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Abstract

In this study, we, the CheryFS team, present a
model solutions dedicated to the task of "Multi-
Lingual ESG Issue Identification" in the Chi-
nese track. The objective is to predict the ESG
(Environmental, Social, and Governance) la-
bel associated with each news article. Our ap-
proach integrates supervised and unsupervised
data into a comprehensive contrastive learning
framework of a MacBERT model with further
pretrained. This innovative methodology has
resulted in Micro-F1 score of 0.412 on the val-
idation dataset. Furthermore, we perform a
meticulous analysis of the model’s optimiza-
tion strategy, providing valuable insights for
future research.

1 Introduction

Natural Language Processing (NLP) harnesses the
capability to extract extensive semantic informa-
tion from copious volumes of unstructured data,
demonstrating immense potential for application
in the financial services industry. By analyzing
diverse types of unstructured data, including data
reports, news articles, text chat records, and re-
search reports, NLP can effectively contribute to
scenario recognition and risk analysis in various
financial contexts. Commonly, individuals express
their opinions on financial products, services, in-
vestments, and stock markets through news or so-
cial media channels. Thus, the strategic mining
of such financial sentiments can inform decision-
making, offer valuable advice, and shape user or
business understanding.

The "Multi-Lingual ESG Issue Identifica-
tion"(Chen et al., 2023) subtask aims at uncovering
themes related to Environmental, Social, and Cor-
porate Governance (ESG) in Chinese, English, and
French news articles. The challenge is defined as
follows: Given an article derived from an ESG-
focused news website, the model is expected to
predict its potentially relevant themes. English and

French datasets include a single theme per article,
while the Chinese dataset may contain multiple
themes. Due to the limitation of time, our team
engaged with the Chinese track of this task.

In our research, we incorporated labeled data,
unlabeled data obtained through web crawlers,
and pseudo-labeled data for data augmentation.
Our initial model was constructed around the
MacBERT(Cui et al., 2020) architecture. We en-
deavored to enhance its performance by 1) investi-
gating a variety of data augmentation strategies, 2)
implementing further pretrained with all accessible
data, 3) fusing our pre-trained model from the sec-
ond stage with contrastive learning(Khosla et al.,
2021) to boost sensitivity to disparate topics, and
4) consolidating the results of several analogous
models with different parameters through ensem-
ble methods.

2 Related Work

2.1 Data Augmentations

Data augmentation(Feng et al., 2021) has recently
attracted heightened interest within the Natural
Language Processing (NLP) field due to develop-
ments in low-resource domains.

Rule-based strategies are straightforward to im-
plement but typically result in incremental perfor-
mance improvements. Wei and Zou (2019) pro-
poses EDA, a set of token-level random perturba-
tion operations including random insertion, dele-
tion, and swap. Techniques that leverage trained
models may entail higher implementation costs but
introduce greater data variability, leading to sub-
stantial performance enhancements.

Model-based techniques tailored for downstream
tasks can significantly impact performance. The
popular method, back translation(Sennrich et al.,
2016), translates a sequence into another lan-
guage and then back into the original language.
Kobayashi (2018)(contextual augmentation) feeds

116
Proceedings of the Joint Workshop of the 5th Financial Technology and Natural Language Processing (FinNLP) and 

2nd Multimodal AI For Financial Forecasting (Muffin), Macao, August 20, 2023. 



surrounding words to large model like BERT,
RoBERTA(Liu et al., 2019) or XLNET(Yang et al.,
2020) to inference the most suitable word.

In our research, we employ a combination of
rule-based and model-based techniques to generate
pseudo-labeled data from labeled data.

2.2 Sentence Representation and
Self-supervised

The prevalent paradigm for most NLP research
since 2018 entails a two-stage training process.
Initially, a neural language model (LM), typically
comprising millions of parameters, is trained on
extensive unlabeled corpora through various pre-
training tasks. Subsequently, the word representa-
tions acquired in the pre-trained model are repur-
posed during fine-tune for a downstream task. Sev-
eral self-supervised pre-training tasks have been
proposed to pre-train language models, such as
Masked Language Modeling (MLM) (Devlin et al.,
2019), and MAsked Sequence to Sequence pre-
training (MASS) (Song et al., 2019). Sun et al.
(2020) has proved that further pre-train BERT
with masked language model tasks on the domain-
specific data can improving the performance of the
model.

In our research, we utilize all available data for
the further pre-trained of the MacBERT model,
which results in a more robust representation.

2.3 Contrastive Learning
Contrastive learning has proven its efficacy in learn-
ing robust representations, particularly within the
natural language domain. In recent years, multi-
ple studies have investigated the construction of
sentence embeddings using contrastive learning.
The fundamental concept of contrastive learning
involves generating positive and negative sentence
pairs, with the aim of drawing positive pair rep-
resentations closer while distancing the negative
ones.

Several strategies have been proposed to realize
this objective. Fang et al. (2020) employs con-
trastive self-supervised learning at the sentence
level with back-translation data augmentation. Gao
et al. (2022) uses both unsupervised denoising ob-
jective and supervised natural language inference
signals to learn sentence embeddings.

In our research, we introduce a contrastive loss
function that encourages data with similar seman-
tics to cluster together, while carefully avoiding the
repulsion of false negatives.

Dataset C L L L̂ Wc

Train 900 45 2.95 59.06 1400
Val 100 37 2.61 7.05 1378
Test 238 42 2.81 15.95 1338

Unlabeled 1000 - - - 1410
Pseudo 2000 45 2.95 59.06 1396

Table 1: Details of the datasets. C: the amounts of the
dataset; L: the numbers of labels; L: average labels
per instance; L̂: average instances per label; Wc: the
average char per instance in content;

3 Dataset and Methods

The ESG dataset comprises columns such as title,
content, and corresponding topic labels. The Chi-
nese track training set includes 900 instances, the
validation set includes 100 instances, and the test
set encompasses 238 instances.

In addition to the labeled data, we have amassed
1000 instances of unlabeled data utilizing website
crawlers. The distribution of this unlabeled data
aligns with that of the labeled data.

Besides, we implement data augmentation meth-
ods such as EDA, back translation, and contextual
augmentation yielding 2000 instances of pseudo-
labeled data.

The distribution of the dataset is illustrated in
Table 1.

3.1 MacBERT with Further Pre-trained

Given the impressive results BERT has achieved
across various domains, we utilize the MacBERT
model as the backbone of our model. However,
while the MacBERT model is pre-trained on a
general domain corpus, all training data derives
from a specific domain’s small corpus. Directly
fine-tuning our BERT model could lead to over-
fitting. To mitigate this, we further pre-trained
BERT-Chinese with masked language model tasks
on all the labeled and unlabeled data.

Following this additional pre-trained, we input a
sentence comprising m different tokens into BERT,
extracting token embeddings from the last hidden
layer as [CLS, T1, T2, · · · , Tm], where CLS is a
special token denoting the start of the sentence for
classification. The sentence representation is then
obtained by applying mean-pooling to the token
embeddings with a fixed length:

u = mean− pooling([CLS, T1, T2, · · · , Tm])
(1)
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We place a binary classifier at top of the represen-
tation derived from the BERT model.

3.2 Constrastive Learning
We introduce a contrastive learning objective aimed
at attracting similar instances and repelling dis-
parate ones within the embedding space to achieve
superior classification scores. For additional de-
tails, please refer to section 5.2.

In practice, we begin by encoding the instances
with the further pre-trained model described ear-
lier. Then, for a given instance xi, all other in-
stances in the batch sharing the same label yj with
it constitute the positive sample set Sj . The set
of positive samples under each label is denoted by
S = S1, S2, · · · , Sq, where q represents the topic
number of instance xi. We can then define the con-
trastive learning loss for each instance across the
batch as

Lcl =
−1

q

∑
Sj∈S

∑
s∈Sj

log
func (Ei, Es)∑

k∈I/{i} func (Ei, Ek)

(2)
func (u, v) = exp (sim (u, v) /τ) (3)

where Ei denotes the sentence representation,
sim(·) indicates the cosine similarity function, τ
is the contrastive learning temperature.

Besides, we combine the constrastive loss with
cross-entropy and train them jointly. The overall
training objective is calculated as follows:

L = α · Lcl + (1− α) · Lce (4)

where α is a parameters which determined the im-
portance of the contrastive loss.

3.3 Ensemble
We also construct an ensemble model using vari-
ous sizes of MacBERT. Specifically, we train two
instances of MacBERT-Large and two instances of
MacBERT-Base, each with a different seed. We
amalgamate all the models’ predictions by aver-
aging their probabilities, thereby enhancing the
overall accuracy of the prediction.

4 Experiments

4.1 Training Setup
We adopt MacBERT-Large and MacBERT-Base
models as our backbone model. For self-supervised
pre-training, we employ all the labeled and unla-
beled data with a batch size of 32 across 25 epochs,

Models Micro-F1 Macro-F1
Base 0.389 0.173
Large 0.407 0.178

Ensemble 0.412 0.181

Table 2: Performance of all the models on the validation
set.

implementing early-stopping validated with a pa-
tience of 100 steps. The pre-training learning rate
for all models is set to 1e− 5.

When fine-tuning with constrative learning, we
utilize all the labeled and pseudo-labeled data with
a batch size of 16 for 20 epochs. The learning rate
for the BERT-Chinese-Large model is set to 5e− 5,
and for the MacBERT-Base model, it’s set to 4e−5.
All models are trained across 15 epochs.

4.2 Results

Table 2 shows the appearance on the validation set.
The table shows that the MacBERT-Large model
with further pretrained performs the best on the
validation set for single model with an Micro-F1
score of 0.407. The last submitted ensemble mod-
els achieve an Micro-F1 score of 0.412 on the val-
idation set, while achieve 0.3914 on the test set.
Unfortunately, due to time constraints, we were
unable to record additional results on the test set.

5 Analysis

5.1 Effect of Data Augmentaion Methods

We experimented with three different data aug-
mentation methods: (1) Easy Data Augmentation
(EDA); (2) Back-Translation (BT); and (3) Contex-
tual Augmentation (CA). These experiments were
built upon the further pre-trained BERT-Chinese-
Base model, with the augmented data utilized for
contrastive learning.

The results, displayed in Table 3, show that
among the single data augmentation methods, CA
yielded the highest improvement in model per-
formance, achieving a Micro-F1 score of 0.384.
Among the combined augmentation methods, CA
and BT had the most significant impact on model
performance, securing an increase of 0.389. As a
result, we ultimately selected a combination of CA
and BT for data augmentation.

We delved into the differences between these
three methods and discovered a potential reason for
the ineffective EDA data augmentation scheme. It
appeared that the key tokens edited by the method
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Models Micro-F1 Macro-F1
EDA 0.378 0.164
BT 0.383 0.168
CA 0.384 0.169

EDA+BT 0.381 0.167
EDA+CA 0.382 0.167
BT+CA 0.389 0.173

EDA+BT+CA 0.386 0.171

Table 3: Performance of all the data augmentaion meth-
ods on the validation set.

was not relevant to the topic label corresponding
to the original sentence, or some key words were
omitted, leading to incorrect annotation. Here are
some examples:

Original content: "· · ·但随著全球零排放航空
旅行的兴趣增加，· · ·", the related topic label is
"E01 -气候变化|碳排放量(Carbon Emissions)".

BT content: "· · ·但当全球零排放航空旅行的
兴趣增加，· · ·"

MG content: "· · ·但随著全球零排放旅游的兴
趣增加，· · ·"

EDA content: "· · ·但随著全球航空旅行的增
加兴趣，· · ·"

We can observe that the lack of token "零排放"
has resulted in a disconnection between sentence
semantics and their corresponding topic.

5.2 Effect of Contrastive Learning

We explored three implementations of contrastive
learning to determine the most effective method in
MacBERT-Base model. For our analysis, let’s con-
sider a batch composed of K samples, denoted as
Batch = (X1, Y1), (X2, Y2), · · · , (XK , YK). For
a given sample i, where Xi represents a text se-
quence and its topic label set is denoted as Yi, the
model’s encoding provides us the sentence repre-
sentation Ei and the topic probability Qi of Xi.
Here, Qi = Qi1, Qi2, · · · , QiL, with L represent-
ing the total number of topic labels.

We represent Yi as the one hot encoding of the
label, defined as Yi = y1, y2, · · · , yL. For a given i-
th topic label yi ∈ 0, 1, yi = 0 signifies the absence
of this type of label in the text, while yi = 1 implies
its presence.

We tested three implementations of contrastive
learning:

(1) strictly contrastive learning(SCL) This ap-
proach mandates that a sample can serve as a pos-
itive contrastive sample of the anchor point only

Models Micro-F1 Macro-F1
SCL 0.377 0.168
JSCL 0.385 0.171
SLCL 0.389 0.173

Table 4: Performance of different contrastive learning
methods on the validation set.

when their label sets exactly match. SCL is rigor-
ous and does not consider samples that partially
overlap with the anchor label set.

(2) Jaccard Similarity Contrastive Loss
(JSCL)(Li et al., 2022): This method works on
samples to varying degrees based on the similarity
of their labels. For a given sample, JSCL draws
samples with the exact same label as closely as
possible, while only slightly pulling in samples
that share some labels.

(3) Stepwise Label Contrastive Loss (SLCL):
While the previous two methods primarily consider
multiple emotions simultaneously, SLCL considers
different labels separately, computes the contrast
loss independently, and then combines each emo-
tion’s losses.

As the result shown in Table 4, SLCL achieve
the best score and we choose this method as our
contrastive learning method.

6 Conclusion

In this paper, we discussed the methodologies em-
ployed for the multi-lingual ESG issue identifica-
tion (ML-ESG) shared task at FinNLP 2023. Our
team’s proposed MacBERT model, equipped with
further pre-trained and contrastive learning strate-
gies, achieved the highest ranking in the Chinese
track. Our experimental results underscored the
efficiency of further self-supervised pre-training
and contrastive learning approaches. Comprehen-
sive experiments confirmed our method’s efficacy
and helped discern the aspects contributing to our
performance enhancements.

7 Limitations

Despite our promising results, our study was lim-
ited by time and resource constraints. Conse-
quently, we could not undertake semi-supervised
experiments and few-shot learning experiments.
These methodologies present intriguing prospects
for future exploration.
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