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Abstract

We propose a Neighbourhood-Aware Differ-
ential Privacy (NADP) mechanism consider-
ing the neighbourhood of a word in a pre-
trained static word embedding space to deter-
mine the minimal amount of noise required
to guarantee a specified privacy level. We
first construct a nearest neighbour graph over
the words using their embeddings, and fac-
torise it into a set of connected components
(i.e. neighbourhoods). We then separately ap-
ply different levels of Gaussian noise to the
words in each neighbourhood, determined by
the set of words in that neighbourhood. Exper-
iments show that our proposed NADP mecha-
nism consistently outperforms multiple previ-
ously proposed DP mechanisms such as Lapla-
cian, Gaussian, and Mahalanobis in multiple
downstream tasks, while guaranteeing higher
levels of privacy.

1 Introduction

Increasingly more NLP models have been trained
on private data such as medical conversations,
social media posts and personal emails (Ab-
dalla et al., 2020; Lyu et al., 2020b; Song and
Shmatikov, 2019). However, we must ensure that
sensitive information related to user privacy is not
leaked during any stage of the model training pro-
cess. To protect user privacy, Differential Privacy
(DP) mechanisms add random noise to the train-
ing data (Feyisetan and Kasiviswanathan, 2021;
Krishna et al., 2021; Feyisetan et al., 2020). How-
ever, it remains a challenging task to balance the
trade-off between user privacy vs. performance
in downstream NLP tasks.

We propose Neighbourhood-Aware Differen-
tial Privacy (NADP) mechanism, which consists
of three steps. First, given a set of words, we
compute a nearest neighbour graph considering
the similarity between the words (represented by
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Figure 1: Anonymizing a target word (shown in red)
in a dense (left) vs. a sparse (right) neighbourhoods of
words (shown in blue). In the sparse neighbourhood,
NADP adds a higher level of perturbation noise z to the
target word embedding x in order to protect its privacy
by disguising it among its neighbours, while in a dense
neighbourhood it adds less noise.

the vertices of the nearest neighbour graph) com-
puted using their word embeddings. Second, we
compute the connected components in the near-
est neighbour graph to find the neighbourhoods
of words. Third, we apply Gaussian noise to all
words in each neighbourhood, such that the vari-
ance of the noise is determined by the words in
that neighbourhood.

As illustrated in Figure 1, if all words in a neigh-
bourhood are highly similar to each other (i.e. a
dense neighbourhood), it would require less per-
turbation noise to anonymise a word because the
addition of small noise can easily hide the corre-
sponding word embedding among its neighbours.
On the other hand, if the words in a neighbour-
hood are not very similar to each other (i.e. a
sparse neighbourhood) we must add higher lev-
els of perturbation noise to a word embedding be-
cause its nearest neighbour would be further away
in the embedding space. Because words in a lan-
guage is a discrete set (unlike images for exam-
ple), there does not exist a word corresponding to
all points in the embedding space. Therefore, if we
do not add sufficient amount of noise in a sparse
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neighbourhood, we run the risk of easily discover-
ing the target word via a simple nearest neighbour
search. Instead of adding the same level of noise
to all words in a vocabulary as done in prior DP
mechanisms, NADP attempts to minimise the total
amount of noise by assigning low noise in dense
neighbourhoods and high noise in sparse neigh-
bourhoods. NADP has provable DP guarantees
as shown by our theoretical analysis. Moreover,
NADP has the following desirable properties that
makes it attractive when used for NLP tasks.

(a) In NADP, noise vectors are sampled from
the Gaussian distribution. Many static word
embedding algorithms (Pennington et al., 2014;
Arora et al., 2016; Mikolov et al., 2013) learn em-
beddings in the ℓ2 space. Moreover, the squared ℓ2
norm of a word embedding is known to positively
correlate with the frequency of the word in the
training corpus (Arora et al., 2016), while the joint
co-occurrence probability of a set of words posi-
tively correlates with the squared ℓ2 norm of the
sum of the corresponding word embeddings (Bol-
legala et al., 2018). Therefore, it is natural to con-
sider Gaussian noise, which corresponds to the ℓ2
embedding space used by many static word em-
bedding learning methods rather than the more
widely-used Laplacian noise, which relates to the
ℓ1 norm.

(b) Unlike previously proposed DP mechanisms
for word embeddings (Feyisetan et al., 2020;
Feyisetan and Kasiviswanathan, 2021; Krishna
et al., 2021; Xu et al., 2020), NADP dynamically
adjusts the level of noise added to a word em-
bedding considering its neighbourhood. This
enables us to optimally allocate a fixed noise bud-
get over a vocabulary.

(c) NADP adds noise directly to the word em-
beddings and does not perform decoding after the
noise addition step (Krishna et al., 2021). Decod-
ing is a deterministic process and does not affect
DP. Many NLP applications such as text classifi-
cation, clustering etc. require the input text to be
represented in some vector space, and we can use
the noise-added input text representations straight-
away in such applications without requiring to first
decode it back to text. In situations where users
train word embeddings on private data on their
own and only send/release the embeddings to ex-
ternal machine learning services, we only need to
anonymise the word embeddings (Feyisetan and

Kasiviswanathan, 2021).
Results: Utility experiments (§ 5.1) conducted
over four downstream NLP tasks show that
NADP consistently outperforms previously pro-
posed Laplacian, Gaussian and Mahalanobis
mechanisms in downstream tasks. We conduct
privacy experiments (§ 5.2) to evaluate the level of
privacy guaranteed by a DP mechanism for word
embeddings. Specifically, we estimate the proba-
bility of correctly predicting a word from its per-
turbed word embedding using the overlap between
nearest neighbour sets. To evaluate the level of
privacy protected for the entire set of word embed-
dings, we compute the skewness of the distribution
of prediction probabilities. We find that NADP
reports near-zero skewness values across a broad
range of privacy levels, ϵ, which indicates signif-
icantly stronger privacy guarantees compared to
other DP mechanisms. Source code implementa-
tion of our NADP is publicly available.1

2 Related Work

Learning models from data with DP guarantees
has been studied under private learning (Ka-
siviswanathan et al., 2008). Abadi et al.
(2016) proposed a DP stochastic gradient descent
by adding Gaussian noise to the gradient of the
loss function. Rogers et al. (2016) combined mul-
tiple DP algorithms using adaptive parameters.
However, compared to continuous input spaces
such as in computer vision (Zhu et al., 2020), DP
mechanisms for the discrete inputs such as text re-
main understudied.

Wang et al. (2021) proposed WordDP to achieve
certified robustness against word substitution at-
tacks in text classification. However, WordDP
does not seek DP protection for the training data
as we consider here, and uses DP randomness for
certified robustness during inference time with re-
spect to a testing input. Krishna et al. (2021)
proposed AdePT, an autoencoder-based approach
to generate differentially private text transforma-
tions. However, Habernal (2021) showed that
AdePT is not differentially private as claimed and
proved weaker privacy guarantees. DPText (Al-
nasser et al., 2021; Beigi et al., 2019) uses an au-
toencoder to obtain a text representation and adds
Laplacian noise to create private representations.
However, Habernal (2022) proved that the use of
reparametrisation trick for the inverse continuous

1https://github.com/shuichiotake/NADP

https://github.com/shuichiotake/NADP
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density function in DPText is inaccurate and that
DPText violates the DP guarantees. Such prior at-
tempts show the difficulty in developing theoreti-
cally correct DP mechanisms for NLP.

Lyu et al. (2020a) proposed DP Neural Repre-
sentation (DPNR) to preserve the privacy of text
representations by first randomly masking words
from the input texts and then adding Laplacian
noise. However, unlike NADP DPNR uses a
neighbourhood insensitive fixed Laplacian noise
distribution. Feyisetan et al. (2020) proposed a DP
mechanism where they first add Laplacian noise
to word embeddings and then return the near-
est neighbour to the noise-added embedding as
the output. However, the ℓ2 norm of the noise
vector scales almost linearly with the dimension-
ality of the embedding space. To address this
issue, in their subsequent work (Feyisetan and
Kasiviswanathan, 2021), they projected the word
embeddings to a lower-dimensional space before
adding Laplacian noise.

Xu et al. (2020) proposed Mahalanobis DP
mechanism, which adds elliptical noise consid-
ering the covariance structure in the embedding
space. Unlike the Gaussian or Laplacian mech-
anisms, Mahalanobis mechanism adds heteroge-
neous noise along different directions such that
words in sparse regions in the embedding space
have sufficient likelihood of replacement without
sacrificing the overall utility. They show that Ma-
halanobis mechanism to be superior to Laplacian
mechanism. Mahalanobis mechanism is a spe-
cial instance of metric (Lipschitz) DP originated
in privacy-preserving geolocation studies (Andrés
et al., 2013), where Euclidean distance was used
as the distance metric. Although metric DP con-
siders the distance between two data points, it does
not consider all of the nearest neighbours for each
data point when deciding the level of noise that
must be applied to a particular data point, unlike
our NADP mechanism. Li et al. (2018) used ad-
versarial learning to build NLP models such as
part-of-speech (PoS) taggers that cannot predict
the writer’s age or sex, while can accurately pre-
dict the PoS tags. Despite their empirical suc-
cess, this approach does not have any formal DP
guarantees. In contrast, our focus is provably DP
mechanisms with formal guarantees.

All of the prior work described thus far, except
DPNR and AdePT, focus on static word embed-
dings as we do in this paper. A natural future ex-

tension of this work is DP mechanisms for the con-
textualised embeddings. However, computational
and practical properties of static word embeddings
such as, being lightweight to both compute and
store, are attractive for resource (e.g. GPU and
RAM) limited mobile devices. Considering that
such personal mobile devices are used by billions
of users and contain highly private data, DP mech-
anisms for static word embeddings remains an im-
portant research topic. Moreover, Gupta and Jaggi
(2021) showed that it is possible to distil static
word embeddings from pretrained language mod-
els that have comparable performance to contextu-
alised word embeddings.

3 DP for Word Embeddings

Let us denote the d-dimensional embedding of a
word x in a vocabulary X by a vector x ∈ Rd.
We can consider a word embedding algorithm as
a function f : X → Rd that maps the words in
a discrete vocabulary space X to a d-dimensional
continuous space Rd. We can use a distance met-
ric, Γ, defined in the embedding space to measure
the distance Γ(xi,xj) between two words xi and
xj such as the Euclidean distance. We can then
find the set of top-m nearest neighbours, Sm(x),
from X using Γ such that for any y ∈ Sm(x) and
y′ /∈ Sm(x), Γ(x, y) ≤ Γ(x, y′) holds. The Jac-
card similarity, Jaccard(x, y), between two words
x and y is defined using their neighbourhoods as
in (1).

Jaccard(x, y) =
|Sm(x) ∩ Sm(y)|
|Sm(x) ∪ Sm(y)|

(1)

We define two words x, y ∈ X to be in a symmet-
ric neighbouring relation, x ≃ y, if the following
two conditions are jointly satisfied:

(a) x ∈ Sm(y) or y ∈ Sm(x), and

(b) Jaccard(x, y) ≥ τ for a given threshold τ ∈
[0, 1].

One could use conjunction instead of disjuction in
condition (a) to enforce a mutual nearest neigh-
bour relation. However, doing so results in a
large number of small isolated neighbourhoods
because two words might not be mutual nearest
neighbours unless they are synonyms (or highly
related). Relaxing the condition (a) to a disjunc-
tion would form neighbourhoods where one word
might be a neighbour of another but not the in-
verse such as in hypernym-hyponym pairs. For
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example, colour could be a top nearest neighbour
of crimson, but crimson might not be a top nearest
neighbour of colour, because there are other pro-
totypical colours such as red, green, blue, etc. than
crimson.

Let us formally define DP for word embed-
dings. Because each word is assigned a vector
by the word embedding learning algorithm, we
can add noise to the embedding vectors to dis-
guise a word among its nearest neighbours in the
embedding space. However, in doing so we will
be perturbing the semantics in the embeddings,
thus potentially hurting downstream task perfor-
mance. Therefore, there exists a trade-off between
the amount of privacy that can be guaranteed by
adding random noise to the embeddings vs. the
performance of a downstream NLP task that use
those embeddings. A random mechanism operat-
ing on word embeddings is said to be DP if Defi-
nition 1 holds.

Definition 1 (Differential Privacy). A random
mechanism M that takes in a vector in the em-
bedding space X and maps into a space Y (i.e.
M : X → Y) is (ϵ, δ)-DP with ϵ ≥ 0 and
δ ∈ [0, 1], if for every pair of neighbouring inputs
x,x′ ∈ X and every possible measurable output
set T ∈ Y the relationship given by (2) holds:

Pr[M(x) ∈ T ] ≤ exp(ϵ)Pr[M(x′) ∈ T ] + δ
(2)

Here, ϵ represents the level of privacy ensured
by M and smaller ϵ values result in stronger
privacy guarantees. The global ℓ2 sensitivity
of the embedding space is defined as ∆ =
supx,x′∈X ,x≃x′ ||x− x′||. Given a set of word
embeddings, ∆ can be estimated empirically by
computing the maximum Euclidean distance be-
tween a word x and its most distant neighbour x′

in Sm(x). As an extreme case, let us consider
the smallest possible neighbourhood size corre-
sponding to m = 2. Estimating ∆ in this case
would amount to finding the maximum Euclidean
distance between any pair of neighboring words
x, x′ ∈ V . Moreover, the ∆ estimated for m = 2
will be larger than the ∆ estimated for any other
m(> 2) neighbourhood sizes. Therefore, ∆ is in-
dependent of m and can be estimated via a deter-
ministic process (i.e. measuring all pairwise Eu-
clidean distances) from a given set of word em-
beddings.

Algorithm 1: Nearest Neighbour Graph
Construction

1 Inputs: Word embeddings
X = {x1, . . . ,xn}, top-m for selecting
neighbours, and similarity threshold
τ ∈ [0, 1].

2 Outputs: Nearest neighbour graph
G(V, E)

3 Initialise V = {x1, . . . , xn}, E = {}
4 for i = 1, . . . , n do
5 for xj ∈ Sm(xi) do
6 if Jaccard(xi, xj) ≥ τ then
7 E = E + {(i, j)}

8 Return G(V, E)

3.1 Gaussian Mechanism
Gaussian mechanism uses ℓ2 norm for estimating
the sensitivity due to perturbation and is a more
natural fit for word embeddings than, for exam-
ple, the Laplace mechanism, which is associated
with the ℓ1 norm. Therefore, we use the Gaussian
mechanism as the basis for our proposal.

Let us consider a multivariate zero-mean
isotropic Gaussian noise distribution, N (0, σ2Id),
where Id is the unit matrix in the d-dimensional
real space and σ is the standard deviation. For
each word, x ∈ X , we sample a random vector
z ∼ N (0, σId) and create a noise-added embed-
ding Mg(x) for x as given by (3).

Mg(x) = x+ z (3)

This Gaussian mechanism uses the same σ for
all words in the vocabulary and is (ϵ, δ)-DP as
claimed in in Theorem 1.2

Theorem 1. For any ϵ, δ ∈ (0, 1), the Gaus-
sian mechanism with σ = ∆

√
2 log(1.25/δ)/ϵ is

(ϵ, δ)-DP.

The proof of Theorem 1 can be found in the Ap-
pendix A in (Dwork and Roth, 2014).

4 Neighbourhood-Aware Differential
Privacy (NADP)

Our proposed DP-mechanism, Neighbourhood-
Aware Differential Privacy (NADP), consists of

2As a direct extension, we could set a different standard
deviations for each dimension of the embedding space. How-
ever, doing so did not result in significant performance gains
in our preliminary investigations despite the increased param-
eters.
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three main steps. First, we create a nearest neigh-
bour graph where vertices represent the words as
described in § 4.1. Next, we factorise this nearest
neighbour graph into a set of mutually exclusive
neighbourhoods by finding its connected compo-
nents as described in § 4.2. Finally, for the words
that belong to each connected component, we add
random noise sampled from Gaussian distribu-
tions with zero mean and different standard devia-
tions, determined according to the neighbourhood
associated with the corresponding connected com-
ponent. We prove that the proposed NADP mech-
anism is DP in § 4.3.

4.1 Nearest Neighbour Graph Construction
To represent the nearest neighbours of a set X of
words, we construct a nearest neighbour graph,
G = G(X ,≃) with the symmetric neighbouring
relation ≃, vertex set V(G) = X and edge set
E(G) = {(x, x′) | x ≃ x′}. Given the one-to-
one mapping between words and the vertices in
the graph, for notational simplicity we denote the
i-th vertex of the graph by xi(∈ X ). Two vertices
xi and xj are connected by an edge eij(∈ E), if
xi ≃ xj holds between the corresponding words
xi and xj . As already explained in § 3, we define
two words xi, xj ∈ X to be in a symmetric neigh-
bouring relation, xi ≃ xj if the following two con-
ditions are jointly satisfied: (a) xi ∈ Sm(xj) or
xj ∈ Sm(xi), and (b) Jaccard(xi, xj) ≥ τ for a
predefined similarity threshold τ ∈ [0, 1].

The pseudo code for constructing the nearest
neighbour graph is shown in Algorithm 1. In
our experiments, we set m = 2, which consid-
ers only the top-2 neighbours (i.e. S2) to ensure
only the highly similar neighbours are connected
by edges in the nearest neighbour graph. τ can be
used to remove neighbours that have less similar-
ity to a target word across the graph. For exam-
ple, by setting τ = 0.8, we can ensure that no
two words with neighbourhood similarity (mea-
sured using the Jaccard coefficient) less than 0.8
will be connected by an edge in G. We empirically
study the effect of varying τ on NADP later in our
experiments.

4.2 Finding Connected Components
Once a nearest neighbour graph G is constructed
for X , next we identify the regions of neighbours,
which we refer to as the neighbourhoods. To con-
sider tightly connected neighbourhoods, we pro-
pose to factorise G into a set of mutually exclu-

Algorithm 2: Finding Connected Compo-
nents

1 Inputs: Nearest neighbour graph G(V, E)
2 Outputs: Connected components

{X1, . . . ,Xk}
3 Define k = 0
4 Define Hk = {}
5 while X \ Hk ̸= ∅ do
6 Choose x ∈ X \ Hk

7 k = k + 1
8 Xk = {x}
9 Define X ′ = {x′|x′ ≃ x} \ Xk

10 Xk = Xk ∪ X ′

11 Hk = Hk ∪ Xk

12 while X ′ ̸= ∅ do
13 X ′ = {x′|x′ ≃ x for some x ∈

Xk} \ Xk

14 Xk = Xk ∪ X ′

15 Hk = Hk ∪ Xk

16 Return {X1, . . . ,Xk}

sive connected components following the proce-
dure described in Algorithm 2. We start by ran-
domly selecting a word x from X and creating
a neighbourhood X1 consisting all of x’s neigh-
bours. We then remove the words in X1 from X ,
and repeat this process until all words in X are
included in some neighbourhood. The procedure
described in Algorithm 2 for obtaining connected
components from G is simple, efficient and obtains
good DP performance in our experiments. More-
over, it does not require the number of neighbour-
hoods, k, to be specified in advance as it would be
the case for many clustering-based approaches for
graph partitioning such as spectral clustering (von
Luxburg, 2007). There is a possibility of obtain-
ing long chains when computing connected com-
ponents using Algorithm 2. However, we did not
encounter this issue in our experiments. This is be-
cause the nearest neighbour relation that is defined
in § 3 requires both mutual nearest neighbourhood
and high Jaccard similarity to be satisfied, which
reduces the likelihood of forming long chains. Ex-
ploring alternative methods for factorising a given
graph into a set of mutually exclusive connected
components is deferred to future work.

4.3 Perturbation of Word Embeddings
In this section, we will first prove that NADP sat-
isfies the DP conditions, and then present an al-
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gorithm that can be used to add perturbation noise
to the words in each neighbourhood. First note
that the trivial relation x ≃ x implies the set
{||x− y|| | x ≃ y} is nonempty and hence
we can consider the global L2 sensitivity, ∆ =
supx≃y ||x− y||, for any two neighbouring words
x and y in the given set of words X . Balle and
Wang (2018) proved Theorem 2 that shows a set
of word embeddings can be made differentially
private by adding Gaussian noise sampled accord-
ing to ∆, where Φ(t) the Cumulative Density
Function (CDF) of the standard univariate Gaus-
sian distribution, given by (4).

Φ(t) =
1√
2π

∫ t

−∞
e−y2/2dy. (4)

Theorem 2 (Balle and Wang (2018)). Let f :
X → Rd be a function with global L2 sensitivity
∆ > 0. For any ε ≥ 0 and δ ∈ [0, 1], the Gaussian
output perturbation mechanism M(x) = x + z
with z ∼ N (0, σ2Id) (σ > 0) is (ε, δ)-DP if and
only if

Φ

(
∆

2σ
− εσ

∆

)
− eεΦ

(
− ∆

2σ
− εσ

∆

)
≤ δ. (5)

The original proof of Theorem 2 is provided in
(Balle and Wang, 2018). However, in § C.1 we
provide an alternative proof, which is more con-
cise and can be directly extended to the case of
multiple neighbourhoods represented by the con-
nected components in the nearest neighbour graph.

Theorem 3 (see § C.2 for proof) states that
NADP satisfies DP conditions.
Theorem 3 (main). Let {X1, · · · ,Xk} be the con-
nected components of the graph G(X ,≃) and
let σi (1 ≤ i ≤ k) be non-negative real
numbers such that σi > 0 whenever ∆i =
supx≃y,x,y∈Xi

||x− y|| > 0. For any x ∈ X ,
let i(x) (1 ≤ i(x) ≤ k) be the index such that
x ∈ Xi(x). Then, for any ε ≥ 0 and δ ∈
[0, 1], the Gaussian output perturbation mecha-
nism M(x) = x + z with z ∼ N (0, σ2

i(x)Id) is
(ε, δ)-DP if

Φ

(
∆i(x)

2σi(x)

−
εσi(x)

∆i(x)

)
− eεΦ

(
−

∆i(x)

2σi(x)

−
εσi(x)

∆i(x)

)
≤ δ

(6)

for any x ∈ X satisfying ∆i(x) > 0.

Remark 1. We have ∆i(x) = 0 iff the connected
component Xi(x) consists of only one word x.

Theorem 3 guarantees that the NADP mecha-
nism described in Algorithm 3 for perturbing a set

Algorithm 3: Neighbourhood-Aware Dif-
ferential Privacy

1 Inputs: Connected components
{X1, . . . ,Xk}, ϵ ≥ 0, δ ∈ [0, 1]

2 Outputs: Perturbed word embeddings
X̂ = {x̂1, . . . , x̂n}

3 Define
g(u) = Φ

(
1
2u − εu

)
− eεΦ

(
− 1

2u − εu
)

4 Compute u∗ = min {u ∈ R>0 | g(u) ≤ δ}
5 Define X̂ = {}
6 for i = 0, . . . , k do
7 Compute ∆i = supx≃y,x,y∈Xi

||x− y||

8 Define σi = u∗∆i

9 for x ∈ Xi do
10 Sample z ∼ N (0, σ2

i Id)
11 x̂ = x+ z

12 X̂ = X̂ + {x̂}

13 Return X̂

of word embeddings satisfies DP. Specifically, we
can first compute u∗ globally for all neighbour-
hoods (Line 4) as the minimiser of g(u) (given by
(7)) such that the DP-condition in (5) is satisfied.
We can then determine the standard deviation, σi,
corresponding to each neighbourhood, using u∗

and the local sensitivity, ∆i, computed from that
neighbourhood. Finally, we sample noise vectors
from N (0, σ2

i Id) and add to all word embeddings
in each Xi.

5 Experiments

We use the pretrained3 300-dimensional GloVe
embeddings (Pennington et al., 2014) for 2.8M
words, which have also been used in much
prior work (Xu et al., 2020; Feyisetan and Ka-
siviswanathan, 2021) as the static word embed-
dings.

We build a nearest neighbour graph using the
top-1000 frequent words in the English Wikipedia,
which resulted in a 73,404 vertex graph. It takes
less than 5 minutes to find all connected compo-
nents of a graph containing 73,404 words used
in the paper. Moreover, this is a task indepen-
dent pre-processing step. Building the neighbour-
hood graph in a brute force manner requires 3.5

3We used 42B token Common Crawl trained embeddings
available at https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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(a) Word-pair similarity prediction. (b) Semantic textual similarity measurement.

(c) Text classification. (d) Odd-man-out.

Figure 2: Performance on utility experiments (§ 5.1) shown in sub-figures (a)-(d). Accuracy and correlation
(with human ratings) not decreasing with high privacy (ϵ) levels (corresponding to stronger noise levels by DP
mechanisms) is desirable. Performance obtained without adding any noise is shown by the horizontal dotted lines.

hours, while approximate nearest neighbour meth-
ods such as SCANN (Guo et al., 2020) an be used
to do the same in less than 1 minute with over 95%
recall.

In our experiments, we compare NADP against
the following DP mechanisms: Gaussian mech-
anism described in § 3.1, Laplacian mechanism,
where noise vectors are sampled from the Laplace
distribution with zero location parameter and with
different values of the ϵ scale parameter, Maha-
lanobis mechanism with the recommended pa-
rameter values by Xu et al. (2020) (i.e. the Ma-
halanobis norm λ = 1 and ϵ ∈ (0, 40] are used),
which is the current SoTA DP mechanism for
static word embeddings.

All of the above mentioned DP-mechanisms ap-
ply the same level of random noise to all word

embeddings. Therefore, to understand the impor-
tance of assigning different levels of noise to dif-
ferent words, we consider a baseline DP mecha-
nism, which we call the Jaccard mechanism. We
define the density, η(x), of the neighbourhood,
Sk(x), of a word x as the average Euclidean dis-
tance between x and its nearest neighbours (i.e.
η(x) = 1

k

∑
x′∈Sk(x)

||x− x′||). Next, we cate-
gorise words into two density categories: dense
(X1 = {x|x ∈ X , η(x) < η0}) vs. sparse
(X2 = {x|x ∈ X , η(x) ≥ η0}), based on a den-
sity threshold η0. Our preliminary experiments
showed that splitting into more than two categories
did not result in significant performance gains.
For a word x ∈ Xi, we sample a random vector
n(x) ∼ N (0, σiId), for i ∈ {1, 2} and add to
x. Jaccard is a DP mechanism (see § C.3 for the
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proof). Note that the density threshold is used only
by the Jaccard mechanism and is not required by
NADP. It is determined automatically such that we
get approximately similar numbers of words in the
dense and sparse sets.

5.1 Utility Experiments

To evaluate the semantic information preserved
in word embeddings, we use the following stan-
dard tasks that have been used in much prior
work for this purpose (Bollegala, 2022; Bolle-
gala and O’Neill, 2022; Tsvetkov et al., 2015;
Faruqui et al., 2015): word similarity measure-
ment, semantic textual similarity (STS), Text Clas-
sification, Odd-man-out (Stanovsky and Hopkins,
2018). Due to space limitations, we detail the
tasks, datasets and evaluation metrics in Ap-
pendix A.
Results: Figure 2 shows the performance obtained
on utility experiments with noise-added word em-
beddings for different values of the privacy pa-
rameter ϵ, where we use τ = 0.5. The total
set of words used in the datasets for all utility
experiments is n = 73404. Therefore, we set
δ = 1/73404 ≈ 0.000013623 in all experiments
reported in the paper. We repeat each experiment
five times and plot the mean and the standard error.
Recall that smaller ϵ values provide stronger DP
guarantees. From Figure 2, we see that NADP re-
ports the best performance on all four tasks among
the methods compared across all ϵ values. Among
the other methods, Mahalanobis performs second
best to NADP in word-pair similarity prediction,
text classification and odd-man-out, but performs
worst in STS. In word-pair similarity prediction,
text classification and odd-man-out tasks, we see
the performance of NADP as well as the other
methods increase with ϵ due to less noise being
added to the word embeddings.

The performance in STS is comparatively less
affected by ϵ because it is a sentence-level compar-
ison task, which considers all perturbed word em-
beddings in a sentence, whereas the other three are
word-level tasks. We see that Jaccard and Gaus-
sian mechanisms perform similarly in all tasks.
This is not surprising given that the Jaccard mech-
anism is drawing the noise vectors from two inde-
pendent Gaussian distributions. In particular for
high ϵ values, we see that Gaussian outperforms
Laplacian in word-pair similarity prediction, text
classification and odd-man-out tasks. This re-

Figure 3: Skewness values for predicting words using
their noise-added embeddings. Low skewness values
are desirable, and indicate that the prediction probabil-
ity distribution is similar to the Normal distribution and
is not skewed towards a subset of the words.

sult implies that for making word embeddings dif-
ferentially private, the L2 sensitivity considered
in the Gaussian mechanism is more appropriate
than the L1 sensitivity considered in the Laplacian
mechanism.

5.2 Privacy Experiments

To empirically measure the level of privacy
protected by a DP mechanism, we consider,
p(x|M(x)), the probability of predicting the word
x using its noise-added embedding M(x), as
a metric of privacy provided by a DP mecha-
nism. However, it is difficult to accurately esti-
mate probability densities in discrete spaces due
to data sparseness. Therefore, we approximate
p(x|M(x)) by |Sm(x)∩Sm(M(x))|

|Sm(x)∪Sm(M(x))| , using the nearest
neighbour sets. It is noteworthy that this is a con-
servative estimate of p(x|M(x)) because, even if
all of the nearest neighbours of x and M(x) fully
overlap , there will still be a 1/m uncertainty en-
suring a nonzero level of privacy.

Due to the differences in neighbourhood densi-
ties, some words are likely to be influenced more
than the others by a DP mechanism. From a DP
point of view we are interested in protecting the
privacy of all words in the vocabulary and not just
for a subset of it. Therefore, to empirically quan-
tify the global effect on privacy of a DP mecha-
nism, we compute the skewness of the distribution
of the estimated p(x|M(x)) values. If most words
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word no-noise Mahalanobis NADP

misogynist sexist, chauvinst, bigot insulting, sexist, racist scholastic, filicia, shannara
police officers, cops, authorities police, authorities, officials posing, smiling, lying
hitler adlof, nazi, stalin hitler, adolf, nazi paid, ipo, raided
wikileaks assange, cia, leaked wikileaks, iran, assange impetuous, jashari, enraged
FBI cia, investigation, informant fbi, history, government asylum, cardoza, sandiego

Table 1: Top 3 neighbours for words without noise addition to the embeddings (no-noise), with SoTA Maha-
lanobis mechanism and the proposed NADP mechanism. Mahalanobis mechanism sometimes discloses the origi-
nal word, whereas NADP mechanism never does.

xi has lower pi = p(xi|M(xi)) values, the proba-
bility mass of the pi distribution will be shifted to
the left of the mean, resulting in smaller skewness
values (see Appendix B for further explanations).
Therefore, smaller skewness values indicate that
most words are protected (the probability of being
discovered is smaller than the mean) under a DP
mechanism.
Results: Figure 3 shows the skewness values re-
ported by Jaccard, Mahalanobis, Gaussian, Lapla-
cian mechanisms and the proposed NADP (for dif-
ferent τ ) mechanism for different ϵ values. Over-
all, we see that NADP reports the lowest skewness
values among all DP mechanism compared, indi-
cating that it protects privacy of word embeddings
well. We see that the skewness values slightly in-
crease with τ . Recall that when τ increases the
similarity of the neighbours connected to a tar-
get word by the symmetric neighbouring relation,
≃, increases in the nearest neighbour graph G.
Therefore, when τ is high, unless when we ap-
ply stronger random noise to word embeddings, it
becomes easier to discover the original word from
its noise-added embedding. However, we note that
the performance of NADP is relatively unaffected
by different τ values and skewness values are low
for τ = 0.1 setting, which we use in the utility
experiments described in § 5.1. Although Gaus-
sian, Jaccard and Mahalanobis mechanisms ob-
tain comparable levels of skewness values when
ϵ > 15, for ϵ < 5, where stronger privacy guaran-
tee is required, NADP is the only DP mechanism
with near-zero skewness values.

6 Investigating the Nearest Neighbours

To obtain qualitative insights into the levels of
privacy provided by NADP, for a given word,
we compare its top-3 neighbours in the original
embedding space (no-noise added), when Maha-
lanobis and NADP mechanisms are used to add

random noise. Table 1 shows the results for some
randomly selected set of words. We see that for
the words such as police, hitler, wikileaks and fbi,
even after applying the Mahalanobis mechanism
(λ = 1), we still retrieve the original word as
a nearest neighbour. This indicates that Maha-
lanobis mechanism is unable to anonymise the tar-
get words in these cases. Although not reported
here due to space limitations, this problem per-
sists even in Jaccard, Gaussian and Laplace mech-
anisms, which were under performing to the Ma-
halanobis mechanism in utility and privacy exper-
iments. In the case of misogynist, Mahalanobis
mechanism retrieves highly similar neighbours
such as sexist. On the other hand, the neighbours
retrieved from the word embeddings anonymised
using NADP are semantically less similar to the
target word, thus could be considered to be better
preserving the privacy of the target word.

7 Conclusion

We proposed NADP to make word embeddings in-
distinguishable from their nearest neighbours with
theoretical DP guarantees. We compared NADP
against existing DP mechanisms in multiple down-
stream utility experiments which showed its su-
perior performance. Moreover, we evaluated the
level of privacy protection provided by NADP
against other DP mechanisms. We found NADP to
provide stronger privacy guarantees over a broad
range of ϵ values. In our future work, we plan to
extend NADP to sentence/document embeddings
and evaluate for languages other than English.

8 Ethical Considerations

We do not annotate or release any datasets as part
of this research. However, the GloVe word embed-
dings that we use in our experiments are known to
contain various types of unfair social biases such
as gender and racial biases (Zhao et al., 2018;
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Kaneko and Bollegala, 2019, 2021; Gonen and
Goldberg, 2019). It is possible that these biases
could get further amplified during the neighbour-
hood computation and noise-addition processes
we perform in this work. Therefore, such so-
cial biases must be properly evaluated before the
noise-added word embeddings produced by our
proposed method are used in real-world NLP ap-
plications that are used by users.

9 Limitations

Our investigations in this paper was limited to
GloVe embeddings, which is one the many avaula-
ble pre-trained static word embeddings. There are
other alternative word embeddings such as Skip-
Gram with Negative Sampling (SGNS) (Mikolov
et al., 2013), PMI-based word embeddings (Arora
et al., 2016), fastText embeddings (Bojanowski
et al., 2017) etc. that could be used in place
of GloVe. However, contextualised word embed-
dings, obtained using pre-trained Masked Lan-
guage Models (MLMs) such as BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), AL-
BERT (Lan et al., 2020), etc. have reported su-
perior performance in various downstream tasks,
surpassing that by static word embeddings. There-
fore, we consider it to be a natural next step to ex-
tend our proposed method to anonymise contextu-
alised word embeddings. The theoretical tools that
we develop in this paper should be helpful in prov-
ing DP conditions for contextualised word embed-
dings as well.

All the downstream datasets and word embed-
dings we considered in this work are limited to the
English language, which is known to be a mor-
phologically limited language. Therefore, it is im-
portant to evaluate our proposed method on other
languages using multilingual word embeddings to
verify its effectiveness for the languages other than
English.
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Supplementary Materials

A Downstream Tasks, Datasets and
Evaluation Metrics

Word Similarity: The cosine similarity between
two words, computed using their word em-
beddings, is compared against the human
similarity ratings using the Spearman corre-
lation coefficient. High degree of correlation
with human similarity ratings implies that
the word embeddings accurately encode the
word-level semantics. We aggregate all of the
word-pairs and their human similarity ratings
in MEN (Bruni et al., 2014), SimLex (Hill
et al., 2015) and SimVerb (Gerz et al., 2016)
benchmark datasets and report the overall
Spearman correlation in Figure 2a.

Semantic Textual Similarity (STS): In STS, we
are provided with sentence-pairs and the hu-
man similarity ratings between the two sen-
tences in each pair. Using the word embed-
dings, we first create an embedding for each
sentence and then compute the cosine simi-
larity between the sentence embeddings. The
correlation between the predicted sentence
similarities and the human ratings is used as
the evaluation metric. We represent each sen-
tence by the centroid of the word embeddings
corresponding to the words included in that
sentence. Although this is a simple method
for creating sentence embeddings from word
embeddings, it is known to be a strong unsu-
pervised baseline (Arora et al., 2017), and en-
ables us to directly attribute any differences
in performance to the word embeddings – the
focus in this work. We use the STS Bench-
mark dataset (Cer et al., 2017), which con-
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tains 1379 test sentence-pairs and show the
official score (i.e. class-weighted geometric
mean of Spearman and Pearson correlation)
in Figure 2b.

Text Classification: We train a binary classifier
to predict the sentiment (positive vs. nega-
tive) of a short review text. Similar to the STS
task, we represent a review using the cen-
troid of the word embeddings of the words
included in that review. We train a binary lo-
gistic regression model to predict sentiment
in a review and in Figure 2c report the aver-
aged classification accuracy on the balanced
test sets in three standard datasets: Movie re-
views dataset (Pang and Lee, 2005), customer
reviews dataset (Hu and Liu, 2004) and opin-
ion polarity dataset (Wiebe et al., 2005).

Odd-man-out: Stanovsky and Hop-
kins (Stanovsky and Hopkins, 2018)
proposed the odd-man-out task, where given
a set of five or more words, a system is
required to choose the one which does not
belong with the others. They annotated
a dataset containing 843 sets via crowd
sourcing. Pretrained word embeddings can
be used to identify the odd-man in a set by
repeatedly excluding one word at a time
and measuring the average cosine similarity
between all remaining pairs of words. Fi-
nally, the word when excluded resulting in
the highest pairwise similarity is chosen as
the odd-man. Unlike previously described
tasks, odd-man-out can be carried out in an
unsupervised manner, at word-level, and has
higher human agreement between the anno-
tators because it does not require numerical
ratings. The percentage of correctly solved
sets is shown in Figure 2d.

B Skewness and Privacy

Skewness is a measure of the asymmetry of
p(x|M(x)) about its mean and can be positive,
negative or zero depending on whether p(x|M(x))
has respectively a longer left tail, right tail,
or perfectly symmetric around the mean (e.g.
as in the case of the standard Normal distri-
bution) (Joanes and Gill, 1998). Specifically,
if we denote the probability of predicting i-th
word xi by pi = p(xi|M(xi)), the skewness
of the distribution of pi over n words is given

by n
(n−1)(n−2)

∑n
i=1

(pi−p̄i
s

)3
, where p̄i and s are

respectively the mean and standard deviation of
{pi}ni=1.

We study the relationship between the level of
privacy protected by the noise added using a par-
ticular DP mechanism, M and the skewness of the
distribution of p(x|M(x)) for the words w in a vo-
cabulary X . For this purpose, we use the Gaus-
sian mechanism described in § 3.1 in the paper
where we sample noise vectors z ∈ Rd from the
d-dimensional spherical Gaussian N (0, σId) with
zero-mean and standard deviation σ, and add this
noise to the word embedding, x ∈ Rd, represent-
ing the word x. Specifically, M(x) = x+z. Next,
we gradually increase σ ∈ [0, 1] in step size of
0.05 and compute the histograms of p(x|M(x))
values for the words in X . The histograms and
their skewness values are shown in Figure 4.

From Figure 4, we see that when no-noise is
being added (i.e. σ = 0), the histogram peaks
at 1, indicating that all words can be trivially dis-
covered from their word embeddings because the
closest neighbour of any target word in the em-
bedding space will be itself. Because the distri-
bution is symmetric around this peak, we have
a zero skewness. Overall, we see that when we
add increasingly high noise, the histograms start
shifting towards to the left because less words will
be perfectly discovered from the noise added em-
beddings. Moreover, we see that more probabil-
ity mass is distributed towards the right side of
the mode (peak), resulting in a longer right tail.
Consequently, we see skewness values also con-
tinuously increase (except at σ = 0.05, where the
distribution has split into two parts) with σ. This
trend stems from the definition of skewness and is
independent of the DP mechanism used to gener-
ate noise. This result shows that when there are
many words with smaller p(x|M(x)) values (i.e.
distribution has a longer left tail), the skewness
values will be smaller, indicating that the privacy
is preserved for many words in X .

C Proofs of Theorems

C.1 Proof of Theorem 2
Proof. For any ε ≥ 0 and δ ∈ (0, 1), put

g(u) = Φ

(
1

2u
− εu

)
− eεΦ

(
− 1

2u
− εu

)
(7)

and u∗ = min {u ∈ R>0 | g(u) ≤ δ}.

We will prove the following three statements:
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Figure 4: Histogram of pi values when zero-mean and σ standard deviation Gaussian noise is added to the word
embeddings. Skewness values (skew) are shown in each histogram alongside with the σ.

(a) g(u) is strictly decreasing on (0,∞) with
limu→+0 g(u) = 1, limu→∞ g(u) = 0.
(b) The equation g(u) = δ has the unique solution
u∗.
(c) Put σ = u∗∆. Then, the Gaussian output
perturbation mechanism M(x) = x + z with
z ∼ N (0, σ2Id) is (ε, δ)-DP.
To prove (a) Put

h(u) =
√
2πg(u)

=
√
2π

{
Φ

(
1

2u
− εu

)
− eεΦ

(
− 1

2u
− εu

)}
.

Then,

h′(u) = exp

(
−1

2

(
1

2u
− εu

)2
)

·
(
− 1

2u2
− ε

)

− exp(ε) · exp

(
−1

2

(
− 1

2u
− εu

)2
)

·
(

1

2u2
− ε

)

= exp

(
−1

2

(
1

2u
− εu

)2
)

·
(
− 1

2u2
− ε

)

− exp

(
−1

2

(
1

2u
− εu

)2
)

·
(

1

2u2
− ε

)

= − 1

u2
· exp

(
−1

2

(
1

2u
− εu

)2
)

< 0

for any u > 0. Therefore, g(u) = (1/
√
2π)h(u)

is strictly decreasing on (0,∞). The latter half of
the statement is clear from the definition of g(u).
Next, to prove (b) observe that since g(u)
is a continuous function on (0,∞) satisfying
limu→+0 g(u) = 1 and limu→∞ g(u) = 0,
g(u) = δ has a solution u′ for any δ ∈ (0, 1),
which must be unique and satisfy u′ = u∗ because
of the monotonicity of g(u).
Finally, to prove (c) let σ = u∗∆. We then have

Φ

(
∆

2σ
− εσ

∆

)
− eεΦ

(
− ∆

2σ
− εσ

∆

)
= Φ

(
1

2u∗ − εu∗
)
− eεΦ

(
− 1

2u∗ − εu∗
)

= g(u∗) ≤ δ,

which implies the mechanism M(x) = x + z
with z ∼ N (0, σ2Id) is (ε, δ)-DP as stated in The-
orem 2.
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C.2 Proof of Theorem 3
Proof. For any i (1 ≤ i ≤ k), let ≃i be the sym-
metric neighbouring relation obtained by restrict-
ing the relation ≃ on Xi. Then, ∆i equals to the
global L2 sensitivity of (Xi,≃i) and ∆i(x) = ∆i,
σi(x) = σi for any x ∈ Xi. Hence, if ∆i > 0,
the mechanism Mi obtained by restricting M on
(Xi,≃i) is (ε, δ)-DP if and only if

Φ

(
∆i(x)

2σi(x)

−
εσi(x)

∆i(x)

)
− eεΦ

(
−

∆i(x)

2σi(x)

−
εσi(x)

∆i(x)

)
≤ δ

for any x ∈ Xi by Theorem 2.
Let x, x′ ∈ X be words such that x ≃ x′ and i

(= i(x) = i(x′)) be the index such that x, x′ ∈ Xi,
that is, x ≃i x′. Now, suppose ∆i > 0 and (6)
holds for any x ∈ Xi. Then, the mechanism Mi is
(ε, δ)-DP and hence, we have

P[M(x) ∈ E] = P[Mi(x) ∈ E]

≤ eεP[Mi(x
′) ∈ E] + δ

= eεP[M(x′) ∈ E] + δ

for any measurable set E ⊂ R. Next, suppose
∆i(x) = ∆i(x′) = 0. Then, we have x = x′ and
hence

P[M(x) ∈ E] ≤ eεP[M(x′) ∈ E] + δ

for any measurable set E ⊂ R, which implies
the mechanism M is (ε, δ)-DP if the condition (6)
holds for any x ∈ X satisfying ∆i(x) > 0.

Corollary 1. For any ε ≥ 0 and δ ∈ (0, 1), put

g(u) = Φ

(
1

2u
− εu

)
− eεΦ

(
− 1

2u
− εu

)

and u∗ = min {u ∈ R>0 | g(u) ≤ δ}. Also, put
σi(x) = u∗∆i(x) for any x ∈ X . Then, the Gaus-
sian output perturbation mechanism M(x) = x+
z with z ∼ N (0, σ2

i(x)Id) is (ε, δ)-DP.

Proof. Suppose ∆i(x) > 0. Then, by definition,
we have

Φ

(
∆i(x)

2σi(x)

−
εσi(x)

∆i(x)

)
− eεΦ

(
−

∆i(x)

2σi(x)

−
εσi(x)

∆i(x)

)
= Φ

(
1

2u∗ − εu∗
)
− eεΦ

(
− 1

2u∗ − εu∗
)

= g(u∗) ≤ δ,

which implies the mechanism M(x) = x + z
with z ∼ N (0, σ2

i(x)Id) is (ε, δ)-DP as claimed in
Theorem 3.

C.3 Jaccard Mechanism is DP
Theorem 4 claims that the above-mentioned Jac-
card mechanism is (ϵ, δ)-DP.

Theorem 4 (Jaccard mechanism is DP). Jaccard
mechanism with σi = ∆αi

√
2 log(1.25/δ)/ϵ is

(ϵ, δ)-DP. Here, αi is a constant that depends only
on the density category of a word and ∆ is the
global sensitivity over the vocabulary.

Proof. Note that under the Jaccard mechanism,
noise vectors, n(x), are sampled from either one
of the two Gaussians N (0, σ1Id) or N (0, σ2Id)
depending on respectively whether x ∈ X1 or
x ∈ X2. Moreover, because αi depends only on
Xi, from σi = ∆αi

√
2 log(1.25/δ)/ϵ and from

Theorem 1 we see that each of these underly-
ing Gaussian mechanisms are (ϵ, δ)-DP. Because
X1 ∩ X2 = ∅ by their definitions, it follows from
the compositionality property of DP that the over-
all Jaccard process is also (0, δ)-DP. This proof
can be easily extended to more than two density
categories by mathematical induction.

In our experiments, we use η0 = 6.0 such that
approximately equal numbers of words in X be-
long to each category, corresponding to α1 =
1.835 and α2 = 1.276 for m = 10. Global sensi-
tivity ∆ is computed as the average Euclidean dis-
tance between a word and its furthermost neigh-
bour.

The ability to guarantee the mean overlap be-
tween neighbourhoods before and after the noise
addition is important from the point-of-view of
NLP tasks that depend on the neighbourhood in-
formation such as semantic similarity measure-
ment, bag-of-words representations-based infor-
mation retrieval and word/text classification tasks,
etc. Unlike in the Gaussian mechanism, in the Jac-
card mechanism we have a direct relationship be-
tween the level of noise and the performance ob-
tained using the anonymised embeddings in the
downstream tasks. Moreover, the Jaccard mech-
anism allows us to set different noise levels to
sparse vs. dense regions in the embedding space,
which is not possible with other DP mechanisms.


