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Abstract

Most domain-specific BERT models are de-
signed to work with short sentences and do
not deal with the limitation of 512 tokens in
the default BERT tokenizer. This limitation is
further exacerbated if the tokenizer has high
number of tokens per word ratio (fertility) and
thus splits words into several tokens. A term-
based multilingual Financial (T-MuFin) BERT
tokenizer has been proposed to reduce the fertil-
ity of the default BERT tokenizer by extending
the base dictionary with the most common fi-
nancial terms instead of word pieces. One key
factor of this proposal is to introduce multiword
domain-specific terms without affecting the per-
formance of the BERT models. T-MuFin BERT
tokenizer reduces at least 40% of the fertility of
long text sequences. T-MuFin BERT improves
the fine-tuning of a downstream task by approx-
imately 4% compared to a default fine-tuned
model. Hence, by reducing the tokenizer’s fer-
tility, the results of explainable methods are
more user-friendly.

1 Introduction

The vast amount of available textual information
has allowed the development of Natural Language
Processing (NLP) models to accelerate in recent
years. In 2017, the Transformer model was pro-
posed as a big step for NLP models (Vaswani et al.,
2017). The Transformer model uses an encoder-
decoder architecture. The encoder extracts features
from the input and the decoder interprets these fea-
tures to produce the output. The input is a sequence
of numerical vectors that represent the text. These
numerical representations of the text are the em-
beddings. Both blocks take text embeddings as
input and parallelize the processing using a self-
attention mechanism. This mechanism replaces
the sequentially of the existing Recurrent Neural
Networks(RNN) processing at once each single
word-piece and its most related text-pieces. This

parallelization sped up the training of bigger mod-
els with much more data compared to the RNNs.

In 2018, google published BERT (Devlin et al.,
2018). BERT uses the encoder block of the Trans-
former Architecture for pre-training language mod-
els to perform specific eleven NLP tasks like Clas-
sification, Named Entity Recognition (NER), Sen-
timent Analysis (SA), and so on. The input text is
divided into word-pieces or tokens and then passed
to the BERT’s embedding layer, limited to a maxi-
mum of 512 tokens.

The resulting pre-trained models contain a high
text understanding level and can be fine-tuned for
specific tasks and domains. Therefore, this fine-
tuning requires less computational resources and
less data. Training a BERT model with domain-
specific language allows BERT to adapt the gen-
eral BERT model to the target domain. Two ex-
amples of domain adaptation are FinBERT (Araci,
2019) for finance, BioBERT (Lee et al., 2019) for
Biomedicine, and so forth. Is important to mention
that the BERT model used as the pre-trained model
should be in the same language as the domain-
specific training corpus. If is required to work with
more than one language, a multilanguage BERT
version can be used (Google-Research, 2019).

As explained before, BERT is limited to having
up to 512 input tokens. The number of tokens de-
pends on the tokenizer’s capacity to divide the text
into one or several sub-texts. For doing this, BERT
uses WordPiece tokenization, which means that the
biggest unit is the word and one word can generate
one or more tokens. The measure of this capacity is
called tokenizer’s fertility. The authors in Rust et al.
(2020) defines the tokenizer’s fertility as the mea-
sure of the average number of subwords produced
per tokenized word. The fertility of one means
that each word produces a single token. Higher
the fertility, the higher the number of tokens gen-
erated per word. Most of the current BERT-based
models were trained to understand monolingual

94
Proceedings of the Joint Workshop of the 5th Financial Technology and Natural Language Processing (FinNLP) and 

2nd Multimodal AI For Financial Forecasting (Muffin), Macao, August 20, 2023. 



domains (English in our examples) and to perform
NLP tasks based on short input sequences.

As previously stated, multilingual BERT models
can understand several languages, but its drawback
is its higher fertility in comparison with monolin-
gual models, consequently less information can
be fed into the model. For long text sequences,
this can result in choosing which part of the se-
quence should be fed into the network and which
one should be discarded, thus losing information
that could be significant for the desired task.

We propose Term-based Multilingual Financial
BERT or T-MuFin BERT Tokenizer. T-MuFin
BERT not only fine-tunes the BERT model in the
financial domain as FinBERT and similar models,
but also, increases the dictionary size with multi-
word financial terms, reducing the tokenizer’s fer-
tility below one.

T-MuFin BERT tokenizer is based on a multi-
lingual BERT model fine-tuned with a dataset of
annexes of Luxembourgish Annual Accounts in
three languages (French, German, and English). In
contrast with other financial BERT models, we ex-
tract the most frequent financial multi-word terms
for extending the base dictionary. We use a n-gram
terms generation and then we filter and extract the
most frequent financial terms.

Besides to the self-discovered multi-word finan-
cial terms, we add to the dictionary also the finan-
cial terms from the Standardized Accounting Plan
of the European Union 1. This is because there
are many financial terms that are not frequent but
important in this domain.

T-MuFin BERT tokenizer was fine-tuned using
a Masked Model Learning task (MML) and then
tested using a classification task (CL) as the down-
stream task. T-MuFin BERT tokenizer reduces the
average fertility of the default BERT tokenizer by
40-50%. Furthermore, it reduced the number of
truncated sentences for paragraphs to almost zero
in our downstream task.

Another benefit of having tokens at the term level
is to have also explanations at this level. Especially
in finance, models have to explain the reason for
their predictions, promote transparency and adjust
models to reduce any kind of bias. At the sub-
word level, we must weigh the contributions of the
subtokens that make up each term in order to facil-

1Regulation (EC) No 1606/2002 of the Euro-
pean Parliament and of the Council of 19 July
2002. Source: https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32002R1606

itate the understanding for the end user. With our
approach, we get a direct understandable result.

The next steps of our research are aimed at align-
ing numerical representations of domain-specific
terms for a multilingual scenario. Our proposi-
tion can be extended to other domains where is
important to give complete numerical meaning to
multi-word terms and to clarify the explanations of
NLP models such as medicine, law, or science.

2 Related Work

Natural Language Processing (NLP) models help
machines to understand and process human lan-
guage, but machines only understand numbers. In
consequence, the first difficulty was to express the
text in numbers that a machine can understand.
As referred by Khurana et al. (2022), the initial
models like Bag-Of-Words and One-hot-Encoding
were very sparse. Later, models like Word2Vec
(Mikolov et al., 2013) and GloVe (Pennington et
al., 2014) could reduce the sparsity but still, the
context was not considered to give a proper mean-
ing for dealing with ambiguity.

BERT (Devlin et al., 2018) made a big step in
NLP, using the encoder of the Transformer Archi-
tecture and its self-attention mechanism, for paral-
lelizing the processing of the input in contrast to the
existing sequential models like Recurrent Neural
Network (RNN) (Rumelhart et al., 1986), Long-
short Term Memory (LSTM / BiLSTM) (Hochre-
iter and Schmidhuber, 1997; Schuster and Paliwal,
1997) and Gated Recurrent Units (GRU) (Cho et
al., 2014). BERT is a Pre-trained Language Model
(PLM), which means that has a vocabulary, rela-
tions, and some good level of language understand-
ing in its weights. The smaller BERT model con-
tains 12 encoder layers with 110M parameters. It
was trained using Masked Language Model (MLM)
and Next Sentence Prediction (NSP) with a cor-
pus with more than 3.3 billion English words in
four days using 16 TPU chips. In consequence,
we can use the pre-trained model to fine-tune it
for specifics downstream tasks, and it will require
fewer data and a shorter training time. Some of
these NLP downstream tasks are Named Entity
Recognition (NER), Classification Task (CL), Sen-
timent Analysis (SA), Next Sentence Prediction,
Machine Translation, Question Answering, and
Text Summarization.

A tokenizer converts text into a vector of num-
bers before feeding into the model. These numeri-
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cal representations are called embeddings. BERT
comes with its own tokenizer and using a dictio-
nary of known words, replaces each word into one
or several word-pieces or tokens. Is important to
focus on the dictionary of words, because based
on that, the meanings of the words were going to
be defined by the surrounding context (Tripathy
et al., 2021). BERT was originally trained with
English corpus, and there are many other versions
trained for other languages like CamemBERT for
French (Martin et al., 2020), GBERT for German
(Chan et al., 2020), RoBERTa for Spanish (Liu et
al., 2019) and so on. On contrary of these mono-
lingual models, there are also multilingual models
which were trained with 104 different languages
for use in multilingual scenarios.

BERT tokenizers were trained under the word-
Piece paradigm. It means that one word can be com-
posed of several entries in the dictionary and there-
fore, several tokens. Especially for Multilingual
BERT, the average number of generated tokens per
word is higher than in monolingual models. Rust
et al. (2020) defined this ratio as the tokenizer’s
fertility. Higher fertility means more generated to-
kens per text input and could cause less information
provided into a network in long sequences of text.
Multilingual BERT models are useful for using a
single model to perform a specific task for a multi-
language dataset. But the main drawback of this
is the high fertility of the corresponding tokenizer.
BERT models are limited to 512 input tokens, and
this is the reason why only short sentences can
be processed in this model (avoiding using them
together with other models like LSTM).

BERT models can vary also with respect to the
specific domain, to improve its performance for
specific tasks. This domain adaptation is usually
a fine-tuning for the desired task with a domain
corpus. Most of the published and available BERT-
based models work on fine-tuning the weights of
the BERT model itself with the default BERT tok-
enizer dictionary. It means that they do not add new
terms to the default dictionary. In other domains
different from finance, we can find a few works on
extending the BERT’s dictionary with new terms
like Douka et al. (2021), which creates JuriBERT,
a fine-tuned BERT Legal french model which ap-
pends 32,000 new entries to CamemBERT dictio-
nary. Wang et al. (2019) extended the multilingual
dictionary of BERT to reduce the out-of-vocabulary
(OOV) words. They use existing tokens to provide

meaning to the new one-word terms under two
approaches Joint Mapping and Mixture Mapping.
This approach is equivalent to sentence embedding
methods such as SciBERT (Beltagy et al., 2019)
for science and LegalBERT (Chalkidis et al., 2020)
for law. In our case, we train the embeddings of the
multiword terms together with their components to
try to align all the numerical representations.

In the financial domain, there are some fine-
tuned BERT models like FinBERT (Araci, 2019),
which is based on bert-base-uncased2, having a to-
tal of 30,522 entries in the dictionary and trained
for English. FinBERT uses the default BERT tok-
enizer to avoid extending the main dictionary. This
model outperforms the default BERT model in the
financial domain using PhraseBank, a database of
financial news, for predicting the sentiment of the
short text sequence (SA). Despite this improve-
ment, its fertility is the same as the English default
BERT model.

In 2022, FINER-139 by Loukas et al. (2022) was
released, a financial dataset of 1.1 M annotated sen-
tences. These annotations were obtained from com-
pany filings using XBRL tags. These tags are been
using by many countries and over time are going to
be broadly used. This format requires companies to
enrich financial reports with tags that can be read
easily. Most of these tokens are numeric values
associated with financial concepts. They replace
these numeric values with concept-based tokens.
They created SEC-BERT, a fine-tuned BERT model
where they test the new tokens. With SEC-BERT
they showed that fragmented tokens (one word is
composed of several tokens) harm BERT’s perfor-
mance and in comparison with FinBERT, their re-
sults outperform the default BERT and FinBERT
models.

Contrasted with the initial numerical representa-
tion of words like Word2Vec (Mikolov et al., 2013),
where the vector itself represents the meaning of
the specific word, BERT’s Embedding layer is not
enough to represent the meaning of a word. BERT
model process the embeddings in 12 Encoder lay-
ers. Due to BERT’s ability to handle term ambigui-
ties based on its context, the numerical meaning for
each word is defined in the lower Encoder layers.

Thus, BERT uses lower Encoder layers for lan-
guage understanding and the remaining upper lay-
ers for performing the specific NLP downstream
task. As an example, the word "bank", can be inter-

2https://huggingface.co/bert-base-uncased
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preted as "financial institution", "place to sit", or
"place alongside the river". There is no clear limit
to where the language understanding finishes and
the task-related understanding starts. It varies from
term to term along the 512 input tokens and the 12
Encoder layers.

The current state of the art with respect to finan-
cial tokenizers is mostly limited to terms discov-
ered from financial news datasets. Our contribution
is to provide a multi-word dictionary with contex-
tualized embeddings for being used in financial
BERT-based models. Allowing to reduce the tok-
enizer’s multi-language fertility, keeping financial
multi-word terms as a whole without losing perfor-
mance.

As studied in detail by Yang et al. (2023). Other
models than BERT which are having even better
results are derived from the Transformer architec-
tures that take only the decoder part. These models
like GPT-1 and its derivative works such as GPT-
3, ChatGPT, Llama, Bard, and many others, are
mainly closed sources and require a huge compu-
tational architecture to train and fine-tune. Some
open-source GPT-derived, and not heavy, models
like Alpaca or Vicuna are available only for re-
search purposes, not for commercial, which limits
their application.

3 Dataset

The data used in this study was obtained from
the Luxembourg Business Registers (LBR) and
is publicly available for download 3. The LBR
Annual Accounts consist of Financial Statements,
which can contain only Balance Sheets or also
Profit and Loss Statements, and Legal Annexes or
Appendixes. These annexes use natural language
to provide additional information to the Financial
Statements. Although the Financial Statements
must follow a specific template, there is no set lay-
out for the legal annexes 4. We have annexes that
have a single page or even more than 15 pages.

For the present work, our dataset only considers
the last presented Annual Account for a company
that can be active or inactive. In this case, we have
74,539 annual accounts that were processed using
OCR tools for scanned documents and HTML con-
tent extraction for PDF-readable documents. Most
of the documents’ pages in the LBR dataset are in

3https://www.lbr.lu
4https://guichet.public.lu/en/entreprises/gestion-

juridique-comptabilite/comptable/enregistrement/methodes-
etablissement-comptes-annuels.html

Language Documents (%) Pages (%)
French 66,114 88.7 426,610 84.4
German 4,924 6.6 33,966 6.7
English 3,501 4.7 45,112 8.9

Total 74,539 100 505,688 100

Table 1: Dataset distribution per language.

French (≈ 84%) and the rest are in German (≈ 7%)
and English (≈ 9%), as shown in Table 1.

4 Proposition

Our main goal is to create a dictionary of finan-
cial frequent terms that will have associated vector
embeddings trained with a context of words from
the Annexes of the Annual Accounts. This will
allow us to disambiguate the terms to a finance
context and feed the models with more information
without increasing the size of the input layer or
reducing their performance in comparison with a
base model.

4.1 Dictionary extension and embedding’s
training

We are using bert-base-multilingual-uncased 5 as
the base model and tokenizer (with a correspond-
ing dictionary D). If a word is not part of the
dictionary D the tokenizer splits the word into a
set of sub-words and/or characters, in consequence,
tokenizing a word can result in a set of one or
more tokens. For this reason, we are extending
the base dictionary with domain-specific terms and
then fine-tuning the model to calculate the vector
embeddings. For the fine-tuning, we use Masked
Language Model (MLM).

The terms to be added to the dictionary are the
result of performing the following steps.

1. Candidates extraction: We are using multi-
word terms for creating the tokenizer’s dic-
tionary. Hereby, the list of candidates is the
result of the text extraction in the form of n-
grams. We defined empirically n=5, which
covers most of the financial terms.

2. Candidates cleaning: For each term, we per-
form a set of cleaning tasks: (A) removing
enumerators (like a., note 1.3, iv., etc); (B) re-
moving noisy characters (;-,); (C) using regu-
lar expressions identifying and replacing dates

5https://huggingface.co/bert-base-multilingual-uncased
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and numbers with special [DATE] and [NUM-
BER] tags respectively; (D) and replace apos-
trophes with blank spaces.

3. Top terms selection: The cleaned candidates’
list is sorted by frequency and then we select
the top τ terms by language. This list will be
our base list.

4. Financial statements labeled terms: The tree
structure of a financial report like a balance
sheet or profit and loss statements are full of
multi-word terms that have a semantic relation
with their surrounding neighbors in the three.
For example "convertible loans" with "non
convertible loans" (sibling) and "creditors"
(parent). This list is appended in the base list.

5. Terms decomposition: Each term in the base
list is decomposed and the main subterms are
added to the base list. For instance, if the term
is "subscribed capital amount", the extracted
decomposed terms are "subscribed capital",
"capital amount", "subscribed", "capital" and
"amount". The main terms and their compo-
nents are going to be inserted into our base
list υ.

For example, with T-MuFin BERT tokenizer, a
financial multi-word term like "capital investment
subsidies" will be considered as a single token be-
cause it is a frequent term. Moreover, this term
is added to the dictionary as a whole, also we are
adding its term components. For instance, for the
previous example, the tokenizer also going to gener-
ate the following tokens: "capital investment subsi-
dies", "capital investment", "investment subsidies",
"capital", "investment" and "subsidies". During
training, all those tokens are going to be numeri-
cally related to each other.

Only the terms t in υ that are not part of the
dictionary D are included in the dictionary D
(tnew ← t ∈ υ & t /∈ υ). The increment in
the dictionary size causes a resizing of the embed-
ding layer in the base BERT model before training.
For the fine-tuning of the default BERT, we use as
well the MLM task.

The training and testing datasets consist in sen-
tences that have at least one tnew. For each sen-
tence, the same Candidates cleaning step that we
use for obtaining the most frequent terms are used.
With the cleaned sentence, we identify tnew and we

Hyper-parameter Values
σ: dataset size 10, 25, 50, 75 and 100%
ϕ: frozen layers 2, 4, 6, 8 and 10
λ: learning rate 1e-5, 2e-5, 3e-5 and 4e-5
δ: dropout 10s, 15 and 20%
κ: context size 2,3,4 and 5

Table 2: Testing values for each hyper-parameter for
training T-MuFin embeddings.

extract the context surrounding it. The context con-
sists of the previous κ words and the following κ
words to tnew (κ: context size). If κ=2, we take two
words previous to the frequent term and two words
posterior to the new term (if exists). Finally, we
replace 20% of context’s tokens with the [MASK]
token, considering that the masked word should
have more than five characters (to avoid connec-
tors, negations and so on to be masked) and do not
mask tokens that are part of a word. If a term con-
tains n words, we also append to the training and
testing dataset each component of tnew tokenized.
This resulting dataset is shuffled and we use 70 %
of the samples for training and the remaining 30%
for testing. Additionally, for training the financial
statements labeled terms, we add the terms and the
training context are the siblings and parents until
the first level, this will allow us to create a strong
relationship between terms in the same financial
category.

We test different hyper-parameters that lead us to
the best-performed model. These hyper-parameters
are κ: context size; λ: optimizer’s learning rate;
δ: BERT’s dropout percentage; σ: dataset size
for (a) extracting the frequent terms and (b) for
training the MLM model; and ϕ: number of BERT
encoder layers to freeze. Table 2 shows the differ-
ent test case values per each hyperparameter. We
use AdamW as the optimizer.

Freezing from 2 to 12 encoder BERT layers of
the BERT model during fine-tuning allows us to
reduce the memory used in the GPU and make the
model put the effort into the embeddings’ training
and also the upper encoder BERT layers (remaining
layers and the final dense layer). We are going to try
different numbers of layers to freeze in order to get
the best results and take advantage of the memory
in the GPU, increasing the batch size. Figure 1
shows the layers to freeze and the corresponding
layers to train in the MLM task.
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Figure 1: (a) shows the BERT model and tokenizer. The layers to freeze are up to 10 first encoder layers, for each
test case, the remaining layers will be training layers; (b) shows the model to test the performance of T-MuFin
BERT tokenizer which includes a final dense layer for the specific classification task, transferring the first unfreezed
layers from the MLM model

4.2 Classification as Downstream task
To test the performance of T-MuFin BERT tok-
enizer, we use a Classification Task (CL) as the
downstream task. The model will predict nine fi-
nancial categories based on a text paragraph. For
doing this, from each Annual Account Annex, we
extracted the last-level subtitles and their corre-
sponding paragraphs. Then we selected the first
most frequent subtitles and manually assigned them
one of nine financial categories. These categories
are (1) Asset, (2) Capital, (3) Deposit, (4) Expenses,
(5) Investment, (6) Obligations, (7) Personal, (8)
Receivables, and (9) Taxes. The training and test-
ing datasets are obtained from subtitles that have
an assigned financial category and also have para-
graphs with at least 20 words. The evaluation
dataset is composed of 10,000 documents.

The base model is a bert-base-multilingual-
uncased BertModel with its own default tokenizer.
For comparing our tokenizers with respect to the
base model we copy the weights from T-MuFin
BERT tokenizer (Embedding and unfreezed en-
coder layers) and train in the Classification task
for 5 epochs like the base model. All the hyper-
parameters are the same for the base model and
T-MuFin-based models.

For these models, we only add a classification
layer after BERT model. We take only the first hid-
den state ([CLS]) of the BERT model as input for
our dropout and classification layer (Dense Layer).
The dropout percentage of the classification layer

Hyper-parameter Value
σ: dataset size 34K working samples%
ϕ: frozen layers embeddings and first 10
λ: learning rate 1e-5
δ: dropout 10%

Table 3: Hyper-parameter for downstream task (CL)
evaluation.

and the BERT dropout is the same (δ). We are us-
ing CrossEntropyLoss as our loss function, using
the class weights to deal with unbalanced datasets.

Table 3 shows the hyperparameters used for this
model. Using AdamW as the optimizer and a batch
size of 30.

Equation 1 evaluates the tokenizers’ fertility ψ,
which is the average number of tokens generated
per word. Additionally, as shown in Equation 2, we
are going to measure the proportion of samples that
were truncated because of the 510 tokens limitation
(Π), considering reducing two special tokens for
[CLS] and [SEP].

ψ =

n∑
i=0

(Numbertokens/Numberwords)

n
(1)

Π =

n∑
i=0

{
1 , Numbertokens > 510

0 , otherwise.
(2)

Moreover, in the results section, we show other
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Dataset Time F1 Score F1 Score
size (σ) (hr.) Training Testing

10 6.78 85.62% 77.65%
25 11.90 85.64% 76.03%
50 18.37 86.30% 78.19%
75 22.52 87.24% 79.59%

Table 4: Impact of dataset size in tokenizer’s training.

Frozen F1 Score F1 Score
Layer (ϕ) Training Testing

2 85.63% 84.79 %
4 85.78% 84.72 %
6 86.59% 85.07 %
8 87.37% 84.95 %
10 86.41% 85.55%

Table 5: Evaluation of the number of frozen layers.

statistical measures like the average number of to-
kens per document, the average number of words
per document, and the average number of tokens
per word.

To evaluate the explainability results with the
default BERT tokenizer and T-MuFin BERT to-
kenizer, we use the fine-tuned models with Cap-
tum.ai 6, which analyze the most important input
features that the model takes into consideration for
making a single prediction.

5 Experiment and Results

The subsection 5.1 shows the results for training
the tokenizer. The best-performed tokenizer has
been selected to be evaluated in the CL task (sub-
section 5.1).

5.1 Tokenizer: Embedding’s training
In this section, we train the tokenizer with different
hyper-parameters such as κ, λ, δ, and ϕ.

5.1.1 Dataset size selection (σ)
Table 4 shows the impact of the different dataset
sizes in the overall F1 Score, having: κ = 2, λ =
5e− 5 and δ = 10%.

We decided to train with only 10% of the data
based on the results in Table 4. This is because
the impact on the performance is not high and
the time required for tokenizer’s training is sig-
nificantly lower.

Once defined the dataset size σ for the tok-
enizer’s training, we execute several test cases with

6https://captum.ai/

Learning rate F1 Score F1 Score
Layer (λ) Training Testing

1e-5 84.86 % 83.72%
2e-5 84.52% 83.16%
3e-5 83.66% 82.40%
4e-5 83.53% 82.17%
5e-5 83.54% 82.25%

Table 6: Evaluation of learning rate λ.

Dropout F1 Score F1 Score
Layer (ϕ) Training Testing

10 85.37% 80.80%
15 85.22% 80.72%
20 85.40% 80.40%

Table 7: Evaluation of dropout percentage.

different hyper-parameters: ϕ, λ, δ, and κ. When a
hyper-parameter is being evaluated the default val-
ues for the others are ϕ = 0, λ = 5e− 5, δ = 10%,
κ = 2.

Table 6 shows that the best learning rate λ is
1e-5, with a F1 Score of 83.72%. We also tested
others lowers and biggers learning rates whose per-
formance were lower.

Table 7 shows that the best dropout percentage
δ is 10%, with a F1 Score of 80.80%. Also, we
test bigger values like 20% and 30% but the perfor-
mance drops drastically.

Table 8 shows that the best context size is κ = 5,
with a F1 Score of 85.05%.

As shown in Table 9 with the best combination
of these hyper-parameters, we got the following
results in 5 epochs. We use this model for fine-
tuning the BertModel for the selected downstream
task.

5.2 Tokenizer’s Performance evaluation
5.2.1 Establishing CL baseline
For the evaluation of T-MuFin BERT tokenizer,
first, we evaluate the performance of BERT base-
line model and the parameters specified in Table 3.
In Table 10 is shown the performance F1 score for
training, testing and also the default fertility and the
proportion of samples that did not fit in the model.

As our Classification task is working only with
small text to determine if the dictionary extension
of the tokenizer affects the downstream tasks, the
effect on the tokenizer’s fertility is not easy to ap-
preciate. Hence, we use T-MuFin tokenizer to pro-
cess 1,000 Annual Accounts’ Annexes. As we can

100



Context Size F1 Score F1 Score
Layer (κ) Training Testing

2 83.54% 82.25%
3 85.10% 84.05%
4 84.85% 83.83%
5 85.99% 85.05%

Table 8: Evaluation of context size κ.

F1 Score F1 Score
Training Testing

89.87% 89.08%

Table 9: Results for training with the best hyper-
parameters

see in Table 11, on average for feeding a BERT
model with complete annexes of Luxembourgish
Annual Accounts, we require on average 867 to-
kens.

5.2.2 T-MuFin BERT Tokenizer results
With the best performed T-MuFin BERT tokenizer
from Table 9 and the same hyper-parameters as
the baseline in our downstream task, we got an
increment of the F1 score for testing from 94.97%
to 98.80% as shown in Table 12.

As shown in Table 12, T-MuFin BERT tokenizer
could reduce from 1.2592 to 0.8906 (≈ 41%) the
fertility ψ with respect to the default BERT tok-
enizer and reduces almost to zero (0.2%) the trun-
cated sentences Π.

As shown in Table 13, we can see that the num-
ber of tokens per word was reduced on average at
≈ 1.0, this is mainly because a big group of multi-
term tokens is reducing the average of the words
that produce more than one token. The average
fertility of the document was improved ≈ 50%.

Figure 2 shows the difference in terms of explain-
able NLP with T-MuFin tokenizer, which makes
more easy to understand for the final user and also
allows the NLP model to focus on the term as a
whole.

6 Discussion

Most of the current NLP projects using BERT-
based models are related to domain adaptation
while keeping the same default dictionary. How-
ever, researchers who are increasing the dictio-
nary are only considering single-word terms. T-
MuFin increases its dictionary with multiword
terms in finance without affecting the performance

F1 Score F1 Score Fertility % Truncated
Training Testing (ψ) samples (Π)

95.08% 94.97% 1.2592 0.79

Table 10: Performance of BERT BaseLine

Metric Value
Avg. Number of tokens per document 1,182
Avg. Number of words per document 867
Avg. Number of tokens per word 1.37
Avg. fertility per document (ψ) 0.126

Table 11: BaseLine for fertility ratios

F1 Score F1 Score Fertility % Truncated
Training Testing (ψ) samples (Π)

98.20% 98.80% 0.8906 0.2

Table 12: Results for training with T-MuFin BERT tok-
enizer

of downstream tasks and even increasing them due
to the self-nature of the fine-tuning. Adding these
domain-specific terms always reduces the fertility
of the tokenizer. For T-MuFin, this fertility goes
below one, which means that we can feed more
information into the BERT-based models.

In our proposed terms discovery method, the dis-
covery of new terms is not only based on including
frequent multi-word terms in the new dictionary but
also on including their corresponding components
and training them together.

Using T-MuFin BERT tokenizer can help ex-
plainable models produce more understandable re-
sults. This is because financial terms are no longer
divided into word-pieces, which can make it more
difficult for the user to process at first sight.

This proposed method for terms discovery and
training can be applied to any other domain like
Medicine, Law, or Science; where most of the mul-
tiword terms tend to be understood as a whole.

Is important to mention that in the lasts weeks,
the GPT-based model is reaching very good per-
formance for NLP tasks, but unlike BERT-based
models, those models can not be used for commer-
cial purposes unless the service is purchased.

7 Conclusion

By training the BERT embeddings with finan-
cial data and extending the dictionary with the
most common multi-word financial terms, T-MuFin
BERT tokenizer can increase the information feed
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Figure 2: Comparison between NLP explainability using the default BERT multilingual tokenizer for French,
German, and English using the Classification fine-tuned model (left), and the fine-tuned model using T-MuFin
BERT tokenizer (right).

Table 13: BaseLine for fertility ratios

Metric Value Improvement
Avg. number of tokens

per document 868 26%
Avg. number of words

per document 867 -
Avg. number of tokens

per word 1.02 34%
Avg. fertility

per document (ψ) 0.065 48.41%

into a BERT model. When we freeze the first 10
layers of BERT to calculate the weights of the em-
beddings, we force the model to disambiguate the
terms at the beginning of the model, in the Embed-
dings layers. Later these weights are transferred
to a default BERT and used for any downstream
task. With T-MuFin tokenizer, we could increase
the F1 score from 94.97% to 98.80% with respect
to the baseline of the downstream task. This means
that we are not losing performance with the newly
trained multiword terms; on the contrary, we in-
crease it.

On the other hand, we reduced between ≈ 40%
and ≈ 50% of the fertility of the default BERT tok-
enizer for short and long text sentences respectively.
We could also reduce almost to zero the truncation
of long paragraphs and facilitate explainable AI.

For future steps, we plan to align the numer-
ical representations of the terms along different
languages. This means that the same term in differ-
ent languages should have very similar numerical
representation, making it easier to include more
languages in the NLP models.
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