 0.125% 0.148%
SSAN-BERT + PRiSM 49.04 0.050% 0.053% 60.57 0.051% 0.036%

Table 12: Comparison of calibration errors (with 10
bins) of different models under a low-resource setting
of DocRED and Re-DocRED.

in demonstrating the effectiveness of PRiSM. As
shown in Table 12, we find that RoBERTaBASE
and SSAN-BERTBASE follow the same trend as
BERTBASE, showing the lowest calibration error
when PRiSM is appended. We also observe a simi-
lar pattern with the Re-DocRED data. We do not
report results for ATLOP because the calibration
errors for ATLOP must be computed differently,
as it does not use probabilities (confidence) for
prediction.


