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Preface 
Welcome to FinNLP, a forum dedicated to fostering international collaboration and 
knowledge-sharing in the application of Natural Language Processing (NLP) within the 
dynamic domain of FinTech. As we gather in this workshop, our aim is to explore the 
intersection of FinTech and NLP, identifying challenging problems, shaping future research 
directions, and expanding the horizons of this interdisciplinary field. The 5th FinNLP is a 
joint workshop with the 2nd workshop on Multimodal AI For Financial Forecasting 
(Muffin).  
 
In the current year, FinNLP-Muffin continues to be enriched by the participants, who bring 
forth novel ideas and share their latest findings on pertinent issues. Once again, we are 
thrilled to collaborate with 3DS Outscale (formerly Fortia) in organizing the shared tasks 
in FinNLP, with a focus on Multi-Lingual ESG Issue Identification (ML-ESG). 
 
This workshop would not have been possible without the contributions of numerous 
individuals, and we extend our heartfelt gratitude to each of them. Dr. Juyeon Kang, who 
led a dedicated team in successfully orchestrating the shared task. Additionally, we are 
indebted to all the program committee members who invested substantial time and 
expertise in providing insightful comments on the submissions and guiding the selection 
process for FinNLP-Muffin-2023. 
 
Last but not least, we extend our sincere thanks to the project JPNP20006, commissioned 
by the New Energy and Industrial Technology Development Organization (NEDO), for 
their invaluable financial support. Their partnership has been instrumental in enabling us 
to realize the goals of FinNLP-Muffin and advance research in this domain. 
 
We hope that FinNLP-Muffin will continue to serve as a catalyst for groundbreaking 
research and meaningful connections, propelling the realms of FinTech and NLP towards 
new heights of innovation and excellence. 
 
 
 
Chung-Chi Chen, Puneet Mathur, Ramit Sawhney, Hiroya Takamura 
FinNLP-Muffin 2023 Organizers 
August 2023 
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Model-Agnostic Meta-Learning for Natural Language Understanding
Tasks in Finance

Bixing Yan∗ † , Shaoling Chen∗, Yuxuan He∗, Zhihan Li∗
Center for Data Science, New Your University, New York, NY 10012

{by783, sc6995, yh2857, zl2516}@nyu.edu

Abstract

Natural language understanding(NLU) is chal-
lenging for finance due to the lack of annotated
data and the specialized language in that do-
main. As a result, researchers have proposed
to use pre-trained language model and multi-
task learning to learn robust representations.
However, aggressive fine-tuning often causes
over-fitting and multi-task learning may favor
tasks with significantly larger amounts data,
etc. To address these problems, in this paper,
we investigate model-agnostic meta-learning
algorithm(MAML) in low-resource financial
NLU tasks. Our contribution includes: 1. we
explore the performance of MAML method
with multiple types of tasks: GLUE datasets,
SNLI, Sci-Tail and Financial PhraseBank; 2.
we study the performance of MAML method
with multiple single-type tasks: a real scenario
stock price prediction problem with twitter text
data. Our models achieve the state-of-the-art
performance according to the experimental re-
sults, which demonstrate that our method can
adapt fast and well to low-resource situations.

1 Introduction

It has been a trading practice tradition to utilize
textual data to improve modeling of the financial
market dynamics(Xing et al., 2018). Nowadays
financial operators have access to a growing vol-
ume of information, provided by financial reports,
news articles, press releases, etc. The enrichment
of text sources has also lead to diverse types of
unstructured and structured data, for example, so-
cial media websites like Twitter, Facebook, etc. are
generating rich text content, which can be used
as a supplement to support prediction. As a re-
sult, there have been increasing attempts to try to
utilize deep learning methods on solving financial
tasks, including financial opinion mining and ques-

*The authors contributed equally and are presented in
alphabetical order.

†Bixing Yan is the corresponding author.

tion answering (Maia et al., 2018), financial senti-
ment analysis(Araci, 2019), financial named entity
recognition(Wang et al., 2014) and other natural
language understanding(NLU) tasks.

However, traditional deep neural network based
methods faces several drawbacks. First, they of-
ten require vast amount of annotated data which
requires high manual labeling cost. Second, lan-
guage model that trained on Wikitext or other gen-
eral dataset may be ineffective in solving financial
tasks (Araci, 2019) because text data in financial
field often exhibits a different pattern compare to
text data collected in other domain. Thus, aiming
at solving this issue, researchers and investors in fi-
nancial NLU field has shifted their attention to use
transfer learning technique, i.e. to learn a general
representation of financial text and adapt it to other
new tasks.

Researchers have presented several approaches
for transfer learning in Finance NLU field. One
of the approach is FinBERT(Araci, 2019), which
exploits the powerful pre-trained language model,
BERT(Devlin et al., 2019) fine-tunes it using texts
in financial field then uses it for new tasks. Fur-
ther, another approach is to apply multi-task learn-
ing to representation learning, where (Liu et al.,
2019) proved that BERT model could be improved
with multi-task learning strategy as the MT-DNN
model. It has achieved descent results on GLUE
datasets. However, (Dou et al., 2019) pointed out
that multi-task learning may prefer tasks with sig-
nificantly larger datasets than others and further
suggested meta-learning algorithms for multiple
types of low resource language understanding tasks.
Meta-learning algorithms try to learn a meta-policy
for updating model parameters or a good initial-
ization that can be useful for fine-tuning on vari-
ous tasks with minimal training data, which makes
them promising alternatives to multi-task learn-
ing. Meta-learning has been proved useful in few-
shot learning(Finn et al., 2017),single-type multi-
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tasks learning. Indeed, (Gu et al., 2018) extends
meta-learning algorithm for low-resource neural
machine translation, framing low-resource trans-
lation as a meta-learning problem and adapting
to low-resource languages based on multilingual
high-resource language tasks.

Inspired by these work, in this paper, we in-
vestigate the applications of meta-learning algo-
rithms, specifically the Model-Agnostic Meta-
Learning(MAML) algorithm(Finn et al., 2017), to
try to solve the fundamental representation learning
issue in financial text data.

The main contribution of this paper is two-fold:

• We study the performance of MAML method
with multiple types of tasks. We combine the
MAML algorithm with MT-DNN model, train
the model using four high-resource datasets,
evaluate it on other low-resource datasets, and
then adapt the model to Financial PhraseBank,
a financial sentiment analysis dataset, where
we achieve the state-of-the-art. Our experi-
ments also justify the superior property in fast
adaptation and over-fitting avoidance of the
MAML model.

• We study the performance of MAML method
with multiple tasks in single type. We de-
velop a few-shot learning method for the
task of stock price movement prediction with
news texts, and propose a competitive MAML-
BERT model for stock price prediction.

The rest of the paper is structured as follows:
Section 2 briefly describes the relevant literature
in multi-task learning, meta-learning and financial
natural language understanding tasks. Then, Sec-
tion 3 introduces the methods we use: BERT model
and MAML algorithm. In Section 4, we present
multiple experiments being conducted, including
datasets, implementations and their results. We con-
clude with Section 5 and discuss the future work in
Section 6.

2 Related Work

In this section, we introduce the relevant literature
in multi-task learning, meta-learning and two finan-
cial natural language understanding tasks including
financial sentiment analysis and stock price predic-
tion.

2.1 Multi-Task Learning

Multi-task learning (MTL) is a sub-field of ma-
chine learning, which exploits commonalities and
differences across tasks and solves multiple learn-
ing tasks at the same time. Biologically, we often
apply the knowledge we have acquired in related
tasks to learning new tasks. For example, a baby
first learns to recognize faces and can then recog-
nize other objects by applying this knowledge. Sim-
ilarly, multi-task learning can result in improved
learning efficiency and prediction accuracy for the
task-specific models, compared to training the mod-
els separately (Baxter, 2000).

Multi-task learning penalizes all complexity uni-
formly, and as a result, regularization induced by
requiring an algorithm to perform well on a related
task can be superior to regularization that prevents
over-fitting. One situation where MTL may help is
if the tasks share significant commonalities and are
generally slightly under sampled[ (Hajiramezanali
et al., 2018)].

In the context of Deep Learning, it’s the most
commonly approach for multi-task learning to use
hard parameter sharing, generally applied by shar-
ing the hidden layers between all tasks, while keep-
ing task-specific output layers. MT-DNN model is
a one of the typical hard parameter sharing applica-
tion in NLU tasks(Liu et al., 2019).

2.2 Meta Learning

Meta-learning, or learn-to-learn, has recently at-
tracted much attention in the machine learning com-
munity (Lake et al., 2015). Basically the goal of
meta-learning is to train a learner that is able to fast
adapt to new task with limited training data.

There are three common approaches to
meta-learning: metric-based, model-based, and
optimization-based.

Metric-based Metric-based meta-learning is sim-
ilar to nearest neighbors algorithm and kernel den-
sity estimation. The model predicts a probability
y over a set of known labels by a weighted sum of
labels of support set samples. The weight is gener-
ated by a kernel function kθ, which measures the
similarity between two data samples.

Pθ(y|x, S) =
∑

(xi,yi)∈S

kθ(x, xi)yi

To train a successful metric-based meta-learning
model requires researchers to specify a good kernel
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that could learn the distance function over objects
well. However, kernel functions are highly depends
on specific problem, the inputs and the representa-
tion space of tasks.

Most of the frequently-used metric-based mod-
els learn embedding vectors of input data explicitly
and use them to design proper kernel functions,
see Convolutional Siamese Neural Network(Koch
et al.), Relation Network (Sung et al., 2018), etc.

Model-based Model-based meta-learning model
requires a model designed for fast learning. By
modifying the internal model architecture or adding
an additional meta-learner model on top of original
model, it could achieve the fast learning goal, i.e. to
update its parameters rapidly within a few training
steps.

The representative works in this category include
Memory-Augmented Neural Network(Santoro
et al., 2016), Meta Network(Munkhdalai and Yu,
2017), etc.

Optimization-based Optimization-based meta-
learning algorithms aim to achieve the fast adap-
tation goal by adjusting the optimization algo-
rithms. As we all know, deep learning models learn
through back-propagation of gradients. Yet, since
the gradient-based optimization does not work well
on small number of training samples and won’t
converge within a small number of optimization
steps, a model is designed to modify the gradient
based optimization algorithm.

The most popular optimization-based meta-
learning algorithm is model-agnostic meta-
learning(MAML), which is also what we mainly
aim to investigate in this paper. (Finn et al., 2017)
achieved state-of-the-art performance by directly
optimizing the gradient towards a good parameter
initialization for easy fine-tuning on low resource
scenarios without introducing any additional archi-
tectures or parameters.

Figure 1 visually illustrates the differences be-
tween classical multi-task learning and meta multi-
task learning. The classical multi-task learning
tends to get to a point where the current gradients
from different tasks are balanced, which may still
result in over-fitting and tend to favor tasks with
significantly larger amounts of data than others,
while meta-learning aims to minimize the future
loss of different task respectively.

2.3 Financial NLU Applications

2.3.1 Financial Sentiment Analysis
General sentiment analysis aims to extract people’s
opinions or tendency from language. Yet there is a
key specialty in financial sentiment analysis that the
purpose of financial sentiment analysis is usually
targeted towards the market. Indeed, it usually aims
to analyze the text data to facilitate understanding
of how the markets will react with the information
presented in the text.

Most popular methods in solving sentiment anal-
ysis tasks include RNN, LSTM network models.
Extending upon these models, (Maia et al., 2018)
adds a text simplification layer and then applies it
to LSTM network. Despite the success in general
sentiment analysis, there is still a huge gap to uti-
lize the neural networks to their fullest potential in
solving tasks in finance domain due to the lack of
high quality annotated datasets in the domain.

(Araci, 2019) has tackled this issue with Fin-
BERT model. As we have discussed before, it es-
sentially is to initialize the model with pre-trained
values and fine-tuning the model with respect to
the classification task. In FinBERT, the author used
Reuters data to pre-training the BERT model and
achieved promising results on Financial Phrase-
Bank.

We address this problem from a different per-
spective. We utilize the meta learning model by
training it with multiple NLU tasks to facilitate
learning of a more robust and generalized represen-
tation. Then fitting the model to Financial Phrase-
Bank dataset so that the model can quickly adapted
on learning the sentimental relations in the text. We
have compared our results against their reported
accuracy.

2.3.2 Stock Price Prediction
Stock price prediction has long attracted re-
searchers and investors. In financial natural lan-
guage processing field, the two primary content re-
sources for stock market prediction are public news
and social media data (mainly from twitter). Classi-
cal research relies primarily on feature engineering
but their results tends to be highly volatile. With
the prevalence of deep learning(Le and Mikolov),
event driven approaches were studied and models
with LSTM, RNN become dominant. More re-
cently, (Hu et al., 2019) proposed a novel method
to feed news sequence directly from text with hi-
erarchical attention mechanisms for stock trend
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Figure 1: The illustrative comparisons between representations learned by (a) classical multi-task learning and (b)
meta multi-task learning.

prediction. Further, language model such as BERT
has also inspired researchers with development of
new models.

However, stock price prediction is widely con-
sidered difficult due to three factors: high mar-
ket stochasticity, chaotic market information and
temporally-dependent prediction. Stock prices
are not influenced solely by news information or
tweeter information. Other factors influencing the
stock price are not directly observable or measur-
able. Thus the traditional prediction are mainly
resulting in a random-walk pattern(Malkiel, 1996).

In order to tackle the temporally-dependent pre-
diction issue, researchers choose to frame the data
to fit for a time series problem. In other word, they
have to incorporate the temporal dependency be-
tween stock prices movements in to the model. For
example, when a company experienced some good
news on day d1, its stock price will be slowly af-
fected and thus will have an upward trend pattern
in the following days until dn. Similarly, when
a company suffered from some scandal, its stock
price will needs time to absorb the affect of the
scandal in the following n days.

Yet the time series model explained above did
not address the chaotic market information issue.
Different stock may correlated in different level
with text data. Some stock may suffer from ineffi-
cient data issue. Transfer learning provides a viable
way to alleviate this issue by using meta-learning.
Previously, Zhaojiang has used MAML in tackling
a similar issue: use text data from Chinese Weibo
to predict sales for different company(Lin et al.,

2019). This strategy used non-parametric model to
leverage historical information of other brands, and
used them as prior knowledge and thereby allows
the model for fast adaptability.

In this paper, we are going to adopt the method-
ology of MAML to test the effectiveness of MAML
on stock price prediction task.

3 Method

In this section, we present the main methods used:
pre-trained Language Model of BERT and Model-
Agnostic Meta-Learning algorithm, and how we
combine them.

3.1 Pre-trained Language Model: BERT

We use Bidirectional Encoder Representations
from Transformers (BERT)(Devlin et al., 2019) as
our pre-trained model, which will be shared across
all the tasks.

BERT is first trained on unlabelled text, includ-
ing Brown Corpus and English Wikipedia which
has more than 2.5 billions of words. Fine-tuned
on downstream nature language processing jobs,
BERT has obtained state-of-art results on 11 differ-
ent tasks, such as text classification, named entity
recognition, sentiment analysis and question an-
swering. Unlike ELMo which predicts the next
word of an ordered sequence of tokens, BERT is
trained on the entire sentence by randomly masking
15% of the set of words. Therefore, instead of learn-
ing the context based on the previous or next word,
it can learn the representation of words through all
words in the sentence simultaneously. With trans-
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former and bi-directional structure implemented,
BERT helps with disambiguation of polysemous
words and homonyms by focusing attention on a
specific token.

BERT has two versions: BERT-Base, with 12
encoder layers, hidden size of 768, 12 multi-head
attention heads and 110M parameters in total, and
BERT-Large, with 24 encoder layers, hidden size
of 1024, 16 multi-head attention heads and 340M
parameters. Considering about the computation
resources, we only use BERT-Base in our experi-
ments.

3.2 Algorithm: Model-Agnostic
Meta-Learning

The basic idea of MAML(Finn et al., 2017) and
its variants is to use a set of source tasks to find
the initialization of parameters, and by using that
parameters, it would require only a small number
of training examples to learn a target task.

Given a set of tasks {T1, ..., Tk} drawn from a
distribution of p(T ), which consist of a training
set train(T ) and a testing set test(T ), consider a
model represented by a parameterized function fθ
with parameters θ.

When adapting to new tasks Ti, we can update
the model’s parameter θ to θ′i using one or more
gradient update(We use one gradient update here
to simplify the case, but usually real applications
use multiple gradient updates):

θ′i = θ − α∇θLTi(f(θ))

This is the inner loop update, where LTi is the
loss function for Ti.

To achieve a good generalization across various
tasks, we aim to optimize the meta-objective, which
is as follows:

min
θ

∑
Ti∼p(T )

LTi(f(θ′))

=
∑

Ti∼p(T )

LTi(f(θ − α∇θLTi(f(θ))))

We perform the meta-optimization over the
model parameters θ, with the objective computed
using the updated model parameters θ. As a result,
a few gradient steps on a new task will produce
maximum influence on that task.

So for the outer loop, model parameters θ are
updated as follows:

θ ← θ − β∇θ

∑
Ti∼p(T )

LTi(f(θ))

where β is the meta step size. The full algorithm is
outlined in Algorithm 1, adapted from (Finn et al.,
2017).

3.3 Proposed Framework

The architecture of the MAML model is similar
to MT-DNN(Liu et al., 2019). A word sequence
(either a sentence or a pair of sentences packed to-
gether) is firstly input to BERT, which is the shared
semantic representation trained by our meta multi-
task objectives. On the top are the task-specific
layers, where for each task, task-specific represen-
tations are generated by task-specific layers. And
after that, there are some necessary operations for
classification, relevance ranking, etc.

Generally, there are three steps in our method:
the pre-training step as in BERT, the meta-learning
step and fine-tuning step. In meta multi-task learn-
ing step, we use stochastic gradient descent (SGD)
for inner loop update and Adamax optimizer for
outer loop adaptation. In each epoch, a batch of
tasks is selected, and the model is updated accord-
ing to the sum of all multi-task objectives over the
tasks.

4 Experiments

In this section, we discuss two specific instantia-
tions of MAML for multi-task learning settings.
One is multi-types of NLU tasks and another is
multiple NLU tasks in single type, which differ in
the loss function’s form and in how data is gener-
ated by the tasks and presented to the model, but
the same basic adaptation mechanism are applied
in both cases.

4.1 Multi-Types NLU Tasks

In this part, we study the performance of MAML
model with multiple types of tasks.

4.1.1 Datasets
We briefly describes the GLUE, SNLI, and SciTail
datasets, as summarized in Table 1.

GLUE The General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018)
is a tool for evaluating and analyzing the perfor-
mance of natural language understanding models
across nine NLU tasks: Single-Sentence Tasks,
Similarity and Paraphrase Tasks and Inference
Tasks.

Four high-resource datasets(MNLI, QQP, SST,
QNLI) are used as training datasets, and four other
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Algorithm 1: Model-Agnostic Meta-Learning(MAML)
Require: p(T ):distribution over tasks
Require: α,β: step size hyperparameters
randomly initialize θ;
while not done do

Sample batch of tasks Ti ∼ p(T );
forall Ti do

Evaluate ∇θLTi(f(θ)) with respect to K examples;
Compute adapted parameters with gradient descent: θ′i = θ − α∇θLTi(f(θ));

end
Update θ ← θ − β∇θ

∑
Ti∼p(T ) LTi(f(θ));

end

low-resource datasets(CoLA, MRPC, STS-B, RTE)
are used as testing datasets, according to (Dou et al.,
2019). In our experiments we do not train or test
models on the WNLI dataset because of previous
work (Devlin et al., 2019).

SNLI The Stanford Natural Language Inference
dataset (Bowman et al., 2015) is a naturalistic cor-
pus of 570k sentence pairs labeled for entailment,
contradiction, and independence.

We use this dataset to examine the algorithm’s
fast adaptation ability in this study.

Sci-Tail This is a Textual Entailment Dataset
from Science Question Answering (Khot et al.).
Hypotheses from science questions are created
while the corresponding answer candidates and
premises from relevant web sentences are retrieved
from a large corpus. These linguistically challeng-
ing sentences, combined with the high lexical simi-
larity of premise and hypothesis for both entailed
and non-entailed pairs, makes the new entailment
task particularly difficult.

We use this dataset examine the algorithm’s fast
adaptation ability in this study.

Financial PhraseBank(FPB) The sentiment
analysis dataset (Malo et al., 2013) consists of 4845
english sentences selected randomly from financial
news found on LexisNexis database, which is an-
notated by 16 people with finance and business
background. The annotators were asked to give la-
bels according to how they think the information in
the sentence might affect the mentioned company
stock price.

This dataset is our first step to generalize our
model to financial domain in this study.

4.1.2 Implementation Details
Our implementation of MAML is based on Py-
Torch implementation of MT-DNN (Liu et al.,
2019). We use Adamax with a learning rate of
5e-5 as our outer optimizer, batch size of 32 and
the maximum number of epochs of 5. We also
set the update step to 3 and α, the inner learning
rate of SGD to 5e-5. The dropout rate of all task
specific layers is 0.1, except 0.3 for MNLI and
0.05 for CoLA. A linear learning rate decay sched-
ule with warm-up over 0.1 is used. The gradient
norm is clipped within 1 to avoid exploding gradi-
ent problem. The pre-trained BERT-Base is used to
initialize the model. Tasks are sampled according
to the size of their datasets.

An Amazon p3.8.xlarge EC2 instance with 4
GPUs, and 90 GiB of host memory is used to train
the models.

Experiment details are presented in Figure 2. We
compare our MAML model against various state-
of-the-art baselines.

For GLUE, SciTail and SNLI datasets, We use
the public code of BERT-Base (Devlin et al., 2019)
model and MT-DNN model(Liu et al., 2019) to ob-
tain their results. For Financial PhraseBank dataset,
we target the results in FinBert model(Araci, 2019).

4.1.3 Results
The experiment results on GLUE, SNLI, SciTail
and Financial PhraseBank datasets are the follow-
ing.

GLUE Main Results We first train the MAML
model using four of the GLUE datasets and their
fine-tuned results are presented in Table 2. Then
we test the model with four GLUE datasets. The
results for the testing datasets are presented in Table
3.
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Corpus Task Train Dev Test Label Metrics

CoLA Acceptability 8.5k 1k 1k 2 Matthews Corr
SST-2 Sentiment 67k 872 1.8k 2 Accuracy
MNLI NLI 393k 20k 20k 3 Accuracy(match/mismatch)
RTE NLI 2.5k 276 3k 2 Accuracy
WNLI NLI 634 71 146 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman Corr

QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy
SNLI NLI 549k 9.8k 9.8k 2 Accuracy
SciTail NLI 23.5k 1.3k 2.1k 2 Accuracy

FPB Sentiment 2.9k 1.0k 1.0k 3 Accuracy

Table 1: Benchmarks: GLUE, SNLI, SciTail, FPB

Figure 2: Multi-types NLU Tasks Learning

Basically, the MAML model achieves better or
equal performance in almost all tasks, which indi-
cates the effectiveness and reliability of our model.

Fast Adaptation on SNLI and SciTail We trans-
fer our model to two new tasks. We randomly sam-
ple 0.1%, 1%, 10% and 100% of their training data
and thus obtain four sets of training data for Sci-
Tail including 23, 235, 2.3k, 23.5k training samples,
and four sets for SNLI including 549, 5.5k, 54.9k
and 549.3k training samples respectively.

We observe that MAML model outperforms the
BERT and MT-DNN baselines with fewer train-
ing examples used, with more details provided in

Model MNLI QQP SST QNLI

BERT 84.6/83.4 71.2 93.5 90.5
MT-DNN 84.3/84.5 86.9 92.9 90.8
MAML 84.0/84.4 87.1 92.7 90.5

Table 2: Training Results on GLUE Datasets. MAML
and MT-DNN uses BERT-Base to initialize their shared
layers. We fine-tuned three models for each of the four
GLUE task using task-specific data.

Table 4. For example, with only 0.1% of the Sci-
Tail training data, MAML achieves an accuracy of
77.531% while BERT’s is 51.2% and MT-DNN’s
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Model CoLA MRPC STS-B RTE

BERT 52.1 84.8/88.9 66.4 87.1/85.8
MT-DNN 55.9 87.2/90.5 74.4 89.6/89.6
MAML 56.9 87.3/90.7 78.3 89.3/89.3

Table 3: Testing Results on GLUE Datasets. MAML and MT-DNN uses BERT-Base to initialize their shared layers.
We fine-tuned three models for each of the four GLUE task using task-specific data.

is 66.411%.
Similar results are also verified in SNLI dataset.

Figure 3: Results on SNLI Dataset. The X-axis indicates
the amount of domain-specific labeled samples used for
adaptation.

Figure 4: Results on Scitail Dataset. The X-axis indi-
cates the amount of domain-specific labeled samples
used for adaptation.

Domain Adaptation on Financial Dataset
Based on above experiments, we further extend our
model to Financial PhraseBank dataset. From Ta-
ble 5, we could see that the MAML model achieves
an accuracy as good as FinBert, without any finan-
cial specific further pre-training. Moreover, with
only 1% or 10% training data, it reaches a fairly
good performance.

4.2 Single-Type NLU Tasks - Stock Price
Prediction

The experiments above show the effectiveness of
MAML in handling multiple tasks together. In this
part, we aim to apply MAML to solve single-type
financial NLU task, stock price prediction.

4.2.1 Dataset
We obtain the dataset from (Xu and Cohen, 2018).
There are two main components in our dataset, a
Twitter dataset and a historical price dataset. The
historical prices for the 88 selected stocks to build
the historical price dataset from Yahoo Finance.
the text data includes two-year price movements
from 01/01/2014 to 01/01/2016 of 88 stocks sepa-
rated into 9 industries: Basic Materials, Consumer
Goods, Healthcare, Services, Utilities, Conglomer-
ates, Financial, Industrial Goods and Technology.
The table blow shows that there is an imbalance
issue lies within stocks and industries which we
have to deal with in training/evaluation phase.

4.2.2 Implementation-Single Stock Price
Prediction Task

Inspired by (Xu and Cohen, 2018), we assume that
predicting the stock movement between trading day
d and d+1 can be benefit from historical prices of
previous days and previous price movements on
its former trading days. Under this premise, we
adopt the data processing techniques from (Xu and
Cohen, 2018). First, we find all T eligible trading
days referred in a sample stock and group them by
t ∈ [1, T ]. Thus each sample should contain twitter
text and stock price data with in the range of t days.
Let us use S = [s1, s2, ..., st], P = [p0, p2, ...pt] to
represent the twitter text collected in each sample
which collected by aligning to each trading day.
Then we transform the text data and stock price in
to the features we desired. We calculate stock price
movement Y = [p1 − p0, p2 − p1, ..., pt − pt−1].
Note here we further transform the Y into three
classes: moving up, moving down, no movement.
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SNLI(Dev Accuracy %)

#Training Data 0.1% 1% 10% 100%
BERT 52.5 78.1 86.7 91.0
MT-DNN 81.6 84.7 88.0 91.08
MAML 82.0 84.9 88.2 91.4

Sci-Tail(Dev Accuracy %)

#Training Data 0.1% 1% 10% 100%
BERT 51.2 82.2 90.5 94.3
MT-DNN 66.411 90.874 92.638 94.862
MAML 77.531 89.801 91.648 95.015

Table 4: Domain Adaptation Results on SNLI and Sci-Tail using the shared embeddings generated by MAML,
MT-DNN and BERT, respectively.

FPB(Dev Accuracy %)

#Training Data 1% 10% 100%
Fin-Bert - - 86.00
MAML 61.26 77.38 86.47

Table 5: Domain Adaptation Results on Financial
PhraseBank.

Number of Twitter Text Per Industry

#Industry #Num Twitter Text

Material 4405
Consumer Goods 22491
Healthcare 7984
Services 19025
Utilities 6095
Cong 268
Finance 9291
Industrial Goods 5764
Tech 31015

Table 6: Number of Twitter Text Per Industry During
01/01/2014 - 01/01/2016.

The architecture of the model is shown below.
We first use BERT to process the twitter data and
concat it with the previous days stock price. Then
we feed it into a RNN model with T layers which
represent T days in the lag. Finally, we integrate
the final result with a softmax function in order
to output the confidence distribution over up and
down.

4.2.3 Implementation- MAML-BERT Model
We then transform the model to multitask structure
by adding multiple tasks together and applying
MAML method to it. The scenario is, suppose we
are given a new stock with limited twitter text data,
with MAML model pre-trained on multiple stock-
text data, the model should be able to capture the
intrinsic parameters for this new stock quicker and
thus reach good accuracy faster.

To test our hypothesis scenario, we design ex-
periments by selecting 8 stocks to train the meta
learner for 10 epoch and test the model with a
new stock dataset. We conduct 4 experiments and
finally evaluate its accuracy against a direct predic-
tion model listed in 4.2.2. The setting structure is
shown in Figure 6.

4.3 Results

As described in previous sections, stock prediction
is a challenging task and a minor improvement
could lead to large potential profits. An the accu-
racy of 56% is generally reported as a satisfying re-
sult for binary stock movement prediction(Nguyen
and Shirai, 2015). We evaluate the model in the fol-
lowing four settings and the results are illustrated
in the graph below. The selection of the stocks is
according the the amount of twitter text data we
obtain.

As shown in the table and graph below, we have
reached promising evaluation accuracy on all dif-
ferent models. The highest result is generated by
Mixed Model. It is trained on 8 stocks with the
maximum number of twitter text data from all in-
dustry and evaluated on AAPL stock which is not
included in the industry for all training stock. The
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Figure 5: The architecture of Single Stock Prediction Task. We use the main target tn for prediction and the lag size
of n for illustration

Figure 6: MAML-Model task structure

Model Industry Train Stocks Eval Stock (Train Acc %) (Eval Acc%)

Consumer PG,BUD,KO,PM,TM,PEP,.. AAPL 59.21 57.14
Services AMZN,BABA,WMT,CMSCA,.. MCD 58.82 56.91
Tech GOOG, MSFT,FB,T,CHL,ORCL,.. CSCO 58.42 56.15
Mixed CELG,PCLN,JPM,GE,FB.. AAPL 60.27 57.94

Table 7: Training and Evaluation Results on Different Groups of Stock Data.

final dev accuracy we have reached is of 57.94%
for MAML-mixed model.

We have also evaluate the adaptation rate of our
model(MAML-Mixed) against a baseline model
that was not pre-trained on other stocks. The graph
below shows that the MAML model converged in
a faster rate compared to the baseline model.

5 Conclusions

In this paper, we investigate model-agnostic meta-
learning algorithm for general NLU tasks, and also
evaluate its performance on two financial applica-
tions - financial sentiment analysis and stock price
prediction. Experiments show our MAML model
is able to learn general representations, which can
be adapted to new tasks with limited samples effec-
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Stock Price Prediction (Dev Accuracy %)

RAND 50.89
ARIMA 51.39
BERT-Baseline 54.07
BERT-MAML-Mixed 57.94
Stocknet (Xu and Cohen, 2018) 57.64

Table 8: Domain Adaptation Results on Stock Price
Prediction Tasks.

Figure 7: Results on Stock Price Prediction Task from
BERT Model and BERT-MAML model

tively, and is also robust to the task specific scales
without over-fitting. Our study suggests promising
applications of meta-learning algorithms in low-
resource financial natural language understanding
tasks.
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Abstract
Open intent detection, a crucial aspect of natu-
ral language understanding, involves the iden-
tification of previously unseen intents in user-
generated text. Despite the progress made in
this field, challenges persist in handling new
combinations of language components, which
is essential for compositional generalization. In
this paper, we present a case study exploring
the use of ChatGPT as a data augmentation
technique to enhance compositional generaliza-
tion in open intent detection tasks. We begin
by discussing the limitations of existing bench-
marks in evaluating this problem, highlighting
the need for constructing datasets for address-
ing compositional generalization in open intent
detection tasks. By incorporating synthetic data
generated by ChatGPT into the training process,
we demonstrate that our approach can effec-
tively improve model performance. Rigorous
evaluation of multiple benchmarks reveals that
our method outperforms existing techniques
and significantly enhances open intent detec-
tion capabilities. Our findings underscore the
potential of large language models like Chat-
GPT for data augmentation in natural language
understanding tasks.

1 Introduction

Open intent detection, a key component of natu-
ral language understanding, aims to identify previ-
ously unseen intents in user-generated text. This
task is of paramount importance for a wide range
of applications, such as conversational AI systems,
where the ability to recognize new intents can sub-
stantially improve the user experience. Although
the field has made significant strides in recent years,
a major challenge remains in addressing composi-
tional generalization, which refers to the capability
of models to handle unseen combinations of lan-
guage components. This capability is essential for
the successful deployment of AI systems in real-
world scenarios, where users may express intent in
unforeseen ways.

In this paper, we present a case study that inves-
tigates the potential of ChatGPT, a state-of-the-art
large language model, as a data augmentation tech-
nique for enhancing compositional generalization
in open intent detection tasks. Our study begins
by identifying the shortcomings of existing bench-
marks in evaluating this problem, which under-
scores the need for the development of datasets
tailored to assess compositional generalization in
open intent detection tasks.

To address this issue, we leverage ChatGPT to
generate synthetic data that is then incorporated
into the training process. By doing so, we aim to
improve the model’s ability to recognize new com-
binations of language components, thereby enhanc-
ing its open intent detection capabilities. Through
rigorous evaluation of multiple benchmarks, we
demonstrate that our proposed method outperforms
existing techniques and leads to significant perfor-
mance improvements.

Our findings highlight the potential of large lan-
guage models, such as ChatGPT, for data augmen-
tation in natural language understanding tasks. This
case study offers valuable insights into the develop-
ment of more effective dialogue systems capable of
handling a wider range of user intents and fostering
better human-computer interactions.

Our primary contributions to the literature in-
clude:

• Dataset Construction for Compositional Gen-
eralization: We construct compositionally di-
verse subsets derived from existing open in-
tent detection benchmark datasets.

• ChatGPT Data Augmentation: We propose
using ChatGPT to generate paraphrases of
training dataset instances, thereby enhancing
model generalization and performance on un-
seen compositions.

• We evaluate three different strategies for incor-
porating ChatGPT-generated paraphrases into
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Architecture Diagram – Dataset Construction
1. Compositionally‐similar utterance instances are identified by a rouge score threshold.
2. An undirect graph is created by connecting compositionally‐similar instances by edges
3. Node (instance) degrees are counted in the undirected graph and highest‐degree nodes and

their edges are first pruned
4. This process iterates until all similar pairs are pruned or a maximum degree threshold is

reached.
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(a) Dataset construction

Architecture Diagram – ChatGPT Data Augmentation
1. Paraphrases are generated by ChatGPT for utterances in the training dataset
2. Paraphrases are incorporated into the BERT training process through three different 

strategies: 
1) Synthesizing 10 paraphrases for each instance
2) Synthesizing 4 paraphrases for each instance
3) Synthesizing 10 paraphrases for each wrongly predicted instance

3. The training process iterates until the evaluation score (accuracy) is not increasing
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(b) ChatGPT data augmentation

Figure 1: a-1) Compositionally-similar utterance instances are identified by a Rouge score threshold. a-2) An
undirect graph is created by connecting compositionally-similar instances with edges. a-3) Node (instance) degrees
are counted in the undirected graph and highest-degree nodes and their edges are first pruned. a-4) This process
iterates until all similar pairs are pruned or a maximum degree threshold is reached. b-1) Paraphrases are generated
by ChatGPT for utterances in the training dataset. b-2) Paraphrases are incorporated into the BERT training process
through three different strategies. b-3) The training process iterates until the evaluation score (accuracy) is not
increasing.

the training process of BERT (Devlin et al.,
2019) with ADB (Zhang et al., 2021b) (DA-
ADB Zhang et al., 2023).

The rest of the paper is organized as follows:
Section 2 provides a background on open intent
classification and reviews related work. Section 3
describes our proposed method in detail. Section 4
presents the experimental setup, results, and anal-
ysis. Finally, Section 5 concludes the paper and
suggests directions for future research.

2 Related Work

Open intent classification is an important problem
in natural language understanding and dialogue sys-
tems, aiming to identify known intents and detect
unseen open intents using only the prior knowledge
of known intents. Several recent studies have ex-
plored various techniques for addressing this chal-
lenging task.

One line of research involves aligning repre-
sentation learning with scoring functions. For in-
stance, the unified neighbourhood learning frame-
work (UniNL) was proposed to detect OOD in-
tents by designing a KNCL objective for represen-
tation learning and introducing a KNN-based scor-
ing function for OOD detection (Mou et al., 2022b).
Another study proposed a unified K-nearest neigh-
bour contrastive learning framework for OOD in-
tent discovery, which focuses on inter-class dis-
criminative features and alleviates the in-domain
overfitting problem (Mou et al., 2022a).

Another direction focuses on learning discrim-
inative representations and decision boundaries

for open intent detection. The Deep Open Intent
Classification with Adaptive Decision Boundary
(ADB) method learns an adaptive spherical deci-
sion boundary for each known class, balancing both
the empirical risk and the open space risk without
requiring open intent samples or modifying the
model architecture (Zhang et al., 2021b). Simi-
larly, the DA-ADB framework successively learns
distance-aware intent representations and adaptive
decision boundaries for open intent detection by
leveraging distance information and designing a
loss function to balance empirical and open space
risks (Zhang et al., 2023).

In summary, various methods have been pro-
posed to address the challenges associated with
detecting unseen intents. However, none of them
have explored compositional generalization in open
intent detection tasks. We highlight the need for
constructing datasets and leverage ChatGPT to gen-
erate synthetic data to address this problem. Our
proposed method in detail is given in the following
section.

3 Methodology

3.1 Dataset Construction for Compositional
Generalization

The construction of the dataset starts with identify-
ing compositionally-similar utterance instances by
utilizing a Rouge score threshold (Figure 1a). The
Rouge score is a widely-used metric for evaluat-
ing the similarity between a pair of text sequences
by comparing the number of overlapping n-grams
(Lin, 2004). By setting a threshold value, instances
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with Rouge scores above this threshold are deemed
to be compositionally similar, allowing for the ef-
fective detection of instances with a high degree of
overlap in content or structure.

Once the compositionally-similar utterance in-
stances are identified, an undirected graph is cre-
ated by connecting these instances with edges. In
this graph, each node represents an instance, and
an edge is drawn between two nodes if their cor-
responding instances are compositionally similar
according to the Rouge score threshold. This rep-
resentation allows for a better understanding of
the relationships between the instances, making it
easier to discern patterns and outliers in the data.
Furthermore, the graph-based approach facilitates
the efficient pruning of highly similar instances in
subsequent steps.

To refine the dataset and ensure maximum diver-
sity, the highest-degree nodes and their connecting
edges are first pruned. In this context, the degree
of a node refers to the number of edges connected
to it. By pruning the highest-degree nodes, the in-
stances with the most similarities to other instances
are removed from the dataset. This process iterates
until all similar pairs have been pruned or a max-
imum degree threshold is reached. The result is a
dataset with a high degree of diversity and helps
to access the compositional generalizability of the
model trained on this dataset.

The aforementioned approach is utilized on three
open intent detection benchmark datasets: Bank-
ing (Casanueva et al., 2020), OOS (Larson et al.,
2019) and StackOverflow (Xu et al., 2015), re-
sulting in three compositionally diverse subsets
derived from these datasets, namely Banking_CG,
OOS_CG, and StackOverflow_CG. (Refer to Ap-
pendix A for dataset construction in detail.)

3.2 ChatGPT Data Augmentation
The training process involves generating para-
phrases for utterances in the training dataset using
ChatGPT (Figure 1b). This paraphrasing approach
aids in enhancing the model’s understanding of lan-
guage by providing alternative compositions of the
same meaning. The incorporation of these para-
phrases into the training process not only improves
the generalizability of the model but also leads to
better performance on unseen compositions. (Re-
fer to Appendix C for ChatGPT’s paraphrases in
detail.)

To effectively integrate paraphrases into the train-

ing process of BERT (Devlin et al., 2019) with
ADB (DA-ADB), three different strategies are eval-
uated. The first strategy involves synthesizing
10 paraphrases for each instance in the dataset
(GPTAUG-F10), while the second strategy gen-
erates 4 paraphrases for each instance (GPTAUG-
F4). The third strategy, on the other hand, focuses
on instances that the model predicts incorrectly at
the current iteration and synthesizes 10 paraphrases
for each of these instances (GPTAUG-WP10).
This targeted approach aims to help address spe-
cific weaknesses in the model’s understanding. The
training process iterates through these strategies un-
til the evaluation score, such as accuracy, no longer
exhibits any improvement. This iterative process
ensures that the model continues to refine its un-
derstanding of language by learning from the gen-
erated paraphrases, ultimately resulting in a more
robust and capable BERT model.

4 Experiments

4.1 Experimental Setup
In our experimental setup, we have extended the
TEXTOIR platform (Zhang et al., 2021a), a toolkit
that integrates a variety of state-of-the-art algo-
rithms for open intent detection, to conduct our
experiments. To ensure fair comparisons across
all tests, we employed the pre-trained BERT-base
model from Hugging Face (Wolf et al., 2020) as
the foundation of our approach. The optimization
of the BERT model with ADB (DA-ADB) was car-
ried out using Python and the PyTorch framework
(Paszke et al., 2019) and executed on NVIDIA RTX
2080 TI GPUs for computational efficiency.

4.2 Results and Analysis
Experimental results (Table 1) show that ADB
(Zhang et al., 2021b) and DA-ADB (Zhang et al.,
2023) are not robust and exhibit poor performance
in the compositionally diverse subsets: Bank-
ing_CG, OOS_CG, and StackOverflow_CG. These
subsets are derived from more extensive datasets,
namely Banking, OOS, and StackOverflow. This
indicates that these models struggle to achieve com-
positional generalization in more challenging con-
texts.

Interestingly, ADB is found to be more robust
than DA-ADB, particularly in the OOS_CG subset,
where the model has to predict a larger number of
intents (151 intents) in the test phase. This is about
twice the number of intents in Banking_CG and 7.5
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Table 1: Performance of our ChatGPT augmentation approaches (GPTAUG-F4, GPTAUG-F10, and GPTAUG-
WP10) and the baselines (ADB and DA-ADB). The best results among each setting are bolded. All results are an
average of 10 runs using 10 different seed numbers considering that the selection of known intents is a pseudo-
random process. (Refer to Appendix D in more detail.)

Banking_CG OOS_CG StackOverflow_CG
Methods F1-

IND
F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

25%

ADB 53.49 81.10 54.87 72.31 49.13 90.65 50.19 83.96 58.37 79.04 61.82 71.35
DA-ADB 53.33 86.15 54.97 78.43 38.27 91.70 39.64 85.45 62.32 84.84 66.08 77.68
ADB+GPTAUG-F4 56.73 83.37 58.06 75.51 53.54 91.93 54.52 86.23 60.94 82.62 64.55 75.32
ADB+GPTAUG-F10 57.58 84.04 58.90 76.46 54.26 92.07 55.23 86.48 58.99 80.34 62.55 72.66
ADB+GPTAUG-WP10 50.04 70.47 51.06 61.47 48.03 88.57 49.07 80.83 51.62 63.54 53.60 56.17
DA-ADB+GPTAUG-F4 54.58 84.82 56.09 77.11 43.98 91.85 45.21 85.89 59.97 78.03 62.98 70.79
DA-ADB+GPTAUG-F10 53.52 84.00 55.04 76.00 44.20 91.74 45.42 85.70 59.82 75.31 62.40 70.10
DA-ADB+GPTAUG-WP10 54.72 82.89 56.13 74.38 43.18 91.55 44.42 85.33 54.61 64.87 56.32 59.22

50%

ADB 59.93 69.63 60.18 65.38 52.32 83.99 52.73 75.66 71.45 76.14 71.88 73.58
DA-ADB 54.57 74.45 55.08 67.77 33.66 83.31 34.31 73.37 75.97 81.75 76.49 79.14
ADB+GPTAUG-F4 62.55 73.20 62.83 69.24 55.36 85.39 55.76 78.07 71.58 77.03 72.08 74.37
ADB+GPTAUG-F10 62.28 73.23 62.56 69.36 55.40 85.57 55.80 78.44 70.97 77.56 71.57 74.52
ADB+GPTAUG-WP10 59.87 61.11 59.90 60.27 53.25 83.06 53.64 74.61 67.04 64.13 66.78 65.37
DA-ADB+GPTAUG-F4 57.06 74.67 57.52 69.41 38.85 84.00 39.45 74.96 72.28 74.07 72.44 73.88
DA-ADB+GPTAUG-F10 56.52 74.42 56.98 69.09 39.02 83.94 39.61 74.90 70.32 74.78 70.72 73.27
DA-ADB+GPTAUG-WP10 58.63 70.33 58.93 65.30 40.26 83.99 40.84 74.81 69.91 64.58 69.43 66.65

75%

ADB 64.30 53.36 64.12 62.82 53.87 76.24 54.07 68.33 76.13 61.56 75.22 71.58
DA-ADB 54.74 52.46 54.70 56.94 29.58 71.76 29.96 59.91 78.57 65.80 77.77 74.51
ADB+GPTAUG-F4 66.65 54.82 66.45 64.89 55.99 77.36 56.18 70.70 75.72 61.68 74.84 71.08
ADB+GPTAUG-F10 66.22 54.61 66.02 64.54 55.64 77.04 55.83 70.54 75.35 61.15 74.46 70.61
ADB+GPTAUG-WP10 65.22 47.98 64.93 62.22 54.91 75.78 55.10 67.97 73.86 49.92 72.37 67.67
DA-ADB+GPTAUG-F4 55.87 51.59 55.80 57.67 33.50 72.40 33.85 61.81 76.87 60.79 75.86 71.51
DA-ADB+GPTAUG-F10 54.86 50.66 54.78 56.65 33.81 72.48 34.15 62.04 73.65 54.81 72.48 68.10
DA-ADB+GPTAUG-WP10 62.31 53.33 62.15 61.87 40.21 74.07 40.51 64.11 77.77 60.62 76.70 72.52

times that of StackOverflow_CG. However, DA-
ADB outperforms ADB in the StackOverflow_CG
subset, which is more balanced and has far fewer
intents to predict.

In the Banking_CG subset, it was observed that
the overall F1 scores of ADB with ChatGPT data
augmentation were consistently higher (by about 2
to 4%) than those of ADB and DA-ADB. A similar
trend was seen in the OOS_CG subset, where the
F1 scores of ADB with ChatGPT data augmenta-
tion were 2 to 5% better than ADB and DA-ADB.
These results demonstrate that data augmentation
can indeed help bridge the gap between the training
and test sets, even when they exhibit compositional
dissimilarity.

ADB with ChatGPT data augmentation outper-
forms DA-ADB with augmentation in both Bank-
ing_CG and OOS_CG. Interestingly, GPTAUG-
WP10, a more sophisticated data augmentation
method (which paraphrases wrongly predicted in-
stances), underperforms when compared to sim-
ply incorporating all ChatGPT paraphrases into the
training process (GPTAUG-F4 and GPTAUG-F10).

Finally, DA-ADB performs best in StackOver-
flow_CG, considering that this subset is relatively

more balanced and has fewer intents to predict.

5 Conclusion

In conclusion, this paper addresses the challenge of
compositional generalization in open intent detec-
tion by leveraging the capabilities of ChatGPT, a
state-of-the-art large language model. By construct-
ing compositionally diverse datasets (i.e., Bank-
ing_CG, OOS_CG, and StackOverflow_CG) and
incorporating ChatGPT-generated paraphrases into
the training process, we have demonstrated large
improvements in model performance on unseen
compositions.

Future research should focus on developing
more advanced data augmentation approaches that
can generate more diverse compositions. One pos-
sible direction involves designing better-instructed
prompts for ChatGPT to encourage more diverse
paraphrases that can help improve compositional
generalization even further. Additionally, exploring
alternative strategies for incorporating augmented
data and refining the iterative training process may
lead to further performance improvements.
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A Dataset Construction in Detail

Banking_CG, OOS_CG, and StackOverflow_CG
are subsets derived from Banking, OOS, and Stack-
Overflow by pruning compositionally-similar pairs
of utterance instances between their training and
test/development sets. Rouge-L score is adopted
to identify overlap common subsequences in a pair
of utterance instances. The larger Rouge-L score
usually indicates that more common compositions
(n-grams) are shared among the pair of utterances.

In Banking_CG and OOS_CG, we used a Rouge-
L threshold of 0.3 to detect a similar pair of
utterance instances between their training and
test/development sets, while in StackOverflow_CG,
a threshold of 0.2 is adopted. (Refer to Appendix B
for more about Rouge score and the corresponding
utterance pairs.)

Once the compositionally-similar pair of utter-
ance instances are identified, a graph is created
by connecting these instances with edges, then
highest-degree nodes (instances) and their edges
are pruned iteratively. Considering that training
and test/development sets had significantly differ-
ent numbers of instances, the node degree is mul-
tiplied by the weight (the number of remaining
instances in the set) to readjust if the node to prune
should be from the training or test/development set.

The pruning process iterates until a certain con-
dition is met. In Banking_CG and OOS_CG, we
stopped the process when the maximum node de-
gree of the test/development sets reached a num-
ber of 5, while in StackOverflow_CG, the process
wasn’t stopped until all similar pairs were pruned,
considering that StackOverflow_CG is relatively
more balanced and has fewer intents to predict.

In Banking_CG, 6231, 183, and 1184 utter-
ance instances were pruned from the correspond-
ing training, development and test sets, while in
OOS_CG, 11317, 1306, and 2068 were pruned,
and in StackOverflow_CG, 9209, 578, and 3095
instances were removed from their training, devel-
opment and test sets, respectively. Detailed statis-
tics of Banking_CG, OOS_CG, and StackOver-
flow_CG can be found in Tables 2 to 10.

B Examples of Rouge Scores and
Corresponding Utterance Pairs

The compositional similarity of a pair of utterances
can be told by Rouge-L score. In the second row
of Table 11, given that the Rouge-L score is greater
than 0.3, a long span (4-gram) “be using my card”

is shared by both the training and test utterance
instances. When the Rouge-L score is not greater
than 0.3, the first row and the third row of Table 11,
literally those pairs are compositionally dissimilar
and only a short span (bigram) “my card” is found
common between training and test instances.

C Examples of ChatGPT’s Paraphrases

Table 12 demonstrates that ChatGPT’s paraphrases
introduce diverse compositions from the original
utterances. For example, in the first row of Ta-
ble 12b, the bigram “equivalent of” is replaced with
a trigram “corresponding phrase for” of the same
meaning. In the first row of Table12a, the original
sentence “i have a pending top-up” is put into its
passive voice structure. The diversities brought by
ChatGPT’s paraphrases eventually bridge the gap
between compositionally dissimilar training and
test sets.

D Experimental Results in Detail

For a fair comparison, all settings are evaluated
using the seed numbers 0 to 9 for known intent
sampling. All settings are built on the BERT-base
backbone and are optimized using the ADAM gra-
dient descent algorithm. Full experimental results
are shown in Tables 13 to 20.
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Table 2: Banking_CG training dataset statistics

Intent #Instance Intent #Instance
Refund_not_showing_up 54 get_physical_card 18
activate_my_card 49 getting_spare_card 29
age_limit 31 getting_virtual_card 16
apple_pay_or_google_pay 28 lost_or_stolen_card 22
atm_support 25 lost_or_stolen_phone 24
automatic_top_up 31 order_physical_card 29
balance_not_updated_after_bank_transfer 65 passcode_forgotten 26
balance_not_updated_after_cheque_or_cash_deposit 69 pending_card_payment 51
beneficiary_not_allowed 37 pending_cash_withdrawal 41
cancel_transfer 49 pending_top_up 44
card_about_to_expire 29 pending_transfer 45
card_acceptance 13 pin_blocked 33
card_arrival 51 receiving_money 22
card_delivery_estimate 32 request_refund 49
card_linking 34 reverted_card_payment? 45
card_not_working 33 supported_cards_and_currencies 38
card_payment_fee_charged 85 terminate_account 34
card_payment_not_recognised 64 top_up_by_bank_transfer_charge 20
card_payment_wrong_exchange_rate 68 top_up_by_card_charge 20
card_swallowed 10 top_up_by_cash_or_cheque 21
cash_withdrawal_charge 60 top_up_failed 35
cash_withdrawal_not_recognised 43 top_up_limits 21
change_pin 26 top_up_reverted 39
compromised_card 14 topping_up_by_card 20
contactless_not_working 15 transaction_charged_twice 57
country_support 34 transfer_fee_charged 55
declined_card_payment 40 transfer_into_account 21
declined_cash_withdrawal 54 transfer_not_received_by_recipient 63
declined_transfer 44 transfer_timing 26
direct_debit_payment_not_recognised 89 unable_to_verify_identity 15
disposable_card_limits 25 verify_my_identity 27
edit_personal_details 24 verify_source_of_funds 22
exchange_charge 25 verify_top_up 24
exchange_rate 21 virtual_card_not_working 5
exchange_via_app 24 visa_or_mastercard 37
extra_charge_on_statement 51 why_verify_identity 30
failed_transfer 33 wrong_amount_of_cash_received 67
fiat_currency_support 37 wrong_exchange_rate_for_cash_withdrawal 53
get_disposable_virtual_card 12
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Table 3: Banking_CG development dataset statistics

Intent #Instance Intent #Instance
Refund_not_showing_up 13 get_physical_card 8
activate_my_card 12 getting_spare_card 10
age_limit 9 getting_virtual_card 6
apple_pay_or_google_pay 9 lost_or_stolen_card 6
atm_support 9 lost_or_stolen_phone 10
automatic_top_up 11 order_physical_card 9
balance_not_updated_after_bank_transfer 14 passcode_forgotten 5
balance_not_updated_after_cheque_or_cash_deposit 15 pending_card_payment 15
beneficiary_not_allowed 15 pending_cash_withdrawal 11
cancel_transfer 12 pending_top_up 13
card_about_to_expire 10 pending_transfer 14
card_acceptance 4 pin_blocked 7
card_arrival 11 receiving_money 8
card_delivery_estimate 8 request_refund 17
card_linking 10 reverted_card_payment? 14
card_not_working 7 supported_cards_and_currencies 10
card_payment_fee_charged 18 terminate_account 9
card_payment_not_recognised 17 top_up_by_bank_transfer_charge 9
card_payment_wrong_exchange_rate 12 top_up_by_card_charge 8
card_swallowed 4 top_up_by_cash_or_cheque 10
cash_withdrawal_charge 16 top_up_failed 13
cash_withdrawal_not_recognised 16 top_up_limits 8
change_pin 11 top_up_reverted 14
compromised_card 9 topping_up_by_card 10
contactless_not_working 3 transaction_charged_twice 16
country_support 12 transfer_fee_charged 17
declined_card_payment 14 transfer_into_account 8
declined_cash_withdrawal 17 transfer_not_received_by_recipient 14
declined_transfer 10 transfer_timing 9
direct_debit_payment_not_recognised 10 unable_to_verify_identity 9
disposable_card_limits 8 verify_my_identity 7
edit_personal_details 7 verify_source_of_funds 7
exchange_charge 10 verify_top_up 11
exchange_rate 7 virtual_card_not_working 3
exchange_via_app 9 visa_or_mastercard 11
extra_charge_on_statement 12 why_verify_identity 9
failed_transfer 13 wrong_amount_of_cash_received 17
fiat_currency_support 9 wrong_exchange_rate_for_cash_withdrawal 15
get_disposable_virtual_card 7
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Table 4: Banking_CG test dataset statistics

Intent #Instance Intent #Instance
Refund_not_showing_up 28 get_physical_card 18
activate_my_card 31 getting_spare_card 29
age_limit 23 getting_virtual_card 21
apple_pay_or_google_pay 22 lost_or_stolen_card 16
atm_support 20 lost_or_stolen_phone 24
automatic_top_up 24 order_physical_card 15
balance_not_updated_after_bank_transfer 25 passcode_forgotten 16
balance_not_updated_after_cheque_or_cash_deposit 30 pending_card_payment 26
beneficiary_not_allowed 37 pending_cash_withdrawal 29
cancel_transfer 29 pending_top_up 25
card_about_to_expire 31 pending_transfer 34
card_acceptance 20 pin_blocked 21
card_arrival 24 receiving_money 26
card_delivery_estimate 23 request_refund 36
card_linking 28 reverted_card_payment? 35
card_not_working 20 supported_cards_and_currencies 24
card_payment_fee_charged 17 terminate_account 11
card_payment_not_recognised 20 top_up_by_bank_transfer_charge 20
card_payment_wrong_exchange_rate 20 top_up_by_card_charge 19
card_swallowed 17 top_up_by_cash_or_cheque 31
cash_withdrawal_charge 34 top_up_failed 30
cash_withdrawal_not_recognised 34 top_up_limits 19
change_pin 18 top_up_reverted 27
compromised_card 18 topping_up_by_card 17
contactless_not_working 20 transaction_charged_twice 35
country_support 18 transfer_fee_charged 33
declined_card_payment 32 transfer_into_account 27
declined_cash_withdrawal 35 transfer_not_received_by_recipient 27
declined_transfer 26 transfer_timing 26
direct_debit_payment_not_recognised 16 unable_to_verify_identity 30
disposable_card_limits 21 verify_my_identity 21
edit_personal_details 27 verify_source_of_funds 26
exchange_charge 24 verify_top_up 29
exchange_rate 22 virtual_card_not_working 9
exchange_via_app 22 visa_or_mastercard 20
extra_charge_on_statement 36 why_verify_identity 22
failed_transfer 27 wrong_amount_of_cash_received 29
fiat_currency_support 23 wrong_exchange_rate_for_cash_withdrawal 28
get_disposable_virtual_card 23
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Table 5: OOS_CG training dataset statistics

Intent #Instance Intent #Instance Intent #Instance
accept_reservations 50 greeting 33 reset_settings 6
account_blocked 21 how_busy 20 restaurant_reservation 22
alarm 13 how_old_are_you 47 restaurant_reviews 47
application_status 22 improve_credit_score 11 restaurant_suggestion 23
apr 27 income 52 rewards_balance 15
are_you_a_bot 20 ingredient_substitution 42 roll_dice 11
balance 22 ingredients_list 26 rollover_401k 19
bill_balance 18 insurance 29 routing 29
bill_due 15 insurance_change 26 schedule_maintenance 19
book_flight 19 interest_rate 26 schedule_meeting 21
book_hotel 17 international_fees 16 share_location 24
calculator 53 international_visa 33 shopping_list 24
calendar 34 jump_start 10 shopping_list_update 16
calendar_update 17 last_maintenance 14 smart_home 19
calories 41 lost_luggage 28 spelling 33
cancel 30 make_call 20 spending_history 17
cancel_reservation 19 maybe 26 sync_device 7
car_rental 12 meal_suggestion 29 taxes 24
card_declined 16 meaning_of_life 17 tell_joke 26
carry_on 32 measurement_conversion 23 text 27
change_accent 23 meeting_schedule 45 thank_you 25
change_ai_name 15 min_payment 23 time 29
change_language 33 mpg 26 timer 14
change_speed 27 new_card 24 timezone 39
change_user_name 47 next_holiday 17 tire_change 26
change_volume 11 next_song 24 tire_pressure 21
confirm_reservation 25 no 25 todo_list 12
cook_time 24 nutrition_info 28 todo_list_update 21
credit_limit 17 oil_change_how 17 traffic 16
credit_limit_change 13 oil_change_when 15 transactions 26
credit_score 6 order 49 transfer 17
current_location 18 order_checks 20 translate 24
damaged_card 17 order_status 21 travel_alert 55
date 31 pay_bill 23 travel_notification 27
definition 62 payday 22 travel_suggestion 29
direct_deposit 14 pin_change 10 uber 14
directions 40 play_music 42 update_playlist 27
distance 57 plug_type 12 user_name 23
do_you_have_pets 19 pto_balance 7 vaccines 23
exchange_rate 33 pto_request 35 w2 18
expiration_date 13 pto_request_status 18 weather 21
find_phone 11 pto_used 14 what_are_your_hobbies 26
flight_status 29 recipe 37 what_can_i_ask_you 6
flip_coin 13 redeem_rewards 19 what_is_your_name 26
food_last 43 reminder 52 what_song 28
freeze_account 23 reminder_update 26 where_are_you_from 23
fun_fact 18 repeat 14 whisper_mode 23
gas 13 replacement_card_duration 16 who_do_you_work_for 32
gas_type 12 report_fraud 11 who_made_you 43
goodbye 43 report_lost_card 25 yes 47

22



Table 6: OOS_CG development dataset statistics

Intent #Instance Intent #Instance Intent #Instance
accept_reservations 15 greeting 13 reset_settings 13
account_blocked 11 how_busy 15 restaurant_reservation 10
alarm 14 how_old_are_you 11 restaurant_reviews 9
application_status 12 improve_credit_score 9 restaurant_suggestion 19
apr 6 income 6 rewards_balance 9
are_you_a_bot 10 ingredient_substitution 13 roll_dice 13
balance 14 ingredients_list 12 rollover_401k 9
bill_balance 11 insurance 11 routing 4
bill_due 9 insurance_change 9 schedule_maintenance 16
book_flight 18 interest_rate 9 schedule_meeting 8
book_hotel 15 international_fees 15 share_location 14
calculator 10 international_visa 5 shopping_list 5
calendar 9 jump_start 17 shopping_list_update 13
calendar_update 16 last_maintenance 11 smart_home 18
calories 5 lost_luggage 15 spelling 11
cancel 18 make_call 14 spending_history 16
cancel_reservation 19 maybe 18 sync_device 13
car_rental 11 meal_suggestion 14 taxes 11
card_declined 11 meaning_of_life 15 tell_joke 13
carry_on 18 measurement_conversion 15 text 9
change_accent 15 meeting_schedule 8 thank_you 15
change_ai_name 13 min_payment 8 time 3
change_language 8 mpg 12 timer 14
change_speed 14 new_card 7 timezone 8
change_user_name 14 next_holiday 11 tire_change 8
change_volume 15 next_song 9 tire_pressure 11
confirm_reservation 12 no 15 todo_list 12
cook_time 9 nutrition_info 11 todo_list_update 5
credit_limit 4 oil_change_how 4 traffic 11
credit_limit_change 12 oil_change_when 8 transactions 14
credit_score 5 order 13 transfer 9
current_location 11 order_checks 16 translate 15
damaged_card 11 order_status 16 travel_alert 11
date 10 pay_bill 8 travel_notification 12
definition 12 payday 9 travel_suggestion 14
direct_deposit 6 pin_change 13 uber 11
directions 10 play_music 16 update_playlist 6
distance 6 plug_type 11 user_name 11
do_you_have_pets 14 pto_balance 9 vaccines 8
exchange_rate 14 pto_request 9 w2 11
expiration_date 9 pto_request_status 10 weather 16
find_phone 5 pto_used 12 what_are_your_hobbies 6
flight_status 7 recipe 11 what_can_i_ask_you 12
flip_coin 16 redeem_rewards 6 what_is_your_name 8
food_last 11 reminder 9 what_song 10
freeze_account 4 reminder_update 12 where_are_you_from 19
fun_fact 18 repeat 13 whisper_mode 12
gas 10 replacement_card_duration 10 who_do_you_work_for 9
gas_type 11 report_fraud 14 who_made_you 9
goodbye 16 report_lost_card 8 yes 12
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Table 7: OOS_CG test dataset statistics

Intent #Instance Intent #Instance Intent #Instance
accept_reservations 17 how_busy 22 restaurant_reservation 17
account_blocked 15 how_old_are_you 16 restaurant_reviews 20
alarm 30 improve_credit_score 8 restaurant_suggestion 21
application_status 19 income 17 rewards_balance 12
apr 11 ingredient_substitution 19 roll_dice 17
are_you_a_bot 17 ingredients_list 20 rollover_401k 11
balance 15 insurance 11 routing 5
bill_balance 17 insurance_change 11 schedule_maintenance 12
bill_due 10 interest_rate 17 schedule_meeting 11
book_flight 15 international_fees 22 share_location 22
book_hotel 17 international_visa 6 shopping_list 5
calculator 14 jump_start 11 shopping_list_update 17
calendar 12 last_maintenance 18 smart_home 22
calendar_update 19 lost_luggage 24 spelling 15
calories 15 make_call 20 spending_history 14
cancel 23 maybe 20 sync_device 12
cancel_reservation 20 meal_suggestion 17 taxes 16
car_rental 15 meaning_of_life 23 tell_joke 15
card_declined 9 measurement_conversion 21 text 18
carry_on 22 meeting_schedule 16 thank_you 25
change_accent 14 min_payment 24 time 10
change_ai_name 18 mpg 25 timer 29
change_language 17 new_card 5 timezone 12
change_speed 15 next_holiday 21 tire_change 8
change_user_name 14 next_song 8 tire_pressure 12
change_volume 16 no 23 todo_list 18
confirm_reservation 14 nutrition_info 25 todo_list_update 10
cook_time 8 oil_change_how 9 traffic 13
credit_limit 10 oil_change_when 11 transactions 20
credit_limit_change 21 oos 1200 transfer 15
credit_score 28 order 17 translate 23
current_location 21 order_checks 17 travel_alert 13
damaged_card 16 order_status 20 travel_notification 14
date 15 pay_bill 6 travel_suggestion 15
definition 17 payday 13 uber 20
direct_deposit 19 pin_change 13 update_playlist 8
directions 19 play_music 21 user_name 7
distance 15 plug_type 18 vaccines 12
do_you_have_pets 25 pto_balance 9 w2 23
exchange_rate 21 pto_request 15 weather 26
expiration_date 17 pto_request_status 15 what_are_your_hobbies 13
find_phone 9 pto_used 20 what_can_i_ask_you 18
flight_status 19 recipe 19 what_is_your_name 15
flip_coin 24 redeem_rewards 19 what_song 13
food_last 16 reminder 14 where_are_you_from 21
freeze_account 9 reminder_update 17 whisper_mode 22
fun_fact 11 repeat 22 who_do_you_work_for 13
gas 16 replacement_card_duration 11 who_made_you 12
gas_type 15 report_fraud 15 yes 16
goodbye 22 report_lost_card 15
greeting 21 reset_settings 14

Table 8: StackOverflow_CG training dataset statistics

Intent #Instance Intent #Instance Intent #Instance Intent #Instance Intent #Instance
ajax 158 drupal 132 linq 105 osx 139 spring 154
apache 143 excel 106 magento 112 qt 147 svn 116
bash 104 haskell 126 matlab 132 scala 135 visual-studio 200
cocoa 233 hibernate 130 oracle 124 sharepoint 140 wordpress 155
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Table 9: StackOverflow_CG development dataset statistics

Intent #Instance Intent #Instance Intent #Instance Intent #Instance Intent #Instance
ajax 74 drupal 70 linq 78 osx 91 spring 67
apache 80 excel 70 magento 66 qt 83 svn 75
bash 80 haskell 71 matlab 73 scala 72 visual-studio 42
cocoa 66 hibernate 68 oracle 63 sharepoint 75 wordpress 58

Table 10: StackOverflow_CG test dataset statistics

Intent #Instance Intent #Instance Intent #Instance Intent #Instance Intent #Instance
ajax 160 drupal 128 linq 131 osx 193 spring 151
apache 170 excel 140 magento 132 qt 172 svn 149
bash 139 haskell 122 matlab 164 scala 124 visual-studio 106
cocoa 161 hibernate 128 oracle 127 sharepoint 171 wordpress 137

Table 11: Examples of Rouge scores and corresponding utterance pairs

Training instance Someone might be using my card that is not me.
Test instance I don’t recognize some of the transactions on my card, I think someone must have gotten

my card info and used it.
Rouge-L score 0.13
Training instance Someone might be using my card that is not me.
Test instance What should I do if I think that someone else may be using my card.
Rouge-L score 0.33
Training instance Someone might be using my card that is not me.
Test instance I think someone got my card details and used it because there are transactions i don’t

recognize. What do I do now?
Rouge-L score 0.13

Table 12: Examples of ChatGPT’s Paraphrases

(a) Banking_CG Dataset

Original utterance i have a pending top-up
ChatGPT’s paraphrase A top-up transaction is still being processed.
Original utterance What are the currency types that I can keep money in.
ChatGPT’s paraphrase Which currencies are allowed for me to keep my finances?
Original utterance I think my card is broken or something. I tried using it and it wouldn’t go through, please

help.
ChatGPT’s paraphrase It appears that my card may be broken or faulty, as I tried to use it but it didn’t work.

Could you provide me with some assistance, please?
(b) OOS_CG Dataset

Original utterance what is the equivalent of, ’life is good’ in french
ChatGPT’s paraphrase What is the corresponding phrase for ’life is good’ in French?
Original utterance how many inches and centimeters would i need if i had 10 feet of something
ChatGPT’s paraphrase How many inches and centimeters would be needed for 10 feet of an object?
Original utterance please put taco night on the house calendar date of january 6
ChatGPT’s paraphrase Kindly mark January 6th as the date for taco night on the house calendar.

(c) StackOverflow_CG Dataset

Original utterance Why this keyboard intercepting kernel extension doesn’t work?
ChatGPT’s paraphrase Can you provide an answer for the non-functionality of the keyboard interception kernel

extension?
Original utterance NSColor with calibrated values works differently than regular color??
ChatGPT’s paraphrase Calibrated NSColor showcases a diverse behavior from a typical color.
Original utterance Tips for using CVS or Subversion as a backup framework for office documents
ChatGPT’s paraphrase Guidelines for utilizing CVS or Subversion as a backup solution for office documents.
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Table 13: ADB experimental results in detail

Banking_CG OOS_CG StackOverflow_CG
Seed F1-

IND
F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

25%

0 54.32 81.06 55.66 71.10 45.65 91.86 46.83 85.63 66.48 88.37 70.13 82.55
1 54.36 79.78 55.63 70.94 52.36 91.18 53.35 84.77 60.63 80.47 63.94 72.94
2 53.99 79.04 55.24 71.10 49.16 91.46 50.24 84.64 59.12 80.55 62.69 72.87
3 53.55 80.15 54.88 71.78 49.81 89.61 50.83 82.57 59.95 85.19 64.16 78.04
4 59.76 81.31 60.84 73.31 54.07 91.97 55.04 85.68 58.86 78.74 62.17 70.67
5 49.72 81.85 51.33 72.52 50.03 90.73 51.07 84.03 55.42 69.00 57.68 61.17
6 48.92 78.28 50.39 68.88 55.00 89.41 55.88 82.74 59.18 81.67 62.93 73.22
7 50.79 83.28 52.41 74.21 44.05 89.56 45.22 82.46 61.03 84.09 64.88 76.90
8 52.18 83.82 53.76 75.11 40.09 89.34 41.35 81.75 53.36 81.30 58.02 72.60
9 57.33 82.40 58.58 74.10 51.07 91.41 52.11 85.32 49.71 61.01 51.59 52.56

50%

0 57.44 72.01 57.82 66.51 51.47 83.75 51.89 75.55 75.71 82.67 76.34 80.07
1 62.04 68.92 62.22 65.72 52.52 83.81 52.93 75.30 70.56 73.05 70.78 70.60
2 61.66 70.50 61.89 66.93 50.64 85.10 51.09 76.29 70.76 78.05 71.42 74.18
3 58.88 69.09 59.14 64.98 54.26 84.22 54.65 76.35 70.45 74.29 70.80 71.70
4 62.11 69.96 62.31 66.30 55.06 84.01 55.44 75.63 68.29 71.15 68.55 69.12
5 58.56 72.02 58.91 66.30 52.78 84.17 53.20 75.69 74.22 77.70 74.54 76.01
6 55.92 67.11 56.21 62.08 51.95 83.97 52.37 75.94 73.29 80.95 73.99 77.45
7 57.74 66.71 57.97 61.87 49.92 83.73 50.37 74.83 70.24 75.19 70.69 72.70
8 60.93 71.71 61.21 67.41 49.19 82.40 49.62 73.49 69.59 73.54 69.95 71.53
9 63.98 68.29 64.09 65.66 55.37 84.78 55.75 77.53 71.41 74.80 71.72 72.46

75%

0 65.47 56.31 65.31 64.50 53.11 75.08 53.30 66.82 77.73 68.20 77.13 74.97
1 66.17 51.73 65.93 63.71 53.75 76.63 53.95 68.83 74.97 57.43 73.87 69.60
2 64.73 52.93 64.53 63.08 52.09 76.01 52.30 67.21 75.13 65.37 74.52 71.94
3 63.41 49.66 63.18 61.50 55.98 75.57 56.15 68.86 75.72 57.86 74.60 69.98
4 64.99 52.81 64.79 63.24 56.38 76.64 56.56 69.49 76.82 61.84 75.88 72.87
5 64.98 59.67 64.89 64.87 51.57 78.20 51.81 68.78 78.43 59.41 77.24 72.25
6 62.19 53.26 62.04 60.86 53.56 76.88 53.77 68.89 74.44 58.53 73.44 68.74
7 59.66 51.17 59.51 59.02 52.58 76.27 52.79 68.01 78.70 66.63 77.95 75.22
8 65.18 54.89 65.00 63.87 52.86 74.40 53.05 66.33 75.25 57.61 74.15 69.81
9 66.26 51.22 66.01 63.50 56.87 76.72 57.05 70.10 74.12 62.73 73.40 70.43
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Table 14: DA-ADB experimental results in detail

Banking_CG OOS_CG StackOverflow_CG
Seed F1-

IND
F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

25%

0 51.66 88.27 53.49 80.01 33.93 92.54 35.43 86.62 70.98 90.81 74.29 85.96
1 55.33 84.21 56.77 76.21 37.62 91.84 39.01 85.55 66.88 87.19 70.26 81.03
2 50.86 84.62 52.55 77.16 35.91 91.44 37.33 84.91 60.42 82.93 64.17 74.84
3 55.55 85.63 57.05 78.22 39.84 91.12 41.16 84.61 66.89 88.05 70.41 82.03
4 58.68 86.10 60.05 79.06 45.06 92.47 46.27 86.81 60.39 84.17 64.35 76.76
5 51.81 86.97 53.57 78.96 44.04 92.12 45.27 86.29 62.54 81.87 65.76 74.22
6 46.76 83.06 48.57 74.47 44.73 91.67 45.93 85.71 63.63 87.01 67.52 80.07
7 49.18 87.05 51.08 78.74 35.03 90.76 36.46 83.92 64.84 86.87 68.51 80.45
8 54.86 87.38 56.49 80.33 30.67 91.08 32.22 84.33 52.25 83.31 57.43 74.63
9 58.64 88.16 60.11 81.17 35.87 91.93 37.31 85.74 54.41 76.14 58.04 66.85

50%

0 49.77 75.22 50.42 66.72 31.77 84.11 32.46 74.15 80.15 86.31 80.71 84.17
1 52.47 71.43 52.96 65.19 34.71 83.17 35.34 73.24 77.32 81.37 77.69 78.93
2 57.29 74.85 57.74 69.30 31.49 83.23 32.17 72.91 72.93 81.07 73.67 77.18
3 53.55 72.26 54.03 66.14 34.22 83.41 34.86 73.82 74.07 77.89 74.42 75.52
4 55.62 73.03 56.07 66.77 37.00 82.77 37.60 72.96 74.59 81.62 75.23 78.66
5 52.39 76.15 53.00 68.57 37.80 83.32 38.40 73.68 75.76 80.38 76.18 78.18
6 50.45 77.04 51.13 67.93 35.98 83.47 36.61 73.84 79.23 85.97 79.84 83.17
7 55.90 74.81 56.38 68.04 32.06 83.22 32.73 72.80 76.72 83.76 77.36 81.31
8 58.98 77.10 59.44 71.20 31.04 82.92 31.72 72.60 71.85 77.45 72.36 74.87
9 59.34 72.63 59.68 67.83 30.50 83.46 31.19 73.68 77.05 81.71 77.47 79.38

75%

0 54.14 56.52 54.18 58.97 28.11 72.94 28.51 60.71 81.00 71.38 80.40 78.00
1 55.05 51.20 54.99 56.75 28.66 71.49 29.04 59.55 75.19 63.00 74.43 71.46
2 54.38 49.80 54.30 55.85 29.51 72.10 29.89 60.27 77.36 67.09 76.72 74.04
3 55.38 48.25 55.26 55.27 28.06 71.12 28.44 59.36 78.03 61.71 77.01 72.74
4 55.04 48.45 54.93 55.49 30.00 71.20 30.37 59.00 81.17 69.09 80.41 77.80
5 52.59 55.11 52.63 56.80 29.10 73.25 29.49 60.79 79.46 62.63 78.40 74.01
6 54.04 56.19 54.07 58.02 30.41 71.54 30.77 59.80 76.96 62.10 76.04 71.57
7 51.78 51.07 51.77 54.32 29.22 71.38 29.59 59.42 81.15 70.17 80.47 77.97
8 55.68 55.04 55.67 58.23 30.14 70.19 30.50 58.73 77.66 62.87 76.74 72.94
9 59.35 52.95 59.24 59.70 32.61 72.40 32.97 61.43 77.73 67.98 77.12 74.56
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Table 15: ADB+GPTAUG-F4 experimental results in detail

Banking_CG OOS_CG StackOverflow_CG
Seed F1-

IND
F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

25%

0 58.04 85.27 59.40 77.48 52.90 92.93 53.92 87.78 66.07 87.09 69.58 80.90
1 57.11 81.53 58.33 73.63 56.85 92.69 57.77 87.33 63.04 83.53 66.46 76.56
2 59.83 83.40 61.01 76.53 54.62 92.73 55.60 87.22 62.06 83.26 65.59 76.11
3 58.91 83.93 60.16 76.74 53.28 90.81 54.24 84.64 59.22 84.74 63.48 77.52
4 61.81 82.72 62.86 74.79 56.91 92.21 57.82 86.48 58.39 78.63 61.76 70.50
5 53.76 84.91 55.31 77.00 56.47 92.70 57.40 87.47 57.87 71.56 60.15 63.86
6 49.84 78.68 51.28 69.57 59.21 91.51 60.04 86.10 63.44 86.24 67.24 79.14
7 51.00 84.02 52.65 75.37 45.39 89.72 46.53 82.76 61.32 84.23 65.14 77.11
8 57.43 84.96 58.81 77.37 44.15 91.12 45.35 84.64 59.58 86.30 64.03 79.14
9 59.54 84.31 60.78 76.58 55.61 92.91 56.56 87.89 58.38 80.57 62.08 72.36

50%

0 59.88 72.93 60.21 67.99 55.53 85.53 55.92 78.30 74.80 82.30 75.48 79.48
1 64.52 71.24 64.69 68.72 56.29 84.85 56.67 77.56 73.32 79.95 73.93 76.63
2 64.21 72.72 64.43 69.67 53.62 85.84 54.04 77.92 69.22 78.59 70.07 74.04
3 60.36 71.55 60.65 67.77 55.85 85.28 56.24 78.19 70.77 76.59 71.30 73.43
4 65.22 74.51 65.46 70.62 58.56 85.23 58.91 78.14 66.06 64.09 65.88 64.27
5 60.60 75.58 60.98 70.15 55.21 85.54 55.60 77.97 73.83 77.12 74.13 75.32
6 60.24 76.12 60.65 71.10 57.29 86.50 57.68 79.90 73.91 82.90 74.72 79.17
7 61.76 72.72 62.04 68.04 54.12 85.37 54.53 77.75 71.47 76.16 71.90 73.94
8 63.54 73.68 63.80 70.31 51.68 84.15 52.11 76.21 68.46 72.63 68.84 70.43
9 65.21 70.97 65.35 67.99 55.47 85.59 55.87 78.77 73.98 79.95 74.53 77.01

75%

0 68.56 57.90 68.38 67.09 57.04 78.70 57.23 71.92 77.32 67.80 76.72 74.32
1 68.72 53.37 68.46 65.98 58.07 77.79 58.25 71.45 76.73 62.79 75.86 72.43
2 65.97 55.15 65.79 64.66 54.59 77.05 54.79 69.60 73.05 63.29 72.44 69.57
3 65.24 50.29 64.98 62.97 56.72 76.96 56.90 71.01 75.24 59.45 74.25 69.64
4 64.58 51.19 64.36 62.39 58.43 77.49 58.60 71.56 76.35 61.50 75.42 72.01
5 66.94 58.90 66.81 65.88 53.77 78.05 53.98 70.43 77.68 59.26 76.53 71.60
6 64.75 56.67 64.61 63.98 53.65 76.91 53.86 69.71 73.96 57.14 72.91 67.78
7 67.40 55.04 67.19 65.72 53.77 77.22 53.98 70.04 78.29 65.85 77.51 74.60
8 66.09 54.49 65.89 64.08 55.79 76.08 55.97 69.77 75.00 56.65 73.86 68.95
9 68.24 55.17 68.02 66.14 58.04 77.31 58.21 71.48 73.54 63.11 72.88 69.91
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Table 16: ADB+GPTAUG-F10 experimental results in detail

Banking_CG OOS_CG StackOverflow_CG
Seed F1-

IND
F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

25%

0 58.71 86.00 60.07 78.59 53.03 92.85 54.05 87.67 66.19 86.48 69.58 80.17
1 57.87 81.50 59.05 73.68 57.33 92.70 58.24 87.42 62.82 83.08 66.19 75.97
2 60.23 82.65 61.35 75.74 55.26 92.90 56.22 87.50 58.46 78.12 61.74 70.19
3 58.84 83.84 60.09 76.64 52.85 91.08 53.83 84.99 53.44 76.63 57.30 68.26
4 63.74 85.02 64.80 78.01 58.23 92.79 59.11 87.56 58.66 80.21 62.25 72.22
5 54.81 85.70 56.36 78.11 58.45 92.92 59.33 87.91 53.65 67.25 55.92 59.66
6 50.23 79.56 51.70 70.73 59.61 91.42 60.43 85.90 58.26 81.54 62.14 73.18
7 52.00 84.93 53.65 76.58 46.39 89.63 47.49 82.63 60.53 83.16 64.30 75.73
8 57.18 85.03 58.57 77.43 45.55 91.60 46.73 85.46 58.85 85.62 63.31 78.18
9 62.15 86.17 63.36 79.06 55.95 92.81 56.90 87.75 59.03 81.32 62.75 73.08

50%

0 59.45 73.31 59.81 68.51 56.05 86.22 56.45 79.32 74.30 82.36 75.03 79.35
1 64.61 72.94 64.82 70.09 57.44 84.34 57.79 76.98 71.94 78.66 72.55 75.25
2 63.61 73.12 63.85 69.99 53.01 86.08 53.45 78.61 68.62 78.56 69.52 74.11
3 60.49 71.53 60.77 67.77 55.27 85.53 55.67 78.58 69.86 76.45 70.45 73.05
4 65.83 74.73 66.06 71.26 58.02 85.55 58.38 78.69 67.31 68.90 67.45 67.37
5 59.64 74.90 60.03 69.67 56.20 86.01 56.59 78.83 73.22 78.02 73.66 75.80
6 60.02 76.72 60.45 71.62 56.64 86.21 57.03 79.71 74.21 83.34 75.04 79.62
7 61.61 72.19 61.88 67.62 54.29 85.35 54.70 77.75 71.85 80.04 72.59 76.83
8 62.66 74.10 62.95 70.57 51.47 84.50 51.90 76.82 69.22 75.75 69.81 72.87
9 64.91 68.75 65.01 66.51 55.60 85.85 56.00 79.13 69.23 73.57 69.62 70.95

75%

0 68.27 57.05 68.08 66.51 56.60 78.20 56.80 71.50 77.85 68.49 77.27 74.91
1 68.10 53.69 67.86 65.56 56.99 77.18 57.17 70.90 76.53 60.94 75.56 71.29
2 65.71 56.59 65.56 64.98 53.54 76.59 53.74 69.71 72.94 62.67 72.30 69.36
3 65.29 52.34 65.07 63.55 57.20 76.27 57.37 70.46 74.57 58.22 73.55 68.74
4 64.32 50.80 64.09 62.24 58.62 77.76 58.79 72.00 76.26 62.65 75.41 72.08
5 65.75 57.27 65.60 64.61 54.58 77.99 54.79 70.65 77.08 59.47 75.97 71.33
6 64.39 54.56 64.22 63.13 52.86 76.82 53.07 69.63 73.89 59.24 72.98 68.40
7 66.59 54.30 66.38 65.08 53.26 76.52 53.47 69.36 77.40 64.11 76.56 73.56
8 64.78 54.95 64.62 63.66 54.11 75.50 54.30 69.27 75.57 56.72 74.40 69.12
9 68.97 54.48 68.72 66.03 58.63 77.61 58.80 71.94 71.42 59.03 70.64 67.33
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Table 17: ADB+GPTAUG-WP10 experimental results in detail

Banking_CG OOS_CG StackOverflow_CG
Seed F1-

IND
F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

25%

0 53.68 74.20 54.71 63.82 42.78 88.54 43.95 80.23 55.82 55.25 55.72 50.26
1 51.63 71.00 52.59 61.60 46.34 86.13 47.36 77.18 52.86 61.73 54.34 55.11
2 50.59 67.94 51.46 60.44 47.38 89.55 48.46 81.55 50.06 60.37 51.78 53.56
3 54.12 74.17 55.12 65.98 49.64 87.59 50.62 79.71 49.37 70.08 52.83 61.55
4 58.30 77.65 59.27 69.57 54.61 91.64 55.56 85.27 56.11 74.04 59.10 65.92
5 45.41 72.00 46.74 61.81 50.45 90.10 51.47 83.20 53.80 68.79 56.30 61.27
6 47.58 67.77 48.59 58.54 57.17 89.23 58.00 82.65 50.65 68.32 53.60 59.35
7 42.20 54.62 42.82 47.20 42.85 85.61 43.95 76.57 50.25 62.95 52.37 55.59
8 45.03 72.01 46.38 61.50 41.98 88.94 43.19 81.22 45.41 54.21 46.88 47.13
9 51.87 73.33 52.94 64.24 47.13 88.34 48.19 80.70 51.82 59.69 53.13 51.91

50%

0 58.94 62.37 59.03 60.13 52.23 82.91 52.64 74.45 71.75 74.91 72.04 73.29
1 62.10 58.44 62.00 60.07 52.31 82.77 52.71 74.28 70.46 71.96 70.59 70.02
2 61.63 65.70 61.73 63.61 51.46 84.34 51.89 75.39 64.61 65.84 64.73 64.20
3 59.66 64.29 59.78 62.18 55.36 83.71 55.73 75.74 69.14 70.79 69.29 69.16
4 62.01 59.84 61.95 60.50 56.44 83.40 56.79 74.72 56.88 29.67 54.41 46.92
5 56.61 63.18 56.78 60.28 54.38 84.28 54.77 75.94 69.88 65.79 69.51 67.13
6 56.27 58.66 56.33 57.49 53.58 83.42 53.97 75.33 62.22 55.86 61.64 58.42
7 58.79 57.53 58.76 57.70 49.73 82.41 50.16 73.32 68.51 69.89 68.64 68.85
8 60.05 61.67 60.09 60.44 49.75 80.34 50.15 71.23 65.71 64.05 65.56 64.54
9 62.64 59.46 62.56 60.34 57.26 83.06 57.60 75.66 71.25 72.51 71.36 71.15

75%

0 67.13 55.05 66.93 65.14 53.69 74.77 53.88 66.63 76.61 63.64 75.80 72.98
1 66.55 45.06 66.19 62.45 55.60 75.61 55.78 67.84 74.09 50.07 72.59 67.37
2 63.93 47.66 63.66 61.55 53.02 75.63 53.22 67.10 73.16 55.16 72.04 68.19
3 65.11 46.54 64.80 62.13 57.03 75.30 57.19 68.69 72.96 39.88 70.89 64.89
4 66.03 46.44 65.70 62.18 56.62 76.20 56.79 68.92 76.12 54.41 74.77 70.71
5 66.35 55.35 66.16 64.35 52.77 77.94 52.99 68.45 74.51 43.38 72.56 67.02
6 64.69 50.50 64.45 61.87 55.38 76.83 55.57 68.81 73.15 49.34 71.67 66.16
7 61.94 46.28 61.68 60.07 52.85 75.50 53.06 67.37 75.28 54.81 74.01 70.22
8 65.27 47.83 64.98 62.13 53.96 73.84 54.14 66.22 73.53 41.78 71.54 65.34
9 65.17 39.13 64.73 60.34 58.19 76.18 58.35 69.66 69.21 46.78 67.81 63.79
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Table 18: DA-ADB+GPTAUG-F4 experimental results in detail

Banking_CG OOS_CG StackOverflow_CG
Seed F1-

IND
F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

25%

0 55.09 86.53 56.66 78.69 38.42 92.36 39.80 86.43 71.49 90.20 74.61 85.16
1 57.86 82.82 59.11 75.32 42.45 91.97 43.72 85.82 45.42 44.39 45.25 37.59
2 50.66 83.60 52.31 76.11 41.85 91.92 43.14 85.85 63.07 84.41 66.63 77.04
3 56.91 83.70 58.25 76.16 46.46 91.05 47.60 84.75 63.46 87.15 67.41 80.59
4 62.07 84.82 63.21 77.74 50.34 92.73 51.42 87.47 55.97 80.22 60.01 71.64
5 51.81 85.38 53.49 77.37 48.41 92.23 49.53 86.65 56.85 54.46 56.45 46.47
6 47.89 83.49 49.67 75.16 53.37 92.06 54.36 86.65 68.30 88.74 71.71 82.65
7 47.67 85.26 49.55 76.58 38.10 90.42 39.44 83.54 62.50 86.83 66.55 80.07
8 56.29 85.71 57.76 78.22 36.07 91.53 37.50 85.19 54.72 84.43 59.68 76.28
9 59.50 86.93 60.88 79.75 44.37 92.27 45.60 86.51 57.94 79.49 61.53 70.43

50%

0 50.54 73.12 51.12 66.51 35.47 84.41 36.11 75.22 78.31 84.84 78.90 82.48
1 59.47 75.31 59.88 70.83 40.56 83.88 41.13 74.92 54.14 13.38 50.43 37.56
2 57.98 75.05 58.42 70.04 38.37 84.00 38.97 74.61 70.96 78.61 71.66 74.53
3 55.67 72.29 56.10 67.25 38.04 83.84 38.65 74.81 70.70 75.70 71.15 72.87
4 58.89 73.87 59.27 69.15 40.96 83.27 41.51 74.37 71.34 80.37 72.16 76.63
5 54.31 74.02 54.81 68.09 39.35 83.48 39.93 74.26 76.41 80.97 76.82 79.00
6 56.25 77.70 56.80 71.99 43.06 84.56 43.60 76.24 75.68 82.58 76.30 79.38
7 55.99 74.21 56.46 68.04 37.55 84.02 38.16 74.56 75.92 83.00 76.56 80.34
8 59.88 76.63 60.31 72.10 38.05 83.97 38.65 74.86 73.36 79.61 73.93 76.97
9 61.65 74.48 61.98 70.09 37.13 84.52 37.75 75.74 75.95 81.64 76.46 79.04

75%

0 55.25 54.49 55.24 58.97 33.04 73.38 33.40 62.42 80.62 71.23 80.03 77.73
1 57.69 50.92 57.57 58.18 33.93 72.34 34.27 61.70 78.27 65.96 77.50 74.32
2 55.24 50.60 55.16 56.96 35.07 72.62 35.41 62.33 76.72 65.31 76.00 72.60
3 53.68 46.91 53.57 54.17 32.50 72.04 32.85 61.59 77.15 60.04 76.08 71.33
4 53.99 47.43 53.88 54.96 34.23 72.39 34.57 62.25 78.95 65.26 78.09 74.94
5 54.30 54.09 54.30 57.81 31.94 73.10 32.30 61.59 78.56 61.99 77.52 73.05
6 53.14 52.15 53.12 56.70 34.54 72.64 34.87 62.25 75.95 60.29 74.97 70.15
7 57.41 52.71 57.33 58.91 32.39 71.39 32.73 60.57 73.60 50.75 72.17 66.57
8 56.93 54.07 56.88 59.39 31.40 70.80 31.75 60.05 75.43 49.51 73.81 67.23
9 61.08 52.53 60.94 60.60 35.98 73.35 36.31 63.33 73.46 57.54 72.47 67.13
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Table 19: DA-ADB+GPTAUG-F10 experimental results in detail

Banking_CG OOS_CG StackOverflow_CG
Seed F1-

IND
F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

25%

0 52.79 85.62 54.43 77.58 38.97 92.28 40.34 86.29 65.05 79.99 67.54 71.88
1 56.34 81.59 57.61 73.73 45.12 92.08 46.32 86.07 58.02 81.47 61.93 72.91
2 50.23 82.99 51.87 75.32 41.15 91.85 42.45 85.66 54.62 76.51 58.26 66.33
3 57.28 83.52 58.59 75.95 44.85 90.85 46.03 84.39 70.38 90.84 73.79 85.78
4 56.53 82.43 57.83 73.95 50.29 92.19 51.36 86.59 59.89 84.56 64.00 76.97
5 52.06 85.16 53.72 77.06 46.97 92.03 48.13 86.32 58.56 75.63 61.41 66.54
6 47.94 83.57 49.72 75.26 51.96 91.89 52.99 86.32 71.34 90.61 74.55 85.40
7 49.23 84.65 51.00 76.00 37.52 90.29 38.87 83.31 63.71 88.52 67.84 82.34
8 55.30 84.64 56.76 76.90 38.27 91.38 39.63 85.02 56.27 84.82 61.03 76.63
9 57.45 85.85 58.87 78.22 46.91 92.54 48.08 87.00 40.31 0.17 33.62 16.18

50%

0 50.07 71.87 50.63 65.45 36.62 84.47 37.25 75.36 77.45 85.47 78.18 82.86
1 58.32 75.07 58.75 70.46 39.97 83.92 40.55 74.86 55.61 27.05 53.01 42.10
2 59.39 74.99 59.79 70.46 38.79 84.03 39.39 74.64 70.36 80.53 71.29 76.21
3 53.08 71.80 53.56 66.30 38.38 83.62 38.98 74.56 67.74 76.56 68.54 72.74
4 56.98 73.86 57.41 68.83 40.59 83.27 41.15 74.34 70.46 77.36 71.09 73.80
5 53.81 74.10 54.33 67.99 40.70 83.56 41.26 74.42 75.73 81.43 76.25 79.00
6 56.50 77.59 57.04 71.99 42.66 84.53 43.21 76.16 73.76 83.17 74.61 79.52
7 55.97 74.49 56.44 68.30 39.05 83.96 39.64 74.70 71.88 81.52 72.76 78.18
8 59.42 76.05 59.85 71.15 36.42 83.68 37.04 74.34 71.55 78.52 72.18 75.59
9 61.70 74.40 62.03 69.99 37.01 84.37 37.63 75.58 68.63 76.20 69.32 72.67

75%

0 53.43 53.49 53.43 57.54 34.01 73.64 34.36 63.33 77.10 67.88 76.52 74.25
1 56.61 49.72 56.49 57.01 34.39 72.33 34.73 61.98 76.49 64.84 75.76 72.91
2 54.23 50.28 54.16 56.17 36.57 73.04 36.89 63.24 74.02 63.03 73.34 69.95
3 53.09 45.94 52.97 53.43 31.37 71.57 31.73 60.66 72.03 52.61 70.81 65.47
4 53.99 46.46 53.86 54.22 33.32 72.17 33.66 61.95 73.55 54.27 72.35 68.50
5 54.03 53.96 54.02 57.54 32.15 73.15 32.52 61.81 76.89 60.00 75.83 71.19
6 52.23 52.07 52.22 56.17 34.82 72.76 35.15 62.39 73.87 57.40 72.84 67.54
7 54.64 50.03 54.56 56.01 33.02 71.70 33.36 60.96 77.18 67.03 76.54 74.35
8 56.11 52.99 56.06 58.44 32.94 71.29 33.28 60.93 71.23 51.46 70.00 64.75
9 60.22 51.66 60.07 59.92 35.47 73.15 35.80 63.19 64.18 9.64 60.77 52.05
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Table 20: DA-ADB+GPTAUG-WP10 experimental results in detail

Banking_CG OOS_CG StackOverflow_CG
Seed F1-

IND
F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

F1-
IND

F1-
OOD

F1-
All

Acc-
All

25%

0 53.70 86.98 55.37 78.06 38.21 92.80 39.61 87.00 63.39 81.83 66.46 74.73
1 57.08 81.07 58.28 72.47 44.31 91.58 45.53 85.24 47.28 24.40 43.47 30.12
2 55.92 81.19 57.18 73.58 39.26 91.75 40.61 85.41 47.71 29.83 44.73 31.57
3 55.73 82.63 57.08 74.47 45.49 90.52 46.64 83.92 59.70 82.07 63.43 74.60
4 62.46 83.43 63.51 75.79 50.07 92.43 51.15 86.81 58.29 77.75 61.53 69.74
5 50.26 83.71 51.93 74.42 44.47 91.75 45.69 85.74 52.03 70.83 55.16 62.79
6 49.43 77.93 50.85 68.78 49.18 91.79 50.28 86.10 60.47 80.97 63.88 73.22
7 47.37 84.04 49.20 74.37 39.63 91.01 40.95 84.44 52.04 68.82 54.83 60.34
8 55.20 85.40 56.71 77.74 37.16 90.51 38.53 83.65 47.95 60.58 50.06 52.32
9 60.03 82.55 61.15 74.16 44.05 91.30 45.26 85.02 57.25 71.67 59.65 62.75

50%

0 53.41 73.46 53.92 66.09 38.59 84.64 39.20 75.39 77.29 82.41 77.76 80.24
1 62.07 73.60 62.37 69.30 41.71 83.77 42.27 74.45 64.02 27.95 60.75 43.58
2 56.87 64.58 57.06 60.60 39.02 84.46 39.62 75.06 57.58 37.95 55.80 47.02
3 59.00 70.99 59.31 66.09 41.87 83.77 42.42 74.89 68.68 67.71 68.59 67.13
4 60.97 70.86 61.22 66.56 42.25 83.81 42.80 74.64 70.05 73.94 70.40 71.39
5 57.57 71.68 57.93 65.24 41.63 83.77 42.19 74.72 64.25 40.44 62.09 50.57
6 52.47 70.47 52.93 63.13 42.35 84.68 42.91 76.21 79.65 85.86 80.21 83.20
7 58.65 70.89 58.96 65.61 38.17 83.97 38.78 74.26 75.57 82.13 76.17 79.59
8 60.21 68.56 60.43 64.19 39.95 83.01 40.51 73.54 71.58 74.68 71.86 72.98
9 65.06 68.23 65.14 66.19 37.06 83.97 37.68 74.97 70.44 72.75 70.65 70.81

75%

0 61.38 56.01 61.29 62.34 38.23 74.93 38.56 64.34 81.59 71.79 80.98 78.62
1 63.18 51.87 62.99 62.13 39.36 72.85 39.66 63.02 78.88 62.05 77.83 73.56
2 61.95 52.63 61.80 61.18 40.57 74.43 40.87 64.26 77.74 65.95 77.01 73.91
3 63.84 48.10 63.57 60.92 40.33 73.76 40.63 64.40 77.20 54.47 75.78 70.36
4 62.31 49.46 62.10 60.86 41.52 74.05 41.80 64.45 80.47 65.99 79.56 76.49
5 59.10 55.17 59.03 60.81 38.71 75.38 39.04 64.37 78.20 59.34 77.02 72.46
6 60.86 56.98 60.80 61.81 40.03 74.08 40.33 64.04 77.30 60.53 76.25 71.81
7 63.63 55.36 63.49 63.50 40.06 73.70 40.36 63.66 81.28 68.34 80.47 77.52
8 62.06 55.62 61.95 62.24 39.52 71.95 39.81 62.31 70.73 37.47 68.65 60.83
9 64.74 52.16 64.52 62.87 43.73 75.61 44.01 66.24 74.30 60.24 73.42 69.60
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Abstract

Large Language Models (LLMs), consisting of
100 billion or more parameters, have demon-
strated remarkable ability in complex multi-
step reasoning tasks. However, the applica-
tion of such generic advancements has been
limited to a few fields, such as clinical or le-
gal, with the field of financial reasoning re-
maining largely unexplored. To the best of
our knowledge, the ability of LLMs to solve
financial reasoning problems has never been
dealt with, and whether it can be performed at
any scale remains unknown. To address this
knowledge gap, this research presents a com-
prehensive investigation into the potential ap-
plication of LLMs in the financial domain. The
investigation includes a detailed exploration
of a range of subjects, including task formu-
lation, synthetic data generation, prompting
methods, and evaluation capability. Further-
more, the study benchmarks various GPT vari-
ants with parameter scales ranging from 2.8B
to 13B, with and without instruction tuning,
on diverse dataset sizes. By analyzing the re-
sults, we reveal that the ability to generate co-
herent financial reasoning first emerges at 6B
parameters, and continues to improve with bet-
ter instruction-tuning or larger datasets. Addi-
tionally, the study provides a publicly accessi-
ble dataset named sFIOG (Synthetic-Financial
Investment Opinion Generation), consisting of
11,802 synthetic investment thesis samples, to
support further research in the field of financial
reasoning. Overall, this research seeks to con-
tribute to the understanding of the efficacy of
language models in the field of finance, with a
particular emphasis on their ability to engage
in sophisticated reasoning and analysis within
the context of investment decision-making. We
release our models, dataset, and code 1.

1 Introduction

Large Language Models(100+ billion parame-
ters) have undergone remarkable advancements

1https://github.com/guijinSON/FIOG/tree/main

in recent years, enabling them with the ability
to generate coherent and meaningful text (Wei
et al., 2022a). These LLMs have demonstrated
notable abilities in performing complex multi-step
reasoning, either by thinking "step by step" (Ko-
jima et al.) or leveraging Chain-of-Thought(CoT)
prompts (Wei et al., 2022b). Various fields have
attempted to harness such reasoning ability, and
among them, the field of clinical research has made
notable progress by developing domain-specific
LLMs like Med-Palm (Singhal et al., 2022), re-
trained on massive amounts of domain-specific
texts and tasks, which achieves performance com-
parable to that of human clinicians. In situations
where data is insufficient to train dedicated lan-
guage models, researchers have directed their ef-
forts towards developing advanced prompt engi-
neering techniques, such as Legal Prompt Engineer-
ing (LPE) (Trautmann et al., 2022), or generation
of synthetic data via LLMs and training of smaller
language models on such samples (Yunxiang et al.,
2023). However, there is a lack of comprehensive
investigation for either of the methods in the finan-
cial domain, leaving the field of financial reasoning
largely unexplored.

The research of natural language process-
ing in the financial domain has predominantly
been confined to token or sequence classification
tasks (Araci, 2019; Shah et al., 2022). This is likely
due to the lack of datasets or tasks suitable for train-
ing generative language models. Even dedicated fi-
nancial language models like BloombergGPT, tend
to prioritize tasks such as sentiment analysis, bi-
nary classification, and named entity recognition,
with limited attention given to numerical reasoning
tasks (Wu et al., 2023).

Our research aims to comprehensively investi-
gate the financial reasoning capabilities of lan-
guage models, specifically their ability to gener-
ate logically coherent and persuasive investment
opinions. The investigation involves both prompt
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engineering and specialized training of smaller
language models (Fu et al., 2023), seeking to ad-
vance our understanding on the ability of language
models to engage in sophisticated reasoning and
analysis within the context of investment decision-
making. Accordingly, our research introduces an
original financial reasoning task called "Financial
Investment Opinion Generation (FIOG)", which
involves the generation of investment opinions by
language models with either parametric or injected
knowledge. We then benchmark various GPT vari-
ants, ranging in size from 2.7B to 13B, with and
without instruction-tuning (Ouyang et al., 2022),
on the dataset. Additionally, we propose a novel
prompting method called In-Context Question An-
swering for controlled generation of context. Fi-
nally, we investigate the alignment between LLM-
based evaluators, such as G-Eval (Liu et al., 2023),
and human evaluators for financial texts, in order
to gain insights into the efficacy of such evaluators
in the financial domain.

To support further research on financial reason-
ing, we provide a publicly accessible dataset named
sFIOG (Synthetic-Financial Investment Opinion
Generation), which includes 11,802 synthetic in-
vestment opinion samples. This dataset is intended
to enable benchmarking and experimentation in the
field of financial language modeling and investment
opinion generation.

2 Related Work

2.1 Reasoning with Language Models

Language Models (LMs) trained using conven-
tional pre-training objectives have demonstrated
the ability to acquire complex reasoning capabil-
ities once they reach a certain scale (Wei et al.,
2022a). However, recent research has shown
that the parameter requirements for complex rea-
soning abilities of LMs can be significantly alle-
viated through a process called instruction tun-
ing (Ouyang et al., 2022). Further research has
suggested that narrowing down the model’s focus
to specialize in a specific field can result in addi-
tional alleviation of parameter requirements. This
can be achieved by including task-specific Chain-
of-Thought (CoT) data in the instruction-tuning
process, allowing the model to acquire specialized
reasoning capabilities (Fu et al., 2023). Some re-
searchers have adopted this approach, leveraging
domain-specific CoT data, which is often gener-
ated by the LLMs themselves, to enable domain-

specific reasoning abilities (Yunxiang et al., 2023).
However, the effectiveness of this approach across
different domains and the potential variability in
parameter and data requirements for specific do-
mains remain relatively unexplored. Accordingly,
it is plausible that domains characterized by com-
plex nomenclature and reasoning steps, which sig-
nificantly deviate from general, widely applicable
patterns, may necessitate higher parameter and data
requirements.

2.2 Financial Natural Language Processing

The financial domain has been quick to adopt
advancements in generic natural language process-
ing research. Notably, BloombergGPT, a language
model with 50 billion parameters specifically dedi-
cated for finance, stands out as a significant devel-
opment in this field (Wu et al., 2023).However,
despite its significance, BloombergGPT and re-
cent research of the field have limitations in terms
of their investigation in reasoning abilities, which
have been left out of the scope of research. The fo-
cus of predominant research in the financial domain
has largely been limited to token or sequence classi-
fication tasks (Araci, 2019; Shah et al., 2022), likely
due to the scarcity of suitable datasets or tasks for
training generative language models. For instance,
corpora containing financial reasoning steps, which
are essential for training language models for tasks
such as investment opinion generation, are mostly
confidential in nature and therefore excluded from
the training data of publicly available language
models (Scao et al., 2022; Black et al., 2022; Tou-
vron et al., 2023). This limitation poses challenges
for developing language models with specialized
reasoning capabilities in the financial domain.

Though this study does not involve the devel-
opment of a finance-native LM of its own, it dis-
tinguishes itself from previous research as it com-
prehensively investigates the circumstances under
which specialized financial reasoning capabilities
can be enabled.

3 Task Formulation

In this paper we introduce a novel task called
Financial Investment Opinion Generation(FIOG),
the term encompasses all tasks aiming to train or
prompt language models to generate investment
opinions in the context of finance, leveraging either
parametric or injected knowledge. Our variant of
the FIOG task involves providing language models
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with the necessary information as part of the input.
The input information in our variant is provided
in two types: full-text and question-and-answer
(Q&A). In the full-text type, the input consists of
complete text passages, while in the Q&A type,
the input comprises pairs of questions and corre-
sponding answers. The Q&A type is used to train
and prompt our model via In-Context Question An-
swering, which will be explained later in the paper.
Incorporating investment decision-relevant infor-
mation as part of the input, enables us to investigate
the ability of Language Models (LMs) as reason-
ing engines, rather than knowledge databases, and
allows for a more targeted and effective training
process.

4 Dataset Creation

To support further research on financial reason-
ing, we provide a publicly accessible dataset named
sFIOG (Synthetic-Financial Investment Opinion
Generation). The sFIOG dataset is generated
through the following steps.

1. Collection of expert-written analyst reports:
We gathered 1,087 analyst reports from vari-
ous sources, including J.P Morgan, Truist Fi-
nancial Corp, and Oppenheimer & Co. These
reports cover 752 companies in the U.S stock
market.

2. Expert-Written investment thesis set construc-
tion: We extracted the "Investment Thesis"
and "Related Risk" sections from each ana-
lyst report, resulting in a set of expert-written
investment theses.

3. Full-Text type input construction: We con-
structed the Full-Text type input by collecting
the abstract from each analyst report.

4. Q&A type input question generation: Using
the GPT3.5-Turbo API, we fed the Full-Text
type input and required it to generate ques-
tions addressing important information.

5. Dummy answer generation: We used the
GPT3.5-Turbo API to generate dummy an-
swers for the questions generated in step 4.
Human annotators were hired to eliminate an-
swers that deviated greatly from reality.

6. Investment opinion generation: The GPT3.5-
Turbo API was employed to generate invest-
ment opinions for both types of inputs.

In step 4, we extract questions from a given text
rather than relying solely on a LLM to few-shot
generate questions on a given topic. This approach
is expected to generate questions that inquire about
information deemed important by human experts
rather than generating random questions. For com-
parison, we also construct a set of few-shot gener-
ated questions. To assess the lexical and syntactic
diversity of each method, we use three metrics:
Mass and HD-D for lexical diversity, and Syntactic
Sim. for syntactic diversity. Mass and HD-D are
established metrics for measuring lexical richness
and have been shown to be reliable across texts
of different lengths (Torruella and Capsada, 2013;
McCarthy and Jarvis, 2010). A higher HD-D score
indicates greater lexical richness, while a higher
Mass score indicates the opposite. For syntactic di-
versity, we use Syntactic Sim., which measures the
average pairwise similarity of the dependency tree
across generated samples (Oya, 2020). A higher
Syntactic Sim. value indicates greater similarity in
syntactic structures across generated samples. As
presented in Table 2, our approach resembling ques-
tion extraction yields synthetic data with a higher
degree of both lexical and syntactic diversity.

Step 5, adds multiple dummy answers for the
questions generated in the prior step. These dummy
answers were carefully screened by a human anno-
tator to eliminate those that deviate greatly from
reality. We expect this process to add to the diver-
sity of the dataset aiding the fine-tuning of complex
reasoning, similar to diverse reasoning (Ho et al.,
2022).

Table 1 includes the statistics for the constructed
sFIOG dataset. Our dataset encompasses three
types of investment thesis. First, we have 1,087
expert-written investment theses. Second, we have
4,386 investment theses generated with full-text
type input. It is noteworthy that the investment
thesis generated with the full-text type input ex-
hibits a balanced distribution of buy, hold, and sell
opinions, with 1,462 samples for each. Finally, we
have 11,802 samples generated with Q&A type in-
put. Each sample was generated with 13 or more
Q&A pairs, ensuring that a sufficient amount and
diversity of information was provided for the lan-
guage models to formulate comprehensive invest-
ment opinions. More than one sample was gen-
erated for each set of Q&A pairs to add to the
diversity of the dataset.

The publicly accessible sFIOG dataset is limited
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Investment Opinion (RE) Full-Text Type (RE) Q&A Type
Coverage Investment Thesis Full-Text Investment Thesis Question Q&A Pair Investment Thesis
752 1,087 1,087 4,386 10,437 26,138 11,802

Table 1: Dataset Overview. (RE) denotes that the set has been regenerated.

Generation Few-Shot Step 4.
HD-D 0.811 0.873
Mass 0.034 0.025

Syntactic Sim. 0.578 0.42

Table 2: Quantitative assessment of questions generated
via few-shot generation against ours (step 4).

to the Q&A type input subset of the dataset due to
the restriction of third-party sharing of the expert-
written analyst reports collected from the web. To
the best of our knowledge, the publicly accessible
version of the sFIOG dataset is comprised only
of synthetically generated questions, answers, and
investment opinions.

5 In-Context Question Answering

Both LLM or their smaller variants have been
pointed out to hallucinate, or generate context
unfaithful from real-world information (Ji et al.,
2023). Even if these LMs manage to accurately
retrieve real-world information that they have mem-
orized during the pre-training stage, there are still
risks of the information being outdated or non-
stationary (Son et al., 2023). To address this issue,
we propose In-Context Question Answering, where
a list of question-and-answer pairs is provided in-
stead of full-text contexts. Through experiments,
we demonstrate that our approach has several ad-
vantages compared to previous full-text in-context
learning approaches when zero-shot prompting
LLMs. A sample of the questions used is presented
in A.1.

First, our findings indicate that generations
grounded on Q&A pairs exhibit a higher degree
of controlled behavior, or a lower likelihood to gen-
erate unintended context, compared to conventional
in-context learning generations. For instance, ap-
proximately 11.12% of the samples generated with
conventional in-context learning included analy-
sis on the pandemic, even though the investment
opinion was intended for the post-pandemic era. In
contrast, when using in-context question answer-
ing, the chances of generated samples to discuss
pandemic-related issues, despite their absence in

the provided Q&A sets, was merely 1.63%. This
suggests that the proposed in-context question an-
swering may be a more effective approach to zero-
shot prompt LLMs to generate controlled outputs,
making it more suitable for specific contexts and
scenarios, such as post-pandemic era financial anal-
ysis. We speculate that such behavior is because
in-context question answering delivers a refined
version of information with most of the irrelevant
text removed, resulting in a more concise and fo-
cused input. Language models are susceptible to
distraction from irrelevant text (Shi et al., 2023),
and the provision of context in a Q&A format al-
lows them to concentrate on the core information
without being influenced by unnecessary or irrel-
evant sentences. This conciseness and absence of
irrelevant text in the Q&A format may enable lan-
guage models to better align with the intended task,
leading to improved performance and controlled
behavior in generating contextually relevant and
accurate content.

Second, we conducted a survey with hired hu-
man annotators using a subset of 1,000 samples
from each type. In order to assess the performance
of our LLM-based evaluators in comparison to hu-
man annotators, we also conducted the identical
survey using GPT-4 as a respondent, following pre-
vious research on G-Eval (Liu et al., 2023). The
survey presented respondents with three samples
at a time, one from each of the expert-written, full-
text type, and Q&A type. They were then required
to answer two questions:

1. Which investment thesis contains the most in-
vestment helpful information?

2. Which investment thesis presents a more log-
ically structured and reasonable argumenta-
tion?

Figure 1, indicates that human evaluators per-
ceived Q&A type generation to contain the most
investment-helpful information in 61.2% of cases
and demonstrated the most coherent argumentation
in 48% of cases. In contrast, Full-Text type genera-
tion was found to have relatively fewer investment-
helpful information, which may be attributed to the
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presence of irrelevant text that could disrupt the lan-
guage model’s output. Notably, the generated sam-
ples in either full-text or Q&A type were preferred
by human annotators over the expert-written sam-
ples for both questions. We speculate that this pref-
erence for generated samples over expert-written
thesis may be due to the fact that expert-written
thesis are tailored for professionals with domain-
specific expertise, and may omit explanations or
assumed background knowledge, potentially affect-
ing their comprehensibility to human evaluators.
An investigation of the inter-annotator agreement
was conducted on a subset of 350 samples for each
question, revealing a decent Krippendorff’s alpha
of 0.63 for question 1 and 0.68 for question 2.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

G1

G2

H1

H2

Figure 1: Qualitative Evaluation of Collected Invest-
ment Theses: Green denotes expert-written, blue repre-
sents full-text type, and dark blue indicates Q&A type.
G1 and G2 refer to GPT-4 answers for Question1 and
Question2, respectively. H1 and H2 denote human an-
swers for Question1 and Question2, respectively.

Furthermore, we conduct the identical survey us-
ing GPT-4, following G-Eval, we use the following
prompt:

You are a professional financial re-
searcher. You will be given an investment
thesis. Your task is to rate the thesis on
the following metric. Please make sure
you read and understand these instruc-
tions carefully. Please keep this docu-
ment open while reviewing, and refer to
it as needed.

Evaluation Criteria:

Investment-Helpfulness (1-5) - the qual-
ity and diversity of financial facts pro-
vided in the passage. The investment the-
sis should provide a diverse set of quan-
titative information. Quantitative infor-
mation must include numerical values.
Concentrate on the diversity and amount
of facts provided. Ignore the argumenta-
tion for the moment.

Financial Argumentation (1-5) - the qual-
ity of the financial reasoning and sup-
porting evidence in the passage. This in-
cludes the logical coherence of the finan-
cial argument, the strength of the finan-
cial evidence provided, and the overall
persuasiveness of the financial argument.
Specifically, this criterion evaluates the
effectiveness of the financial analysis and
the quality of the financial data used to
support the investment thesis.

The responses from LLMs were compared with
the decision of human annotators to investigate
the efficacy of LLM applications for the evalua-
tion of financial reasoning. Unlike previous re-
search (Gilardi et al., 2023), our study found a
notable disparity between GPT-4 and human judg-
ments, with low correlation observed regardless
of the presence of CoT explanations. Figure 2
displays the confusion matrix comparing the deci-
sions of human and LLM evaluators. The results
indicate that the agreement rate between the two
evaluators was only 29.26%, and 34.6% for each
question correspondingly. Moreover, the Spearman
correlation coefficients between human and LLM
decisions were -0.07 for question one and -0.073
for question two, significantly lower than that of
previous research that reported 0.514 (Liu et al.,
2023). This disparity may be attributed to two key
factors. First, unlike prior research that focused on
LLMs’ evaluation of summarization quality or zero-
shot classification of tweets, our study required the
LLMs to evaluate financial reasoning, which is
a more intricate and complex task. Additionally,
LLMs were never trained for such tasks, which may
have impacted their performance in evaluating the
quality of financial reasoning. Secondly, the finan-
cial domain poses unique complexities, including
diverse nomenclature and domain-specific knowl-
edge, which may present a challenge for generic
LLMs to fully comprehend and accurately evaluate
the coherence of financial reasoning. Following our
findings, LLMs are no longer used as evaluators in
this paper.

Overall, the aforementioned experiments yield
two important findings. Firstly, the results discover
that LLMs are inadequate as evaluators for finan-
cial reasoning tasks, given the limited alignment
observed between LLMs and human evaluators.
Secondly, the proposed In-Context Question An-
swering method represents a promising alternative
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Base Model Instruction-Tuning ROUGE-L BERTScore
type#1 type#2 type#3 average type#1 type#2 type#3 average

LLama ✓ 0.283 0.178 0.359 0.273 0.830 0.849 0.855 0.845
Galactica ✓ 0.108 0.028 0.114 0.083 0.794 0.807 0.799 0.800
GPT-J ✓ 0.159 0.023 0.183 0.122 0.836 0.692 0.836 0.788
Pythia(2.8B) ✓ 0.022 0.000 0.023 0.015 0.731 0.769 0.735 0.745
LLama ✗ 0.080 0.123 0.180 0.128 0.592 0.778 0.723 0.698
Galactica ✗ 0.086 0.027 0.097 0.070 0.777 0.804 0.773 0.785
GPT-J ✗ 0.054 0.023 0.139 0.072 0.773 0.692 0.818 0.761
Pythia(2.8B) ✗ 0.017 0.012 0.018 0.016 0.729 0.795 0.728 0.751

Table 3: Results for LLama, Galactica, GPT-J, and Pythia (2.8B), both with and without instruction-tuning, obtained
on the sFIOG test dataset. The evaluation was carried out across three distinct subsets. Type#1 consisted of
companies and questions from the training set with new corresponding answers. Type#2 featured companies from
the training set paired with new, previously unencountered question-and-answer combinations. Lastly, Type#3
introduced companies not present in the training set, accompanied by new question-and-answer pairs.
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4.76% 9.44% 6.93%
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1.11% 2.41% 1.95%

8.54% 26.37% 10.96%

11.61% 26.74% 10.31%

Figure 2: Left for Q1, Right for Q2.

to traditional prompting methods, exhibiting im-
proved controlledness and generating better-quality
reports. Notably, this method could be applicable
to a broader range of fields beyond finance, wher-
ever controlled generation of information-rich texts
is required.

6 Experiments

6.1 Experimental Setup
In this research, we assessed four GPT variants

(2.8B to 13B parameters) with and without instruc-
tion tuning, as detailed in Table 4. This comparison
aimed to identify the point at which the ability to
generate financial reasoning emerges. An example
of the generation is presented in A.3.

Models in this study were trained using Lora (Hu
et al., 2021) and quantization for enhanced hard-
ware efficiency, with a maximum token length
of 2048 and an AdamW optimizer. Each model
was trained in three epochs on the full sFIOG
dataset, which is consisted of 11,802 samples. Dur-
ing the test phase, decoding settings were config-
ured to enhance the quality and diversity of gen-
erated outputs, while ensuring a fair comparison
across models. The parameters were set as follows:

Base Model Instruction-Tuned Param.
Pythia dolly-v2-3b 2.8B
GPT-J dolly-v1-6b 6B
Galactica galpaca-6.7b 6.7B
LLama vicuna-13b-delta-v1.1 13B

Table 4: Summary of GPT variants employed in the ex-
periments, detailing their parameter sizes and whether
they underwent instruction tuning. Checkpoints for
instruction-tuned models were imported from Hugging-
Face.

top_k=50, top_p=0.95, no_repeat_ngram_size=3,
and max_new_tokens=512. By setting a fixed max-
imum number of tokens, we prevented models that
generate longer sequences from appearing to out-
perform others in the evaluation.

The test dataset for this study is comprised of
three distinct subsets to evaluate the performance of
the GPT variants in different settings. The first sub-
set included companies and questions that appeared
in the training set but with new corresponding an-
swers. The second subset featured companies from
the training set but paired with new, previously
unencountered question-and-answer combinations.
Lastly, the third subset introduced companies that
did not appear in the training set, accompanied
by new question-and-answer pairs. Through this
dataset split we assess the models’ capabilities in
generating financial reasoning across varying de-
grees of familiarity and novelty.

To evaluate the generated context, we used
both automated metrics and human evalua-
tions. Automated metrics included rouge-2 and
rougeL (Lin, 2004), measuring text overlap, and
BERTScore (Zhang et al., 2019), assessing seman-
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tic similarity. As mentioned previously, we ex-
cluded LLM-based evaluators due to their misalign-
ment with human judgments.

6.2 Model Scale and Financial Reasoning
In Table 3, we present the results for

LLama (Touvron et al., 2023), Galactica (Taylor
et al., 2022), GPT-J, and Pythia (2.8B) (Bider-
man et al., 2023), with and without instruction-
tuning, on the sFIOG test dataset. Our findings
indicate that the ability to generate coherent in-
vestment opinions emerges in models with sizes
between 2.8B ∼ 6B and continues to improve as the
model scales. For instance, LLama demonstrates
superior performance, achieving the highest aver-
age scores in ROUGE-L (0.217) and BERTScore
(0.821). There are two possible explanations for
the scaling behavior of financial reasoning abili-
ties in these models: (1) larger models are typi-
cally trained on more tokens, thereby accumulat-
ing a greater amount of knowledge essential for
generating well-informed investment theses, and
(2) the architecture of larger models inherently al-
lows for improved reasoning capabilities, enabling
them to better analyze and synthesize the informa-
tion they have learned. Consequently, as model
size expands, it leads to a stronger ability to ef-
fectively generate financial reasoning, as demon-
strated by the superior performance of the LLama
model in our experiments. An exception in the
scaling behavior is observed between GPT-J and
Galactica, with GPT-J surpassing Galactica in per-
formance, despite its smaller size. We posit that
this discrepancy may arise from two factors: (1)
GPT-J is trained on a substantially larger corpus of
tokens (402 billion) from a general domain, while
Galactica has been trained on a smaller, science-
specific corpus (106 billion); (2) The size differ-
ence between the two models is relatively minimal,
at just 0.7B. This observation is consistent with
recent research, suggesting that training smaller
models with an increased number of tokens beyond
the chinchilla optimal point can yield improved
performance (Touvron et al., 2023). Furthermore,
this finding emphasizes the potential trade-offs of
domain-specific training, which could compromise
a model’s robustness across broader contexts.

6.3 Instruction-Tuning and Financial
Reasoning

We observe that instruction-tuning plays a sig-
nificant role in enhancing the performance of all

models across both evaluation metrics. However,
the degree of improvement varies among models,
which may be due to the difference of instruction-
tuning datasets used to fine-tune each model. It is
noteworthy that Pythia (2.8B), the smallest model
employed in our experiments, failed to demonstrate
the ability to generate coherent financial reasoning,
even when instruction-tuning was applied. This
finding implies that the ability to generate financial
reasoning could be an emergent property that be-
comes evident as the model size exceeds a specific
threshold.

6.4 Dataset and Financial Reasoning
In examining the performance of the models

across each subset of the dataset, we find that the
models exhibit their weakest performance in type#2
questions, which involve companies included in the
training set but are accompanied by new question-
and-answer pairs. This observation departs from
the authors’ initial assumption that type#3 ques-
tions, featuring companies not present in the train-
ing set, would pose the greatest challenge. The
results demonstrate that generating financial opin-
ions for novel question-answer pairs concerning
familiar companies is a more demanding task for
the models. This finding aligns with past research,
suggesting that the non-stationary knowledge ac-
quired during the training process may hinder the
models’ capacity to generalize their knowledge ef-
fectively and apply it to novel situations involving
known entities (Son et al., 2023).
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Figure 3: Performance of Vicuna across varying training
steps. The x-axis denotes the training step, presented in
the format sample_size(epoch). The y-axis displays the
corresponding ROUGE-L scores.

Furthermore, we evaluate the financial reasoning
abilities of the best-performing model, instruction-
tuned LLama 13B, across different dataset sizes
and training steps. Specifically, we conducted ex-
periments by training the model for (1) 3 epochs
on an 11,802-sample dataset, (2) 3 epochs on a
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smaller 1,502-sample dataset, and (3) 1 epoch on
the same 1,502-sample dataset, where each com-
pany in the full dataset was represented by 2 sam-
ples. Our results reveal that LLama’s performance
improved with an increasing number of training
steps. However, even the model trained on the
smallest configuration exhibited superior perfor-
mance compared to the instruction-tuned GPT-J,
which was the second-best model trained on the
full dataset. These findings suggest that model size
may be a critical factor in generating coherent fi-
nancial reasoning, while dataset size may not be as
significant.

6.5 Human Preference
To comprehensively evaluate the performance of

each instruction-tuned model, a human preference
test was conducted on their generated outputs. A
panel of human evaluators was presented with four
texts, each from one of the models, namely LLama,
Galactica, GPT-J, and Pythia(2.8B), and asked to
indicate their preference based on several factors,
including coherence, relevance, and fluency. The
results of the human preference test, depicted in
Figure 4, reveal that the LLama model was the most
preferred choice, followed by the GPT-J model.
This outcome is consistent with the findings of our
previous investigation, which utilized automated
metrics.
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Type#1
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Figure 4: Human preference on generated samples.
Dark Blue for LLama, Green for Galactica, Blue for
GPT-J, and Yellow for Pytha(2.8B)

7 Limitations and Future Work

It is worth noting that due to hardware con-
straints, we were unable to investigate the emer-
gent characteristic of financial reasoning ability on
models beyond 13B parameters. Additionally, we
do not open-source expert-written samples due to
copyright issues. Nevertheless, this work still rep-
resents the most comprehensive investigation to
date on the behavior of language models for finan-
cial reasoning generation and the first to make a

dataset for financial reasoning publicly available.
Going forward, we encourage the financial natural
language processing community for collaborative
efforts to create larger datasets for financial reason-
ing tasks and to experiment with larger language
models. We believe that such efforts will enable
more comprehensive evaluations of language mod-
els and their potential for financial reasoning gen-
eration, ultimately advancing the state of the art in
this field.

8 Conclusion

To the best of our knowledge, this work rep-
resents the first public effort to investigate the fi-
nancial reasoning ability of language models. Our
research seeks to contribute to the understanding
of the efficacy of language models in the field of
finance, with a particular emphasis on their ability
to engage in sophisticated reasoning and analysis
within the context of investment decision-making.
We confirm that the ability to generate coherent
investment opinions first emerges in models with
6B parameters and scales as the model gets larger
until 13B parameters. Additionally, this study in-
troduced a novel prompting method, In-Context
Question-Answering, truth-faithful generation of
LLMs. The research also identified the limita-
tions of LLMs in aligning with human evaluators
for evaluating financial texts. Finally, we make a
valuable contribution to the field by open-sourcing
sFIOG, a dataset consisting of 11,802 synthetic
investment thesis samples.
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A Sample Prompt, Q-A Pair, and
Generation Example

We present a sample prompt, corresponding Q-A
pair, and a generation example from our experi-
ments, focusing on Nvidia Corporation.

A.1 Prompt
In our experiment, we use the following template

for generations.

prompt = f"Assume you are a
professional financial analyst.
Read the provided question

and answer pair about {company
} and write an investment
thesis be logical and
argumentative. \n QA: {QApair}
Please write in English

language. \n ### Investment
Thesis:"

A.2 Sample Question and Answer Pair
Here we present an example of a question-and-

answer pair. For better visibility, we display ten
questions out of the fifteen used in our experiments.

Q1: What are the primary business segments of
Nvidia Corporation?

A1: Nvidia operates through two segments: GPU
and Tegra Processor.

Q2: How does the Tegra brand contribute to
Nvidia’s portfolio?

A2: The Tegra brand integrates an entire computer
onto a single chip, and incorporates GPUs and
multi-core CPUs to drive supercomputing for
mobile gaming and entertainment devices, as
well as autonomous robots, drones, and cars.

Q3: What markets does Nvidia address with its
processor platforms?

A3: Nvidia’s processor platforms address four
markets: Gaming, Professional Visualization,
Datacenter, and Automotive.

Q4: What is the predicted earnings improvement
for Nvidia in 2021 and 2022?

A4: Nvidia earnings are expected to improve to
$9.50 a share in 2021, and anticipate a +15%
increase into 2022.

Q5: What trends are causing increased demand for
Nvidia’s products?

A5: Nvidia is at the confluence of a couple of
macro trends in the chip space, including the
growth of need for data and cloud comput-
ing and the widespread surge in gaming, both
accelerated by COVID-19.

Q6: How is Nvidia’s acquisition of Mellanox con-
tributing to its growth story?

A6: The Mellanox acquisition contributes to
Nvidia’s long term growth, despite having
a negative impact on near-term margin num-
bers.

Q7: What is the predicted gross margin for Nvidia
for FY 21 and FY 22?

A7: InSight is forecasting a gross margin of over
65% for FY 21 and 66% for FY 22 for Nvidia.

Q8: How do Nvidia’s partnerships in machine
learning and self-driving contribute to its
growth prospects?

A8: NVDA’s partnerships in machine learning and
self-driving could become consumer worthy
in the coming decade and provide an addi-
tional growth driver not currently factored into
the price target.

Q9: What is Nvidia’s current stance on dividends?

A9: The dividend is currently at $0.16 and raising
it is not a priority.

Q10: How is Nvidia involved in the Medical De-
vices sector?

A10: Nvidia chips are being increasingly used
in the healthcare diagnostic and equipment
groups, adding to the company’s growth.
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A.3 Generation Example

The following section presents a sample output
from the instruction-tuned LLama 13B model, our
top performer in the evaluations conducted. The
text was generated with a single decoding option:
a maximum token limit of 512. Below, we demon-
strate the model’s generated investment thesis for
Nvidia Corporation:

Nvidia is a leading player in the
semiconductor and computer

technology industry, with a
strong presence in the gaming,
professional visualization,

datacenter, and automotive
markets. The company’s primary
business segments are GPU and
Tegra Processor, which are

designed to address the
growing demand for data and
cloud computing, as well as
the increasing popularity of
gaming and entertainment
devices.

The acquisition of Mellanox is
expected to contribute to
Nvidia’s long-term growth,
despite having a negative
impact on near-term margin
numbers. The company’s
partnerships in machine
learning and self-driving also
hold significant growth

potential, as these
technologies are expected to
become consumer worthy in the
coming decade.

Nvidia is committed to producing
energy-efficient chipsets and
has set a goal to source 65%
of its global power usage from
renewable sources by 2025,

making a positive contribution
to the fight against climate

change. The company’s
corporate governance is
considered disciplined and
transparent, with a diverse
board of directors and few
flags in accounting or

reporting practices.

Overall, Nvidia is well-
positioned to benefit from the
growth in demand for data and
cloud computing, as well as

the increasing popularity of
gaming and entertainment
devices. The company’s
acquisition of Mellanox and
partnerships in machine
learning and self-driving are
expected to drive long-term
growth, and the company’s
commitment to sustainability
is a positive factor. Given
these factors, we believe that
Nvidia is a strong investment
opportunity, with a potential
for a high ROI.
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Abstract
With the growing importance of environmen-
tal, social, and governance (ESG) informa-
tion, ESG scores, which have been rated and
published by various institutions, are used for
investment decisions or corporate evaluation.
The evidence for rating high or low ESG scores,
however, is often vague and unclear. In this pa-
per, we propose a method to extract the textual
evidence of ESG scores by automatically label-
ing sentences with information related to ESG.
Specifically, we constructed two labeling mod-
els for ESG and ESG sentiment, and extracted
sentences with high confidence levels using
the two models. At first, to label ESG-related
information, we developed the annotation cor-
pus using Japanese annual securities reports.
Then, we constructed the labeling models by
fine-tuning a large language model that was
pre-trained on financial documents. The exper-
imental results showed that the macro average
F1 scores using the BERT model pre-trained
on Japanese financial documents, were 0.874
for ESG labeling and 0.797 for ESG sentiment
labeling respectively. These values were higher
than those obtained using the comparative mod-
els that were pre-trained on Wikipedia docu-
ments only. We also confirmed that textual
evidence for the ESG scores can be effectively
extracted for the companies not included in the
training dataset.

1 Introduction
In recent years, the global investment and corpo-
rate governance community has become increas-
ingly interested in ESG (Environmental, Social and
Governance), the three perspectives necessary for
a company’s long-term growth. The ESG score
is an assessment of a company’s level of commit-
ment to ESG and is used by investors to determine
the extent to which a company takes ESG factors
into account when investing. ESG scores are pro-
vided to investors by various rating agencies. Re-
cently, companies with higher ESG scores have
been prioritised for investment, and the amount of

assets under management for sustainable invest-
ments worldwide was expected to increase by 55%
between 2016 and 2020 (Global Sustainable Invest-
ment Alliance (GSIA), 2021).

Despite this increase in investments taking ESG
factors into account, many existing ESG scores are
not open and unclear about how they are derived.
They are also not consistently evaluated across rat-
ing agencies (Christensen et al., 2022). They are
also incomplete, opaque and subject to consider-
able uncertainty (Avramov et al., 2022).

In this paper, we proposes a method for consis-
tently extracting textual evidence from each text in
the annual securities reports to assess ESG scores.
Annual securities reports contain many general
texts that are not related to company initiatives.
Therefore, our method, which extracts only the tex-
tual evidence, can be used to help investors make
decisions. This will help ESG-conscious investors
to make decisions when investing in green assets.

Furthermore, “social capital” and “human cap-
ital” has become more important in assessing the
social dimension (“S” in ESG) of corporate sus-
tainability (Muñoz-Torres et al., 2019). In addi-
tion, in many ESG scores, social capital and human
capital are evaluated as separate concepts in the as-
sessment of sociability (International Sustainability
Standards Board (ISSB), 2021; Toyo Keizai Inc.,
2021; MSCI ESG Research LLC., 2023; FTSE
Russell, 2022). On the other hand, to the best of
authors’ knowledge, no computational approach
has been found that evaluates sociability separately
into social and human capital perspectives. There-
fore, we use pre-trained language models to auto-
matically classify the sentences in annual securities
reports describing a company’s ESG efforts as sepa-
rate labels for social and human capital, in addition
to E and G, and extract textual evidence for rating
the ESG score.

We specify the combination of ESG labels and
their sentiment labels as the query to extract tex-
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tual evidence for ESG scores. For example, to ex-
tract textual evidence for a high social capital score,
we specify the attributes “social capital (S-1)” and
“positive” as queries. Similarly, to extract evidence
indicating a low human capital score, we specify
the attribute “human capital (S-2)” and “negative”
as a query. We also propose a method for extract-
ing textual evidence of ESG scores using the confi-
dence level in assessing ESGs and their sentiments.
As confidence levels, the predicted probabilities of
the ESG classifier and the ESG sentiment classifier
are used. We regard sentences with high confidence
levels as textual evidence for the ESG score. In this
way, the textual evidence of ESG scores can be
extracted from noisy securities reports to support
investment decisions.

The contributions of this work can be summa-
rized as follows:

1. We propose our method to extract textual evi-
dence for ESG scores based on labeling ESG
and ESG sentiment with their confidence lev-
els from Japanese annual securities reports.

2. We distinguished the “S” in ESG labelling
into social capital and human capital, and clar-
ified that textual evidence on corporate social
capital and human capital initiatives can be
extracted respectively.

3. We also clarified that the pre-trained model on
financial documents was effective in the ESG
and ESG sentiment labeling tasks.

Our research revealed a strong correspondence
between ESG scores and their textual evidence.
This finding will be helpful in future works on
automatic estimation of ESG scores from textual
resources.

The structure of this paper is as follows. Section
2 presents relevant research on automatic labeling
of ESG and ESG sentiment. In Section 3, we pro-
pose a method for extracting texts as evidence for
rating ESG scores. Section 4 describes our dataset
for labeling ESG information. In Section 5, we
verify the effectiveness of large language models
for labeling ESG information. In Section 6, we de-
scribe the experiment to verify the effectiveness of
the proposed method in terms of extracting textual
evidence. Section 7 discusses the results of the eval-
uation experiments. Finally, Section 8 summarizes
the findings of our work.

2 Related Work
In recent years, computational approaches for an-
alyzing ESG ratings have gradually intensified in

response to the growing interest in ESG corporate
activities.

2.1 ESG Labeling
Goel et al. (2022) achieved 2% higher accuracy
than traditional BERT (Devlin et al., 2019) by com-
bining various linguistic and semantic features.
Dakle et al. (2022) collected a list of concepts
and terms related to ESG issues in the financial
domain and constructed a dataset of positive and
negative term and concept pairs using a Sentence-
BERT-based paraphrase detector. By fine-tuning
BERT and RoBERTa (Liu et al., 2019) on this
dataset, they achieved 96% accuracy on the valida-
tion set and 92.3% accuracy on the test set. Kiriu et
al. (2020) analyzed corporate CSR reports and used
Word2vec to obtain word-specific embedded repre-
sentations and classify these words into three val-
ues: environmental, social, and governance. They
then defined the quantity score and the specificity
score and attempted to rate the ESG activities of
the companies based on the qualitative information.

In this study, we extract textual evidence to help
investors evaluate ESG scores. In contrast to the
related works, we created a dataset manually an-
notated with ESG labels and fine-tuned several
Transformer-based models, including BERT, which
is pre-trained on a Japanese financial corpus. Also,
to retrieve textual evidence for scores such as social-
ity score and human capital utilization score (Toyo
Keizai Inc., 2021), this work defines S (social) con-
cept as S-1 (social capital) and S-2 (human capital)
instead of the E, S, and G three-valued classifica-
tion. This approach follows the trend that human
capital has recently become more important in eval-
uating corporate sociality.

2.2 ESG Sentiment Classification
Pasch et al. (2022) combined S&P Global’s ESG
score and text from annual reports to train an ESG
sentiment model. Among the companies targeted,
they labeled those with ESG scores above the me-
dian as “positive” and those with scores below the
median as “negative” and fine-tuned based on their
text. In this study, we performed labeling on a per-
sentence basis using manually annotated labels and
fine-tuned them to classify the sentiment of ESG-
related sentences. Furthermore, by combining ESG
labels and their sentiment labels, we extracted tex-
tual evidence for ESG scores. We defined the label-
ing strategy in Section 3.1 and demonstrated that
the annotators annotated labels consistently even if
they were not ESG or economic experts.
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Aue et al. (2022) calculated a company’s ESG
rating by classifying news into sentiment categories
and subtracting the percentage of negative news
from the percentage of positive news. Fischbach
et al. (2022) proposed ESG-Miner, a tool for ana-
lyzing the sentiment of a company’s ESG-related
news. By contrast, we extract textual evidence for
ESG scores based on the assumption that the texts
with positive (or negative) sentiments contain the
reasons for high (or low) ESG scores.

The methods for fine-tuning pre-trained lan-
guage models using small amounts of task-specific
data are well known in the field of natural language
processing in recent years (Howard and Ruder,
2018). These methods are effective in certain do-
mains that contain many specialized words that
do not appear often in general documents, such as
sentences relevant to ESG. In this work, we per-
formed automatic ESG sentiment classification by
fine-tuning with BERT, RoBERTa, or ELECTRA,
which have shown high performance in many natu-
ral language processing tasks, including sentiment
classification.

3 Proposed Method
In this section, we describe our method for extract-
ing textual evidence for rating ESG scores. In Sec-
tion 3.1, we introduce the definition of the labeling
attributes to be assigned to the texts. In Section 3.2,
we describe the labeling model for each attribute to
extract the evidence text of ESG scores.

3.1 Definition of ESG related attributes
We introduce and define two attributes to create the
experimental dataset: ESG sentence type and ESG
sentiment.

3.1.1 ESG sentence type
This attribute corresponds to the ESG type of con-
tent of the sentence. We define five labels: “En-
vironmental (E),” “Social Capital (S-1),” “Human
Capital (S-2),” “Corporate Governance (G),” “ESG
General (All),” and “Other.” The specific condi-
tions for classification are defined in Table 1, re-
ferring to the SASB Standard1, an international
framework for ESG information disclosure, and
actual sentences.

3.1.2 ESG sentiment
We defined three labels: “positive,” “negative,” and
“neutral.” This attribute indicates the sentiment
of the sentence with respect to ESG. In addition,

1https://www.sasb.org/standards/materiality-map/

the annotation standards are defined so that non-
experimental collaborators who are not experts in
economics or investing can evaluate the annotation
criteria. Table 2 shows the annotation standards,
which are defined by focusing on the most com-
monly used phrases.

Table 1: ESG Sentence Type Requirements

Environmental (E)

• Contains expressions that consider green-
house gases.

• Contains climate-friendly phrases.
• Contains phrases that consider the impact

on the natural environment.
• Contains other environmentally friendly

phrases.

Social Capital (S-1)

• Contains statements related to product
safety and user health.

• Contains expressions related to privacy or
information security.

• Contains language about managing suppli-
ers or trading partners (supply chain).

• Contains other expressions of social re-
sponsibility outside the company.

Human Capital (S-2)

• Contains expressions related to employee
recruitment, evaluation systems, and train-
ing that are not based on the old values.

• Contains expressions of concern for work-
ers’ human rights and labor standards.

• Contains other language that addresses the
company’s internal social responsibilities.

Governance (G)

• Contains expressions related to the struc-
ture of directors, executive officers, and
auditors that could be considered relevant
to the fairness and transparency of manage-
ment.

• Contains expressions of preparedness for
serious risks that may affect the company’s
survival, compliance with laws and regula-
tions, and ethical conduct.

• Contains other language that reflects gov-
ernance considerations.

Table 2: ESG Sentiment Requirements

Positive

• Contains phrases stating that the company
is improving or is likely to improve in the
future its long-term values.

• Contains other phrases that are considered
positive from an ESG perspective.

Negative

• Contains phrases that could be viewed as
potentially detrimental to the long-term
value of the company.

• Contains other phrases that could be con-
sidered negative from an ESG perspective.

Neutral

• Contains statements about actions to be
taken in the future for which it is not known
whether they will actually be taken.

• Contains ideas or actions of the company
that cannot always be said to be generally
true.

• Contains statements that cannot be as-
sessed as positive or negative from an ESG
perspective.
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3.2 Classifiers and Ranking Model
In this work, we classify ESG-relevant sentences
by fine-tuning the pre-trained language models:
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and ELECTRA (Clark et al., 2020). These
transformer-based machine learning models are ca-
pable of acquiring context-aware embedded rep-
resentations of words, allowing the same word to
acquire different vector representations in different
contexts.

The overall scheme of the proposed method is
shown in Figure 1. First, we use the ESG dataset de-
scribed in Section 4 and fine-tuned the pre-trained
models for predicting ESG sentence type and ESG
sentiment labels.

Next, we take sentences from the annual secu-
rities reports for the companies under evaluation
and perform label prediction. The output is pre-
dicted labels and their probabilities for each clas-
sification model. The prediction probability is the
output value of the Softmax function of the predic-
tion label in the linear transformation layer of the
pre-trained language model. This module extracts
and ranks the sentences where the probabilities are
above a certain threshold. They provide textual
evidence for ESG scores.

In this paper, we use Japanese annual securities
reports as a source of information to obtain a com-
pany’s ESG initiatives because of the existence of
uniform standards for disclosure, easy comparison
with other companies in the same industry, and
high machine readability of the data. We also use
ESG scores provided by Toyo Keizai Inc. (2021)
for major Japanese companies since 2007.

Figure 1: Proposed Method

4 ESG Label Classification Dataset

We created an ESG label classification dataset with
sentences and annotated labels using annual securi-
ties reports collected from the electronic disclosure
system EDINET2.

4.1 Collection of annual securities reports
(ASR)

The dataset was created by analyzing the XBML
data from the annual securities reports (Financial
Services Agency of Japan (JFSA), 2020) and re-
moving unnecessary characters such as subhead-
ings and symbols. We selected the actual compa-
nies for the dataset from Toyo Keizai Inc.’s ESG
score ranking for 2021 (2021). Sentences were
automatically split into sentence units at each punc-
tuation point, and the output results were checked
and corrected by the first author. The statistics of
the dataset are as follows.

• Submission period: 2020/4/1 - 2021/3/31
• Data format: XBML
• Total number of sentences: 1,813 in total
• Target companies: 17 companies in 2 industries

– Automobile manufacturers: 8 companies
– Electrical manufacturers: 9 companies

• Target chapters in ASR
– “Management policy, management environment,

issues to address”
– “Business risks”
– “Research and development activities”
– “Overview of corporate governance”

4.2 Annotation strategy for each attribute
To construct the ESG label classification dataset,
the data described in Section 4.1 are manually an-
notated with the attributes defined in Section 3.
This is done only for 744 sentences out of a total
of 1,813 collected sentences. The remaining 1,069
sentences are used in Section 6 to evaluate the pro-
posed method. At first, 562 of the 744 sentences
were annotated by five annotators (the first author
and four collaborators). Therefore, each of the 562
sentences has five annotations. The labels were
determined by a majority vote. In cases in which
we could not decide the results by majority vote be-
cause the votes were tied, we discussed until agree-
ing on a final decision. If all annotations for a sen-
tence were different, it was chosen by discussion.
Table 3 shows the Fleiss’ κ coefficients (1971)
for the five annotators as the annotator agreement
degree. The κ values for all attributes were greater
than 0.8 (almost perfect (Landis and Koch, 1977)).

2https://disclosure.edinet-fsa.go.jp/
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From these results, we confirmed that there was
no significant difference in the annotation results
between the annotators. Based on these results, the
first author annotated the remaining 182 sentences.

Table 3: Agreement for Each Attribute (Fleiss’κ)

Attribute κ

ESG Sentence Type 0.89
ESG Sentiment 0.87

5 Language Models for Labeling
Attributes

5.1 Objective
Here, we evaluate the accuracy of the proposed
method for each attribute of the ESG label classi-
fication dataset created in section 4.2, and verify
the effectiveness of the method. We describe com-
parative experiments using large language models
pre-trained with different source data.

5.2 Method
First, we evaluate the classification accuracy of
all 744 sentences in the ESG label classification
dataset in Section 4.2 by predicting each attribute
using the five-fold cross-validation method based
on the model described in Section 3.2. The values
used for the evaluation are precision, recall, F1
score, and accuracy, each of which is the macro
average of each fold and each label.

The five pre-trained language models for com-
parison were as follows: BERT (wiki)3, RoBERTa
(wiki+CC100)4, ELECTRA-base (wiki)5, BERT
(wiki+fin)6, and ELECTRA-small (wiki+fin)7. The
latter three models were developed by Suzuki et al.
(2023) Note that the characters inside the brackets
are the corpus name for pre-training. The hyperpa-
rameters were set as follows. The maximum token
length was 128, the batch size was 32, the learn-
ing rate was 1e−5, and the maximum number of
epochs was 100. Learning was stopped when the
loss function did not decrease for more than five
epochs.

3https://huggingface.co/cl-tohoku/bert-base-japanese-v2
4https://huggingface.co/rinna/japanese-roberta-base
5https://huggingface.co/izumi-lab/

electra-base-japanese-discriminator
6https://huggingface.co/izumi-lab/

bert-base-japanese-fin-additional
7https://huggingface.co/izumi-lab/

electra-small-paper-japanese-fin-discriminator

5.3 Results
Tables 4 and 5 show the classification results for
ESG sentence types and ESG sentiment, respec-
tively. The number of attribute labels for ESG sen-
tence types used in the five-fold cross-validation
is 111 for E, 162 for S-1, 70 for S-2, and 401 for
G, respectively. The number of attribute labels for
ESG sentiment is 566 for positive, 61 for negative,
and 99 for neutral, respectively. Because BERT
(wiki+fin) showed the best classification accuracy
for all labels, we focus on BERT (wiki+fin) and
BERT (wiki) for comparison.

Tables 6 and 7 show the F1 scores for the ESG
sentence type and for the ESG sentiment label
using BERT (wiki+fin) and BERT (wiki), respec-
tively. In Table 6, the F1 scores of Social Capital
(S-1) and Human Capital (S-2) are significantly
improved compared to the other labels. Table 7
shows that the F1 scores of positive and neutral
are significantly improved compared to the other
labels.

Table 4: ESG Sentence Type Classification Results
Pre-trained Language Model F1 score Precision Recall Accuracy

BERT (wiki) 0.849 0.849 0.856 0.891
BERT (wiki+fin) 0.874 0.870 0.885 0.906

RoBERTa (wiki+CC100) 0.845 0.837 0.863 0.882
ELECTRA-base (wiki) 0.685 0.711 0.695 0.786

ELECTRA-small (wiki+fin) 0.175 0.135 0.250 0.539

Table 5: ESG Sentiment Classification Results
Pre-trained Language Model F1 score Precision Recall Accuracy

BERT (wiki) 0.785 0.807 0.778 0.885
BERT (wiki+fin) 0.797 0.823 0.789 0.888

RoBERTa (wiki+CC100) 0.783 0.802 0.774 0.876
ELECTRA-base (wiki) 0.628 0.711 0.627 0.819

ELECTRA-small (wiki+fin) 0.291 0.258 0.334 0.773

Table 6: Comparison Results of ESG Sentence Types
Classification Using BERT (wiki+fin) and BERT (wiki)
by Label Types

Label (Count)
F1 score

BERT (wiki+fin) BERT (wiki)
Environmental (E - 111) 0.883 0.887

Social Capital (S-1 - 162) 0.825 0.796
Human Capital (S-2 - 70) 0.832 0.763

Governance (G - 401) 0.955 0.948

Table 7: Comparison Results of ESG Sentiment Clas-
sification Using BERT (wiki+fin) and BERT (wiki) by
Label Types

Label (Count)
F1 score

BERT (wiki+fin) BERT (wiki)
positive (566) 0.879 0.865
negative (61) 0.939 0.942
neutral (99) 0.574 0.553
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6 Experiment: Extracting Textual
Evidence for Rating ESG Scores of
Companies

6.1 Objective
The purpose of this experiment is to verify whether
the proposed method can extract textual evidence
for rating the ESG scores of the companies. Note
that the evaluation data for the companies are not
used for fine-tuning BERT in Section 5.

6.2 Method
The text used in the experiment consists of 1,069
sentences from two industries and four companies
that were not used in model training, as mentioned
in Section 4.2 (Financial Services Agency of Japan
(JFSA), 2020). Of these, we will refer to two com-
panies as Electrical Manufacturer A and Automo-
bile Manufacturer B for evaluation and two compa-
nies as Electrical Manufacturer α and Automobile
Manufacturer β for verification.

Table 8 shows the ESG scores of Electrical
Manufacturer A and Automobile Manufacturer B,
which were extracted from the top 500 compa-
nies in the ESG Corporate Ranking in Japan (Toyo
Keizai Inc., 2021). When ESG scores are above the
mean with a large deviation from the mean, they
are underlined. The scores that are below the mean
with a large deviation are double-underlined. We
evaluate our method to extract the textual evidence
for the scores from the annual securities reports. At
first, we took all 1,069 sentences into the proposed
classifier and assign attributes to each sentence.
The prediction probabilities of both classifiers are
used as the confidence level of the sentence, and
the sentences with high confidence levels are re-
garded as textual evidence of ESG scores. When
the assigned attributes are a combination of “En-
vironmental (E),” “Social Capital (S-1),” “Human
Capital (S-2),” or “Governance (G)” and “Positive,”
then the sentences are textual evidence for high
ESG scores, whereas when they are combined with
“Negative,” they serve as textual evidence for low
ESG scores.

Next, we filter the noisy sentences for textual ev-

idence. The filtering is done by setting thresholds
for the prediction probabilities of the ESG classifier
and the ESG sentiment classifier as the confidence
level of the sentence, respectively, as described in
Section 3.2. The thresholds were decided by actu-
ally checking the sentences as the positive cases
with the lowest prediction probabilities in the veri-
fication data.

From the evaluation scores of the sentences of
the electronics manufacturer α, we decided the
threshold for electronics manufacturers, and from
the evaluation scores of the sentences of the auto-
mobile manufacturer β, we decided the threshold
for automobile manufacturers. Attributes for which
no sentences were extracted from the verification
data were given 0 as a threshold.

Finally, the extracted sentences were evaluated
by three experiment participants, including the first
author, to decide whether they actually served as
textual evidence for the ESG scores. We used the
precision at the top 1, 5, 10, and 20 ranks as the
evaluation measure.

6.3 Results
The evaluation results for Electrical Manufacturer
A and for Automobile Manufacturer B are shown
in Tables 9 and 10. From these results, we found
that we could extract the textual evidence for the
companies rated as having high ESG scores. We
also found that there were still challenges in extract-
ing the textual evidence for the companies rated as
having low ESG scores.

7 Discussion
In this section, we discuss the effectiveness of our
proposed method based on the validity of extracted
sentences as textual evidence, the effect of the dis-
tinction of S-1 (social capital) and S-2 (human capi-
tal), and the validity of the model pre-trained on the
financial corpus. We also discuss failure analysis.

7.1 Textual evidence for rating ESG scores
In Figures 2 and 3, we show two example sen-
tences that were extracted as textual evidence for
high ESG scores from the annual securities reports

Table 8: ESG Scores of Companies for Evaluation
ESG Score

(Average: 320.4)
E Score

(Average: 76.32)
S1 Score

(Average: 77.11)
S2 Score

(Average: 77.91)
G Score

(Average: 88.96)
Electrical Manufacturer A

(Rank 46)
372.2 97.4 93.1 85.9 93.8

Automobile Manufacturer B
(Rank 336)

300.4 74.4 85.2 60.6 80.2
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Table 9: Results of Ranking Textual Evidence for Rating ESG Scores of Electrical Manufacturer A
Query Threshold # of textual evidence Precision@k

Specified attribute label ESG classification ESG sentiment classification judged by humans extracted k=1 k=5 k=10 k=20
“Environmental (E)” and “positive” 0.8456 0.9969 13 16 1.000 1.000 0.900 –
“Social Capital(S-1)” and “positive” 0.9285 0.9963 11 22 1.000 0.400 0.600 0.500

“Human Capital (S-2)” and “positive” 0.8796 0 9 12 1.000 1.000 0.800 –

Table 10: Results of Ranking Textual Evidence for Rating ESG Scores of Automobile Manufacturer B
Query Threshold # of textual evidence Precision@k

Specified attribute label ESG classification ESG sentiment classification judged by humans extracted k=1 k=5
“Social Capital(S-1)” and “positive” 0.9902 0.9967 6 7 1.000 0.800

“Human Capital (S-2)” and “negative” 0 0 0 1 0.000 –

of Electrical Manufacturer A and Automobile Man-
ufacturer B1, respectively. For Electrical Manufac-
turer A, we extracted sentences describing that they
were building facilities and creating new training
curricula for talent development. For Automobile
Manufacturer B, we extracted sentences describing
that they were creating supply chain databases for
each part to prepare for emergencies and manage
the supply chain.

Munoz et al. (Muñoz-Torres et al., 2019) exam-
ined the rating methodologies used by the eight
major ESG rating agencies and analyzed the crite-
ria and their strength (frequency of occurrence) for
each environmental, social, and governance dimen-
sion. According to their analysis of the ESG rating
agencies’ evaluation processes in 2017, the main
social responsibility criteria, especially those re-
lated to human capital, were the quality of working
conditions, health and safety, labor management,
and human rights. These criteria emphasize respon-
sibility toward employees as stakeholders. In fact,
looking at the actual text, the provision of sufficient
training programs for employees is considered to
contribute to the human capital criteria mentioned
for Electronics Manufacturer A. Therefore, the ex-
tracted text here corresponds to the addition of ESG
scores from a human capital perspective and is
considered evidence based on the text of the ESG
scores. Similarly, for Automobile Manufacturer
B, it can be said that implementing supply chain
management to prepare for emergencies fulfills the
company’s responsibility to society by minimizing
the impact on production in the event of a crisis,
allowing production to continue. Therefore, the
extracted text here corresponds to the addition of
ESG scores from a social capital perspective and is
considered evidence based on the text of the ESG
scores.

1Note that we omitted proper nouns that identified the
company.

Label: “Human Capital (S-2)”; “Positive”
Value: 0.9968
“We built the Academy Training Center as part of
our centennial project to develop the people who
will drive our growth. We also reformed personnel
development programs, such as the introduction of
new curricula, with focusing on the development
for highly skilled technicians and professionals.”

Figure 2: Textual Evidence for ESG Scores for Electri-
cal Manufacturer A (Original Text in Japanese)

Label: “Social Capital (S-1)”; “Positive”
Value: 0.9974
“In addition, in case of an emergency, we have also
performed maintenance to keep the supply chain
database of our current core and secondary suppli-
ers to mitigate the impact of supply chain disrup-
tions. This helped us to identify potentially affected
suppliers and parts at an early stage, to identify re-
quired stocks, to propose alternative manufacturing,
and to support the restoration of production facili-
ties. ”

Figure 3: Textual Evidence for ESG Scores for Automobile
Manufacturer B (Original Text in Japanese)

7.2 Effect of S-1 and S-2 distinction in ESG
We investigate the effect of extracting textual ev-
idence using S-1 (social capital) and S-2 (human
capital) by comparing the labeling results using “S”
without distinguishing the two attributes.

We compare the classification results of the 4-
value classifier for E, S-1, S-2, and G with those
of the 3-value classifier for E, S, and G using the
same test data. We took 1,069 sentences from the
two automobile manufacturers and two electron-
ics manufacturers used in Section 6 as input data
into both the ESG 4-value classifier and the ESG
3-value classifier, respectively. Then, we checked
which labels are predicted by the 4-value classifier
for the top 20 sentences with the highest predic-
tion probability in the 3-value classifier among the
sentences classified as “S” in the 3-value classifier.
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Table 11: ESG Sentence Examples Correctly Classified as S-1 / S-2 with BERT (wiki+fin)

Input (Original Text in Japanese)
Prediction Labels

BERT (wiki+fin) BERT (wiki)
We used universal design for our products for wheelchair users to operate easily. S-1 E
In the United States, our 2020 models were rated as TOP SAFETY PICK+ from

the IIHS (Insurance Institute for Highway Safety) in its 2020 safety survey.
S-1 E

We, the management team, aim to be a company where everything is communicated openly and honestly.
We also take the initiative in promoting continuous improvement of our organizational environment.

S-2 G

The results showed that many of the sentences
classified as “S” by the ternary classifier were actu-
ally S-1 (social capital). We examined 80 sentences,
20 sentences from each of the four companies, and
found that 57 (71%) of them were S-1 (social capi-
tal). This implied that the proposed method using
a 3-value classifier cannot extract enough textual
evidence of S-2 (human capital). In addition, as
shown in Table 6, the annotated dataset was skewed,
with 162 sentences for S-1 and 70 sentences for S-
2, which might have led to this result. Thus, we
conclude that the proposed method using a 4-value
classifier allows us to effectively extract textual evi-
dence for both social and human capital sentences.
7.3 Effect of pre-training using financial

documents
We investigate the classification results using BERT
(wiki+fin), a model retrained on Japanese financial
texts by comparing with BERT (wiki), a model not
retrained on Japanese financial texts. It should be
noted that we omitted proper nouns that could iden-
tify the company. From Table 6, the F1 scores of
S-1 (Social Capital) and S-2 (Human Capital) were
improved using BERT (wiki+fin). There were a cer-
tain number of sentences that were correctly clas-
sified as S-1 or S-2 in BERT (wiki+fin) but were
incorrectly classified as E or G in BERT (wiki).
Examples of such sentences are shown in Table 11.
All of these sentences are considered to be positive
promotional phrases by the company itself, which
are specific to annual securities reports. As de-
scribed, depending on pre-training using financial
texts, we identified several contexts that were well
captured by BERT (wiki+fin).

7.4 Failure Analysis
We confirmed that textual evidence for rating ESG
scores can be extracted with our proposed method.
However, some extracted sentences were not used
as the textual evidence for ESG scores. We discuss
some typical failure cases as follows.

An example of misclassification is the sentence:
“AI predicts Chemical Oxygen Demand in 2 hours.”
It is difficult to consider this sentence as the textual

evidence for rating the environmental score, but it
may have been misclassified because of the inclu-
sion of phrases such as “oxygen,” which are often
used in the context of environmental protection.

Another example is the following sentence: “We
have added a range of composite environmental
sensors.” This sentence was also misclassified be-
cause of the inclusion of the word “environment.”
This is because of the fact that sentences annotated
with labels such as “Social Capital (S-1),” “Hu-
man Capital (S-2),” and “Governance (G)” did not
contain many phrases related to “social” or “gover-
nance,” whereas sentences annotated with the label
“Environmental (E)” often contained many phrases
related to “environment.”

8 Conclusion
In this work, we annotated the sentences in annual
securities reports and created classification models
by fine-tuning large language models pre-trained
on financial documents. We proposed a method for
extracting the textual evidence for ESG scores by
automatically assigning both ESG sentence type la-
bels (E, S-1, S-2, and G) and ESG sentiment labels
to the sentences in annual securities reports and
ranking them with their prediction probabilities as
the confidence levels to filter out noisy sentences.
Through experimentation, we have confirmed that
it is possible to extract the textual evidence of com-
panies rated as having a high ESG score.

In the future, we plan to automatically estimate
ESG scores from textual resources based on the
strong correspondence between ESG scores and
their textual evidence.
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Abstract

The Private Equity (PE) firms operate invest-
ment funds by acquiring and managing compa-
nies to achieve a high return upon selling. Many
PE funds are thematic, meaning investment pro-
fessionals aim to identify trends by covering as
many industry sectors as possible, and picking
promising companies within these sectors. So,
inferring sectors for companies is critical to the
success of thematic PE funds. In this work, we
standardize the sector framework and discuss
the typical challenges; we then introduce our
sector inference system addressing these chal-
lenges. Specifically, our system is built on a
medium-sized generative language model, fine-
tuned with a prompt + model tuning procedure.
The deployed model demonstrates a superior
performance than the common baselines. The
system has been serving many PE profession-
als for over a year, showing great scalability to
data volume and adaptability to any change in
sector framework and/or annotation.

1 Introduction

Private Equity (PE), as a fast-growing branch of the
investment industry, operates investment funds on
behalf of institutional and accredited investors by
acquiring and managing companies before selling
them to achieve high, risk adjusted returns. The
common PE investment strategies, according to
(Block et al., 2019), include venture capital, growth
capital, and leveraged buyouts. The majority of PE
funds strive to be “thematic” (Bérubé et al., 2014),
aiming to identify macro-level trends by covering
a variety of relevant sectors and picking promising
companies within these sectors. In order to do that,
any company should be put into a sector that best
describes its main business activity. The sectors are
often defined hierarchically (cf. the sector frame-
work in Section 2), where the sectors higher up in
the hierarchy tend to have a broader scope (hence

∗Corresponding author.

Figure 1: A PE sector framework defined as a tree with
a depth L=4. Each non-root node represents a sector
(i.e., s1 ∼ sM ) that is numbered in a depth-first order.
The integer attached to the m-th sector/node indicates
the number of companies |Cm| annotated for sm.

usually fewer in number) and be more stable, while
the ones lower down (a.k.a. “industries”) are more
fine-grained and prone to change. A well-defined
sector framework enables investment professionals
to conduct a deeper analysis of the economy within
each individual sector.

There are currently hundreds of millions of com-
panies worldwide, and thousands of new compa-
nies are founded daily. Realistically, human pro-
fessionals can only evaluate a limited number of
companies to determine their belonging sectors. In
order to significantly increase the coverage of sec-
tor mapping, practitioners have begun resorting to
predictive systems to infer the belonging sectors of
companies. Due to the reasons discussed in Sec-
tion 2, there has not been any effective system that
is generic enough to drive the wide adoption in PE
operations. In this paper, we standardize the sec-
tor framework and discuss the typical challenges;
we then introduce our sector inference system ad-
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dressing these challenges. Our system has been
successfully serving hundreds of PE professionals
for over a year. The highlight is three fold:

• We propose to co-tune the PLM (pretrained
language model) starting from a later stage of
prompt tuning, attempting to leverage the ca-
pability of medium-sized PLMs to an extreme
using scarce annotation.

• We implement an autonomous system, which
effectively handles the dynamic sector frame-
work, evolving annotation, data imbalance,
noisy features, and high inference volume.

• We experimentally show the superior perfor-
mance of our approach in comparison to the
common baselines, and justify many design
choices such as model paradigm and size.

2 The Problem and Challenges

Let cn denote the n-th company (n=1, 2, . . . , N )
in the scope of a PE firm; the total number of
companies N usually reaches the order of millions.
Most of the time, PE professionals maintain a hier-
archical sector framework containing M different
sectors represented as nodes (s1 ∼ sM ) in a tree
with L layers, as illustrated in Figure 1. In practice,
the value of L is mostly less than 4, and the total
number of sectors (i.e., M ) tracked by a large PE
firm may reach up to a few hundred. The problem
is how to assign each company cn to the most
relevant sector sm. Solving such a problem re-
quires addressing several challenges (abbreviated
as Chall.) that will be discussed below.

Chall.1: scarce, imbalanced and evolving an-
notation. One might notice there are some public
datasets such as G2 and Pitchbook1 that contain
sector annotations, i.e., cn → sm. In reality, they
can not be directly used to train the sector infer-
ring model, which is the consequence of two main
facts: (1) PE firms almost always maintain their
own version of sector framework that are drasti-
cally different from the ones from public datasets.
(2) PE funds may annotate companies differently;
for example, Klarna2 might fall into any sector of
payment method, digital bank and financial ser-
vice depending on the preference of investment
professionals or the fund specifications. To that
end, we allow professionals to select a sector for

1https://www.g2.com and https://pitchbook.com
2https://www.klarna.com

any company via the investment platform devel-
oped in-house. Formally, we use Cm to denote the
set of companies annotated for sector sm, and the
total number of companies in Cm is |Cm|; taking
node s3 in Figure 1 for example, its subscript 10

contains the value of |C3|, i.e., |C3|=10. In reality,
the sector annotation is scarce (an intrinsic limita-
tion of manual annotation), imbalanced (|Cm| can
vary greatly among sectors) and ever-evolving (the
mapping cn→sm may change frequently).

Chall.2: dynamic sector framework with vary-
ing granularity. Due to shifting market trends, the
sector framework is rarely fixed for extended peri-
ods of time. Instead, the sector framework is really
a dynamic one, where one of the three changes3

can occur: adding new layers, adding new nodes,
and removing nodes. Another observation is that
PE professionals will pick concepts they think are
important and define them as sectors, leading to
sectors with varying granularity even on the same
layer. For instance, a sector could be anything
from a new technology (e.g., block chain), an en-
vironmental concern (e.g., water shortage), to an
emerging market demand (e.g., Coronavirus test).

Chall.3: availability and quality of features. In-
tuitively, the most informative feature is probably
the textual description about a company, which can
be gathered from various data sources such as Pitch-
book and Crunchbase4. Given an example descrip-
tion “We develop security analytical tools to identify web-app

vulnerabilities. Contact us for a demo of our award-winning

product”, one could guess a “cyber security” sector
just by reading the first sentence, yet many texts
look more like the second sentence, which severely
lacks context. Moreover, a significant number of
companies simply do not have textual descriptions
available from popular data sources5.

Chall.4: high inference frequency and volume.
As soon as the textual feature of a company is
changed, we need to re-infer its sector. Besides,
any change around the sector framework or com-
pany annotation may trigger model update, which

3Note that changing the definition of an existing sector is
achieved by altering the associated company annotations; and
merging/splitting existing sector(s) can be done via combining
operations of adding and removing sector(s). Currently, only
a system superuser can modify the sector framework through
backend configuration files. However, our future plans in-
volve facilitating this process via a web-based graphical user
interface (GUI) integrated to EQT’s Motherbrain platform –
https://eqtgroup.com/motherbrain.

4https://www.crunchbase.com
5Cao et al. (2022) present a summary of data sources.
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Figure 2: Three paradigms of generative NLP models:
prompting P (s|c;θ2), model tuning P (s|c;θ1,θ2), and
prompt tuning P (s|c;θ2,θ3).

requires a re-inference for all N companies. With
the current data volume in our data warehouse, the
daily amount of re-inference can easily exceed 100
million, which may grow into a bottleneck.

3 The Core Model

Inferring the industry sector of companies can be
naturally addressed by a supervised NLP approach,
where we input the textual description of a com-
pany (denoted as c), and output a sector s based
on a θ-parameterized model P (s|c;θ); note that
we omit the subscripts n and m hereafter for the
sake of simplicity. To find the optimal θ, we use
the annotated mappings c → s to fit this condi-
tional probability. The prediction target s can be
either raw text (e.g., “cyber security”) or the encoded
M -dim one hot vector, where the former is a gen-
erative approach and the latter is discriminative.
It is crucial to highlight that generative methods
offer two primary advantages over discriminative
techniques (such as supervised classification): (1)
generative models are capable of predicting sec-
tors beyond those predefined, and (2) since these
models output natural words, they can more effec-
tively harness pre-learned knowledge in LM, thus
avoiding overfitting on smaller training datasets.

Nowadays, generative approaches dominate the
domains of computer vision (e.g., Stable Diffusion
by Rombach et al., 2022) and NLP (e.g., GPT-3
(Brown et al., 2020) and GPT-4 (OpenAI, 2023)).
Particularly, the language model (LM) is often pre-
trained following a generative approach, such as
predicting the masked words. To address Chall.1&2,
we need to exploit the capability of a pretrained
LM (PLM). We start with designing a template for
samples:

[NAME], concerns [TAGS], is [c]. Sector: [s].

For a certain company, [NAME] is its legal name,
[TAGS] is the concatenated tags/keywords6 that are

6Many data sources, such as Pitbook and Crunchbase, have
some keywords tagged for each company.
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Figure 3: Performance comparison over different model
paradigms (legend) and sizes (x-axis): the validation (a)
precision and (b) recall averaged over 84 sectors.

added to address Chall.3. For example, the filled
input for company “Klarna” may look like

Klarna Bank AB, concerns buy-now-pay-later and
shopping, is an online payment platform designed
to facilitate cashless payments. Sector: [s].

As the prediction target, [s] remains unreplaced,
thus it is an unanswered sample. Model optimiza-
tion essentially attempts to make the predicted [s]

closer to the annotated sector text, and in this ex-
ample s = “financial service”. We use c′ to denote
the filled sample for company c.

3.1 Prompt and Model Tuning
Despite minor differences, the generative NLP
models largely adhere to one of three paradigms:
prompting, model tuning, or prompt tuning. Seen
from Figure 2, prompting (Liu et al., 2023) freezes
the PLM weights θ1 while learning a mapping func-
tion (parameterized with θ2) to transform the raw
PLM output into the sector space. Model tuning
allows finetuning θ1, which is the de facto way of
leveraging large PLM for downstream tasks (Li and
Liang, 2021). Prompt tuning prepends some soft
prompts, which are essentially learnable virtual to-
kens, into the input sequence c′ and only trains
them (corresponding to parameter θ3) while keep-
ing θ1 fixed (Su et al., 2022). PLM can have bil-
lions of parameters making model tuning paradigm
expensive, while the prompt-based approach (Liu
et al., 2023) has only thousands of tunable parame-
ters (Lester et al., 2021).

Following the generative “text-to-text” T5 PLM
(Raffel et al., 2020), we compared the performance
of these paradigms towards the PE sector inferring
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Algorithm 1: Prompt + model tuning
Input: Sector annotations in the form of c→s, a

generative NLP model P (s|c;θ1,θ2,θ3),
PLM freezing steps t′, learning rates ϵ1 and ϵ2

Output: The optimal parameters θ∗
1, θ∗

2 and θ∗
3

1 Initialize θ1 by loading the pretrained T5 model;
2 Initialize θ2 and θ3 randomly;
3 for (t = 1; t ≤ T ; t++) do
4 Sample a mini-batch from the annotations;
5 Transform each c into a filled template c′;
6 Forward propagate c′ to obtain the prediction ŝ;
7 Calculate the T5 cross entropy loss L(ŝ, s);
8 if t ≤ t′ then
9 ϵ = ϵ1;

10 else
11 ϵ = ϵ2 and θ1 :=θ1−ϵ ∂L(̂s,s)

∂θ1
;

12 θ2 :=θ2−ϵ ∂L(̂s,s)
∂θ2

and θ3 :=θ3−ϵ ∂L(̂s,s)
∂θ3

;

13 θ∗
1 = θ1, θ∗

2 = θ2 and θ∗
3 = θ3;

14 return θ∗
1, θ∗

2 and θ∗
3;

task. Figure 3 shows the average precision and
recall in relation to different paradigms and model
sizes (Small, Base, Large and XL)7. We observe
that model tuning of T5 achieves stronger perfor-
mance than prompting and prompt tuning. Prompt
tuning catches up with model tuning as model size
increases, which coincide the conclusion drawn by
Lester et al. (2021). Intuitively, the label scarcity
(Chall.1) and varying granularity of sector frame-
work (Chall.2) could be better addressed by prompt
tuning, since it is supposed to keep the learned
knowledge in PLM untouched; meanwhile, we also
want to replicate the superior performance of model
tuning when using a smaller model. To that end,
we propose a model P (s|c;θ1,θ2,θ3) that carries
out t′ steps of prompt tuning (only optimize θ2

and θ3) before jointly tune the PLM weights θ1,
as presented in Algorithm 1. Seen from Figure 3,
this “Prompt + Model Tuning” approach outperforms
all compared methods by a large margin, which
is the case even when the PLM size is relatively
small.

According to Figure 3, the performance of our
approach increase with the size of PLM and plateau
(>98%) when reaching a “Large” size. Hence,
we initialize our model with the T5-Large PLM
and train for T =1×106 steps with a mini-batch
size of 50. The prompt tuning phase is trained for
t′ =3×103 steps with a learning rate of ϵ1 =0.1,
where the first 1×103 steps utilize a linear learning

7We did not manage to experiment the XXL T5 model due
to our restriction of computing and human resources. The T5
PLMs can be found in https://huggingface.co/google.

Figure 4: Demonstration of annotation (label) attribu-
tion process using s3 sub-tree from Figure 1 as an exam-
ple. Darker colored nodes are eligible for modeling.

rate warm-up (Goyal et al., 2017). Afterwards, the
joint prompt and model tuning begins with a warm-
up of 1.5×103 steps until reaching a learning rate of
ϵ2 = 5×10−3. Checkpoints are selected via early
stopping with respect to the validation accuracy.
All these hyper-parameters are determined by an
empirical grid search, and the implementation is
built upon OpenPrompt (Ding et al., 2022).

3.2 Annotation attribution

We empirically regulate that only the sectors with
at least 20 annotated companies can be included
in the modeling, which implies that some sectors,
such as s3, s6 and s7 in Figure 1, are not eligible
directly. Since sector annotation is scarce (Chall.1),
we try to utilize every annotation to predict as much
sectors as possible. Subsequently, we run a depth-
first (bottom-up) annotation attribution algorithm
to collect the eligible sectors sm and their annotated
set of companies Cm. Figure 4 demonstrates this
procedure in three steps assuming the annotation
attribution algorithm is currently processing the s3
sub-tree in Figure 1. Initially, only the child sectors
s4 and s5 are eligible (cf. s4 22 and s5 23 in Fig-
ure 4) because they have more than 20 annotated
companies. When it comes to s6 and s7, they have
insufficient annotations, thus are not eligible. How-
ever, their annotations will move up and contribute
to the parent sector s3, enabling s3 to be included in
the training dataset due to |C3|=10+8+16=34>20.

Despite our best-effort annotation attribution pro-
cedure, it is possible that some sectors may still be
excluded from training. However, in practice, the
trained generative model is capable of producing
sector names that are not within the eligible sector
set. We believe this occurrence represents scenarios
where the sectors are not covered by the labels, yet
they are still significant in terms of their inherent
business implications. This feature is particularly
desirable as it facilitates better understanding and
refinement of the sector framework.
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Algorithm 2: Sample balancing via EDA
Input: The eligible sectors s1, . . . , sM and their

corresponding company sets C1, . . . ,CM

Output: The balanced company sets C′
1, . . . ,C

′
M

1 Initialize: C′
1 = C1, . . . ,C

′
M = CM ;

2 Calculate ζ = 2 ·max{|C1|, . . . , |CM |};
3 for (m = 1;m ≤ M ;m++) do
4 for each c in Cm do
5 Augment c for ⌊ζ/CM⌋−1 times with EDA

(Wei and Zou, 2019), producing set c′;
6 C′

m = C′
m ∪ c′;

7 return C′
1, . . . ,C

′
M ;

3.3 Sample balancing via augmentation

As a part of Chall.1 discussed in Section 2, the value
of |Cm| can vary from merely 20 all the way to
a few hundred. Thus, the aforementioned annota-
tion attribution will produce a heavily imbalanced
training dataset. The overall idea is augmenting the
samples for minority sectors to achieve inter-sector
balance. There is a whole spectrum of text augmen-
tation methods: from rule-based to model-based
techniques (Feng et al., 2021), from which we
adopt the EDA (easy data augmentation) approach
(Wei and Zou, 2019) because of its simplicity and
universality. For individual [NAME], [TAGS] and [c]

from our sample template, we perform synonym
replacement, insertion, swapping and deletion at
random choice with random intensity. Algorithm 2
has the details of the entire balancing procedure.

3.4 Performance analysis

As of December 2022, there are 84 eligible sec-
tors after the annotation attribution procedure as
introduced in Section 3.2. We collect all samples
manually annotated under one of these 84 sectors,
thereby creating a dataset that exhibits imbalance in
terms of the number of samples annotated for each
sector. The dataset is then balanced via the augmen-
tation procedure introduced in Section 3.3. This
results in a final dataset containing 7,260 samples,
where each sector has ∼86 annotated samples in
average. We reserve 15% of the dataset for valida-
tion and report the accuracy of different baselines
in Table 1. Our approach (i.e., “Prompt + Model
Tuning”) manages to achieve an accuracy of over
80% on the validation set. In contrast, its discrimi-
native counterpart (cf. Section 5), which employs
an M -way classification output head, achieves only
70% accuracy (largely on par with prompt tuning),
likely due to the scarcity of labels.

Then we dig down to understand the error con-

Model Accuracy (%)
M -Way Classification 70.02
Prompting 64.63
Prompt Tuning 70.91
Model Tuning 76.44
Prompt + Model Tuning (Ours) 80.25

Table 1: Performance comparison of various baselines,
all employing “T5 Large” as the PLM. The reported
accuracies have been obtained (in December 2022) us-
ing the same random seed for consistency. The highest
performing result is highlighted in bold.

Figure 5: The confusion matrix for seven sectors picked
from the 84 (as of December 2022) predicted sectors.

tribution from each sectors and find that sectors on
low levels (e.g., L3 and L4 in Figure 1) have an
accuracy of over 90% except two L3 sectors named
horizontal software and vertical software, as re-
flected in Figure 5. A horizontal software company
caters to a wide and broad ranging market of con-
sumers, and a vertical one provides a solution for a
particular line of business or industry. Because of
the way they are defined, many businesses in hor-
izontal/vertical software sector might fit in other
sectors as well. For example, a company providing
bot-based customer service could be part of the hor-
izontal market of any customer support scenario,
while also targeting vertically to game publishers.
The complete list of predicted sectors is considered
to be sensitive proprietary information and there-
fore we only show the confusion matrix for seven
sectors (two from L2 and five from L3) in Figure 5.
Since L3 sectors are more fine-grained requiring
less (than L2) annotations, a generally better in-
ference performance is observed for L3 than L2,
which encourages us to run a bottom-up annotation
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daily trigger

02:00
Rules

Load T5 PLM

Load latest
sector model

FinetuneInference

(1)

(2)
(3)

Figure 6: The full system diagram with three scenarios
(1∼3) controlled by a rule-based inspection operator.

attribution (cf. Section 3.2) to prioritize lower-level
sectors.

4 The Full System

The evolving annotation (Chall.1) and dynamic
sector framework (Chall.2) both demand constant
model iteration; and any model update would re-
quire a full-scale re-inference. As a result, trigger-
ing model iteration upon any change in annotation
or sector framework will be computationally ex-
pensive and hard to scale. Instead, We trigger a
rule-based inspection only once every day (e.g., at
about 02:00 as exemplified in Figure 6) through Air-
flow8. The inspection rules lead to three scenarios:

(1) Finetune on T5 PLM when the sector frame-
work is changed or the annotation for any
existing sector has evolved significantly9; it
takes about 7 hours on 2 × Nvidia P100 GPU.

(2) Finetune on the latest sector model when the
sector annotation only changed marginally9;
but the first scenario will be enforced after 90
days since its last execution.

(3) Skip finetune otherwise and run incremental
inference introduced in Section 4.2.

The second scenario takes less than 1/7 of the effort
of the first scenario. We continue to present the key
ingredients of finetune and inference.

4.1 Finetune
Figure 7 shows the finetune pipeline which is encap-
sulated in a docker10 image run by Google Kuber-
netes Engine (GKE)11. From our data warehouse
managed by BigQuery12 (Melnik et al., 2010), the

8Apache Airflow: https://airflow.apache.org
9For sector sm that originally has |Cm| annotated com-

panies, the number of newly added/removed companies is
∆m, then ∆m/|Cm| ≥ 0.75 is regarded as significant, and
0.75 > ∆m/|Cm| ≥ 0.1 is a marginal change.

10https://www.docker.com
11https://cloud.google.com/kubernetes-engine
12https://cloud.google.com/bigquery

annotation attribution (Section 3.2)

sample balancing via augmentation (Algorithm 2)

prompt + model tuning (Algorithm 1)

QA (quality check) of the 
best model (Section 4.1)

evaluation 
metrics QA pass?

No

Yesreleased 
models

manual 
interveneGCS

GKE

company 
features

sector 
framework

sector 
annotation

BQ

Figure 7: The finetune workflow. BQ: BigQuery, GCS:
Google Cloud Storage, GKE: Google Kubernetes Engine.

inferred 
sectors

company 
features

Select companies for inference: 
(1) if a new model is trained, return all companies;
(2) otherwise, return companies with changed features.

released 
models GCS

Infer sectors for selected companies

evaluation 
metrics

BQ

Kafka

Investment 
Platform

Dataflow

Figure 8: The (differentiated) inference workflow that
starts with a rule-based company selection step.

annotation attribution (Section 3.2) collects all el-
igible sectors s1, . . . , sM together with their cor-
responding company sets C1, . . . ,CM , which are
balanced via augmentation (Algorithm 2). The bal-
anced dataset is then split (with a ratio of 9:1) into
training and validation sets that are used for prompt
+ model tuning following Algorithm 1.

The validation metrics (sector-wise precision
and recall calculated from a confusion matrix like
Figure 5) of the finetuned model will go through a
QA (quality check) step to determine if this model
is good enough to be automatically released in GCS
(Google Cloud Storage)13. QA constitutes a series
of assertions such as “The precision of vertical software
should be greater than 75%” and so on. If any of these
assertions fails, it will send an alarm to our data sci-
entists via Slack14 to request a manual interference
to take appropriate actions.

4.2 Inference

The inference workflow starts with a selection step
(cf. Figure 8) to determine a subset of companies
that need re-inference. The selection step greatly
reduce the daily inference load (by 95% at least
after the system stabilizes), hence it tackles Chall.4.

13https://cloud.google.com/storage
14https://slack.com
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Next, the latest trained model is loaded to infer the
sectors for the selected companies, where two facts
could relieve Chall.4 further: (1) being able to use
a medium-sized PLM, and (2) job parallelization
by Dataflow15. The inferred sectors are stored in
BigQuery and simultaneously published to Kafka16

so that our investment platform can further leverage
those predictions in many PE analytical use cases.

5 Related Work

As discussed in Section 3, the most relevant ap-
proach is M -way classification using either word
or sentence level features as input. But the fea-
tures are usually pre-learned with a fundamentally
different setup and target (e.g., MLM: Masked
Language Model, cf. Devlin et al., 2019), which
makes it potentially difficult to continue finetuning
towards a classification target (Gururangan et al.,
2020). There is a recent trend of unifying all down-
stream tasks as a text generation problem (Lester
et al., 2021), i.e., a generative NLP paradigm. In
fact, using prompt has become the symbol of this
paradigm. For example, we can potentially ask a
GPT-3 Brown et al., 2020 or InstructGPT (Ouyang
et al., 2022): “Klarna is a company that provide an cashless

online payment platform. What is Klarna’s industry sector?”
The likely answer would be something that gener-
ally make sense, yet will not be mapped directly
towards the predefined sector framework. As a re-
sult, prompting (Liu et al., 2023) and prompt tuning
(Su et al., 2022) emerge to fill this gap. However,
Lester et al. (2021) discover that model tuning still
prevails when the size of PLM is relatively small,
which inspires us to jointly tune small PLM and
prompt, as explained in Section 3.1.

6 Conclusion

In order to support thematic PE fund operations,
we design and deploy a scalable and adaptive sys-
tem to infer customized industry sectors for mil-
lions of companies. We empirically show that a
generative NLP model is superior to its discrimi-
native counterpart, leading to a solution of model
+ prompt tuning that guarantees superior perfor-
mance even using scarce annotation and medium-
sized PLM. The prompt template is designed to
cope with noisy input textual features. To address
the ever-changing sector framework and annotation,
the system automatically triggers and determines

15https://cloud.google.com/dataflow
16https://kafka.apache.org

the most appropriate scenario by quantifying the
change. Moreover, the system also incorporates
best-effort annotation attribution, sample balanc-
ing, and incremental inference. Hundreds of PE
professionals has benefited from this system for
over a year. Last but not least, our solution can be
directly generalized to many similar scenarios such
as e-commerce product tagging.
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Abstract

Startups represent newly established business
models associated with disruptive innovation
and high scalability, hence strongly propel the
economic and social development. Meanwhile,
startups are heavily constrained by many fac-
tors such as limited financial funding and hu-
man resources. Therefore, the chance for a
startup to succeed is rare like “finding a unicorn
in the wild”. Venture Capital strives to identify
and invest in unicorn startups as early as possi-
ble, hoping to gain a high return. This work is
traditionally manual and empirical, making it
inherently biased and hard to scale. Recently,
the rapid growth of data volume and variety
is quickly ushering in deep learning (DL) as
a potentially superior approach in this domain.
In this work, we carry out a literature review
and synthesis on DL-based approaches, em-
phasizing four key aspects: optimization tar-
get, feature selection, data split, and evaluation
strategy. For each aspect, we summarize our
in-depth understanding and practical learning.

1 Introduction

Startup is a dynamic, flexible, high risk, and newly
created company that typically represents a repro-
ducible and scalable business model. It provides
innovative products and/or services, and has limited
financial funds and human resources (Santisteban
et al., 2021; Skawińska and Zalewski, 2020; Blank,
2013). Since startups stimulate growth, generate
jobs and tax revenues, and promote many other so-
cioeconomically beneficial factors (Acs and Szerb,
2007), they are commonly regarded as powerful
engines for economic and social development. As
the startups continue to develop, they often increas-
ingly rely on external funds (as opposed to internal
funds from founders and co-founders), from either
domestic or foreign capital markets, to unlock a
high rate of growth (Marmer et al., 2011). Up till
this date, the dominating external fund source has
been Venture Capital (VC).

Startup
(input data)

x
DL Model Invest?

y = { 0 - bad, 1 - good}

Figure 1: High-level overview of DL (deep learning)
based startup sourcing: the model is trained to approx-
imate a function f(·) so that the input x describing a
startup is mapped to an output y indicating the recom-
mended investment propensity that can be either discrete
(good vs. bad) or continuous (success probability).

As an industry, VC seeks opportunities to invest
in startups with great potential (in the sense of fi-
nancial returns) to grow and successfully exit. The
risk-return trade-off tells us that the potential return
rises with a corresponding increase in risk1. As a
consequence, VC firms strive to mitigate this risk
by improving their 1) deal sourcing and 2) value-
add process (Teten et al., 2013). In this survey, we
will focus on the published work around the former
approach, i.e., finding the startup unicorn2 as accu-
rately as possible. However, this task is a complex
one with great uncertainty because of many factors
such as vague/immature business ideas, forcing VC
firms to make investment decisions based on insuf-
ficient information. Therefore a VC’s deal sourcing
process traditionally turns out to be manual and em-
pirical, leaving estimations of the ROI (return on
investment) heavily dependent on the human in-
vestors’ decisions, which are inherently biased and
hard to scale (Cumming and Dai, 2010).

With the rapid growth of data size and diversity
(origin and modality), DL (deep learning) meth-
ods caught the eyes of increasing number of re-
searchers hunting for unicorns. DL, by definition,
represents a subset of ML (machine learning) meth-
ods, and is implemented (entirely or partly) with

1Statistics revealing the high risk of startups: on average,
only about 60% of the startups survive for over 3 years since
founded (Hyytinen et al., 2015); top 2% of VCs receive 95%
of the returns in the entire industry (Bai and Zhao, 2021); VC
has only 10% rate of achieving an ROI (return on investment)
of 100% or more (Shane, 2012; Ünal and Ceasu, 2019).

2Unicorn startups are private, VC-backed firms with a
valuation of at least $500 million (Chernenko et al., 2021).
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Figure 2: The the adoption percentage of DL models.

ANNs (artificial neural networks) that utilize at
least two hidden layers of neurons. As shown in
Figure 1, DL-based approaches require practition-
ers to define the input data x and label y (indicating
good or bad investment according to some crite-
ria) before training a model f(·) that maps x to y,
i.e., y=f(x). As a well-known international invest-
ment firm practicing data-driven approaches to find
startup unicorns, we strive to 1) obtain a thorough
and in-depth understanding of the methodologies
for startup evaluation using DL, and 2) distil im-
portant and actionable learning for practitioners.

Therefore, we carry out a literature survey3 on
using DL to evaluate startups. According to Fig-
ure 2, over 40% of the surveyed papers adopt an
ANN/DNN/MLP4 due to its wide applicability to
many data types. LSTM/GRU5 almost dominates
the cases when time-series are used. Deep attention
(Vaswani et al., 2017) and graph based models (
GNN/GCN/GAT)6 have a rising trend of adoption
due to increasing introduction of text and graph
input. Lastly, images and videos are relatively least
used (Figure 4), leading to only around 10% adop-
tion rate for CNN (convolutional NN). We discover
that the innovation mostly lies in how an existing
DL model is applied, rather than in the model
itself. Particularly, we present our literature synthe-
sis and practical learnings from four key aspects:
optimization target, feature selection, data split,
and evaluation strategy. To the best of our knowl-
edge so far, our work is the first of this kind.

2 Optimization Target

Identifying potential unicorns relies on accurate
prediction of startup success. So far there is no uni-

3There are 29 English papers/theses sourced (with no re-
striction of year, type or geo-location) from 1) investment pro-
fessionals and researchers, 2) keywords searching in Google,
Google Scholar, IEEE, ACM, Scopus, Wiley, Springer and
Web of Science, and 3) cross reference among papers/theses.

4In this paper, ANN, DNN (deep NN) and MLP (multi-
layer perceptron) refer to a NN with at least two hidden layers.

5LSTM: long short term mem.; GRU:gated recurrent unit.
6GNN (graph NN), GCN (graph convolution net) and GAT

(graph attention net) are three graph based DL models.

versally agreed definition of "true success"; most
of the existing definitions commonly focus on
“growth” which can be measured from different per-
spectives like revenue, employees, and valuation, to
name a few. We summarize the definitions adopted
by the reviewed literature, showing each criterion’s
popularity among researchers. All success criteria
are quantities in relation to a predefined duration
since the time point of evaluation.

1. Fulfill the preset fundraising goal (Lee et al.,
2018; Yu et al., 2018; Cheng et al., 2019; Yeh
and Chen, 2020; Shi et al., 2021; Kaminski and
Hopp, 2020; Wu et al., 2022; Tang et al., 2022):
the goal (the expected amount of money) of the
fund-raise campaign or plan is reached or sur-
passed, which is common among crowdfunding
projects. The readers should be cautious not to
confuse with the fund-raise goal of investors.

2. Future funding (Chen et al., 2021; Ross et al.,
2021; Stahl, 2021; Yin et al., 2021; Garkavenko
et al., 2022): any future funding raised above a
low-bar amount.

3. Acquired (Ang et al., 2022; Ferrati et al., 2021;
Kim et al., 2020; Lyu et al., 2021): one com-
pany purchases and takes over the operations
and assets of the startup.

4. IPO (initial public offering) (Ang et al., 2022;
Ferrati et al., 2021; Yin et al., 2021): it offers
shares to the public in a new stock issuance for
the first time; IPO allows the company to raise
equity capital from public investors.

5. Series A (Zhang et al., 2021; Dellermann et al.,
2021): the startup receives the first VC funding
round after the seed and angel rounds.

6. N -year survival (Ghassemi et al., 2020; Ross
et al., 2021): the firm still operates afterN years.

7. Experts view (Bai and Zhao, 2021; Kinne and
Lenz, 2021): the quantified review from human
experts.

8. Upround (Ang et al., 2022): the valuation after
a future funding round becomes higher than the
current valuation.

9. VC-backed (Garkavenko et al., 2021): the
startup is funded by one or more VC firms.

10. Total raised funding (Kim and Park, 2017):
the accumulated amount of funding received
(the higher the better), which is often used as a
regression target.
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Figure 3: Distribution of the adopted startup success cri-
teria (i.e., optimization objective); the upper-right panel
shows the percentage of combining different number of
criteria together.

11. Competition nomination (Ghassemi et al.,
2020): the startup’s business idea wins (or nom-
inated by the committee of) a entrepreneurial
competition.

12. Team growth (Horn, 2021): whether the team
size has experienced a fast growth or not, such
as “≥ x% increase from at least 10 initial employees”.

13. 3rd-party score (Allu and Padmanabhuni,
2022): some data sources provide certain firm
evaluation scores7.

While the first 12 criteria are intuitively sound,
we question the effectiveness of the last criterion of
taking the 3rd-party (algorithmic) scores as ground
truth to train the DL model, because it is guaranteed
to obtain a model inferior to the 3rd-party method.
Additionally, there is no financial based success
criteria8 adopted in the DL-based work, which is a
consequence of missing rich operating data (Gom-
pers et al., 2020) before exiting the startup phase
and entering the growth phase (Skawińska and Za-
lewski, 2020). Although the definition of a suc-
cessful startup has many versions, for investors, it
is relatively straightforward: a profitable exit, of-
ten in the form of acquisition or IPO, which incur
high ROI (Ang et al., 2022). Practically, short-term
events like funding rounds have a higher adoption
rate than longer-term acquisition/IPO; the reason is
twofold: 1) acquisition/IPO is extremely scarce as
very few startups achieve these milestones; and 2)
it occurs very late in startup’s trajectory, hence po-
tentially weakening the correlation between early
data and late success (Stahl, 2021). In most cases,

7For example, Crunchbase (www.crunchbase.com)
provides a so called “trend score” score.

8Only a few ML-based (instead of DL-based) work
(Lussier and Pfeifer, 2001; Lussier and Halabi, 2010) have
investigated using financial based success criteria.
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Figure 4: The distribution of data category sorted by
the their occurrences; the upper-right panel shows a
snapshot (to the date when this paper is written) of the
utilized data modalities: numerical, categorical, text,
graph, time-series, image, video and audio.

different success criteria do not conflict with each
other, implying the possibility to combine multi-
ple criteria; but this kind of criteria mixture is still
under-investigated as illustrated in the upper-right
panel of Figure 3. Generally speaking, one can
combine multiple criteria with logical operators
(i.e., OR and AND) (Yin et al., 2021; Ang et al.,
2022), or use each criterion separately in a multi-
task training setup (Shi et al., 2021).

3 Feature Selection

DL models need data input to make predictions.
Before we start gathering input data for model, we
might be able to benefit from understanding what
input(s) humans use to make decisions. When in-
vestment professionals (i.e., humans) try to forecast
the success of early stage startups, they make use
of two cognitive modes: intuitive and analytical.
The intuitive mode is characterized by processing
“soft” signals (e.g., innovativeness and personality
of entrepreneur) that are mostly qualitative; and hu-
mans are still the “golden standard” for this mode
(Baer and McKool, 2014). The analytical mode,
on the other hand, deals with “hard” facts (e.g., in-
dustry and team size) that are often quantitative
(Dellermann et al., 2021). The majority of the
work we reviewed incorporate both modes into the
model input, but they have to quantify the “soft”
information via either approximation or question-
naire. Data is often fed into DL models in the form
of features. Feature (a.k.a. “factor” in the scope
of financial research) is an individual measurable
property or characteristic of a phenomenon, which
is sometimes aggregated from raw data. When we
try to map out the large number of features used the
literature, we found that features tend to cluster into
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Figure 5: Illustration of the connection feature category,
from which a graph can be built: (a) the graph comprises
many nodes (denoting company, person or investor)
and edges (representing investing/employment/founding
relations between nodes); (b) an example company-
person-investor graph using (a) as a legend.

different categories, describing different aspects of
the startup in scope. We identified 15 feature cate-
gories detailed below and visualize their adoption
percentage in Figure 4. Refer to Table 1 for the
concrete features adopted in each category.

• Funding: historical fund received by the startup
is direct recognition from other investors, thus it
is the most popular category in the literature.

• Product/Service: the core value that early star-
tups have to offer is reflected in the product
and/or service they aim to create, which makes
this category widely adopted.

• Meta Information: the general attributes of star-
tups, which seldomly change since creation.

• Founder/Owner: the attributes of founding
teams and the individuals that comprise them
contribute to both the short-term success and
longer-term survival (Ghassemi et al., 2020) of
the startup; this category is available from many
data sources and entrepreneurial competitions.

• Team: complementary to the founder/owner fea-
ture, the team features capture the statistics of
the employees.

• Investor: the statistics of investors that have
funded the startup can be informative about its
early attractiveness.

• Web: any feature extracted from web pages.

• Context: besides intrinsic9 features, more and
more researchers have realized the importance of
extrinsic factors that may be (but not limited to)
competition, environmental, cultural, economical
and tax-based.

• Connection features, as illustrated in Figure 5,
are usually extracted from a graph that encodes

9While intrinsic features act from within a company, ex-
trinsic ones wield their influence from the outside. The former
often can be controlled by the startup, but the latter can not.

connections between different entities: startup,
person and investor.

• Operation/Planning concerns operational mat-
ters such as sales, localization, marketing, supply
chain, digitization, advisory, company culture
and legal regulation.

• IP and R&D: IP (intellectual property) and R&D
(research and development) can approximate the
startups’ originality and innovativeness.

• The customer, financial and M&A10 features
are, most of the time, unavailable publicly, which
resonates with their scarcity in Figure 4.

3.1 Noticeable Trends
The surveyed literature reflects several trends, sum-
marized below, concerning selecting the input fea-
tures for DL models.

Single-modal→multi-modal: although the tabu-

lar (aggregated numerical/categorical data) form still dom-
inates, we see other emerging data modalities: text,
graph, time-series, image, video and audio. The rela-
tive adoption of different modalities is shown in
Figure 4. Especially, a few recent work (e.g., (Shi
et al., 2021; Cheng et al., 2019)) has looked into
combining multiple input modalities (i.e., multi-
modal).

Structured(aggregated)→unstructured(raw):
the modalities excluding “tabular” in Figure 4
are unstructured, which become increasingly
important as a complement to the structured data
(Lyu et al., 2021; Chen et al., 2021; Gastaud
et al., 2019), or as a standalone input to the model
(Zhang et al., 2021; Tang et al., 2022). Since
raw, unstructured data often has a large scale
and contains intact-yet-noisy signal, it may bring
forward superior performance as long as a proper
DL approach is applied (Garkavenko et al., 2022).

Proprietary→paid→free: all data sources uti-
lized in DL-based methods are sorted in Figure 6
according to their occurrences. The traditional pro-
prietary sources are not favored any more due to
the limitation of scale and shareability. Paid data
sources (e.g., Crunchbase and Pitchbook) are still
very popular, because they are mostly quite afford-
able and well organized. However, neither paid or
proprietary data is up-to-date or fine-grained, lead-
ing to the increasing adoption of free sources like
web page scraping (Garkavenko et al., 2022).

10M&A (merger and acquisition) refers to a business trans-
action in which the ownership of companies (or their operating
units) are transferred to or consolidated with another company.
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Category Description of Common Features The Reference[ref] of Example Work #ref

Funding

Total number of funding rounds and amount raised (Allu and Padmanabhuni, 2022; Yin et al., 2021; Horn, 2021; Stahl, 2021) ... 10
Funding type (e.g., angel and series A/B/C) (Dellermann et al., 2021; Stahl, 2021; Yeh and Chen, 2020; Sharchilev et al., 2018) ... 8
Elapsed time since latest funding (Garkavenko et al., 2022; Ang et al., 2022; Gastaud et al., 2019) ... 6
Size and type of the latest funding (Ang et al., 2022; Garkavenko et al., 2022; Ross et al., 2021; Gastaud et al., 2019) 4
Size and type of seed funding (Dellermann et al., 2021; Bai and Zhao, 2021; Lyu et al., 2021) 3
Average per-round statistics (Garkavenko et al., 2022; Ang et al., 2022; Garkavenko et al., 2021) 3
Average time between consecutive rounds (Ross et al., 2021; Garkavenko et al., 2021; Sharchilev et al., 2018) 3
The raw time-series of funding rounds (Chen et al., 2021; Stahl, 2021; Horn, 2021) 3
Accumulated amount for different funding types (Ross et al., 2021; Sharchilev et al., 2018) 2
Total amount raised from VC (Dellermann et al., 2021; Ross et al., 2021) 2
Post-money valuation of rounds (Garkavenko et al., 2021) 1

Product/
Service

Industry/sector/sub-sector (Ang et al., 2022; Ghassemi et al., 2020; Sharchilev et al., 2018; Yu et al., 2018) ... 11
Textual product description (Chen et al., 2021; Kim et al., 2020; Cheng et al., 2019; Lee et al., 2018) ... 9
Project specification on crowdfunding platforms (Yeh and Chen, 2020; Cheng et al., 2019; Yu et al., 2018; Kim and Park, 2017) ... 7
Image, video or audio of the product/service (Tang et al., 2022; Shi et al., 2021; Kaminski and Hopp, 2020; Cheng et al., 2019) ... 5
Time to market, novelty and differentiation (Bai and Zhao, 2021; Dellermann et al., 2021; Sharchilev et al., 2018) 3
Technology maturity, novelty and differentiation (Allu and Padmanabhuni, 2022; Dellermann et al., 2021; Bai and Zhao, 2021) 3
Customer focus (e.g., B2B/B2C/B2B2C)* (Stahl, 2021; Dellermann et al., 2021) 2
Quality, market penetration and traction (Bai and Zhao, 2021) 1
Business models† and scalability (Dellermann et al., 2021) 1
The number of product varieties (Sharchilev et al., 2018) 1
Textual product review and comment (Lee et al., 2018) 1

Meta
Info.

Founded date and geographical location (Chen et al., 2021; Garkavenko et al., 2021; Sharchilev et al., 2018; Yu et al., 2018) ... 16
Has Facebook/Linkedin/Twitter account (Shi et al., 2021; Dellermann et al., 2021; Ross et al., 2021; Kim and Park, 2017) ... 5
Domain name or homepage URL (Ross et al., 2021; Srinivasan et al., 2020; Kim and Park, 2017) 3
Company legal name and aliases (Ross et al., 2021; Srinivasan et al., 2020) 2
Office count and age (Garkavenko et al., 2022; Sharchilev et al., 2018) 2
Registered address, email and phone number (Ross et al., 2021) 1
Incubator or accelerator support (Dellermann et al., 2021) 1

Founder
Owner

Founding team size (number of co-founders) (Garkavenko et al., 2021; Ross et al., 2021; Gastaud et al., 2019) ... 11
Founders’ (successful) founding/industry experience (Bai and Zhao, 2021; Shi et al., 2021; Yeh and Chen, 2020; Srinivasan et al., 2020) ... 11
Gender, ethnicity or education (uni., major and year) (Lyu et al., 2021; Ross et al., 2021; Kaiser and Kuhn, 2020; Corea, 2019) ... 8
Founder ID and score from 3rd-party data sources (Shi et al., 2021; Yeh and Chen, 2020; Srinivasan et al., 2020; Sharchilev et al., 2018) 4
Skill (e.g., leadership, sales, law, finance, marketing) (Bai and Zhao, 2021; Ghassemi et al., 2020; Pasayat et al., 2020; Bento, 2018) 4
Social capital‡ (Shi et al., 2021; Srinivasan et al., 2020) 2
Founders’ biography (text) and photo (Srinivasan et al., 2020; Kim and Park, 2017) 2
Founders’ entrepreneurial vision and dedication (Bai and Zhao, 2021; Dellermann et al., 2021) 2

Team

Team size of all or different functions (Ang et al., 2022; Garkavenko et al., 2022; Ross et al., 2021; Kim et al., 2020) ... 6
Completeness and capability of managers and board (Garkavenko et al., 2021; Bai and Zhao, 2021; Sharchilev et al., 2018) 3
The time-series of team size (Stahl, 2021; Horn, 2021) 2
Statistics of new hire or leavers (Garkavenko et al., 2021; Sharchilev et al., 2018) 2
Team composition (e.g., diversity and gender) (Ross et al., 2021; Sharchilev et al., 2018) 2
Educational degrees, vocational skill and experience (Garkavenko et al., 2021; Ross et al., 2021) 2
3rd-party team score and person ID (Ghassemi et al., 2020; Sharchilev et al., 2018) 2
Employees from renowned organizations (Chen et al., 2021) 1
Balance/empowerment/competence of the project team (Yeh and Chen, 2020) 1

Investor

The number of total/distinct investors (Ferrati et al., 2021; Chen et al., 2021; Kim et al., 2020; Sharchilev et al., 2018) ... 8
Investor rank by reputation, experience and performance (Stahl, 2021; Yin et al., 2021; Ferrati et al., 2021; Sharchilev et al., 2018) 4
VC syndicate (e.g., advantage, diversity and centrality) (Gastaud et al., 2019; Shin, 2019; Hochberg et al., 2007; Nahata, 2008) 4
Share and involvement time of each investor (Sharchilev et al., 2018) 1

Web

Rank/count/duration/bounce rate of website visit (Garkavenko et al., 2022; Dellermann et al., 2021; Stahl, 2021) ... 5
The count (aggregated or timeseries) of published news (Yin et al., 2021; Garkavenko et al., 2021; Gastaud et al., 2019; Sharchilev et al., 2018) 4
Topic or sentiment of news/articles (Garkavenko et al., 2022; Kim et al., 2020; Sharchilev et al., 2018) 3
Twitter statistics (e.g., followers, tweets and sentiment) (Garkavenko et al., 2022, 2021; Dellermann et al., 2021) 3
Count of web pages and domain names (Garkavenko et al., 2022; Dellermann et al., 2021; Sharchilev et al., 2018) 3

Context

The number of direct competitors (Allu and Padmanabhuni, 2022; Pasayat and Bhowmick, 2021; Xiang et al., 2012) ... 8
Funding raised by competitors (Stahl, 2021; Gastaud et al., 2019) 2
Per-industry prosperity of the hosting geo-location (Yin et al., 2021; Gastaud et al., 2019) 2
Country/state/sector economy and financing env. (Ross et al., 2021; Yin et al., 2021) 2
Market/industry size and growth rate (Allu and Padmanabhuni, 2022) 1

Connection The raw company-person-investor graph (Allu and Padmanabhuni, 2022; Pasayat and Bhowmick, 2021; Xiang et al., 2012) 3
Pre-calculated graph features (e.g., betweenness) (Bonaventura et al., 2020; Liang and Yuan, 2016; Hochberg et al., 2007) 3

Operation/
Planning

Planned revenue model (Allu and Padmanabhuni, 2022; Dellermann et al., 2021; Bai and Zhao, 2021) 3
Global exposure and internationalization (Sharchilev et al., 2018) 1
Market positioning and go-to-market strategy (Bai and Zhao, 2021) 1
Technological surveillance (Allu and Padmanabhuni, 2022) 1

IP and/
R&D

The number, category and growth of patents (Kinne and Lenz, 2021; Ferrati et al., 2021; Ross et al., 2021; Kim et al., 2020) 4
University partnership (Dellermann et al., 2021) 1

Customer Customer satisfaction/loyalty (Chen et al., 2021) 1
The number of pilot customers (Dellermann et al., 2021) 1

Financial Revenue and/or turnover (Kim et al., 2020; Cao et al., 2022a) 2
M&A The number of acquisitions (Ross et al., 2021) 1
Data The total number of events/records (Kim et al., 2020) 1

* Common types of customer focus: B2B: business-to-business. B2C: business-to-consumer. B2B2C: business-to-business-to-consumer, where businesses access customers via a 3rd-party.
† Business models include many, such as subscription centric, freemium, cross selling, hidden revenue, no frills, and layer player.
‡ Social capital is a positive product of human interactions, which comprises two aspects: bonding (intra group) and bridging (inter groups). Nowadays, it is increasingly represented by

activities on social media and applications (Shi et al., 2021).

Table 1: The feature categories and the commonly adopted features within each categy. Due to limited space, we
can not list all publications that adopt the corresponding feature, but the right-most “#ref” column indicates the total
number of occurrences for each feature. Most of the features are structured numerical/categorical input, and we use
boldface to emphasize the unstructured features.
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Figure 6: The occurrences of common data sources:
paid sources are Crunchbase, Pitchbook, Tianyancha,
Linkedin, Mattermark, Dealroom; free sources are
Kickstarter/Indiegogo/scraping, Twitter API, search en-
gines (e.g., Google), USPTO (United States Patent
and Trademark Office, Facebook (the pages about star-
tups); proprietary data are usually only accessible from
investment firms (in “Other” category), governmen-
tal/administrative departments or survey/questionnaire.

About dataset size: to understand how many
samples (the number of companies) researchers use
for training their DL models, we plot the distribu-
tion/histogram of dataset size in Figure 8. It shows
a median and average size of 35,621 and 107,694
respectively, which is expected to continue to grow.

Intrinsic(independent)→extrinsic(contextual):
classically, most factors driving investors’ deci-
sions would be only independent and intrinsic9 to
the startup, most notably at the expense of extrinsic
and contextualized9 features (Gastaud et al., 2019).
The community has started steering towards using
more context and connection features.

4 Data Split

Splitting the dataset is a mandatory step before
training any ML/DL model, yet it is often dis-
cussed very lightly (sometimes even neglected) in
the literature on startup success prediction. It is
generally recommended to divide the dataset into
non-overlapping training (xtrain), evaluation (xeval)
and test (xtest) subsets. The model will be trained
solely on xtrain. Hyper-parameters are searched us-
ing xeval. In the simplest form, the training will be
run for N times with different hyper-parameters,
resulting in N trained models, each of which is
evaluated on xeval. The best performing model on
xeval should be tested on xtest before deployment.

4.1 Company-Centric vs. Investor-Centric

To predict the success of startups, the appropriate
way to split the dataset is not as straightforward as
it appears in ML/DL researches for other domains.

We visualize a minimal example in Figure 7 to facil-
itate our discussion; there are three startups (A, B
and C) founded at different dates over the timeline.
According to some success criteria (Section 2), A
and B are labeled as positive (i.e., promising in-
vesting targets: y(A)=y(B)=1) some time after they
are founded. The majority become unfavourable
(e.g., the label of C is y(C)=0) to VC, if no sign of
success some years after their founding dates.

With a company-centric view, one can choose
some event types (e.g., seed and pre-A rounds), the
dates of which are feature snapshot dates. We can
then compute one sample using data before each
snapshot date. As shown in Figure 7, there are three
snapshot dates on the timeline of startup A, leading
to three samples (i.e., x(A)

1 , x(A)
2 and x

(A)
3 ) that are

all labeled positive (i.e., y(A)
1 =y

(A)
2 =y

(A)
3 =1). In a

sense, startup A is augmented by generating three
⟨sample, label⟩ pairs: ⟨x(A)

1 , y
(A)
1 ⟩, ⟨x(A)

2 , y
(A)
2 ⟩ and

⟨x(A)
3 , y

(A)
3 ⟩. Similarly, B and C create another four

pairs: ⟨x(B)
1 , y

(B)
1 ⟩, ⟨x(B)

2 , y
(B)
2 ⟩, ⟨x(C)

1 , y
(C)
1 ⟩ and ⟨x(C)

2 , y
(C)
2 ⟩.

The company-centric split will randomly allocate
these pairs into one of the sets (training, evaluation
or test), as in work such as (Ang et al., 2022; Yeh
and Chen, 2020).

With an investor-centric view, as in work like
(Wu et al., 2022; Ferrati et al., 2021), the feature
snapshot dates are randomly sampled (before the
corresponding label date), therefore they do not rep-
resent any event(s). More importantly, the global
timeline is fragmented (from earliest startup found-
ing date to now) into three periods, i.e., training,
evaluation and test period, as illustrated in Figure 7.
For a startup, the period that its label belongs de-
termines the dataset split it should go to. Applying
this rule, we can see (cf. Figure 7) that the three
⟨sample, label⟩ pairs from A should go to the train-
ing set; the two pairs from B belong to the test set;
and lastly, the two pairs from C will head to the
evaluation set. (Sharchilev et al., 2018) claims that
investor-centric view is preferred, since it better
resembles the real-world scenario of how invest-
ment professionals predict the success of startups.

4.2 Data Generation Process Matters

When assembling the samples (i.e., x(·)
i in Figure 7)

using data up till the snapshot dates, one should
make sure that no future information is leaked into
x
(·)
i . This requires in-depth understanding of not

only the data itself (know-what) but also the data
generation process (know-how), which we found
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is seldomly addressed by the literature. We hereby
give a concrete example out of many: a startup
in the dataset has an annual revenue data point
(from BvD11) with a timestamp 2020-12-31; but
this data point should be ignored when predicting
on 2021-06-01. The reason is that fiscal reports (the
source of revenue data) often have a delay of about
12 months, causing the 2020-12-31 data point un-
available until (earliest) 2021-12-31. Without ex-
amining such matters, the model performance in
production may fail catastrophically.

5 Evaluation Strategy

The decision of deploying any model is often made
by looking at the evaluation results. To achieve that,
some evaluation metrics are employed to measure
the quality of predictions y by comparing to the
ground-truth labels ŷ. The metric values computed
over the evaluation set (i.e., xeval) are used to de-
termine which model (among many trained using
different hyper-parameters) will be deployed for
production eventually. This process also fulfills the
objective of hyper-parameter search. It has been
discussed in Section 4 that the evaluation metrics
should also be calculated on the test set xtest as an
indication of the model’s generalization capability.

The evaluation metrics adopted in the DL lit-
erature include (ordered by their occurrences as
shown in Figure 9 with an example citation) pre-
cision (Zhang et al., 2021), ROC-AUC (area un-
der the receiver operating characteristics) (Ross
et al., 2021), accuracy (Bai and Zhao, 2021),
FPR (false-positive rate) (Ghassemi et al., 2020),
TPR (true-positive rate) (Garkavenko et al., 2022),
hit rate (Allu and Padmanabhuni, 2022), NDCG

11Bureau van Dijk: www.bvdinfo.com

(normalized discounted cumulative gain) (Chen
et al., 2021), portfolio simulation (Yin et al., 2021),
RMSE (root mean square deviation) (Wu et al.,
2022), AUPR (area under the precision-recall
curve) (Zhang et al., 2021), average precision (Lyu
et al., 2021), confusion matrix (Ross et al., 2021),
F0.1 score (Sharchilev et al., 2018), MAE (mean
absolute error) (Wu et al., 2022), MCC (Matthews
correlation coefficient) (Dellermann et al., 2021),
PR (precision-recall) curve (Stahl, 2021), and R2

(Garkavenko et al., 2021).
Most trained models are expected to serve as

a decision-support system for VC deal sourcing.
Realistically, human professionals are only able
to assess a limited amount of startups. Further,
because of fund size limitation, investors can only
fund a very small fraction of startups (Stahl, 2021).
As a result, the evaluation metric should aim for
high-precision (corresponding to high-certainty
and low-recall)12 (Sharchilev et al., 2018), which
explains the popularity of precision, TPR, FPR, hit
rate and F0.1 score in Figure 9.

5.1 Portfolio Simulation

There are four key questions to answer concerning
any model trained to facilitate VC deal sourcing:
Q1 What is the expected success ratio (or ROI)
of the portfolio (with different sizes) constructed
according to model predictions? Q2 How will the
model-driven portfolio perform in relation to the
historical records of renowned investment firms?
Q3 Is the model significantly superior than a ran-
dom policy? Q4 How far does the model fall be-

12In the scope of VC deal sourcing, high-precision means
the rate of “correct” prediction within the top-N list (i.e., TPR)
should be high. According to the typical PR curve, precision
tends to be higher for smaller N ; yet recall suffers from it.
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Figure 9: The distribution of adopted evaluation metrics.
The notation “@N” implies the corresponding metric is
calculated over a top-N list. Precision, hit rate, and F0.1
score are popular metrics with a focus of high-precision.
Portfolio simulation suited particularly well to startup
success prediction, while others are general-purpose
metrics for evaluating ML/DL models.

hind a theoretical perfect portfolio with 100% suc-
cess ratio? Answering all questions simultaneously
using any single general-purpose ML/DL metric
is challenging and sometimes far-fetched. To that
end, some recent works (Ross et al., 2021; Yin
et al., 2021) (though still far from a wide adoption
according to Figure 9) have emerged proposing to
evaluate via portfolio simulations. Recall that in
Section 4, we recommended the investor-centric
dataset split demonstrated in Figure 7. With that
split, we make the trained models to predict the
conditional success probability of each startup in
evaluation/test subset, using the end date of training
period as the feature snapshot date. Then, we con-
struct an investment portfolio of size k by selecting
top-k startups with the highest predicted probabili-
ties. As an indication of portfolio performance, we
count the number of startups that eventually obtain
a positive label. The portfolio size k should be var-
ied, so that we can plot one performance curve (the
four colored curves in Figure 10) for each model.
To answer Q1, a steeper curve corresponds to a bet-
ter model. The performance of a perfect model is
a diagonal line, implying all portfolio startups will
succeed. To address Q2, one just needs to measure
the angular distance to diagonal. The simplest pos-
sible model is a random policy, the performance of
which is represented by the flattest straight-dashed
line in Figure 10; the angular distance between
this “random” line to any model’s curve answers
Q3. Finally, the historical fund performance of
investment firms can be easily plotted as individual
points, the vertical distances from which to mod-
els’ curves give insights for Q4. In practice, the
investment firms are more constrained than simula-
tion: they can not invest in any startup due to many
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Figure 10: Portfolio simulation. The trained DL model
is used to form portfolios of size k∈{20, 40, . . . , 120}
(x-axis); the number of eventually successful startups
is plotted against the corresponding k, resulting in a
performance curve (cf. the colored curves). The per-
fect/random cases (dashed lines) and performance of
investment firms (red dots) can be plotted as well for
comparison. It is adapted from (Halvardsson, 2023).

reasons like founders preference, portfolio conflict
and investment mandate. This constraint becomes
more prominent when investors compete to invest
in startups with great success potential.

6 Conclusion

Finding the rare unicorn startups is a challenging
task, hence often regarded as the holy grail for
early-stage investors like Venture Capital firms. To
avoid entirely relying on human domain expertise
and intuition, investors usually employ data-driven
approaches to forecast the success probability of
startups. The rapid growth of data volume and vari-
ety makes deep learning (DL) a potentially superior
approach to address this task. To the best of our
knowledge till this date, there has not been any
comprehensive survey on this topic. According to
our synthesis of carefully selected literature, the
innovation mostly lies in how an off-the-shelf DL
model is applied, rather than in the model itself. So
we focus on summarizing our understanding and
learning concerning four key aspects:

• Optimization target: consider a mixture of crite-
ria, while prioritizing the short-term event.

• Feature selection: scale the dataset with multi-
modal, unstructured, free and extrinsic features.

• Data split: apply the investor-centric split with
the knowledge of data generation process.

• Evaluation strategy: pick the metrics aiming for
high-precision and perform portfolio simulation.
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Finally, authors’ outlook of DL adoption in startup
success prediction is three fold: (1) more easy-to-
use software tools will be developed to promote
good practices and lower the barrier to entry; (2) the
majority of the available data is unlabeled and small
scaled, hence more data/label efficient DL models
will be proposed; (3) data privacy and model secu-
rity will gain more emphasis in the coming years.
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Abstract

We propose the use of conversational GPT
models for easy and quick few-shot text clas-
sification in the financial domain using the
Banking77 dataset. Our approach involves
in-context learning with GPT-3.5 and GPT-4,
which minimizes the technical expertise re-
quired and eliminates the need for expensive
GPU computing while yielding quick and ac-
curate results. Additionally, we fine-tune other
pre-trained, masked language models with Set-
Fit, a recent contrastive learning technique, to
achieve state-of-the-art results both in full-data
and few-shot settings. Our findings show that
querying GPT-3.5 and GPT-4 can outperform
fine-tuned, non-generative models even with
fewer examples. However, subscription fees
associated with these solutions may be consid-
ered costly for small organizations. Lastly, we
find that generative models perform better on
the given task when shown representative sam-
ples selected by a human expert rather than
when shown random ones. We conclude that a)
our proposed methods offer a practical solution
for few-shot tasks in datasets with limited label
availability, and b) our state-of-the-art results
can inspire future work in the area.

1 Introduction

Virtual agents have become increasingly popular
in recent years, with conversational models like
GPT-3.5 (Ouyang et al., 2022) and its successor
ChatGPT1 garnering attention worldwide. While
the intent detection task, as seen in the customer
assistance domain, has been a well-known problem
in academia for many years, it is under-explored
in the financial industry due to the limited avail-
ability of datasets (Galitsky and Ilvovsky, 2019;
Casanueva et al., 2020). This study aims to bridge
the gap between the financial industry and the latest
developments in academia.

1https://chat.openai.com/

Financial Intent Label

It declined my transfer. Declined Transfer
How can I trade currencies with this app? Exchange Via App
How do your exchange rates factor in? Exchange Rate
I just topped up, and the app denied it. Top-up Failed
There has been a red flag on my top up. Top-up Failed
Tell me how to replace my expired card. Card About to Expire
... ...
My card is needed soon. Card Delivery Estimate
What caused my transfer to fail? Failed Transfer

Table 1: Example financial intents and their labels from
the Banking77 dataset. In total, there are 77 different
labels in the dataset.

In this paper, we use Banking77 (Casanueva
et al., 2020), a real-life dataset of customer service
intents and their classification labels. Unlike many
datasets in the intent detection literature, Bank-
ing77 covers the niche of a single domain, contains
a large number of labels (77), and many of the
classes have tight overlaps between them, making
it perfect for a business use-case scenario. Previous
works have focused on fixing labeling errors (Ying
and Thomas, 2022) or exploring pre-training intent
representations (Li et al., 2022), which require a
high level of technical expertise.

First, we demonstrate how well (and quickly)
we can solve a few-shot financial text classifica-
tion task using conversational GPT models. Sec-
ondly, we fine-tune other, non-generative, pre-
trained models, based on MPNet (Song et al.,
2020), with SetFit (Tunstall et al., 2022), a recent
contrastive learning technique developed by Hug-
gingFace which minimizes the time and samples
needed to fine-tune a pre-trained model.

Our contributions include demonstrating a clever
use of in-context learning with GPT-3.5 and GPT-
4 to solve a challenging intent classification task.
This solution is a) especially handy when rapid
and accurate results are needed for few-shot tasks
in financial datasets with limited label availability,
and b) requires no GPUs and minimizes the need
for technical expertise, which is often lacking in
the banking industry. We also show that in-context
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learning can perform better than fine-tuned masked
language models (MLMs), even when presented
with fewer examples. However, such solutions may
be costly for small organizations due to subscrip-
tion fees and often have limited token capacity,
which only allows us to show the model 3 samples,
for example. Lastly, we report state-of-the-art re-
sults by fine-tuning pre-trained models both when
using the whole training dataset (Full-Data setting)
and in a few-shot setting where only 10 training
instances per class were used (10-shot setting) by
employing SetFit and selecting representative sam-
ples after hiring a human expert.

2 Related Work

2.1 Studies on Banking77

Previous research papers provide important in-
sights into improving the performance of finan-
cial intent classification models on the Banking77
dataset through the correction of label errors, the
pre-training of intent representations, and the use of
unattended tokens and example-driven training to
improve utterance classification models. Initially,
Casanueva et al. (2020) established a baseline accu-
racy of 93.66% by fine-tuning BERT (Devlin et al.,
2019) for the Full-Data setting, and an 85.19% for
the 10-shot setting by using a Universal Sentence
Encoder (Cer et al., 2018) and efficient Transformer
representations (Henderson et al., 2020).

Ying and Thomas (2022) aimed at reducing label
errors in the Banking77 dataset through a confident
learning framework (Northcutt et al., 2017, 2021)
and a cosine similarity approach. Their classifiers
achieved an 88.2% accuracy and 87.8% F1-Score
on the original dataset, increasing to 92.4% accu-
racy and 92.0% F1-Score on the refined dataset.

Li et al. (2022) demonstrated that pre-training
intent representations can improve intent classifi-
cation, achieving an 82.76% accuracy and 87.35%
Macro-F1 Score on the Banking77 benchmark. The
strategy involved prefix-tuning and only fine-tuning
the last layer of an LLM.

Lastly, Mehri and Eric (2021) proposed to en-
hance text classification models in dialog systems
using observer tokens and example-driven training.
The combination of these approaches resulted in an
85.95% accuracy in the 10-shot setting and 93.83%
in the Full-Data setting.

Banking77 Statistics Train Test

Number of examples 10,003 3,080

Minimum length in characters 13 13
Average length in characters 59.5 54.2
Maximum length in characters 433 368

Minimum word count 2 2
Average word count 11.9 10.9
Maximum word count 79 69

Table 2: Dataset statistics for the Banking77 dataset.
The dataset contains 10,003 examples for training and
3,080 examples for testing, with 77 different intents.
Text length statistics are also provided.

2.2 Few-Shot Text Classification
Learning from just a few training instances is cru-
cial when data collection is difficult. Interestingly,
the predominant training paradigm of fine-tuning
LMs exhibits poor performance in few-shot scenar-
ios (Dodge et al., 2020), while the growing size of
LMs often makes their use in this paradigm pro-
hibitive. An alternative is to use in-context learning
(Brown et al., 2020), where a generative LLM is
prompted with a context and is asked to solve NLP
tasks without any fine-tuning. The context typi-
cally contains a short description of the task, a few
demonstrations (the context), and the instance to
be classified. The intuition behind in-context learn-
ing is that the LLM has already learned several
tasks during its pre-training and the prompt tries
to locate the appropriate one (Reynolds and Mc-
Donell, 2021). Selecting the appropriate prompt is
not trivial, though; LLMs are unable to understand
the meaning of the prompt (Webson and Pavlick,
2022). This phenomenon was somewhat alleviated
by fine-tuning LLMs to follow human instructions
(Ouyang et al., 2022; OpenAI, 2023). Nonetheless,
in-context learning is still correlated with term fre-
quencies encountered during pre-training (Razeghi
et al., 2022), while instruct-based LLMs like GPT-
3.5 and GPT-4 carry the biases of the human an-
notators that provided the training instructions. To
further deal with the difficulties of in-context learn-
ing, prompt-tuning has emerged as a promising
research direction (Lester et al., 2021; Zhou et al.,
2021; Jia et al., 2022).

3 Task and Dataset

Intent detection is a special case of text classifi-
cation, and it has a crucial role in task-oriented
conversational systems in various domains. It re-
flects the complexity of real-world financial and
commercial systems which can be attributed to the
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partially overlapping intent categories, the need for
fine-grained decisions, and the usual lack of data
in finance (Casanueva et al., 2020; Loukas et al.,
2021, 2022; Zavitsanos et al., 2022).

However, publicly available intent detection
datasets are limited, and existing datasets oversim-
plify the task and do not reflect the complexity of
real-world industrial systems (Braun et al., 2017;
Coucke et al., 2018). Following the recent trends
towards building robust datasets for industry-ready
systems (Larson et al., 2019; Liu et al., 2019a,
2021), Banking77 (Casanueva et al., 2020) was
created by PolyAI2 as part of their study on a new
intent classifier using pre-trained dual sentence
encoders based on fixed Universal Sentence En-
coders (Cer et al., 2018) and ConveRT (Henderson
et al., 2020). In contrast to other multi-domain and
broad-intent datasets, which may not capture the
full complexity of each domain, Banking77 is a
single-domain dataset that contains a large num-
ber (77) of fine-grained intents related to banking.
Casanueva et al. believe that the dataset’s single-
domain focus and the large number of intents make
the intent detection task more realistic and chal-
lenging. However, some intent categories partially
overlap with others, requiring fine-grained deci-
sions that cannot rely solely on the semantics of
individual words, indicating the tasks’s difficulty.

The dataset comprises 13,083 annotated cus-
tomer service queries labeled with 77 intents and
is split into two subsets: train (10,003 examples)
and test (3,080 samples) (Table 2). The label distri-
bution is heavily imbalanced in the training subset
(Figure 1), demonstrating the challenge in develop-
ing classifiers in the Full-Data setting.

4 Methodology

4.1 In-Context Learning

For in-context learning, we use GPT-3.5 (Ouyang
et al., 2022) and GPT-4 (OpenAI, 2023), which are
based on the Generative Pre-trained Transformer
(GPT) (Radford et al., 2018, 2019) and further
trained with Reinforcement Learning from Human
Preferences (RLHF) (Christiano et al., 2017) to
follow instructions. GPT-3.5 is a 175B-parameter
model able to consume a context o 4,096 tokens,
while GPT-4 is a multi-modal model able to con-
sume 32,768 tokens.

2https://github.com/PolyAI-LDN/
task-specific-datasets

4.2 Fine-tuning MLMs

MPNet (Song et al., 2020) is a family of mod-
els based on the transformer architecture (Vaswani
et al., 2017; Devlin et al., 2019), which adopts
a novel pre-training objective that leverages the
dependency among predicted tokens through per-
muted language modeling and takes auxiliary po-
sition information as input. MPNet is pre-trained
on 160GB text corpora and outperforms other mod-
els like BERT (Devlin et al., 2019), XLNet (Yang
et al., 2019), and RoBERTa (Liu et al., 2019b) on
various downstream tasks. We use a variation of
MPNet, establishing it as a prominent method for
our task. We use two variants of MPNet, dubbed
S-MPNet-v23 and P-MPNet-v2.4 Both variants
were trained to identify similarities between pairs
of texts which we believe allows the model to learn
representations that encapsulate the more salient se-
mantic details of the texts. Also, P-MPNet-v2 was
trained with a more strict objective than S-MPNet-
v2, which required both texts in the pair to have the
exact same meaning.

4.3 Few-Shot Contrastive Learning

SetFit (Tunstall et al., 2022) is a few-shot learning
methodology that fine-tunes a pre-trained Sentence
Transformer (like S-MPNet-v2) on a small number
of text pairs with contrastive learning (Chen et al.,
2020). Tunstall et al. showed that using SetFit and
8 training examples has comparable performance
to training models on the complete dataset.

4.4 Human Expert Annotation

Casanueva et al. (2020) identified class overlaps
during the creation of Banking77. To address these
challenges, we curated a subset of Banking77 for
few-shot text classification with the help of a hu-
man expert who reviewed a sample of 10 examples
per class and selected the top 3 examples based on
their relevance to the intent they represent. This ap-
proach provided a light curation that helped avoid
overlaps and ensured that each example was highly
relevant to its intended intent. We expect these
training instances to lead to better performance
than randomly selecting training instances per class
in the few-shot setting.

3https://huggingface.co/
sentence-transformers/all-mpnet-base-v2

4https://huggingface.
co/sentence-transformers/
paraphrase-mpnet-base-v2
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5 Experimental Setup

Fine-tuning: For all of our methods, we use Ten-
sorFlow (Abadi et al., 2015) and HuggingFace
(Wolf et al., 2020). For the Few-shot Experiments,
we use SetFit following the developers’ recom-
mended practises.5

Prompt Engineering: We experimented with dif-
ferent prompt settings, as found in Appendix B.

In-context Learning: We utilize the OpenAI API
when employing GPT-3.5.6 Due to maximum to-
ken limitations, we use the 1-Shot setting for GPT-
3.5 and the 3-shot setting for GPT-4. The prompt
we use can be broken down into three parts. The
first contains the description of the task and the
available classes, the second provides a few exam-
ples, and the third presents the text to be classified.
The prompt can be found in the Appendix A.

Note that although models like GPT-3.5 or GPT-
4 can provide a quick solution without the need for
technical expertise, they come at a cost as they are
only accessed behind a paywall. Our experiments
cost around 60$ when using GPT-3.5 ($0.002 per
1K tokens) and 1,480$ when using GPT-4 ($0.03
per 1K tokens for the 8K context model).7

6 Results

To understand the model’s performance, we re-
port micro-F1 (µ-F1) and macro-F1 (m-F1). Ta-
ble 3 shows that S-MPNet-v2 achieves competi-
tive results across all few-shot settings using Set-
Fit. When trained on only 3 samples, it achieves
scores of 76.3 µ-F1 and 75.6 m-F1. As we increase
the number of samples, the performance improves,
reaching a 91.2 micro-F1 and 91.3 macro-F1 score
with 20 samples. This is only 3 percentage points
(pp) lower than fine-tuning the model with all the
data. Lastly, S-MPNet-v2 outperforms the previ-
ous state-of-the-art (Mehri and Eric, 2021), both in
the 10-shot setting (by 2.2 pp) and in the Full-Data
setting (by 0.2 pp). P-MPNet-v2 has a similar but
slightly worse behavior than S-MPNet-v2.

GPT-3.5 achieves competitive results despite
that it is presented with only 1 sample per class
(either representative or random). It outperforms
S-MPNet-v2 and P-MPNet-v2 by a large margin
(over 17 pp) in the 1-shot setting, while being com-
parable in the 3-shot setting. As expected, using our

5https://github.com/huggingface/setfit
6We use the gpt-3.5-turbo variant.
7https://openai.com/pricing

Methods Setting µ-F1 m-F1

Mehri and Eric (2021) Full-Data 93.8 NA
Mehri and Eric (2021) 10-shot 85.8 NA
Ying and Thomas (2022) Full-Data NA 92.0

S-MPNet-v2 (ours) Full-Data 94.0 93.9
P-MPNet-v2 (ours) Full-Data 93.0 93.0

S-MPNet-v2 1-shot 57.4 55.9
P-MPNet-v2 1-shot 50.6 48.7
GPT-3.5 (representative samples) 1-shot 75.2 74.3
GPT-3.5 (random samples) 1-shot 74.0 72.3

S-MPNet-v2 3-shot 76.3 75.6
P-MPNet-v2 3-shot 71.4 70.9
GPT-4 (representative samples) 3-shot 83.1 82.7
GPT-4 (random samples) 3-shot 74.2 73.7

S-MPNet-v2 5-shot 83.5 83.3
S-MPNet-v2 10-shot 88.0 87.9
S-MPNet-v2 15-shot 90.6 90.5
S-MPNet-v2 20-shot 91.2 91.3

P-MPNet-v2 5-shot 79.2 79.1
P-MPNet-v2 10-shot 85.7 85.8
P-MPNet-v2 15-shot 88.4 88.4
P-MPNet-v2 20-shot 90.1 90.0

Table 3: Classification results for all models on the test
data, with N-Shot indicating the number of samples
used during training. All MPNet variants are fine-tuned
without the SetFit method on the Full-Data setting.

human-curated representative samples leads to bet-
ter in-context learning results. GPT-4 also shows
potential for few-shot classification, outperforming
all other models on the 3-shot setting by more than
6 pp. Similarly to GPT-3.5, its performance drops
substantially (approximately 9 pp) when trained on
random samples as opposed to when trained on the
human-curated representative ones.

7 Conclusion

We presented a few-shot text classification study
on the financial domain. Experimenting with Bank-
ing77, a financial intent classification dataset, we
showed that in-context learning with conversational
LLMs can be a straightforward solution when one
needs fast and accurate results in few-shot settings.
In addition, we demonstrated that generative LLMs,
like GPT-3.5 and GPT-4, can perform better than
MLM models, even with fewer examples. While
LLMs minimize the technical expertise needed or
omit GPU training times, they can be considered
costly for small organizations, given that LLMs can
be only accessed behind a paywall (approximately
1,600$ for GPT-3.5 and GPT-4). On the other side,
by fine-tuning S-MPNet-v2 with SetFit, we sur-
passed the previous state-of-the-art in the 10-shot
setting by 2 pp. The same model also achieved
state-of-the-art results in the Full-Data setting with
standard fine-tuning.
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A In-context Learning Prompt
You are an expert assistant in the field of customer service. Your
task is to help workers in the customer service department of
a company. Your task is to classify the customer’s question in
order to help the customer service worker to answer the question.
In order to help the worker, you MUST respond with the number
and the name of one of the following classes you know. If you
cannot answer the question, respond: "-1 Unknown". In case
you reply with something else, you will be penalized.

The classes are:
0 activate_my_card
1 age_limit
.. ..
75 wrong_amount_of_cash_received
76 wrong_exchange_rate_for_cash_withdrawal

Here are some examples of questions and their classes:
How do I top-up while traveling? automatic_top_up
How do I set up auto top-up? automatic_top_up
... ...
It declined my transfer. declined_transfer

How do I locate my card?

B Prompt Engineering

We experiment with two different prompt settings
using GPT-4 in a 3-shot setting on a held-out vali-
dation subset.8 In the first setting, we present the
few-shot examples as the previous chat history. In
the second setting, the few-shot examples are pre-
sented as a message from the system, which is

8We used 5% of the training data.

one of the roles in the conversational setting of
OpenAI. The second setting yielded the best re-
sults (Table 4), and we proceed to use it for the
rest of our experiments. As seen in Table 4, by
presenting the few-shot examples to the OpenAI
API via previous chat history, we score a 77.5 µ-F1

and a 74.4 m-F1 score. However, presenting the
examples as a system message hyperparameter
to the API, which sets the assistant behavior, we
achieve an improved µ-F1 of 77.7 and a m-F1 of
77.0.

Thus, we present the few-shot examples as
system in the OpenAI later in our prompt-tuning
methods (GPT-3.5 and GPT-4).

Few shot examples given as µ-F1 m-F1

Previous chat history 75.5 74.4
System context 77.7 77.0

Table 4: Validation Micro-F1 and Macro-F1 scores for
our two prompt settings with GPT-4 in the 3-Shot sce-
nario.

C Class Distribution

Figure 1: Class distribution of the 77 intents used over
the training subset. Intent indices are shown instead of
tag names for brevity.
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Abstract
Despite the tremendous advances achieved over
the past years by deep learning techniques, the
latest risk prediction models for industrial ap-
plications still rely on highly hand-tuned stage-
wised statistical learning tools, such as gradient
boosting and random forest methods. Different
from images or languages, real-world financial
data are high-dimensional, sparse, noisy and
extremely imbalanced, which makes deep neu-
ral network models particularly challenging to
train and fragile in practice. In this work, we
propose DeRisk, an effective deep learning risk
prediction framework for credit risk prediction
on real-world financial data. DeRisk is the first
deep risk prediction model that outperforms
statistical learning approaches deployed in our
company’s production system. We also per-
form extensive ablation studies on our method
to present the most critical factors for the em-
pirical success of DeRisk.

1 Introduction

Credit risk is the risk of loan default or loan delin-
quency when a borrower fails to repay on time.
Credit risk prediction is an analytical problem that
is vital for financial institutions when they are for-
mulating lending strategies for loan applications.
It helps make lending decisions by assessing the
solvency of the applicants from their credit infor-
mation. Accurate prediction keeps bad debts at a
low level, which directly saves substantial financial
loss for the multi-billion dollar credit loan industry
(Malekipirbazari and Aksakalli, 2015; Tan et al.,
2018). As credit risk is one major threat to financial
institutions (Buehler et al., 2008; Li et al., 2015; Ma
et al., 2018; Tan et al., 2018), better credit risk pre-
diction also improves the risk management capacity
of banks and financial technology companies.

Although credit scores, such as FICO Score,
have been widely used as mainstream risk indi-
cators by many financial institutions, data-driven

∗Both authors contributed equally to this research.

methods have recently shown their great poten-
tial and superior practical performances (Xu et al.,
2021). Deep learning (DL), the dominating model-
ing technique in various domains such as computer
vision, natural language processing, and recommen-
dation system, has been a promising and increas-
ingly popular tool considered to tackle financial
problems. Recent attempts include market predic-
tion (Ding et al., 2015; Minh et al., 2018), stock
trading (Sezer et al., 2017) and exchange rate pre-
diction (Shen et al., 2015). Despite the recent trend
of using deep models, non-DL methods, such as
XGBoost and logistic regression, remain the most
effective techniques so far for credit risk predic-
tion in the financial industry. Many existing studies
have shown that neural network models lead to
similar or even worse performances than non-DL
methods (Fu, 2017; Kvamme et al., 2018; Varmedja
et al., 2019; Li et al., 2020; Moscato et al., 2021).

Credit risk prediction can be formulated as a
binary classification problem, where the goal is to
learn a function fθ : X → [0, 1] to map the credit
information x ∈ X of an applicant to a risk score
y ∈ [0, 1] that represents the probability of default.

Despite such a simple problem formulation,
credit risk prediction can be particularly challeng-
ing. Existing deep-learning-based solutions mainly
focus on e-commerce consumer data (Liang et al.,
2021), which typically include dense features and
highly frequent user activities, such as clicks and
payments, on e-commerce platforms. However,
these fine-grained data are not commonly available
to financial institutions. Specifically, in our appli-
cation, we adopt the official credit reports provided
by the Credit Reference Center (CRC) of the Peo-
ple’s Bank of China. These financial data are of
much lower quality, i.e., containing much higher di-
mensions (over 4k) with a large portion of missing
entries and extreme values, due to low-frequency
credit records. End-to-end training neural networks
on these data can be substantially more challeng-

81
Proceedings of the Joint Workshop of the 5th Financial Technology and Natural Language Processing (FinNLP) and 

2nd Multimodal AI For Financial Forecasting (Muffin), Macao, August 20, 2023. 



...

Credit Report

Time Line

time 1 time 2 time L...

...

Sequential Features

...
...

... ...

...

Non-sequential Features

MLM  
Pre-training

Training with  
Oversampling

Transformer Encoder

DNN

Training with  
Weighted Loss

...

...

Concatenate

Linear  
Head

0.72

Final Score

Stage I: Data Pre-processing Stage II: Separate Training Stage III: Joint Fine-tuning

 f
√

×

×
...

f = 0?
×

×

√
...

f = NAN?

+ +

Feature Selection

Score

0.68

Score

𝓛↓Linear  
Head

0.75 𝓛↓Linear  
Head

𝓛↓

Figure 1: The three-stage pipeline of our DeRisk framework. First, in data pre-processing, feature selection and
DL-specific data argumentation are adopted to benefit the optimization of DL models. Then we separately train two
models for non-sequential data and sequential data, respectively. Finally, we combine them and fine-tune the joint
model on the whole multi-format data. In contrast to the end-to-end paradigm in conventional DL applications, we
remark the multi-stage process is critical to the overall success of DeRisk on real-world financial data.

ing and brittle (Poole et al., 2016; Borisov et al.,
2021). Therefore, to the best of our knowledge,
most financial institutions (e.g., banks) still adopt
non-DL-based methods.

In this work, we present a successful industrial
case study by developing an effective deep learning
framework, DeRisk, which outperforms our pro-
duction decision-tree-based system, on real-world
financial data. Our DeRisk framework consists of
three major stages including data pre-processing,
separate training of non-sequential and sequential
models, and joint fine-tuning. We also design a
collection of practical techniques to stabilize deep
neural network training under the aforementioned
challenges. Specifically for the low-quality real-
world financial data, we observe that a multi-stage
process with feature selection and DL-specific en-
gineering processing can be critical to the overall
success of our framework.

Main contributions. (1) We develop a com-
prehensive workflow that considers all the model
training aspects for risk prediction. (2) We imple-
ment DeRisk, the first deep risk prediction model
that outperforms statistical learning approaches
on real-world financial data. (3) We conduct ex-
tensive ablation studies on the effect of different
technical components of DeRisk, which provides
useful insights and practical suggestions for the
research community and relevant practitioners.

2 Related Work

There have been extensive studies using machine
learning techniques for credit risk prediction, in-

cluding linear regression (Puro et al., 2010; Guo
et al., 2016), SVM (Jadhav et al., 2018; Kim and
Cho, 2019), decision tree based methods like Ran-
dom Forest (RF) (Malekipirbazari and Aksakalli,
2015; Varmedja et al., 2019; Xu et al., 2021) or
Gradient Boost Decision Tree (GBDT) (Xia et al.,
2017a; He et al., 2018), deep learning (Byanjankar
et al., 2015; Kvamme et al., 2018; Yang et al., 2018;
Yotsawat et al., 2021), or an ensemble of them
(Fu, 2017; Li et al., 2020). Most of these works
use data with non-sequential features. Although
deep learning is applied, empirical results find that
XGBoost or other GBDT approaches usually out-
performs deep learning (Fu, 2017; Kvamme et al.,
2018; Varmedja et al., 2019; Xu et al., 2021).

On the other hand, deep learning has shown its
superiority beyond tabular data through the flexi-
bility of deep neural networks. Convolutional Neu-
ral Network (CNN) (Kvamme et al., 2018), Long
Short-Term Memory (LSTM) (Yang et al., 2018)
and Graph Neural Network (GNN) (Wang et al.,
2021a) are adopted for sequential data or graph data
since other machine learning techniques like GBDT
fail to properly model non-tabular data. According
to (Liang et al., 2021), deep learning outperforms
conventional methods on multimodal e-commerce
data for credit risk prediction.

Many data challenges in financial applications
are also common in other machine learning fields.
(1) For high-dimensional data, many feature selec-
tion methods have been proposed, including filter
methods (Gu et al., 2011), wrapper methods (Ya-
mada et al., 2014) and embedded methods (Feng
and Simon, 2017). Many risk prediction works

82



have adopted feature selection for better perfor-
mance (Xia et al., 2017a; Ha et al., 2019; Li et al.,
2020) or interpretability (Ma et al., 2018; Xu et al.,
2021). (2) Handling multiple data formats and fea-
ture types is related to the field of deep learning for
tabular data (Gorishniy et al., 2021; Borisov et al.,
2021). There are typical three popular deep neural
network architectures for tabular data (Klambauer
et al., 2017; Huang et al., 2020; Arık and Pfister,
2021), including Multi-Layer Perception (MLP),
Residual Network (ResNet) (He et al., 2016) and
Transformer (Vaswani et al., 2017). Similar to the
financial domain, it is also reported that deep mod-
els are not universally superior to GBDT models
(Gorishniy et al., 2021) on tabular data. (3) For
the out-of-time distribution shift issue, it is com-
mon to split training and test data according to
the temporal order (Kvamme et al., 2018; Jiang
et al., 2021). (4) Furthermore, data imbalance is
also a long-standing problem in machine learning
research. Among the popular over-sampling and
under-sampling strategies (He et al., 2018; Bastani
et al., 2019; Mahbobi et al., 2021), Synthetic Minor-
ity Over-sampling Technique (SMOTE) (Chawla
et al., 2002) is a widespread technique for synthetic
minority data, which is also reported be effective
for credit risk prediction (Bastani et al., 2019). Gen-
erative adversarial networks can also be used to
generate additional minority data (Mariani et al.,
2018) and this method can be applied to financial
data (Liu et al., 2020) for risk prediction. However,
these methods are limited to non-sequential data
generation, while our financial data has multiple
formats. Class-balanced loss is another method to
make the model attend more to the minority sam-
ples (Lin et al., 2017; Xia et al., 2017b; Cui et al.,
2019; Ren et al., 2022). Comparative experiments
(Kaur et al., 2019; Moscato et al., 2021) show that
all strategies have their pros and cons. In our work,
we use a class-balanced loss to mitigate the prob-
lem of data imbalance, and different strategies are
used for non-sequential data and sequential data
thanks to their great difference in data dimension.

3 Preliminary

In this section, we first present the problem
statement for the credit risk prediction task, and
then introduce the credit information and labels
used in the task.

3.1 Task Formulation
The credit risk prediction task aims to decide
whether a loan can be granted to the applicant
according to his/her credit information. To be
more specific, the risk prediction model needs to
learn a function fθ : X → [0, 1], which takes the
credit information x ∈ X of an applicant as input
and produces a risk score y ∈ [0, 1] that represents
the probability of delinquent on the applicant’s
payments.

3.2 Multi-format Credit Information.
In this work, we adopt the credit information in
the credit report data that is generally available
in financial institutions. The credit report data of
an applicant consists of two parts: non-sequential
features and sequential features. Specifically, the
non-sequential part usually contains thousands
of stable profiles of the applicant, including age,
marital status, industry, property status, etc. We re-
mark that the non-sequential data of a credit report
can be extremely high-dimensional and sparse,
which requires further processing to successfully
train deep neural network models. The sequential
part contains dozens of features and consists of
three components of the applicant’s financial
behavior organized by time: (1) applicant’s past
loan information (loan), including the date of loan
issuing, type of lending institution, loan amount,
etc.; (2) the records that applicant’s credit report
was inquired in the past (inquiry), including
inquiry time, inquiry institutions, inquiry reasons,
etc.; (3) applicant’s credit card information (card),
including card application date, credit card type,
currency, etc. Note that the number of sequential
features is much smaller than non-sequential
features.

3.3 Multiple Labels and Imbalanced Data
Loan repayments naturally generate multiple labels
because of installment (e.g., the first or the second
month to pay back) and different degrees of delin-
quency (e.g., one-week or one-month delay). These
labels are roughly categorized into short-term la-
bels (e.g., the first/second/third installment is more
than 30 days overdue) and long-term labels (e.g.,
any installment in recent 12 months is more than
5/15/30 days overdue). Due to the general priority
of short-term benefits and the convenience of subse-
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quent collection, financial institutions typically use
short-term labels for evaluation. However, directly
using this short-term evaluation label as the train-
ing label can be suboptimal. The choice of train-
ing label needs careful consideration for the best
practice. Note that all these labels are particularly
imbalanced (10% or even 1% for minority sam-
ples) because applicants who pay on time are much
more than applicants who are overdue. Therefore,
different choices of labels may lead to drastically
different model performances in practice, as shown
in our ablation study in Section 7.2.

4 Methodology

4.1 Overall Pipeline
The overall pipeline of our DeRisk framework is
shown in Figure 1. Firstly, we apply careful data
processing to turn noisy and irregular input fea-
tures into a neatly structured format, which is in-
dispensable for training deep networks. Secondly,
to well utilize both sequential and non-sequential
features, we design two main sub-models: a DNN
model for processing non-sequential features and
a Transformer-based model MS for processing se-
quential features. We train them separately in the
second stage. In the last stage, we fuse MNS and
MS by concatenating the final hidden layers from
both models and applying another linear head to
give the final prediction score. We jointly fine-tune
this whole model to get improved performance.

4.2 Selection of Training Label
As we mentioned in Sec. 3, there are multiple
labels in risk prediction tasks that record an appli-
cant’s repayment behavior in different time periods.
Among these labels, we choose a long-term label to
train our model for two reasons. First, long-term la-
bels are more balanced than short-term labels. Sec-
ond, the data distribution (e.g., the ratio of negative
and positive data) varies over time (see Appendix
A.3) because of economic changes and the con-
tinual improvement of our deployed model. The
long-term label is less sensitive to these influences
and is more stable because it summarizes an appli-
cant’s behavior in the last 12 months, conceptually
performing a smoothing operator over the timeline.
We believe this will make our model more gener-
alizable and perform better on the out-of-time test
set, though predicting long-term risk is inherently
more difficult.

4.3 Data Pre-Processing
The credit report data, especially the non-sequential
data, is extremely complex and noisy, as it con-
tains many missing values and outlier values. This
low-quality input can make the learning process un-
stable and hurts the final performance. Therefore,
proper data pre-preprocessing can be significantly
beneficial for the optimization of DL models.

Both sequential and non-sequential features can
be divided into three types: time features (i.e., fea-
tures about time such as credit card issue date),
real-value features (e.g., age, loan amount), and
category features (e.g., industry, type of lending
institution). For the time features, we always use a
relative date difference to avoid the models mem-
orizing input data according to the date. We also
apply normalization for the numerical time features
and real-value features, and discard minor classes
in the category features.

In addition, we adopt specific techniques for
non-sequential features. We found that lots of
non-sequential real-value features are useless noise
and even harmful for training. Hence we adopt
a commonly-used feature selection technique that
utilizes XGBoost (Chen et al., 2015) to select the
most important 500 features among thousands of
non-sequential real-value features and discard the
others. Besides, most non-sequential features have
many 0s and missing values (NAN) that naturally
arise from the financial behaviors and data collec-
tion processes, which makes non-sequential data
sparse, noisy, and problematic for DL training.
These 0s and NANs are not necessarily meaning-
less, e.g., a NAN in “The time of first application
for a mortgage" may imply that this applicant has
never applied for a mortgage. Besides, if we simply
fill these entries with a constant c, it will influence
those true entries close to c and significantly in-
fluence the learned model. So, we treat these 0s
and NANs carefully. For every category feature,
we add a category ⟨NAN⟩, and for every real-value
and time feature, besides replacing all NANs with
0s, we also create two indicators that directly tell
whether a value is 0 and is NAN. With explicit indi-
cators, DL models can therefore directly utilize the
information implied by meaningful 0s and NANs
and learn to ignore those 0s and NANs that are
harmful to training.
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Figure 2: Non-sequential DNN model.

Time Feature Real-value Feature Category Feature

Category Embedding

Concat

Number Embedding

Feature Attention

ReLU MLP

Number Embedding

ReLU

Add

Transformer Encoder

Seq Attention

Linear

Sigmoid

Time Net
ReLU MLP

Figure 3: Sequential Transformer-based model.

4.4 Modeling Non-sequential Features
We adopt a simple but effective neural network
for non-sequential features. The architecture is
shown in Figure 2. Firstly it uses an embed-
ding layer to convert category features into dense
vectors and concatenate them with time and real-
value features to the dense input xNS

dense ∈ Rm1 .
Then xNS

dense is fed into a MLP (multi-layer percep-
tron) with ReLU activation function to get the non-
sequential output hidden state xNS

final ∈ Rm2 . And
the final prediction ŷNS is computed as: ŷNS =
σ((wNS

logit)
TxNS

final + bNS
logit), where wNS

logit ∈ Rm2 and
bNS

logit are the weight vector and bias for the logit,
respectively, zNS = (wNS

logit)
TxNS

final + bNS
logit is the

logit, and σ(x) = 1/(1 + exp(−x)) is sigmoid
activation.

4.5 Modeling Sequential Features
4.5.1 Architecture
We adopt a Transformer (Vaswani et al., 2017)-
based model for its strong modeling capacity. The
architecture is shown in Figure 3. Three such mod-
els, Mcard, Minquiry, and Mloan, are used for card,
inquiry, and loan features, respectively. Suppose
the sequence length is l and the embedding size is
e. Firstly a time net will convert the time feature
into time embedding Et ∈ Rl×e, which plays a
role of position embedding, and attention is used to
merge different feature embeddings into one, i.e.,
Ef ∈ Rl×e. Then a Transformer encoder will en-
code the sequential embeddings E = Et+Ef into

hidden feature xh ∈ Rl×e, which will be pooled
by another attention into output feature x*

final ∈ Re,
where ∗ refer to card, inquiry or loan. We concate-
nate xcard

final, x
inquiry
final , and xloan

final to obtain xS
final ∈ R3e.

At last, similar to non-sequential case, we have
logit zS = (wS

logit)
TxS

final + bS
logit and final pred-

ication ŷS = σ(zS). To improve the generaliza-
tion ability of the sequential model, we share the
time net and Transformer encoder among Mcard,
Minquiry, and Mloan.

4.5.2 Mask Language Model Pre-training
During training, we found that optimization of
the sequential model is much harder than the non-
sequential model (the left part of Figure 4) due to
the scarcity of sequential features compared with
non-sequential features. To ease the training of the
sequential model, we adopt mask language model
(MLM) pre-training as BERT (Devlin et al., 2019)
to make the model first learn informative and gen-
eral features from sequential data. We randomly
mask the input sequential features, where 80% of
masked value are replaced with token ⟨MASK⟩ (for
category features) or 0 (for time and real-value fea-
tures), 10% are replaced with a random value, and
10% remain unchanged. The three output hidden
features of Transformer encoder, i.e., xcard

h , xinquiry
h ,

and xloan
h , will be input into different classification

heads to predict different type of origin value at the
masked position. After pre-training, we fine-tune
MNS on the downstream classification task.

4.6 Weighted BCE Loss
We also adopt weighted BCE loss to deal with data
imbalance. Firstly, BCE (binary cross entropy) loss
function is commonly used in binary classification
tasks:

BCE = − 1

n

n∑
i=1

[yi log(ŷi)+ (1− yi) log(1− ŷi)].

However, when negative samples are much more
than positive samples, naive BCE loss will induce
the model to output ŷi = 0. To avoid this, we
can give more weight to positive samples by using
weighted BCE loss:

WBCE = − 1

|D−|
∑
i∈D−

log(1−ŷi)−
1

|D+|
∑
i∈D+

log(ŷi),

where D+ = {i : yi = 1} is the set of positive
samples and D− = {i : yi = 0} is the set of
negative samples. Another implementation of the

85



0.6

0.602

0.604

0.606

0.608

0.61

0.612

0.614

0.616

1 2 3 4 5 6 7 8 9 10

V
a

li
d

 A
U

C

Epoch

ours

ours - MLM

ours - oversampling

0.6

0.605

0.61

0.615

0.62

0.625

0.63

0.635

0.64

0.645

1 3 5 7 9 11 13 15 17 19 21 23 25

V
a

li
d

 A
U

C

Epoch

non-seq model seq model

Figure 4: Left: valid AUC of non-sequential and sequential models with training epoch. Right: change of valid
AUC of the sequential model with and without MLM pre-training or oversampling.

above-mentioned weighted loss is oversampling,
i.e., adjusting the ratio |D−| : |D+| to 1 : 1 by
re-sampling positive samples.

We use oversampling on the sequential model
and use normal weighted BCE loss on the non-
sequential model and joint fine-tuning stage. This
is because the optimization of the non-sequential
model is much harder and slower than that of the
non-sequential model due to the small number of
non-sequential features, while oversampling en-
ables the model to see rare samples multiple times
in one epoch and thus accelerates optimization.
On the other hand, the number of non-sequential
features is large and the optimization of the non-
sequential model is already fast enough, oversam-
pling may lead to overfitting on the minority sam-
ples instead.

4.7 Separate Training & Joint Fine-tuning
To fuse the sequential and non-sequential fea-
tures, we use a concatenation layer (Concat Net)
on the top of them to concatenate their output
hidden states and to predict the final score, i.e.,
ŷ = σ((wlogit)

Txfinal + blogit), where xNS
final =

[xNS
final, x

S
final]. Note that the hardness of optimiza-

tion non-sequential and sequential models is dif-
ferent, so if we train them with the concatenation
layer together from scratch, the overall model will
totally rely on the non-sequential outputs, which
are easier to train on, while ignoring the output of
the sequential model. To avoid this and to utilize
the sequential features better, we adopt a two-stage
training strategy: separately train sequential and
non-sequential models first and then jointly fine-
tune them with the Concat Net.

Data Time Real-value Category
card 1 2 5
inquiry 1 0 2
loan 1 4 5
non-sequential 13 4098 9

Table 1: Number of time, real-value, and category fea-
tures in each sample of sequential and non-sequential
data. The card, inquiry, and loan sequences for each
user are clipped with lengths 32, 64, and 128, respec-
tively.

5 Experiment Setup

5.1 Notation
We mainly use a long-term label Ylong for train-
ing and a short-term label Yeval

short for evaluation.
Yother1

short ,Yother2
short ,Yother3

short , There are also three other
short-term labels used in our experiments. The
description of these labels are in Sec A.2.

5.2 Dataset Statistics
We sample 582,996 Yanqianguan Users and use
their credit report data and repayment behavior
from August 2020 to July 2021 as the dataset. To
simulate the out-of-time prediction in real business
scenarios, we take the 430,865 data pieces from
August 2020 to May 2021 as the training set and
152,131 data pieces from June 2021 to July 2021
as the test set. The ratio of negative and positive
samples is about 50 : 1 according to the short-
term label used for evaluation and is about 10 : 1
according to the long-term label used for training.1

For sequential data, we set the maximum sequence
length of card, query, and loan data to be 32, 64,
and 128, respectively, according to the distribution

1We keep the exact ratio numbers confidential due to com-
mercial and security concerns.
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Model Yeval
short Yother2

short Yother3
short

non-seq model over non-seq data only
XGBoost 0.6418 0.6282 0.6187
DeepFM 0.5700 0.5508 0.5478
SDCN 0.6450 0.6319 0.6236
PDCN 0.6483 0.6343 0.6254
AutoInt 0.6454 0.6325 0.6238
DNN 0.6499 0.6349 0.6254
seq model over sqe data only
Pooled MLP 0.5996 0.5821 0.5749
LSTM 0.6108 0.5936 0.5859
Transformer 0.6132 0.5941 0.5871
Transformer+MLM 0.6156 0.5971 0.5885
joint model over the entire data
Add-Attn Net 0.6504 0.6369 0.6285
Mul-Attn Net 0.6520 0.6377 0.6278
DeRisk(ours) 0.6546 0.6398 0.6297

Table 2: All models are evaluated by AUC scores on
three different short-term labels.

of data length. Only the latest data will be included
for training and evaluation. Some statistics are
summarized in Table 1.

Note that all above data are definitely authorized
by the customers since they hope to apply for loan
in our platform and they should provide the access
to their credit report. We also anonymized the
names of people and organizations on credit reports
to protect customers’ privacy.

5.3 Evaluation Metric
The metric commonly used to evaluate credit risk
prediction models M is AUC (Area Under the
ROC Curve) score. We remark that this is a chal-
lenging task and an increment of 0.01 in AUC can
be significant in performance as this results in a
roughly 5% decrement of real-world bad debts.

6 Main Results

6.1 Baselines
For non-sequential model, the baselines include
(1) current popular traditional ML model XG-
Boost (Chen et al., 2015) (main baseline) and sev-
eral more complicated deep models including (2)
DeepFM (Guo et al., 2017): the final score is
yNS = σ(zNS

DNN + zNS
FM), where zNS

DNN is the logit
of DNN and zNS

FM is the logit gotten by a FM
(factorization machine (Rendle, 2010)) layer. (3)
DCNv2 (Wang et al., 2021b): use cross-network

(multiple cross layers) to obtain high-order cross
feature. A DNN can be stacked on top of the cross-
network (SDCN); we could also place them in par-
allel (PDCN). (4) AutoInt (Song et al., 2019): use
a multi-head self-attention to learn interacted fea-
tures.

For the sequential model, our baselines are
pooled MLP (which uses a pooling layer to aver-
age hidden states of different times that are individ-
ually produced by the MLP) and LSTM (Hochre-
iter and Schmidhuber, 1997).

For the final module that fuses the output of the
hidden state by the non-sequential model and se-
quential model, we compare our simple Concat Net
with an additive attention layer (Add-Attn Net)
and a multiplicative attention layer (Mul-Attn Net)
that use xNS

final as a query vector to pool output hid-
den feature of Transformer Encoder xh by additive
and multiplicative attention, respectively.

6.2 Evaluation and Analysis
Since our dataset has multiple formats, we first
test separated models for single-format data mod-
eling. For non-sequential data, we compare the
DNN module in DeRisk with XGboost, a widely-
used decision-tree model in our production system.
We aim to show whether our DeRisk system and
techniques can make its DNN module outperform
other non-DL methods on real-world financial data.
Other popular models in recommendation systems
like DeepFM, DCN, and AutoInt are also tested as
DL competitors. For sequential data, we consider
different sequential models including Pooled MLP,
LSTM, and Transformer for evaluation. Our De-
Risk adopts Transformer and additionally adopts
MLM-pretraining to accelerate training.

Finally, we consider joint models trained over
the entire dataset with both formats by fusing the
best non-sequential model, DNN, and the best se-
quential model MLM-pretrained Transfomer, to
obtain joint models for the best evaluation results.
With more data, the joint models outperform ei-
ther separated models, but we also find different
fusing techniques lead to different performances.
We compare our Concat Net with two different
attention-based methods.

Table 2 summarizes the main results. All mod-
els are evaluated by three different labels to show
consistent results. From the results we can see that:

(1) Our non-sequential model DNN and sequen-
tial model
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Change AUC
No (ours) 0.6546
w/o Separate Training (end-to-end) 0.6487
w/ Freeze Sub-models 0.6512

Table 3: Yeval
short AUC scores with different training strate-

gies.

MLM+Transformer outperform all baselines,
respectively. Specifically, compared with cur-
rent popular XGBoost model, our DNN model
MNS and best joint model DeRisk (with Con-
cat Net) improve Yeval

short AUC score by 0.0081
and 0.0128, respectively.

(2) Joint fine-tuning of non-sequential and se-
quential models can achieve better results than
only using a single non-sequential or sequen-
tial model.

(3) Complex models do not necessarily perform
better: simplest DNN and Concat Net outper-
form other more complicated models. This
indicates that the high-order features created
by those additional networks such as FM and
cross layers are not that helpful for the credit
risk prediction task.

7 Ablation Study

In this section, we conduct a series of experiments
to demonstrate the effect of each part of our De-
Risk framework. We mainly use Yeval

short for eval-
uation since we find it shows a consistent result
with other short-term labels as in Table 2. We test
the effectiveness of different modules in our multi-
stage process, including separate training & joint
fine-tuning, feature selection, indicator features,
and MLM-pretraining. Many different techniques
for data imbalance are also studied in this section.
With our ablation studies, we also present best prac-
tices for training deep neural network models over
real-world financial data.

7.1 Effect of Multi-stage Training
Because the hardness of optimization on non-
sequential data and sequential data is different as
shown in Figure 4, we first separately train MNS
and MS and then joint fine-tune them. We also
tried joint training them from scratch (end-to-end),
or freezing MNS and MS and only tuning the con-
catenating layer during joint fine-tuning. The re-
sults are reported in Table 3. We can see that sep-

Training Label Test Label AUC
non-seq model
Ylong (Ours) Yeval

short 0.6499

Yother1
short Yeval

short 0.6392

Yeval
short Yeval

short 0.6363

seq model
Ylong (Ours) Yeval

short 0.6156

Yother1
short Yeval

short 0.6113

Yeval
short Yeval

short 0.6105

Table 4: Experiment results of selecting different train-
ing labels on non-sequential and sequential models.

Change AUC
No (Ours) 0.6499
|FR| = 4098 0.6415
|FR| = 100 0.6390
w/o Indicator 0.6426
w/ BCE Loss 0.6454
w/ Focal Loss 0.6403
w/ Oversample 0.6458

Table 5: Analysis experiment results on non-sequential
DNN model, where |FR| is the number of selected fea-
tures.

arate training outperforms the other two training
strategies.
Suggestion#1: It is beneficial to first perform
separate training and then joint tuning for multi-
format data. The additional tunable parameters
introduced in the fine-tuning process should be
sufficiently large for effective multi-format fu-
sion.

7.2 Effect of Different Training Labels
We tried taking two short-term labels (Yother1

short and
Yeval

short) and a long-term label (Ylong) as the training
label, respectively. The results in Table 4 demon-
strate that the long-term label is the best choice for
both non-sequential and sequential models, even
when the model is evaluated on a short-term label.
Suggestion#2: It is better to choose a balanced
and stable signal that measures the long-term
behaviors as the training label.

7.3 Effect of Real-value Feature Selection
To show the effect of selecting real-value features
with XGBoost, we compare the following three
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Change AUC
No (Ours) 0.6156
w/o MLM Pre-training 0.6132
w/o Oversampling 0.6153

Table 6: Analysis experiment results on sequential
Transformer-based model.

cases: no selection, selecting 500 real-value fea-
tures (Ours), and selecting 100 real-value features.
The results in Table 5 show that selecting 500 fea-
tures performs the best. This indicates that (1) by
selecting real-value features with XGBoost, we can
drop useful fewer features and improve the perfor-
mance. (2) dropping too many features would lead
to worse predictions.
Suggestion#3: It is important to perform feature
selection before deep learning training. The di-
mension of selected features should be chosen
carefully.

7.4 Effect of Indicator Features
To show the effect of NAN and zero indicators,
we compare the case with and without them. As
shown in Table 5, after removing indicators, the
AUC score decreases by 0.0073.
Suggestion#4: Some NANs and 0s can be mean-
ingful and it is better to use indicator features
rather than simply filling these missing values
with a constant or discarding them.

7.5 Comparison of Different Loss Functions
We compared the performance of using weighted
BCE loss (Ours) with using naive BCE loss on
the DNN model. In addition, we also tried Fo-
cal loss (Lin et al., 2017) which is designed for the
data imbalance case, but the result in Table 5 shows
that it is not helpful for our task and weight BCE
achieves the best performance.
Suggestion#5: Adding more weight to rare posi-
tive samples is critical to prevent the model from
biasing to the overwhelming negative outputs.

7.6 Effect of Oversampling
We compared the cases with and without oversam-
pling on both the non-sequential model and sequen-
tial model to demonstrate the effect of oversam-
pling. We can see from Table 6 and the right of
Figure 4 that for sequential model, oversampling
(1) improves AUC. (2) accelerates optimization.
By enabling the model to see rare positive sam-

ples more times in each epoch, oversampling re-
duces the training difficulty of the sequential model.
On the other hand, oversampling also makes the
non-sequential model, the one easier to optimize,
overfits more quickly on the training data and thus
cannot achieve good performance as shown in Ta-
ble 5. In practice, DNN with oversampling usually
overfits after the first epoch.
Suggestion#6: Oversampling makes optimiza-
tion of the sequential model easier and improves
performance. And considering the difference be-
tween non-sequential data and sequential data,
each separated model should be optimized with
different sampling strategies.

7.7 Effect of MLM Pre-training of Sequential
Model

From Table 6 and the right of Figure 4 that MLM
pre-training of the sequential model (1) improves
performance. (2) accelerates optimization. This
indicates that the pre-trained model has learned
some knowledge of sequential data that are useful
for the risk prediction task.
Suggestion#7: MLM pre-training benefits the
optimization of the sequential model on credit
risk prediction.

8 Conclusion

In this work, we proposed an effective deep learn-
ing framework, DeRisk, which utilizes both se-
quential and non-sequential features for credit risk
prediction. We apply careful data pre-processing
to obtain clean and useful data for deep models,
use MLM to pre-train the sequential model, adopt
weighted BCE loss and oversampling to deal with
the data imbalance problem, and select general-
izable and stable training labels for better perfor-
mance. The overall performance of DeRisk largely
outperforms existing approaches on real-world fi-
nancial data. We remark that it is unnecessary
that a more complicated network always performs
better. In our analysis, every components of the
training framework including data pre-processing
and a carefully designed optimization process are
all critical to make deep learning models perform
well on a real-world financial application. We hope
our framework and analysis can bring insights for
a wide range of important commercial applications
and inspire future research on developing more
powerful deep learning tools for real-world indus-
trial data.
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A Appendix

A.1 Training Details
For our model and all the deep-learning baselines,
we use Adam (Kingma and Ba, 2014) optimizer
with learning rate 5× 10−4 and weight decay 1×
10−4. We set the batch size to 1, 000. For non-
sequential model DNN, we set the embedding size
to 16, use three-layer MLP, and set the hidden size
to 1028, 256, and 128, respectively. For sequential
models, we use a one-layer Transformer encoder,
set the embedding size to 128, the number of heads

to 8, and the dropout probability to be 0.1. We
adopt a 5-fold cross-validation on the training set
and evaluate the ensembled model on the test set.

Both sequential and non-sequential features are
composed of time features (i.e., features about time
such as date), real-valued features, and category
features. For every time feature in date format, we
subtract it by the date at which the credit report
is used for prediction. That is, the time feature
indicates the number of days between when the
financial activity happens and when the credit re-
port is called. Then for every time and real-value
feature, we do zero-mean and one-std normaliza-
tion and clip all values into [−4, 4] to make the
distribution easier for DL models to learn. For ev-
ery category feature, we merge all the categories
outside the top 30 into one category ⟨UNK⟩.

We utilize XGBoost (Chen et al., 2015) to se-
lect the most important 500 features of the non-
sequential real-value features and discard the rest
of them. We simply train an XGBoost model on the
same task of risk prediction. After that, we choose
500 features with the highest feature importance
value to feed the non-sequential DL model. For
every category feature, we add a category ⟨NAN⟩,
and for every real-value and time feature, besides
replacing all NANs with 0s, we also create two
indicators [x = 0] and [x = NAN ]. Therefore,
for every real-value and time feature, there will
be three corresponding features after this process.
Thus, the 500 features we selected above become
1500 features.

A.2 Label Notation
The dataset mainly contains two types of labels:
1) short-term label ixlabely, which means the user
fails to pay back y days after the xth-month’s repay-
ment deadline; 2) long-term label overduey, which
means the user has at least one y-day overdue be-
havior in the last year.

In the following experimental parts we
mainly use the following labels: Ylong, the
long-term label overdue15; Yeval

short, the main
short-term label i1label30 used for evaluation;
Yother1

short ,Yother2
short ,Yother3

short , denoting another three
short-term labels i1label15, i2label30, i3label30,
for training and evaluation.

A.3 Dataset Analysis
We show in Figure 5 that the input data distribu-
tion, i.e., the ratio of negative and positive data,
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Figure 5: The change of imbalance ratio ∆ |D−|
|D+| from

August 2020 to July 2021. Compared with i1label15
and i1label30, the ratio of overdue15 is more stable.

varies over time. Besides the changes of the eco-
nomic environment, the data distribution changes
also because the consumers are first filtered by a
basic decision model in practice, which keeps be-
ing optimized over time. As a result of a better
filtering process, fewer applicants default and the
data becomes more imbalanced. (e.g., see Jan-2021
and May-2021 for i1label15 and i1label30). Empir-
ically, compared to the short-term label, we notice
that the long-term label overdue15 is less sensitive
to economic environment influence and optimiza-
tion of the basic decision model. It is more stable
because it summarizes a customer’s behavior in the
last 12 months, which is conceptually performing a
smoothing operator over the timeline. In addition,
the prediction of long-term risk is more difficult and
thus is less affected by the basic decision model.
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Abstract

Most domain-specific BERT models are de-
signed to work with short sentences and do
not deal with the limitation of 512 tokens in
the default BERT tokenizer. This limitation is
further exacerbated if the tokenizer has high
number of tokens per word ratio (fertility) and
thus splits words into several tokens. A term-
based multilingual Financial (T-MuFin) BERT
tokenizer has been proposed to reduce the fertil-
ity of the default BERT tokenizer by extending
the base dictionary with the most common fi-
nancial terms instead of word pieces. One key
factor of this proposal is to introduce multiword
domain-specific terms without affecting the per-
formance of the BERT models. T-MuFin BERT
tokenizer reduces at least 40% of the fertility of
long text sequences. T-MuFin BERT improves
the fine-tuning of a downstream task by approx-
imately 4% compared to a default fine-tuned
model. Hence, by reducing the tokenizer’s fer-
tility, the results of explainable methods are
more user-friendly.

1 Introduction

The vast amount of available textual information
has allowed the development of Natural Language
Processing (NLP) models to accelerate in recent
years. In 2017, the Transformer model was pro-
posed as a big step for NLP models (Vaswani et al.,
2017). The Transformer model uses an encoder-
decoder architecture. The encoder extracts features
from the input and the decoder interprets these fea-
tures to produce the output. The input is a sequence
of numerical vectors that represent the text. These
numerical representations of the text are the em-
beddings. Both blocks take text embeddings as
input and parallelize the processing using a self-
attention mechanism. This mechanism replaces
the sequentially of the existing Recurrent Neural
Networks(RNN) processing at once each single
word-piece and its most related text-pieces. This

parallelization sped up the training of bigger mod-
els with much more data compared to the RNNs.

In 2018, google published BERT (Devlin et al.,
2018). BERT uses the encoder block of the Trans-
former Architecture for pre-training language mod-
els to perform specific eleven NLP tasks like Clas-
sification, Named Entity Recognition (NER), Sen-
timent Analysis (SA), and so on. The input text is
divided into word-pieces or tokens and then passed
to the BERT’s embedding layer, limited to a maxi-
mum of 512 tokens.

The resulting pre-trained models contain a high
text understanding level and can be fine-tuned for
specific tasks and domains. Therefore, this fine-
tuning requires less computational resources and
less data. Training a BERT model with domain-
specific language allows BERT to adapt the gen-
eral BERT model to the target domain. Two ex-
amples of domain adaptation are FinBERT (Araci,
2019) for finance, BioBERT (Lee et al., 2019) for
Biomedicine, and so forth. Is important to mention
that the BERT model used as the pre-trained model
should be in the same language as the domain-
specific training corpus. If is required to work with
more than one language, a multilanguage BERT
version can be used (Google-Research, 2019).

As explained before, BERT is limited to having
up to 512 input tokens. The number of tokens de-
pends on the tokenizer’s capacity to divide the text
into one or several sub-texts. For doing this, BERT
uses WordPiece tokenization, which means that the
biggest unit is the word and one word can generate
one or more tokens. The measure of this capacity is
called tokenizer’s fertility. The authors in Rust et al.
(2020) defines the tokenizer’s fertility as the mea-
sure of the average number of subwords produced
per tokenized word. The fertility of one means
that each word produces a single token. Higher
the fertility, the higher the number of tokens gen-
erated per word. Most of the current BERT-based
models were trained to understand monolingual
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domains (English in our examples) and to perform
NLP tasks based on short input sequences.

As previously stated, multilingual BERT models
can understand several languages, but its drawback
is its higher fertility in comparison with monolin-
gual models, consequently less information can
be fed into the model. For long text sequences,
this can result in choosing which part of the se-
quence should be fed into the network and which
one should be discarded, thus losing information
that could be significant for the desired task.

We propose Term-based Multilingual Financial
BERT or T-MuFin BERT Tokenizer. T-MuFin
BERT not only fine-tunes the BERT model in the
financial domain as FinBERT and similar models,
but also, increases the dictionary size with multi-
word financial terms, reducing the tokenizer’s fer-
tility below one.

T-MuFin BERT tokenizer is based on a multi-
lingual BERT model fine-tuned with a dataset of
annexes of Luxembourgish Annual Accounts in
three languages (French, German, and English). In
contrast with other financial BERT models, we ex-
tract the most frequent financial multi-word terms
for extending the base dictionary. We use a n-gram
terms generation and then we filter and extract the
most frequent financial terms.

Besides to the self-discovered multi-word finan-
cial terms, we add to the dictionary also the finan-
cial terms from the Standardized Accounting Plan
of the European Union 1. This is because there
are many financial terms that are not frequent but
important in this domain.

T-MuFin BERT tokenizer was fine-tuned using
a Masked Model Learning task (MML) and then
tested using a classification task (CL) as the down-
stream task. T-MuFin BERT tokenizer reduces the
average fertility of the default BERT tokenizer by
40-50%. Furthermore, it reduced the number of
truncated sentences for paragraphs to almost zero
in our downstream task.

Another benefit of having tokens at the term level
is to have also explanations at this level. Especially
in finance, models have to explain the reason for
their predictions, promote transparency and adjust
models to reduce any kind of bias. At the sub-
word level, we must weigh the contributions of the
subtokens that make up each term in order to facil-

1Regulation (EC) No 1606/2002 of the Euro-
pean Parliament and of the Council of 19 July
2002. Source: https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32002R1606

itate the understanding for the end user. With our
approach, we get a direct understandable result.

The next steps of our research are aimed at align-
ing numerical representations of domain-specific
terms for a multilingual scenario. Our proposi-
tion can be extended to other domains where is
important to give complete numerical meaning to
multi-word terms and to clarify the explanations of
NLP models such as medicine, law, or science.

2 Related Work

Natural Language Processing (NLP) models help
machines to understand and process human lan-
guage, but machines only understand numbers. In
consequence, the first difficulty was to express the
text in numbers that a machine can understand.
As referred by Khurana et al. (2022), the initial
models like Bag-Of-Words and One-hot-Encoding
were very sparse. Later, models like Word2Vec
(Mikolov et al., 2013) and GloVe (Pennington et
al., 2014) could reduce the sparsity but still, the
context was not considered to give a proper mean-
ing for dealing with ambiguity.

BERT (Devlin et al., 2018) made a big step in
NLP, using the encoder of the Transformer Archi-
tecture and its self-attention mechanism, for paral-
lelizing the processing of the input in contrast to the
existing sequential models like Recurrent Neural
Network (RNN) (Rumelhart et al., 1986), Long-
short Term Memory (LSTM / BiLSTM) (Hochre-
iter and Schmidhuber, 1997; Schuster and Paliwal,
1997) and Gated Recurrent Units (GRU) (Cho et
al., 2014). BERT is a Pre-trained Language Model
(PLM), which means that has a vocabulary, rela-
tions, and some good level of language understand-
ing in its weights. The smaller BERT model con-
tains 12 encoder layers with 110M parameters. It
was trained using Masked Language Model (MLM)
and Next Sentence Prediction (NSP) with a cor-
pus with more than 3.3 billion English words in
four days using 16 TPU chips. In consequence,
we can use the pre-trained model to fine-tune it
for specifics downstream tasks, and it will require
fewer data and a shorter training time. Some of
these NLP downstream tasks are Named Entity
Recognition (NER), Classification Task (CL), Sen-
timent Analysis (SA), Next Sentence Prediction,
Machine Translation, Question Answering, and
Text Summarization.

A tokenizer converts text into a vector of num-
bers before feeding into the model. These numeri-
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cal representations are called embeddings. BERT
comes with its own tokenizer and using a dictio-
nary of known words, replaces each word into one
or several word-pieces or tokens. Is important to
focus on the dictionary of words, because based
on that, the meanings of the words were going to
be defined by the surrounding context (Tripathy
et al., 2021). BERT was originally trained with
English corpus, and there are many other versions
trained for other languages like CamemBERT for
French (Martin et al., 2020), GBERT for German
(Chan et al., 2020), RoBERTa for Spanish (Liu et
al., 2019) and so on. On contrary of these mono-
lingual models, there are also multilingual models
which were trained with 104 different languages
for use in multilingual scenarios.

BERT tokenizers were trained under the word-
Piece paradigm. It means that one word can be com-
posed of several entries in the dictionary and there-
fore, several tokens. Especially for Multilingual
BERT, the average number of generated tokens per
word is higher than in monolingual models. Rust
et al. (2020) defined this ratio as the tokenizer’s
fertility. Higher fertility means more generated to-
kens per text input and could cause less information
provided into a network in long sequences of text.
Multilingual BERT models are useful for using a
single model to perform a specific task for a multi-
language dataset. But the main drawback of this
is the high fertility of the corresponding tokenizer.
BERT models are limited to 512 input tokens, and
this is the reason why only short sentences can
be processed in this model (avoiding using them
together with other models like LSTM).

BERT models can vary also with respect to the
specific domain, to improve its performance for
specific tasks. This domain adaptation is usually
a fine-tuning for the desired task with a domain
corpus. Most of the published and available BERT-
based models work on fine-tuning the weights of
the BERT model itself with the default BERT tok-
enizer dictionary. It means that they do not add new
terms to the default dictionary. In other domains
different from finance, we can find a few works on
extending the BERT’s dictionary with new terms
like Douka et al. (2021), which creates JuriBERT,
a fine-tuned BERT Legal french model which ap-
pends 32,000 new entries to CamemBERT dictio-
nary. Wang et al. (2019) extended the multilingual
dictionary of BERT to reduce the out-of-vocabulary
(OOV) words. They use existing tokens to provide

meaning to the new one-word terms under two
approaches Joint Mapping and Mixture Mapping.
This approach is equivalent to sentence embedding
methods such as SciBERT (Beltagy et al., 2019)
for science and LegalBERT (Chalkidis et al., 2020)
for law. In our case, we train the embeddings of the
multiword terms together with their components to
try to align all the numerical representations.

In the financial domain, there are some fine-
tuned BERT models like FinBERT (Araci, 2019),
which is based on bert-base-uncased2, having a to-
tal of 30,522 entries in the dictionary and trained
for English. FinBERT uses the default BERT tok-
enizer to avoid extending the main dictionary. This
model outperforms the default BERT model in the
financial domain using PhraseBank, a database of
financial news, for predicting the sentiment of the
short text sequence (SA). Despite this improve-
ment, its fertility is the same as the English default
BERT model.

In 2022, FINER-139 by Loukas et al. (2022) was
released, a financial dataset of 1.1 M annotated sen-
tences. These annotations were obtained from com-
pany filings using XBRL tags. These tags are been
using by many countries and over time are going to
be broadly used. This format requires companies to
enrich financial reports with tags that can be read
easily. Most of these tokens are numeric values
associated with financial concepts. They replace
these numeric values with concept-based tokens.
They created SEC-BERT, a fine-tuned BERT model
where they test the new tokens. With SEC-BERT
they showed that fragmented tokens (one word is
composed of several tokens) harm BERT’s perfor-
mance and in comparison with FinBERT, their re-
sults outperform the default BERT and FinBERT
models.

Contrasted with the initial numerical representa-
tion of words like Word2Vec (Mikolov et al., 2013),
where the vector itself represents the meaning of
the specific word, BERT’s Embedding layer is not
enough to represent the meaning of a word. BERT
model process the embeddings in 12 Encoder lay-
ers. Due to BERT’s ability to handle term ambigui-
ties based on its context, the numerical meaning for
each word is defined in the lower Encoder layers.

Thus, BERT uses lower Encoder layers for lan-
guage understanding and the remaining upper lay-
ers for performing the specific NLP downstream
task. As an example, the word "bank", can be inter-

2https://huggingface.co/bert-base-uncased
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preted as "financial institution", "place to sit", or
"place alongside the river". There is no clear limit
to where the language understanding finishes and
the task-related understanding starts. It varies from
term to term along the 512 input tokens and the 12
Encoder layers.

The current state of the art with respect to finan-
cial tokenizers is mostly limited to terms discov-
ered from financial news datasets. Our contribution
is to provide a multi-word dictionary with contex-
tualized embeddings for being used in financial
BERT-based models. Allowing to reduce the tok-
enizer’s multi-language fertility, keeping financial
multi-word terms as a whole without losing perfor-
mance.

As studied in detail by Yang et al. (2023). Other
models than BERT which are having even better
results are derived from the Transformer architec-
tures that take only the decoder part. These models
like GPT-1 and its derivative works such as GPT-
3, ChatGPT, Llama, Bard, and many others, are
mainly closed sources and require a huge compu-
tational architecture to train and fine-tune. Some
open-source GPT-derived, and not heavy, models
like Alpaca or Vicuna are available only for re-
search purposes, not for commercial, which limits
their application.

3 Dataset

The data used in this study was obtained from
the Luxembourg Business Registers (LBR) and
is publicly available for download 3. The LBR
Annual Accounts consist of Financial Statements,
which can contain only Balance Sheets or also
Profit and Loss Statements, and Legal Annexes or
Appendixes. These annexes use natural language
to provide additional information to the Financial
Statements. Although the Financial Statements
must follow a specific template, there is no set lay-
out for the legal annexes 4. We have annexes that
have a single page or even more than 15 pages.

For the present work, our dataset only considers
the last presented Annual Account for a company
that can be active or inactive. In this case, we have
74,539 annual accounts that were processed using
OCR tools for scanned documents and HTML con-
tent extraction for PDF-readable documents. Most
of the documents’ pages in the LBR dataset are in

3https://www.lbr.lu
4https://guichet.public.lu/en/entreprises/gestion-

juridique-comptabilite/comptable/enregistrement/methodes-
etablissement-comptes-annuels.html

Language Documents (%) Pages (%)
French 66,114 88.7 426,610 84.4
German 4,924 6.6 33,966 6.7
English 3,501 4.7 45,112 8.9

Total 74,539 100 505,688 100

Table 1: Dataset distribution per language.

French (≈ 84%) and the rest are in German (≈ 7%)
and English (≈ 9%), as shown in Table 1.

4 Proposition

Our main goal is to create a dictionary of finan-
cial frequent terms that will have associated vector
embeddings trained with a context of words from
the Annexes of the Annual Accounts. This will
allow us to disambiguate the terms to a finance
context and feed the models with more information
without increasing the size of the input layer or
reducing their performance in comparison with a
base model.

4.1 Dictionary extension and embedding’s
training

We are using bert-base-multilingual-uncased 5 as
the base model and tokenizer (with a correspond-
ing dictionary D). If a word is not part of the
dictionary D the tokenizer splits the word into a
set of sub-words and/or characters, in consequence,
tokenizing a word can result in a set of one or
more tokens. For this reason, we are extending
the base dictionary with domain-specific terms and
then fine-tuning the model to calculate the vector
embeddings. For the fine-tuning, we use Masked
Language Model (MLM).

The terms to be added to the dictionary are the
result of performing the following steps.

1. Candidates extraction: We are using multi-
word terms for creating the tokenizer’s dic-
tionary. Hereby, the list of candidates is the
result of the text extraction in the form of n-
grams. We defined empirically n=5, which
covers most of the financial terms.

2. Candidates cleaning: For each term, we per-
form a set of cleaning tasks: (A) removing
enumerators (like a., note 1.3, iv., etc); (B) re-
moving noisy characters (;-,); (C) using regu-
lar expressions identifying and replacing dates

5https://huggingface.co/bert-base-multilingual-uncased
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and numbers with special [DATE] and [NUM-
BER] tags respectively; (D) and replace apos-
trophes with blank spaces.

3. Top terms selection: The cleaned candidates’
list is sorted by frequency and then we select
the top τ terms by language. This list will be
our base list.

4. Financial statements labeled terms: The tree
structure of a financial report like a balance
sheet or profit and loss statements are full of
multi-word terms that have a semantic relation
with their surrounding neighbors in the three.
For example "convertible loans" with "non
convertible loans" (sibling) and "creditors"
(parent). This list is appended in the base list.

5. Terms decomposition: Each term in the base
list is decomposed and the main subterms are
added to the base list. For instance, if the term
is "subscribed capital amount", the extracted
decomposed terms are "subscribed capital",
"capital amount", "subscribed", "capital" and
"amount". The main terms and their compo-
nents are going to be inserted into our base
list υ.

For example, with T-MuFin BERT tokenizer, a
financial multi-word term like "capital investment
subsidies" will be considered as a single token be-
cause it is a frequent term. Moreover, this term
is added to the dictionary as a whole, also we are
adding its term components. For instance, for the
previous example, the tokenizer also going to gener-
ate the following tokens: "capital investment subsi-
dies", "capital investment", "investment subsidies",
"capital", "investment" and "subsidies". During
training, all those tokens are going to be numeri-
cally related to each other.

Only the terms t in υ that are not part of the
dictionary D are included in the dictionary D
(tnew ← t ∈ υ & t /∈ υ). The increment in
the dictionary size causes a resizing of the embed-
ding layer in the base BERT model before training.
For the fine-tuning of the default BERT, we use as
well the MLM task.

The training and testing datasets consist in sen-
tences that have at least one tnew. For each sen-
tence, the same Candidates cleaning step that we
use for obtaining the most frequent terms are used.
With the cleaned sentence, we identify tnew and we

Hyper-parameter Values
σ: dataset size 10, 25, 50, 75 and 100%
ϕ: frozen layers 2, 4, 6, 8 and 10
λ: learning rate 1e-5, 2e-5, 3e-5 and 4e-5
δ: dropout 10s, 15 and 20%
κ: context size 2,3,4 and 5

Table 2: Testing values for each hyper-parameter for
training T-MuFin embeddings.

extract the context surrounding it. The context con-
sists of the previous κ words and the following κ
words to tnew (κ: context size). If κ=2, we take two
words previous to the frequent term and two words
posterior to the new term (if exists). Finally, we
replace 20% of context’s tokens with the [MASK]
token, considering that the masked word should
have more than five characters (to avoid connec-
tors, negations and so on to be masked) and do not
mask tokens that are part of a word. If a term con-
tains n words, we also append to the training and
testing dataset each component of tnew tokenized.
This resulting dataset is shuffled and we use 70 %
of the samples for training and the remaining 30%
for testing. Additionally, for training the financial
statements labeled terms, we add the terms and the
training context are the siblings and parents until
the first level, this will allow us to create a strong
relationship between terms in the same financial
category.

We test different hyper-parameters that lead us to
the best-performed model. These hyper-parameters
are κ: context size; λ: optimizer’s learning rate;
δ: BERT’s dropout percentage; σ: dataset size
for (a) extracting the frequent terms and (b) for
training the MLM model; and ϕ: number of BERT
encoder layers to freeze. Table 2 shows the differ-
ent test case values per each hyperparameter. We
use AdamW as the optimizer.

Freezing from 2 to 12 encoder BERT layers of
the BERT model during fine-tuning allows us to
reduce the memory used in the GPU and make the
model put the effort into the embeddings’ training
and also the upper encoder BERT layers (remaining
layers and the final dense layer). We are going to try
different numbers of layers to freeze in order to get
the best results and take advantage of the memory
in the GPU, increasing the batch size. Figure 1
shows the layers to freeze and the corresponding
layers to train in the MLM task.
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Figure 1: (a) shows the BERT model and tokenizer. The layers to freeze are up to 10 first encoder layers, for each
test case, the remaining layers will be training layers; (b) shows the model to test the performance of T-MuFin
BERT tokenizer which includes a final dense layer for the specific classification task, transferring the first unfreezed
layers from the MLM model

4.2 Classification as Downstream task
To test the performance of T-MuFin BERT tok-
enizer, we use a Classification Task (CL) as the
downstream task. The model will predict nine fi-
nancial categories based on a text paragraph. For
doing this, from each Annual Account Annex, we
extracted the last-level subtitles and their corre-
sponding paragraphs. Then we selected the first
most frequent subtitles and manually assigned them
one of nine financial categories. These categories
are (1) Asset, (2) Capital, (3) Deposit, (4) Expenses,
(5) Investment, (6) Obligations, (7) Personal, (8)
Receivables, and (9) Taxes. The training and test-
ing datasets are obtained from subtitles that have
an assigned financial category and also have para-
graphs with at least 20 words. The evaluation
dataset is composed of 10,000 documents.

The base model is a bert-base-multilingual-
uncased BertModel with its own default tokenizer.
For comparing our tokenizers with respect to the
base model we copy the weights from T-MuFin
BERT tokenizer (Embedding and unfreezed en-
coder layers) and train in the Classification task
for 5 epochs like the base model. All the hyper-
parameters are the same for the base model and
T-MuFin-based models.

For these models, we only add a classification
layer after BERT model. We take only the first hid-
den state ([CLS]) of the BERT model as input for
our dropout and classification layer (Dense Layer).
The dropout percentage of the classification layer

Hyper-parameter Value
σ: dataset size 34K working samples%
ϕ: frozen layers embeddings and first 10
λ: learning rate 1e-5
δ: dropout 10%

Table 3: Hyper-parameter for downstream task (CL)
evaluation.

and the BERT dropout is the same (δ). We are us-
ing CrossEntropyLoss as our loss function, using
the class weights to deal with unbalanced datasets.

Table 3 shows the hyperparameters used for this
model. Using AdamW as the optimizer and a batch
size of 30.

Equation 1 evaluates the tokenizers’ fertility ψ,
which is the average number of tokens generated
per word. Additionally, as shown in Equation 2, we
are going to measure the proportion of samples that
were truncated because of the 510 tokens limitation
(Π), considering reducing two special tokens for
[CLS] and [SEP].

ψ =

n∑
i=0

(Numbertokens/Numberwords)

n
(1)

Π =

n∑
i=0

{
1 , Numbertokens > 510

0 , otherwise.
(2)

Moreover, in the results section, we show other
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Dataset Time F1 Score F1 Score
size (σ) (hr.) Training Testing

10 6.78 85.62% 77.65%
25 11.90 85.64% 76.03%
50 18.37 86.30% 78.19%
75 22.52 87.24% 79.59%

Table 4: Impact of dataset size in tokenizer’s training.

Frozen F1 Score F1 Score
Layer (ϕ) Training Testing

2 85.63% 84.79 %
4 85.78% 84.72 %
6 86.59% 85.07 %
8 87.37% 84.95 %
10 86.41% 85.55%

Table 5: Evaluation of the number of frozen layers.

statistical measures like the average number of to-
kens per document, the average number of words
per document, and the average number of tokens
per word.

To evaluate the explainability results with the
default BERT tokenizer and T-MuFin BERT to-
kenizer, we use the fine-tuned models with Cap-
tum.ai 6, which analyze the most important input
features that the model takes into consideration for
making a single prediction.

5 Experiment and Results

The subsection 5.1 shows the results for training
the tokenizer. The best-performed tokenizer has
been selected to be evaluated in the CL task (sub-
section 5.1).

5.1 Tokenizer: Embedding’s training
In this section, we train the tokenizer with different
hyper-parameters such as κ, λ, δ, and ϕ.

5.1.1 Dataset size selection (σ)
Table 4 shows the impact of the different dataset
sizes in the overall F1 Score, having: κ = 2, λ =
5e− 5 and δ = 10%.

We decided to train with only 10% of the data
based on the results in Table 4. This is because
the impact on the performance is not high and
the time required for tokenizer’s training is sig-
nificantly lower.

Once defined the dataset size σ for the tok-
enizer’s training, we execute several test cases with

6https://captum.ai/

Learning rate F1 Score F1 Score
Layer (λ) Training Testing

1e-5 84.86 % 83.72%
2e-5 84.52% 83.16%
3e-5 83.66% 82.40%
4e-5 83.53% 82.17%
5e-5 83.54% 82.25%

Table 6: Evaluation of learning rate λ.

Dropout F1 Score F1 Score
Layer (ϕ) Training Testing

10 85.37% 80.80%
15 85.22% 80.72%
20 85.40% 80.40%

Table 7: Evaluation of dropout percentage.

different hyper-parameters: ϕ, λ, δ, and κ. When a
hyper-parameter is being evaluated the default val-
ues for the others are ϕ = 0, λ = 5e− 5, δ = 10%,
κ = 2.

Table 6 shows that the best learning rate λ is
1e-5, with a F1 Score of 83.72%. We also tested
others lowers and biggers learning rates whose per-
formance were lower.

Table 7 shows that the best dropout percentage
δ is 10%, with a F1 Score of 80.80%. Also, we
test bigger values like 20% and 30% but the perfor-
mance drops drastically.

Table 8 shows that the best context size is κ = 5,
with a F1 Score of 85.05%.

As shown in Table 9 with the best combination
of these hyper-parameters, we got the following
results in 5 epochs. We use this model for fine-
tuning the BertModel for the selected downstream
task.

5.2 Tokenizer’s Performance evaluation
5.2.1 Establishing CL baseline
For the evaluation of T-MuFin BERT tokenizer,
first, we evaluate the performance of BERT base-
line model and the parameters specified in Table 3.
In Table 10 is shown the performance F1 score for
training, testing and also the default fertility and the
proportion of samples that did not fit in the model.

As our Classification task is working only with
small text to determine if the dictionary extension
of the tokenizer affects the downstream tasks, the
effect on the tokenizer’s fertility is not easy to ap-
preciate. Hence, we use T-MuFin tokenizer to pro-
cess 1,000 Annual Accounts’ Annexes. As we can
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Context Size F1 Score F1 Score
Layer (κ) Training Testing

2 83.54% 82.25%
3 85.10% 84.05%
4 84.85% 83.83%
5 85.99% 85.05%

Table 8: Evaluation of context size κ.

F1 Score F1 Score
Training Testing

89.87% 89.08%

Table 9: Results for training with the best hyper-
parameters

see in Table 11, on average for feeding a BERT
model with complete annexes of Luxembourgish
Annual Accounts, we require on average 867 to-
kens.

5.2.2 T-MuFin BERT Tokenizer results
With the best performed T-MuFin BERT tokenizer
from Table 9 and the same hyper-parameters as
the baseline in our downstream task, we got an
increment of the F1 score for testing from 94.97%
to 98.80% as shown in Table 12.

As shown in Table 12, T-MuFin BERT tokenizer
could reduce from 1.2592 to 0.8906 (≈ 41%) the
fertility ψ with respect to the default BERT tok-
enizer and reduces almost to zero (0.2%) the trun-
cated sentences Π.

As shown in Table 13, we can see that the num-
ber of tokens per word was reduced on average at
≈ 1.0, this is mainly because a big group of multi-
term tokens is reducing the average of the words
that produce more than one token. The average
fertility of the document was improved ≈ 50%.

Figure 2 shows the difference in terms of explain-
able NLP with T-MuFin tokenizer, which makes
more easy to understand for the final user and also
allows the NLP model to focus on the term as a
whole.

6 Discussion

Most of the current NLP projects using BERT-
based models are related to domain adaptation
while keeping the same default dictionary. How-
ever, researchers who are increasing the dictio-
nary are only considering single-word terms. T-
MuFin increases its dictionary with multiword
terms in finance without affecting the performance

F1 Score F1 Score Fertility % Truncated
Training Testing (ψ) samples (Π)

95.08% 94.97% 1.2592 0.79

Table 10: Performance of BERT BaseLine

Metric Value
Avg. Number of tokens per document 1,182
Avg. Number of words per document 867
Avg. Number of tokens per word 1.37
Avg. fertility per document (ψ) 0.126

Table 11: BaseLine for fertility ratios

F1 Score F1 Score Fertility % Truncated
Training Testing (ψ) samples (Π)

98.20% 98.80% 0.8906 0.2

Table 12: Results for training with T-MuFin BERT tok-
enizer

of downstream tasks and even increasing them due
to the self-nature of the fine-tuning. Adding these
domain-specific terms always reduces the fertility
of the tokenizer. For T-MuFin, this fertility goes
below one, which means that we can feed more
information into the BERT-based models.

In our proposed terms discovery method, the dis-
covery of new terms is not only based on including
frequent multi-word terms in the new dictionary but
also on including their corresponding components
and training them together.

Using T-MuFin BERT tokenizer can help ex-
plainable models produce more understandable re-
sults. This is because financial terms are no longer
divided into word-pieces, which can make it more
difficult for the user to process at first sight.

This proposed method for terms discovery and
training can be applied to any other domain like
Medicine, Law, or Science; where most of the mul-
tiword terms tend to be understood as a whole.

Is important to mention that in the lasts weeks,
the GPT-based model is reaching very good per-
formance for NLP tasks, but unlike BERT-based
models, those models can not be used for commer-
cial purposes unless the service is purchased.

7 Conclusion

By training the BERT embeddings with finan-
cial data and extending the dictionary with the
most common multi-word financial terms, T-MuFin
BERT tokenizer can increase the information feed
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Figure 2: Comparison between NLP explainability using the default BERT multilingual tokenizer for French,
German, and English using the Classification fine-tuned model (left), and the fine-tuned model using T-MuFin
BERT tokenizer (right).

Table 13: BaseLine for fertility ratios

Metric Value Improvement
Avg. number of tokens

per document 868 26%
Avg. number of words

per document 867 -
Avg. number of tokens

per word 1.02 34%
Avg. fertility

per document (ψ) 0.065 48.41%

into a BERT model. When we freeze the first 10
layers of BERT to calculate the weights of the em-
beddings, we force the model to disambiguate the
terms at the beginning of the model, in the Embed-
dings layers. Later these weights are transferred
to a default BERT and used for any downstream
task. With T-MuFin tokenizer, we could increase
the F1 score from 94.97% to 98.80% with respect
to the baseline of the downstream task. This means
that we are not losing performance with the newly
trained multiword terms; on the contrary, we in-
crease it.

On the other hand, we reduced between ≈ 40%
and ≈ 50% of the fertility of the default BERT tok-
enizer for short and long text sentences respectively.
We could also reduce almost to zero the truncation
of long paragraphs and facilitate explainable AI.

For future steps, we plan to align the numer-
ical representations of the terms along different
languages. This means that the same term in differ-
ent languages should have very similar numerical
representation, making it easier to include more
languages in the NLP models.
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Abstract
The submission of Anti-Money Laundering
(AML) reports is a key compliance mandate
that financial institutions strictly adhere to,
which involves a detailed scrutiny of accounts
and transactions that may potentially be sus-
picious. Previous research have explored the
automation of report creation via table-to-text
generation. Our paper introduces a novel ap-
proach utilising table-to-text generation, known
as Logical Key Inference (LoKI). Proposed
method employs meta-learning to augment the
content selection and addresses three salient
gaps in logical table-to-text generation: (1) dy-
namic selection of pertinent table attributes, (2)
mitigating hallucination during the attribute-to-
value mapping process, and (3) the ability to in-
corporate newly added attributes without the de-
mand for explicit additional training. Through
experiments and ablation studies, we show that
LoKI outperforms existing generative methods
for compliance reporting.

1 Introduction

Money laundering is a global issue affecting na-
tions in terms of financial health and physical se-
curity including terrorism, human trafficking etc.
(IMF, 2023). According to an estimate (Kolmar,
2022), 2-5% of global GDP ($2 trillion) is laun-
dered in a single year. Hence, combating money
laundering is more urgent than ever, especially
for financial institutions like banks and payment
networks. Financial institutions are required to
provide highly confidential reports that include
information on suspicious activities to national
law enforcement authorities investigating finan-
cial matters. Financial analysts thoroughly review
historical transactions regarding potentially risky
accounts before scrupulously writing the reports.
These reports are often written after analysing data
stored in a tabular format containing suspicious ac-
counts and corresponding transaction history (see

*These two authors contributed equally to this work

Figure 1: AML report generation process (a) Explana-
tory system to flag suspicious Money Laundering ac-
counts and transactions (b) Tabular data containing his-
torical transactions of the potential suspicious accounts
(c) Report generation: (c1) Financial analyst generating
AML reports by reviewing the tabular data (c2) Alterna-
tively system-generated AML reports (d) The text report
containing factual evidence against each suspicious ac-
count.

Figure 1). Research tried to reduce the manual ef-
fort by automating the process of report creation
using Table-to-text generation methods (Lin et al.,
2022).

Table-to-text generation (TTG) is an active area
of research aiming to generate text from tabular
data. Existing methods for TTG includes static at-
tribute selection (i.e., rule-based (Reiter and Dale,
2000), and template based (Oh and Rudnicky,
2000)), conditional copy of text, (Puduppully et al.,
2019), and fine-tuning sequence-to-sequence mod-
els (Kale and Rastogi, 2020). Even though the
generated text is linguistically fluent, the challenge
is that the surface-level spurious correlations are
easier to capture than the causal relationship be-
tween tabular data and generated text, resulting
in hallucination, generation of incorrect facts, and
inconsistent content planning and document struc-
turing. There are recent research work that ad-
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dress content planning by using copy-mechanism
(Gehrmann et al., 2018) or neural models based on
soft-template (Wiseman et al., 2018). Researchers
have also explored training a separate planning
module to produce relevant content, which is then
fed into a generator (Goldfarb-Tarrant et al., 2020)
but the strategies result in a disconnection between
planning and generation of high fidelity logically
structured summaries. Given how sensitive and
confidential nature of this data is using we cannot
use the latest models released by OPEN AI like
GPT 3.5 and GPT 4 due to privacy concerns.

To address the above gaps, we formulate three
objectives in our proposed solution: (1) Dynamic
selection of logical key table attributes (i.e. feature
selection) to include in the report, (2) Ability to han-
dle hallucination while mapping attributes to values
(3) Adaptability of the system when new attributes
get added with changing landscape of money laun-
dering, without explicit additional training. Our
proposed solution, LoKI, generates high-fidelity,
logical, well structured, and insightful reports given
the tabular data with significantly high number of
attributes. The focal point of LoKI is Logical Key
Inference - it adequately selects only the important,
logically correlated attributes to generate the final
report. LoKI uses Meta-Learning for content selec-
tion and explores BART and T5 for TTG. We per-
form the experiments on a repository of real-world
financial transaction data for potential high-risk ac-
counts related to money laundering. We show that
the proposed method outperforms existing gener-
ative methods through extensive experiments and
ablation studies.

2 Related Work

Natural text generation has been a significant
focus of research across various fields such as
sports(Wiseman et al., 2017), weather(Liang et al.,
2009), and health (Lee, 2018) sectors. While ad-
vancements(Chen et al., 2020b) have been made,
these methods often suffer from imprecision, hal-
lucinations, and lack of proper content planning
and structuring. To address these, researchers have
proposed architectures (Castro Ferreira et al., 2019)
that include multi-step processes (Tian et al., 2019;
Puduppully and Lapata, 2021; See et al., 2017;
Zeng et al., 2018; Liu and Lapata, 2018) such as
discourse ordering, text structuring, and surface re-
alization. However, most of these methods end up
restating facts and producing relatively short texts.

The introduction of datasets like Logic2Text and
LogicNLG shifted the focus towards ensuring the fi-
delity of logical-level generations. LOGEN(Zhang
et al., 2021) and PLOG(Liu et al., 2022a) are two
models that operate on these datasets, utilizing log-
ical form and table content to generate target text.
Although they improve generation fidelity, they re-
quire logic as an input, highlighting the need for
selecting the most important logical relationships.
A model introduced by (Zhao et al., 2023) in 2023
provided a solution for diversity and faithfulness in
Logic2Text by using logical forms as mediators for
controllable text generation. Despite the improve-
ment, this model struggled to generate comprehen-
sive paragraph summaries that capture various key
perspectives in a table.

In response to these issues, (a) we propose a
method to generate high-fidelity logical and insight-
ful summaries given the table without any logic or
cells as input (b) our model dynamically selects
the significant features to appear in the reports and
ignores the irrelevant pieces of information.

3 Proposed Solution

LoKI has three parts as shown in Figure 2. (a)
‘Logical Key’ attribute selection using Model Meta
Learning, (b) TTG Transformers for generating
well structured report templates containing selected
attributes (c) Replacing the attributes in template
with corresponding values to generate final report
to minimize hallucination.

3.1 ‘Logical Key’ attribute selection using
Meta Learning

First, we dynamically select ’logical key’ table at-
tributes for the report using a meta-learning algo-
rithm, where each task governs the selection of a
specific attribute. This approach overcomes the
limitations of traditional machine learning meth-
ods, such as the need for large datasets, long model
training time, compromised performance with in-
creased target classes, and high operating costs.
Meta-learning optimizes the learning process, en-
abling faster learning for new tasks with fewer ex-
amples. The report generation task involves a table
T and a natural language target text Y. Table T, with
M rows and C columns, records card profiles with
each column representing an aggregated feature
at the account level. The target text outlines the
potential risk associated with the card.
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Figure 2: LoKI has three parts (a) Logical Key attribute selection using Meta Learning, (b) TTG Transformers for
generating well structured report templates containing selected attributes (c) Replacing the attributes in template
with corresponding values to generate final report to minimize hallucination.

3.1.1 Defining a Meta Learning Task
Every attribute present in the table is a meta learn-
ing task and the number of tasks corrrespond to
the number of attributes availabe in the table. We
used a supervised approach here. The reports are
annotated (refer to methodology section) to create
a target variable for every episode. For a specific
episode, if the corresponding attribute is included
in the report, then the target variable is 1, else it is
set to 0. The same process is repeated for all the
attributes to create the final set of tasks for meta-
learning algorithm

3.1.2 Training a Meta Learning Algorithm
Let us consider a model f parameterized by a pa-
rameter θ, and let p(N) represent a distribution
over tasks. First, we randomly initialize the model
parameter θ and sample a batch of tasks from the
task distribution, denoted as Ni ∼ p(N). We then
sample P different tasks, and the set of tasks can be
represented as N = N1, N2, N3, ..., NP .

For each task Ni in the set of tasks N , we sample
k data points and prepare our training and test sets
as follows:

Dtrain
i = (x1, y1), (x2, y2), ..., (xk, yk) (1)

Dtest
i = (x1, y1), (x2, y2), ..., (xk, yk) (2)

Next, we employ a neural network model to train
on the training set Dtrain

i and minimize the loss
using gradient descent and obtain the optimal pa-
rameters θ′i.

θ′i = θ − α∇θLNi(fθ) (3)

where LNi(fθ) denotes the cross-entropy loss func-
tion.

So for each of the tasks, we sample k data points
and minimize the loss on the train set and get the op-
timal parameters . As we sampled P tasks we will
have P optimal parameters {θ′1, θ′2, θ′3, ......, θ′P }.
Now, we perform meta optimization in the test
set i.e Dtest

i here we try to minimize the loss in
the test set.We minimize the loss by calculating
the gradient with respect to our optimal parameter
θ′i calculated in the previous step and update our
randomly θi initialized parameter using our test set.
It can be mathematically represented as :

θ = θ − β∇θ

∑
Ni∼p(N)

LNi(fθ′i)
(4) 

.

3.1.3 Getting the ‘Logical Key’ Attributes
The meta-learning algorithm assigns a probabil-
ity score to each attribute for every account. If
the score exceeds a predetermined threshold, we
will carry forward that attribute and its respective
value to the subsequent stage. Any attributes that
do not meet this threshold are eliminated before
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being processed by the language model. It’s worth
noting that the number of selected attributes can
vary between accounts.

3.2 Table to Text Generation using
Transformers

To generate well structured report templates
containing selected attributes we have used
transformer-based table to text generators. Theoret-
ically any language model can achieve the knowl-
edge transfer from the table-to-text downstream
task. To evaluate this, we have included several lan-
guage model such as GPT-2 ((Radford et al., 2019)),
BART-Base ((Lewis et al., 2019b)), BART-Large
CNN ((Lewis et al., 2019a)), T5 Base ((Raffel et al.,
2020)). The output of this step is saved as template
report containing dynamically selected attributes.

3.3 Mitigating Factual Hallucination

In this step, we assign the attributes in the template
report, created in the prior stage, to the actual val-
ues derived from the aggregated transaction data.
This involves conducting a lookup for the original
values of the selected attributes. We substitute the
function placeholders with these actual values to
produce the final report.

4 Methodology

In this section, we provide a synopsis of the differ-
ent experiments that we have performed followed
by analysis of the results for in-depth insights and
deliberations.

4.1 Data Description

We conducted experiments on a three-year real-
world financial dataset of potentially high-risk ac-
counts tied to money laundering, covering over
20,000 accounts. To ensure privacy, we concealed
customers’ identities and specific experiment time-
frames. We aggregated attributes at the account
level, examining merchant, transaction, card, and
other features such as origin country, transaction
volume, transaction channels, card type, and suspi-
cious activities.

4.2 Annotation

We perform the experiments on historical reports
prepared by the analyst. We manually annotate
the reports to evaluate the inclusion of specific at-
tributes. The numbers/facts are replaced with their
corresponding attributes.

4.3 Experiment Protocols

Our study focuses on generating highly accurate,
logically correct and precise, well-structured report
generation from tabular data. We evaluated the per-
formance of LoKI (1) quantitatively by comparing
it with existing generative methods on metrics like
BLEU-4, ROUGE-4 , Precision, Recall, etc and (2)
qualitatively with the help of internal experts.

4.4 Implementation Details

This section outlines the baseline models includ-
ing LLaMa (Touvron et al., 2023), GPT-2 (Rad-
ford et al., 2019), BART-Base (Lewis et al.,
2019b), BART-Large CNN (Lewis et al., 2019a),
T5-Base (Raffel et al., 2020) and our custom
models: Meta-learning+BART-Large and Meta-
learning+T5-Base in a fully-supervised setting. Us-
ing Transformers and PyTorch, we conducted nu-
merous experiments, setting the max length to 6000
for source and 2000 for target sequences. Each
model was fine-tuned for ten epochs with the en-
tire training data. We omitted logical table-to-text
methods like PLOG and LOFT from our exper-
iments as they require a logical input form. In
contrast, our pipeline doesn’t require such input
and autonomously selects logical statements based
on attribute values. We evaluated our models (Liu
et al., 2022a; Lin et al., 2022) using surface-level
metrics (BLEU-4, ROGUE-4, Precision, Recall)
and logic-based metrics (SP-Acc, TAPEX-Large
(Liu et al., 2022b)) to ensure logical fidelity in out-
put. Evaluation was based on n-gram matching be-
tween model-generated summaries and references.
All these were implemented with the Tensorflow
and PyTorch.

5 Result

In this section we present, quantitative and
qualitative (human) evaluation of ‘LoKI’.

(1) Quantitative Evaluation: The experi-
mental results are detailed in Table 1. Despite
GPT-2’s extensive training, it struggles with
numeric data, dates, and logical patterns. Our
Meta-learning models outperform both T5-Base
and BART-Large, indicating that focusing on
selective features enhances output quality and
fidelity. The consistent advancement across various
models underscores the universal applicability of
our approach. (see Table 1).
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Surface-Level Evaluation Logical Fidelity
Models BLEU-4 ROUGE-4 Precision Recall F1 SP-Acc Tapex-Acc
GPT 2 27.1 23.5 30.1 25.4 27.6 9.4 12.5

Bart-Base 40.5 43.9 54.5 46.7 50.3 42.1 35.7
BART-Large CNN 53.7 54.2 59.5 72.5 65.4 51.9 64.3

T5-Base 58.6 59.2 60.8 63.7 61.8 67.5 59.9
LLaMa 43.1 46.5 58.1 60.5 59.2 65.4 68.1

(ML∗+BART)
(-Large CNN) 76.4 75.6 79.9 87.5 83.5 80.9 83.2

(ML∗+T5-Base) 79.7 78.3 82.7 84.4 83.6 84.7 89.8

Table 1: Evaluation results for all baselines and our (marked with * ) models. We use meta learning and T5 Large as
a language model to produce the results

Figure 3: Human Evaluation (a) The report manually
generated by the analyst (b) The report generated by
LoKI. (Pursuant to internal and legal controls to protect
data, confidentiality, and privacy, some of the parts of
reports are blackened out, so that the results cannot be
traced back to any original transaction or customers.)

(2) Qualitative Evaluation We randomly
sampled 400 examples from the test data. Internal
experts scored each generated summary in the
discrete range between 0 and 4 with the help
of according to criteria adopted in (Chen et al.,
2020a). Non-sense (0): the sentence suffers with
respect to text fluency and logic fidelity, and people
need help understanding its meaning. Wrong (1):
the sentence is fluent, but it contains factual errors,
i.e. accuracy of recalled risk is low. Partially
correct (2): the sentence describes multiple facts.
Most of them are wrong, but it contains at least one
factually correct sentence. Almost Correct (3): the
sentence describes multiple facts. Most of them
are correct, but it contains at least one factual error.
Entirely Correct (4): the sentence is of high quality
in fluency and risk accuracy. The evaluation
is based on the generated summaries and the
tabular input data. From the evaluation results, the
proposed models ML+T5-Base and ML+BART -
Large are the highest scorers with 89% and 84% of
entirely correct statements, respectively.

6 Conclusion

In this work, we formulate the problem of logical
key feature selection from a tabular dataset consist-
ing of significantly large number of attributes to
generate a structured, factually accurate and log-
ically correct Anti-Money Laundering report for
suspicious accounts. In our case, we emphasized
that the facts presented in the report must be un-
equivocally accurate. Inclusion of incorrect facts
in the generated report can potentially lead to le-
gal and reputational harm. To achieve this, we
are using the natural language model to learn only
the template of the report, unlike previous research
where the language model generates the final report.
Through our results, we demonstrate that proposed
method considerably outperforms the existing state-
of-art models. We believe that our work can highly
successful in convincing regulators about the appli-
cations of AI in related domains as well.
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Abstract

This paper introduces an innovative approach
for incorporating environmental, social, and
governance (ESG) factors into AI-based finan-
cial decision-making processes. Recent devel-
opments in AI and NLP have predominantly
focused on financial outcomes, often disregard-
ing the significant impacts that corporations
can have on society and the environment. This
perspective overlooks potential business risks
associated with environmental and social issues.
We propose a task, the Multilingual ESG Issue
Identification Task (ML-ESG), that seeks to in-
tegrate the ESG paradigm into financial NLP
systems. The ML-ESG is designed according
to the MSCI ESG rating methodology and re-
quires systems to classify news articles into
35 key ESG issues. Moreover, systems must
identify the target company and its industry, as
the weighting of each issue varies accordingly.
This paper presents an overview of the ML-
ESG shared task, implemented as part of the
FinNLP-2023 workshop, detailing the datasets,
methods, and participant performances.

1 Introduction

Finance often brings to mind a world dominated by
monetary transactions and market forecasts. The
environmental and social implications of invest-
ment decisions, significant factors in today’s busi-
ness environment, have been largely overlooked
in machine learning models. For instance, even in
scenarios where a corporation is reported to be en-
gaged in environmentally harmful practices, such
as improper waste disposal, AI models may still
recommend purchasing the corporation’s stock fol-
lowing a market overreaction to the news. Such
decisions, while potentially profitable in the short-
term, can lack foresight into potential long-term
risks associated with the corporation’s practices.

To address this concern, we introduce the con-
cept of ESG (environmental, social, and gover-
nance) into our shared task, aiming to help AI

models consider the broader impacts of investment
decisions. By integrating insights from the finan-
cial domain into NLP research, we hope to promote
long-term, value-driven investments that also ac-
count for non-monetary factors like environmental
and social impacts.

The ESG concept, initially proposed by the UN
Global Compact in 2005, has gained increasing
attention over the past few years, particularly since
2020. The idea of ESG has matured over time, with
a growing body of research analyzing and eval-
uating these non-monetary factors (Amel-Zadeh
and Serafeim, 2018; Matos, 2020). In last year’s
FinNLP workshop, we proposed the first step to-
wards integrating ESG considerations into NLP
with the FinSim-2022 task, which focused on learn-
ing semantic similarities. This task aimed to clas-
sify given words into ESG-related taxonomies and
sentences into sustainable or unsustainable descrip-
tions, thereby evaluating models’ understanding of
ESG narratives.

Building on this foundation, this year’s FinNLP
workshop presents a more detailed task: the Multi-
lingual ESG Issue Identification Task (ML-ESG).
This task is designed according to the MSCI ESG
rating methodology and requires systems to classify
news articles into 35 key ESG issues, as depicted in
Figure 1. The ESG Industry Materiality Map pro-
vides these weights thus, the system’s primary task
is to identify the topic. In this shared task, we offer
multilingual datasets (English, Chinese, French) to
identify ESG issues in news articles. This paper
provides an overview of the ML-ESG shared task in
the FinNLP-2023 workshop, detailing the dataset,
participant methods, and performances. Twenty-
seven teams registered, ten of which submitted their
system outputs for the official evaluation.

2 Dataset and Task Setting

This section outlines the composition of our pro-
posed datasets and elucidates the corresponding
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Figure 1: List of the ESG issues and examples of the weighting. This is the screenshot of the ESG Industry
Materiality Map.

English French Chinese
Train 1,199 1,200 900
Development - - 100
Test 300 300 238
Total 1,499 1,500 1,238

Table 1: Statistics of Datasets

task settings, as depicted in Table 1.

2.1 English and French Datasets
The English and French datasets are collected from
ESG-related news articles acquired from ESGTo-
day (English)1, RSEDATANEWS (French)2, and
Novethic (French)3. Given a news article, anno-
tators are asked to select the related issues from
the 35 pre-defined ESG Key Issues by MSCI4, and
then label it with the most relevant issues. The En-
glish and French datasets are annotated by experts
(2 annotators and 1 reviewer) in Fortia’s Data &
Language Analyst team.

Many events comprise multiple components, in-
cluding various pillars (e.g., Environment + Social),
themes within the same pillar (e.g., Environment
> Natural Capital + Pollution & Waste), or even
within the same theme (e.g., Environment > Pol-
lution & Waste > Toxic Emissions & Electronic
Waste). Although key issues are clearly defined
to establish boundaries between somewhat similar
themes, real-life events are not always so clear-cut.

For that reason, we have chosen to divide a news
article into multiple paragraphs based on the topic.

1https://www.esgtoday.com/category/
esg-news/companies/

2https://www.rsedatanews.net/
3https://www.novethic.fr/actualite/

environnement.html
4https://www.msci.com/our-solutions/

esg-investing/esg-ratings/
esg-ratings-key-issue-framework

In both the English and French task settings, the ob-
jective is to predict one of the ESG issues based on
a specific paragraph extracted from a news article.

2.2 Chinese Dataset

Our Chinese dataset is sourced from ESG-related
news articles available on ESG-BusinessToday
(Chinese)5. Seven postgraduate students from the
Graduate Institute of Information Management at
National Taipei University undertake the annota-
tion of this dataset. To maintain consistency and ac-
curacy in annotation, we organize bi-weekly meet-
ings to address arising issues and ensure a consen-
sus on the guidelines and labels.

Given that Chinese news articles are annotated
on an article-based framework, each article may
pertain to more than one ESG issue, which calls for
a multi-label task setting in the Chinese dataset.

Furthermore, we noted that some articles on the
ESG news platform do not truly align with ESG
or ESG scoring principles. To account for this
discrepancy, we have included an additional label
to identify articles that are not related to ESG.

To gain a more comprehensive understanding
of ESG issues, we have merged the SASB Stan-
dard with MSCI’s guidelines, which has yielded 44
issues.6

3 Methods

3.1 French and English

Exploring diverse BERT language model strate-
gies, such as SVM (Cortes and Vapnik, 1995) with

5https://esg.businesstoday.com.tw/
6For a more detailed definition, please refer to the

following document: https://drive.google.com/
file/d/12ia_CF3nrjv_R8s_e44SLnZnNcHH-D0_
/view?usp=sharing
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Submission Precision Recall F1-Score
NCMU_English_1 0.69 0.70 0.69
TradingCentralLabs_English_1 0.67 0.68 0.67
NCMU_English_2 0.68 0.66 0.66
kaka-ML-ESG_English_Test_gpt 0.67 0.67 0.65
Jetsons_English_1 0.64 0.65 0.64
Jetsons_English_2 0.63 0.64 0.63
LASTI_English_2 0.64 0.63 0.63
NCMU_English_3 0.65 0.63 0.63
HKESG_English_3 0.63 0.63 0.62
Jetsons_English_3 0.63 0.64 0.62
kaka-ML-ESG_English_Test_word2vec_tfidf 0.62 0.63 0.61
LASTI_English_3 0.62 0.62 0.61
TradingCentralLabs_English_2 0.61 0.63 0.61
HKESG_English_1 0.61 0.62 0.60
kaka-ML-ESG_English_Test_roberta 0.62 0.62 0.60
LASTI_English_1 0.61 0.60 0.60
HKESG_English_2 0.59 0.59 0.58
TradingCentralLabs_English_3 0.59 0.59 0.58
HHU_English_3 0.60 0.58 0.57
HHU_English_1 0.55 0.59 0.56
HHU_English_2 0.42 0.36 0.35
LivermoreSXI_English_1 0.36 0.33 0.30
wwy_test_English_1 0.28 0.37 0.30

Table 2: Experimental results in English Dataset.

SBERT embeddings (Reimers and Gurevych, 2019)
and RoBERTa, Linhares Pontes et al. (2023) con-
duct experiments on monolingual and multilingual
data. Their findings reveal that RoBERTa per-
forms best on monolingual data for the English
dataset, while on the French dataset, RoBERTa
excels on multilingual data, achieving superior
results. Glenn et al. (2023) generate synthetic
data using a large language model - gpt-3.5-turbo
- in order to augment the training data which is
then used to fine-tune the multilingual BERT for
classification. Hanwool et al. (2023) use gener-
ative models like Pythia (Biderman et al., 2023),
CerebrasGPT (Dey et al., 2023), and OPT (Zhang
et al., 2022), along with the zero-shot (Xian et al.,
2017), GPT3Mix (Yoo et al., 2021) and trans-
lation as augmentation techniques to tackle the
data imbalance issue; then, explore encoder mod-
els, RoBERTa (Liu et al., 2019), DeBERTa (He
et al., 2021), and FinBERT (Araci and Genç, 2020).
Mashkin and Chersoni experiment with ESG Trans-
formers (Mukut, 2020), and for classification, Lo-
gistic Regression, Random Forests and Support
Vector Machine achieving the best results with
SVM classifier for both languages. Billert and
Conrad introduce adapter modules (Houlsby et al.,
2019) to a multilingual base model, mBERT (De-
vlin et al., 2019), then train it using Masked Lan-
guage Modeling (MLM) (Pfeiffer et al., 2020).

3.2 Chinese

Wang et al. (2023) leverage MacBERT (Cui
et al., 2020)—a contrastive learning frame-
work—enhancing performance using both unla-
beled and pseudo-labeled data. Linhares Pontes
et al. (2023) explores the performance of
SVM (Cortes and Vapnik, 1995) when combined
with SentenceBERT’s embeddings (Reimers and
Gurevych, 2019) (SBERT). Additionally, Glenn
et al. (2023) outlines a method for utilizing syn-
thetic data generated by a large language model,
ChatGPT,7 to enhance the performance of multilin-
gual BERT (mBERT).

4 Results

Performance metrics, including precision, recall,
and F1-score, were utilized to evaluate the English
and French datasets. Given the distinctive task set-
tings of the Chinese dataset, micro-averaged F1,
macro-averaged F1, and weighted F1 were adopted
for evaluation. Tables 2, 3, and 4 display the ex-
perimental results from the participants’ system
outputs in the official evaluation round.

We find that BERT-like language models with
data augmentation by LLMs perform well for the
English and French results. NCMU (Hanwool
et al., 2023) ranks first and second in these two
datasets. Jetsons (Glenn et al., 2023) also uses

7gpt-3.5-turbo: https://platform.openai.com/
docs/models/gpt-3-5
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Submission Precision Recall F1-Score
Jetsons_French_2 0.80 0.79 0.78
NCMU_French_1 0.80 0.79 0.78
HHU_French_3 0.80 0.77 0.77
Jetsons_French_1 0.78 0.78 0.77
HHU_French_1 0.78 0.75 0.75
TradingCentralLabs_French_2 0.76 0.76 0.75
kaka-ML-ESG_French_Test_gpt 0.75 0.75 0.74
HHU_French_2 0.76 0.74 0.73
TradingCentralLabs_French_3 0.74 0.74 0.73
HKESG_French_3 0.72 0.72 0.71
TradingCentralLabs_French_1 0.73 0.72 0.71
Jetsons_French_3 0.70 0.71 0.70
NCMU_French_2 0.71 0.70 0.69
HKESG_French_1 0.69 0.68 0.67
HKESG_French_2 0.65 0.62 0.62
kaka-ML-ESG_French_Test_word2vec_tfidf 0.62 0.61 0.60
LASTI_French_1 0.60 0.59 0.59
LASTI_French_2 0.61 0.60 0.59
LASTI_French_3 0.56 0.56 0.55
LivermoreSXI_French_1 0.32 0.33 0.28
kaka-ML-ESG_French_Test_roberta 0.16 0.25 0.18

Table 3: Experimental results in French Dataset.

Submission Micro F1 Macro F1 Weighted F1
CheryFS_Chinese_2 (Wang et al., 2023) 0.391 0.180 0.392
TradingCentralLabs_Chinese_3 (Linhares Pontes et al., 2023) 0.279 0.137 0.263
TradingCentralLabs_Chinese_2 (Linhares Pontes et al., 2023) 0.267 0.103 0.233
TradingCentralLabs_Chinese_1 (Linhares Pontes et al., 2023) 0.212 0.073 0.179
Jetsons_Chinese_1 (Glenn et al., 2023) 0.134 0.042 0.102
Jetsons_Chinese_3 (Glenn et al., 2023) 0.134 0.042 0.102
Jetsons_Chinese_2 (Glenn et al., 2023) 0.121 0.038 0.091
CheryFS_Chinese_1 (Wang et al., 2023) 0.089 0.074 0.123

Table 4: Experimental results in Chinese Dataset.

synthetical data to get the best performance in the
French dataset.

For the Chinese dataset, the performance is
lower due to the multiple-label task setting. The
MacBERT with data augmentation method pro-
posed by Wang et al. (2023) gets the best perfor-
mances.

5 Conclusion

This paper presents the findings of the ML-ESG
shared task and highlights the impact of data aug-
mentation methods on performance, regardless of
the language employed. It is worth noting, how-
ever, that the effectiveness of data generated by
LLMs may not always yield favorable outcomes.
Selecting the optimal LLM for data augmentation
remains an unresolved challenge, with participants
opting for a practical approach of utilizing data gen-
erated by diverse augmentation methods. Moving
forward, our next objective within the ML-ESG ini-
tiative is to determine whether a given news event
can be classified as an opportunity or risk within
the realm of ESG considerations.
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Abstract

In this study, we, the CheryFS team, present a
model solutions dedicated to the task of "Multi-
Lingual ESG Issue Identification" in the Chi-
nese track. The objective is to predict the ESG
(Environmental, Social, and Governance) la-
bel associated with each news article. Our ap-
proach integrates supervised and unsupervised
data into a comprehensive contrastive learning
framework of a MacBERT model with further
pretrained. This innovative methodology has
resulted in Micro-F1 score of 0.412 on the val-
idation dataset. Furthermore, we perform a
meticulous analysis of the model’s optimiza-
tion strategy, providing valuable insights for
future research.

1 Introduction

Natural Language Processing (NLP) harnesses the
capability to extract extensive semantic informa-
tion from copious volumes of unstructured data,
demonstrating immense potential for application
in the financial services industry. By analyzing
diverse types of unstructured data, including data
reports, news articles, text chat records, and re-
search reports, NLP can effectively contribute to
scenario recognition and risk analysis in various
financial contexts. Commonly, individuals express
their opinions on financial products, services, in-
vestments, and stock markets through news or so-
cial media channels. Thus, the strategic mining
of such financial sentiments can inform decision-
making, offer valuable advice, and shape user or
business understanding.

The "Multi-Lingual ESG Issue Identifica-
tion"(Chen et al., 2023) subtask aims at uncovering
themes related to Environmental, Social, and Cor-
porate Governance (ESG) in Chinese, English, and
French news articles. The challenge is defined as
follows: Given an article derived from an ESG-
focused news website, the model is expected to
predict its potentially relevant themes. English and

French datasets include a single theme per article,
while the Chinese dataset may contain multiple
themes. Due to the limitation of time, our team
engaged with the Chinese track of this task.

In our research, we incorporated labeled data,
unlabeled data obtained through web crawlers,
and pseudo-labeled data for data augmentation.
Our initial model was constructed around the
MacBERT(Cui et al., 2020) architecture. We en-
deavored to enhance its performance by 1) investi-
gating a variety of data augmentation strategies, 2)
implementing further pretrained with all accessible
data, 3) fusing our pre-trained model from the sec-
ond stage with contrastive learning(Khosla et al.,
2021) to boost sensitivity to disparate topics, and
4) consolidating the results of several analogous
models with different parameters through ensem-
ble methods.

2 Related Work

2.1 Data Augmentations

Data augmentation(Feng et al., 2021) has recently
attracted heightened interest within the Natural
Language Processing (NLP) field due to develop-
ments in low-resource domains.

Rule-based strategies are straightforward to im-
plement but typically result in incremental perfor-
mance improvements. Wei and Zou (2019) pro-
poses EDA, a set of token-level random perturba-
tion operations including random insertion, dele-
tion, and swap. Techniques that leverage trained
models may entail higher implementation costs but
introduce greater data variability, leading to sub-
stantial performance enhancements.

Model-based techniques tailored for downstream
tasks can significantly impact performance. The
popular method, back translation(Sennrich et al.,
2016), translates a sequence into another lan-
guage and then back into the original language.
Kobayashi (2018)(contextual augmentation) feeds
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surrounding words to large model like BERT,
RoBERTA(Liu et al., 2019) or XLNET(Yang et al.,
2020) to inference the most suitable word.

In our research, we employ a combination of
rule-based and model-based techniques to generate
pseudo-labeled data from labeled data.

2.2 Sentence Representation and
Self-supervised

The prevalent paradigm for most NLP research
since 2018 entails a two-stage training process.
Initially, a neural language model (LM), typically
comprising millions of parameters, is trained on
extensive unlabeled corpora through various pre-
training tasks. Subsequently, the word representa-
tions acquired in the pre-trained model are repur-
posed during fine-tune for a downstream task. Sev-
eral self-supervised pre-training tasks have been
proposed to pre-train language models, such as
Masked Language Modeling (MLM) (Devlin et al.,
2019), and MAsked Sequence to Sequence pre-
training (MASS) (Song et al., 2019). Sun et al.
(2020) has proved that further pre-train BERT
with masked language model tasks on the domain-
specific data can improving the performance of the
model.

In our research, we utilize all available data for
the further pre-trained of the MacBERT model,
which results in a more robust representation.

2.3 Contrastive Learning
Contrastive learning has proven its efficacy in learn-
ing robust representations, particularly within the
natural language domain. In recent years, multi-
ple studies have investigated the construction of
sentence embeddings using contrastive learning.
The fundamental concept of contrastive learning
involves generating positive and negative sentence
pairs, with the aim of drawing positive pair rep-
resentations closer while distancing the negative
ones.

Several strategies have been proposed to realize
this objective. Fang et al. (2020) employs con-
trastive self-supervised learning at the sentence
level with back-translation data augmentation. Gao
et al. (2022) uses both unsupervised denoising ob-
jective and supervised natural language inference
signals to learn sentence embeddings.

In our research, we introduce a contrastive loss
function that encourages data with similar seman-
tics to cluster together, while carefully avoiding the
repulsion of false negatives.

Dataset C L L L̂ Wc

Train 900 45 2.95 59.06 1400
Val 100 37 2.61 7.05 1378
Test 238 42 2.81 15.95 1338

Unlabeled 1000 - - - 1410
Pseudo 2000 45 2.95 59.06 1396

Table 1: Details of the datasets. C: the amounts of the
dataset; L: the numbers of labels; L: average labels
per instance; L̂: average instances per label; Wc: the
average char per instance in content;

3 Dataset and Methods

The ESG dataset comprises columns such as title,
content, and corresponding topic labels. The Chi-
nese track training set includes 900 instances, the
validation set includes 100 instances, and the test
set encompasses 238 instances.

In addition to the labeled data, we have amassed
1000 instances of unlabeled data utilizing website
crawlers. The distribution of this unlabeled data
aligns with that of the labeled data.

Besides, we implement data augmentation meth-
ods such as EDA, back translation, and contextual
augmentation yielding 2000 instances of pseudo-
labeled data.

The distribution of the dataset is illustrated in
Table 1.

3.1 MacBERT with Further Pre-trained

Given the impressive results BERT has achieved
across various domains, we utilize the MacBERT
model as the backbone of our model. However,
while the MacBERT model is pre-trained on a
general domain corpus, all training data derives
from a specific domain’s small corpus. Directly
fine-tuning our BERT model could lead to over-
fitting. To mitigate this, we further pre-trained
BERT-Chinese with masked language model tasks
on all the labeled and unlabeled data.

Following this additional pre-trained, we input a
sentence comprising m different tokens into BERT,
extracting token embeddings from the last hidden
layer as [CLS, T1, T2, · · · , Tm], where CLS is a
special token denoting the start of the sentence for
classification. The sentence representation is then
obtained by applying mean-pooling to the token
embeddings with a fixed length:

u = mean− pooling([CLS, T1, T2, · · · , Tm])
(1)
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We place a binary classifier at top of the represen-
tation derived from the BERT model.

3.2 Constrastive Learning
We introduce a contrastive learning objective aimed
at attracting similar instances and repelling dis-
parate ones within the embedding space to achieve
superior classification scores. For additional de-
tails, please refer to section 5.2.

In practice, we begin by encoding the instances
with the further pre-trained model described ear-
lier. Then, for a given instance xi, all other in-
stances in the batch sharing the same label yj with
it constitute the positive sample set Sj . The set
of positive samples under each label is denoted by
S = S1, S2, · · · , Sq, where q represents the topic
number of instance xi. We can then define the con-
trastive learning loss for each instance across the
batch as

Lcl =
−1

q

∑
Sj∈S

∑
s∈Sj

log
func (Ei, Es)∑

k∈I/{i} func (Ei, Ek)

(2)
func (u, v) = exp (sim (u, v) /τ) (3)

where Ei denotes the sentence representation,
sim(·) indicates the cosine similarity function, τ
is the contrastive learning temperature.

Besides, we combine the constrastive loss with
cross-entropy and train them jointly. The overall
training objective is calculated as follows:

L = α · Lcl + (1− α) · Lce (4)

where α is a parameters which determined the im-
portance of the contrastive loss.

3.3 Ensemble
We also construct an ensemble model using vari-
ous sizes of MacBERT. Specifically, we train two
instances of MacBERT-Large and two instances of
MacBERT-Base, each with a different seed. We
amalgamate all the models’ predictions by aver-
aging their probabilities, thereby enhancing the
overall accuracy of the prediction.

4 Experiments

4.1 Training Setup
We adopt MacBERT-Large and MacBERT-Base
models as our backbone model. For self-supervised
pre-training, we employ all the labeled and unla-
beled data with a batch size of 32 across 25 epochs,

Models Micro-F1 Macro-F1
Base 0.389 0.173
Large 0.407 0.178

Ensemble 0.412 0.181

Table 2: Performance of all the models on the validation
set.

implementing early-stopping validated with a pa-
tience of 100 steps. The pre-training learning rate
for all models is set to 1e− 5.

When fine-tuning with constrative learning, we
utilize all the labeled and pseudo-labeled data with
a batch size of 16 for 20 epochs. The learning rate
for the BERT-Chinese-Large model is set to 5e− 5,
and for the MacBERT-Base model, it’s set to 4e−5.
All models are trained across 15 epochs.

4.2 Results

Table 2 shows the appearance on the validation set.
The table shows that the MacBERT-Large model
with further pretrained performs the best on the
validation set for single model with an Micro-F1
score of 0.407. The last submitted ensemble mod-
els achieve an Micro-F1 score of 0.412 on the val-
idation set, while achieve 0.3914 on the test set.
Unfortunately, due to time constraints, we were
unable to record additional results on the test set.

5 Analysis

5.1 Effect of Data Augmentaion Methods

We experimented with three different data aug-
mentation methods: (1) Easy Data Augmentation
(EDA); (2) Back-Translation (BT); and (3) Contex-
tual Augmentation (CA). These experiments were
built upon the further pre-trained BERT-Chinese-
Base model, with the augmented data utilized for
contrastive learning.

The results, displayed in Table 3, show that
among the single data augmentation methods, CA
yielded the highest improvement in model per-
formance, achieving a Micro-F1 score of 0.384.
Among the combined augmentation methods, CA
and BT had the most significant impact on model
performance, securing an increase of 0.389. As a
result, we ultimately selected a combination of CA
and BT for data augmentation.

We delved into the differences between these
three methods and discovered a potential reason for
the ineffective EDA data augmentation scheme. It
appeared that the key tokens edited by the method
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Models Micro-F1 Macro-F1
EDA 0.378 0.164
BT 0.383 0.168
CA 0.384 0.169

EDA+BT 0.381 0.167
EDA+CA 0.382 0.167
BT+CA 0.389 0.173

EDA+BT+CA 0.386 0.171

Table 3: Performance of all the data augmentaion meth-
ods on the validation set.

was not relevant to the topic label corresponding
to the original sentence, or some key words were
omitted, leading to incorrect annotation. Here are
some examples:

Original content: "· · ·但随著全球零排放航空
旅行的兴趣增加，· · ·", the related topic label is
"E01 -气候变化|碳排放量(Carbon Emissions)".

BT content: "· · ·但当全球零排放航空旅行的
兴趣增加，· · ·"

MG content: "· · ·但随著全球零排放旅游的兴
趣增加，· · ·"

EDA content: "· · ·但随著全球航空旅行的增
加兴趣，· · ·"

We can observe that the lack of token "零排放"
has resulted in a disconnection between sentence
semantics and their corresponding topic.

5.2 Effect of Contrastive Learning

We explored three implementations of contrastive
learning to determine the most effective method in
MacBERT-Base model. For our analysis, let’s con-
sider a batch composed of K samples, denoted as
Batch = (X1, Y1), (X2, Y2), · · · , (XK , YK). For
a given sample i, where Xi represents a text se-
quence and its topic label set is denoted as Yi, the
model’s encoding provides us the sentence repre-
sentation Ei and the topic probability Qi of Xi.
Here, Qi = Qi1, Qi2, · · · , QiL, with L represent-
ing the total number of topic labels.

We represent Yi as the one hot encoding of the
label, defined as Yi = y1, y2, · · · , yL. For a given i-
th topic label yi ∈ 0, 1, yi = 0 signifies the absence
of this type of label in the text, while yi = 1 implies
its presence.

We tested three implementations of contrastive
learning:

(1) strictly contrastive learning(SCL) This ap-
proach mandates that a sample can serve as a pos-
itive contrastive sample of the anchor point only

Models Micro-F1 Macro-F1
SCL 0.377 0.168
JSCL 0.385 0.171
SLCL 0.389 0.173

Table 4: Performance of different contrastive learning
methods on the validation set.

when their label sets exactly match. SCL is rigor-
ous and does not consider samples that partially
overlap with the anchor label set.

(2) Jaccard Similarity Contrastive Loss
(JSCL)(Li et al., 2022): This method works on
samples to varying degrees based on the similarity
of their labels. For a given sample, JSCL draws
samples with the exact same label as closely as
possible, while only slightly pulling in samples
that share some labels.

(3) Stepwise Label Contrastive Loss (SLCL):
While the previous two methods primarily consider
multiple emotions simultaneously, SLCL considers
different labels separately, computes the contrast
loss independently, and then combines each emo-
tion’s losses.

As the result shown in Table 4, SLCL achieve
the best score and we choose this method as our
contrastive learning method.

6 Conclusion

In this paper, we discussed the methodologies em-
ployed for the multi-lingual ESG issue identifica-
tion (ML-ESG) shared task at FinNLP 2023. Our
team’s proposed MacBERT model, equipped with
further pre-trained and contrastive learning strate-
gies, achieved the highest ranking in the Chinese
track. Our experimental results underscored the
efficiency of further self-supervised pre-training
and contrastive learning approaches. Comprehen-
sive experiments confirmed our method’s efficacy
and helped discern the aspects contributing to our
performance enhancements.

7 Limitations

Despite our promising results, our study was lim-
ited by time and resource constraints. Conse-
quently, we could not undertake semi-supervised
experiments and few-shot learning experiments.
These methodologies present intriguing prospects
for future exploration.
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Abstract

Environmental, Social, and Governance (ESG)
has been used as a metric to measure the neg-
ative impacts and enhance positive outcomes
of companies in areas such as the environment,
society, and governance. Recently, investors
have increasingly recognized the significance
of ESG criteria in their investment choices,
leading businesses to integrate ESG principles
into their operations and strategies. The Multi-
Lingual ESG Issue Identification (ML-ESG)
shared task encompasses the classification of
news documents into 35 distinct ESG issue
labels. In this study, we explored multiple
strategies harnessing BERT language models
to achieve accurate classification of news doc-
uments across these labels. Our analysis re-
vealed that the RoBERTa classifier emerged as
one of the most successful approaches, secur-
ing the second-place position for the English
test dataset, and sharing the fifth-place posi-
tion for the French test dataset. Furthermore,
our SVM-based binary model tailored for the
Chinese language exhibited exceptional perfor-
mance, earning the second-place rank on the
test dataset.

1 Introduction

Financial markets and investors play a crucial role
in advancing the transition towards a more sustain-
able economy by actively promoting investments
in companies that adhere to ESG (Environment,
Social, and Governance) principles1. In today’s
landscape, there is a burgeoning interest among in-
vestors in assessing the sustainability performance
of firms (Kim and Li, 2021). Consequently, it
becomes imperative to efficiently identify and ex-
tract pertinent information pertaining to companies’
ESG strategies.

To facilitate this process, the application of NLP
(Natural Language Processing) techniques tailored

1https://www.investopedia.com/terms/e/environmental-
social-and-governance-esg-criteria.asp

to the finance and ESG domain can significantly aid
in the identification and processing of relevant in-
formation. By leveraging these advanced methods,
valuable insights can be gleaned from vast amounts
of financial data and reports, enabling informed
investment decisions aligned with sustainable prin-
ciples (Armbrust et al., 2020; Mehra et al., 2022).

Indeed, Armbrust et al. (2020) analyzed the im-
pact of a company’s environmental performance,
on the connection between the company’s disclo-
sures and financial performance. The authors, dis-
covered that the textual information in the Man-
agement’s Discussion and Analysis of Financial
Conditions and Results of Operations section alone
does not provide insights into the future financial
performance of the company. However, they did
find evidence that NLP methods can extract infor-
mation about the environmental performance of the
company. Mehra et al. (2022) focused on building
a BERT-based model to predict two tasks: deter-
mining whether there was a change or no change
in environmental scores; and identifying a positive
or negative change (if any) in the environmental
scores of companies based on ESG-related text
found in their 10-Q filings. Their results demon-
strated that their model can predict not only envi-
ronmental risk scores but also assessing Social and
Governance risk scores for companies.

The Multi-Lingual ESG Issue Identification
(ML-ESG) shared task focus on the classification
of ESG issue of news articles (Chen et al., 2023).
Based on the MSCI ESG rating guidelines, the or-
ganizers created multilingual news articles and cat-
egorized them into 35 key ESG issues. The target
languages include English, Chinese, and French,
enhancing the task’s cross-lingual scope and en-
riching the diversity of the dataset.

The main challenge of this task lies in accurately
identifying the ESG issues discussed in each article.
To address this challenge, the system must possess
comprehensive knowledge about the specific ESG
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issues addressed in each article. In this study, we
propose a range of strategies that leverage the capa-
bilities of BERT language models. Among our var-
ious approaches, our RoBERTa classifier achieved
outstanding results and securing the second-highest
scores for the English test set, and sharing the fifth-
place position for the French test dataset of the
shared task. Additionally, our SVM-based binary
model achieved the second-best results on the Chi-
nese test dataset. These findings demonstrate the
effectiveness of our proposed strategies in accu-
rately classifying ESG issues in multilingual news
articles.

2 Multi-Lingual ESG Issue Identification
shared task

The Multi-Lingual ESG Issue Identification (ML-
ESG) shared task presents a compelling challenge
focused on ESG issue identification. Drawing from
the well-established MSCI ESG rating guidelines2,
ESG-related news articles can be categorized into
35 distinct ESG key issues. For this task, partic-
ipants are expected to devise systems capable of
recognizing and classifying the specific ESG issue
associated with an article (Chen et al., 2023).

In essence, the objective of the ML-ESG shared
task is to develop robust systems that demonstrate
awareness of the ESG issues encompassed within
each article. By accurately classifying the ESG
issues, participants can effectively contribute to the
advancement of ESG analysis and understanding
within the domain of multi-lingual news articles.

2.1 Datasets
The organizers provided a multilingual datasets
for Chinese, English and French languages. They
annotated these datasets based on the MSCI ESG
rating guidelines. More precisely, these datasets
are composed of news articles that were classi-
fied into 35 ESG key issues. The English and
French datasets contain 1200 articles and the Chi-
nese dataset contains 1000 articles. More details
about the datasets are available at (Chen et al.,
2023).

3 BERT-based approaches

We applied several strategies to classify the arti-
cle in the ESG issues classes. As BERT-based
models has proved the performance of general and

2https://www.msci.com/our-solutions/esg-investing/esg-
ratings

financial applications (Pontes and Benjannet, 2021;
Linhares Pontes et al., 2022; Yang et al., 2022), our
following strategies are based on the BERT models
on their architectures.

3.1 SVM+EE
Inspired by the performance of semantic similar-
ity (Linhares Pontes et al., 2018) and the per-
formance of the Linhares Pontes et al. (2022)’s
model in classifying the ESG taxonomies, this ap-
proach analyzes the ESG issue classification by
considering all articles pertaining to a specific
ESG issue as similar, as they inherently share
the same underlying semantic information. To
facilitate this analysis, we employ the SBERT
(Sentence-BERT) model (Reimers and Gurevych,
2019), which projects the articles onto a shared
dimensional space.

To classify these paraphrased articles into their
respective ESG issue classes, we employ a Support
Vector Machine (SVM) model (Platt, 2000). The
SVM model is trained to analyze and categorize
the articles based on their semantic similarity and
the corresponding ESG issue classes.

In our methodology, we further enhance the clas-
sification process by incorporating the probability
of each class provided by the SVM, along with the
cosine distance between the SBERT representation
of the article and the SBERT representation of the
corresponding ESG issue definition (i.e. Esg issue
Embeddings (EE)). This combined approach allows
us to capture the semantic relationships between
articles and ESG issue classes, enabling more ac-
curate and robust classification results.

3.2 RoBERTa
We present an approach for article classification,
leveraging the capabilities of RoBERTa-based lan-
guage models (Liu et al., 2019) in conjunction with
a feed-forward multi-layer perceptron. Our pro-
posed RoBERTa classifier effectively captures con-
textual information within sentences, enabling ac-
curate classification into distinct ESG issue classes.

To extract sentence context and facilitate classi-
fication, we utilize the representation of the special
[CLS] token from the final layer of the BERT-based
language models. Furthermore, we incorporate a
feed-forward layer to enhance the classification
process, accurately assigning input articles to their
respective ESG issue classes.
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3.3 RoBERTa+EE
Delving deeper into the realm of neural networks,
we have extended the RoBERTa classifier by incor-
porating ESG issue embeddings (EE). More pre-
cisely, The architecture of our model integrates
RoBERTa-based language models with article em-
beddings and ESG issue label definition embed-
dings using SBERT model. This integration en-
ables us to perform a more comprehensive analysis
of the article and classify it accurately into one of
the ESG issue classes.

To extract the contextual information and aid
in classification, we employ the representation of
the special [CLS] token from the final layer of the
BERT-based language models, along with the incor-
poration of article and ESG issues representations.
By combining these representations, we capture a
richer understanding of the article’s content and its
relationship to all ESG issues. Finally, our model
incorporates a feed-forward layer that combines
all this information on the classification of input
articles into their respective ESG issue classes.

3.4 RoBERTa+CNN+SVM
This architecture leverages the combined strength
of the RoBERTa language model, a Convolutional
Neural Network (CNN) (O’Shea and Nash, 2015),
and a SVM to extract diverse features from articles
at various levels. Firstly, the RoBERTa language
model generates token embeddings for an input
article, taking into account its contextual informa-
tion. Next, the CNN layer performs five convolu-
tions on these token embeddings, capturing differ-
ent features within the contextualized tokens. This
enables the CNN to extract local patterns and fea-
tures from the textual data, effectively capturing
important information across different scales. The
final layer of the neural network consists of a feed-
forward layer that classifies the output of the CNN
into respective ESG issue classes.

Once the neural network model is trained, we
use an SVM model to classify the articles into ESG
issue classes. To accomplish this, we feed the rep-
resentation of the articles, which is generated by
the previously described CNN, as input to the SVM
model.

4 Experimental setup and evaluation

4.1 Evaluation metrics
All system outputs were evaluated by examining
key performance metrics such as precision, recall,

and F1-score. Precision represents the number of
well predicted positives divided by all the posi-
tives predicted. Recall measures the number of
well predicted positives divided by the total num-
ber of positives. Finally, the F1-score takes into
account both precision and recall, providing a bal-
anced assessment of the system’s performance in
identifying and classifying ESG issues.

4.2 Training procedure
The dataset provided by the organizers was di-
vided into two parts: 70% was allocated for
training purposes, while the remaining 30% was
set aside for development. To set up the meta-
parameters for each approach, we used the devel-
opment dataset. Our SBERT model uses the pre-
trained model ‘sentence-transformers/paraphrase-
multilingual-mpnet-base-v2’3 to generate the em-
beddings of articles and ESG issue definitions for
all languages in the same dimensional space.

For all approaches, we created two models ver-
sions with different training datasets. In the first
version, our classifier model was trained exclu-
sively on target language data (monolingual). For
the second version, we combined English and
French training data (multilingual) to train our clas-
sifier models. The SVM models were trained using
a linear kernel to classify the article embeddings
provided by the SBERT model into ESG issue la-
bels. For BERT-based models, the last layer incor-
porates a dropout of 0.2 to improve the model’s
generalization ability. Additionally, we used the

’xlm-roberta-large’ for the multilingual training and
French and Chinese models, and ’roberta-large’ for
the English model.

Once the meta-parameters were defined, we pro-
ceeded to train the model using both the train and
development datasets.

4.3 Experimental evaluation
In order to select the best models for the ML-ESG
shared task, we evaluated all models on the de-
velopment dataset. For the English dataset, the
RoBERTa classifier using only monolingual data
achieved the best results. The use of SBERT to
represent the article and ESG issue embeddings did
not add relevant information to improve the perfor-
mance of our classifiers. Interestingly, despite the
simplest model being the SVM+EE trained on the

3https://huggingface.co/sentence-
transformers/paraphrase-multilingual-mpnet-base-v2
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English dataset, it achieved similar results to the
BERT+CNN+SVM model.

Approach Acc. MF1 WF1
SVM+EE

monolingual
0.66 0.59 0.65

SVM+EE
multilingual

0.61 0.57 0.6

RoBERTa
monolingual 0.71 0.67 0.71

RoBERTa
multilingual

0.69 0.67 0.69

RoBERTa+EE
monolingual

0.7 0.63 0.69

RoBERTa+EE
multilingual

0.69 0.68 0.69

BERT+CNN+SVM
multilingual

0.66 0.61 0.65

Table 1: English results for the development dataset.
The best results are highlighted in bold. Acc: accuracy,
MF1: macro average f-score, and WF1: weighted aver-
aged f-score.

Differently from the English model, the use of
multilingual data to train our models improve the
results when compared with their respective mono-
lingual version. The RoBERTa classifier using mul-
tilingual data achieved the best results.

Approach Acc. MF1 WF1
SVM+EE

monolingual
0.66 0.63 0.66

SVM+EE
multilingual

0.69 0.69 0.68

RoBERTa
monolingual

0.71 0.7 0.71

RoBERTa
multilingual 0.73 0.72 0.73

RoBERTa+EE
monolingual

0.72 0.72 0.72

RoBERTa+EE
multilingual

0.73 0.71 0.72

Table 2: French results for the development dataset. The
best results are highlighted in bold. Acc: accuracy, MF1:
macro average f-score, and WF1: weighted averaged
f-score.

For the Chinese model, we utilized the SVM
model trained on the representation provided by
the SBERT model. This allowed us to classify the
ESG issue classes in a binary mode. We employed
a binary classifier for each ESG issue and then

selected the ESG issue classes with the highest
probabilities as the output of our classifiers.

4.4 Official results
The organizers published the official results for
each language. Our models were labeled as Trad-
ingCentralLabs (TCL). For the Chinese dataset, we
submitted three runs (Table 3). All runs use the
same model but the number of ESG issue labels
output change for each one of them. More pre-
cisely, the run 1 provides only the most probable
ESG issue class as answer, the run 2 uses the top
2 most probable classes and run 3 uses the top 3
ESG issue classes.

The superior performance of run 3, compared to
other runs, can be attributed to the prevalence of
multiple ESG issue classes for each article in the
gold data. It is worth noting that many examples in
the gold data encompassed multiple classes, with
some cases containing up to 8 classes. As the Chi-
nese test data consisted of several examples with
multiple ESG issue classes, run 3 achieved the best
results by predicting the top 3 ESG issue classes.

This ability to accommodate the presence of mul-
tiple classes in certain cases elucidates why run 3
outperformed the others. Finally, our run 3 secured
the second position in the official ranking for the
Chinese data.

Runs Mic. F1 Mac. F1 WF1
CheryFS_2 0.3914 0.1799 0.3921

TCL_3 0.2790 0.1367 0.2633
TCL_2 0.2665 0.1032 0.2332
TCL_1 0.2115 0.0730 0.1791

Table 3: Official results for the Chinese test data. The
best results are highlighted in bold and our best results
are in italic. Micro (Mic.), macro (Mac.) and weighted
(WF1) F1-score.

For the English runs, we employed three dif-
ferent approaches (Table 4). The run 1 corre-
sponds to the RoBERTa classifier (monolingual),
the run 2 corresponds to the RoBERTa+EE clas-
sifier (monolingual) and the run 3 employed the
BERT+CNN+SVM classifier (multilingual). As
expected, the run 1 outperformed the other runs by
generalizing much better ESG issue labels. While
the gap in the results on the development data was
quite small, the run 1 increased the gap compared to
the runs 2 and 3 on test data. The RoBERTa classi-
fier obtained the second-place ranking, achieving a
score just 2 points lower than the NCMU_1 model.
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Runs P R F1
NCMU_1 0.69 0.70 0.69

TradingCentralLabs_1 0.67 0.68 0.67
TradingCentralLabs_2 0.61 0.63 0.61
TradingCentralLabs_3 0.59 0.59 0.58

Table 4: Official results for the English test data. The
best results are highlighted in bold and our best results
are in italic. P: precision, R: recall, and F1: f1-score.

We submitted three runs for the French test data
as well (Table 5). Run 1 used the SVM+EE model,
run 2 employed the RoBERTa classifier, and run 3
utilized RoBERTa+EE. All three runs were trained
using both the English and French training datasets.

Our run 2 achieved a commendable fifth place
in terms of F1-score, falling just 3 points short of
the top position. This highlights its competitive
performance and showcases its potential for accu-
rately classifying ESG issue classes in the French
language.

Runs P R F1
Jetsons_2 0.80 0.79 0.78

TradingCentralLabs_2 0.76 0.76 0.75
TradingCentralLabs_3 0.74 0.74 0.73
TradingCentralLabs_1 0.73 0.72 0.71

Table 5: Official results for the French test data. The
best results are highlighted in bold and our best results
are in italic. P: precision, R: recall, and F1: f1-score.

5 Conclusion

This paper presents the participation of Trading
Central Labs in the Multi-Lingual ESG Issue Iden-
tification evaluation campaign for financial docu-
ments. Our objective was to accurately classify
financial documents into ESG issue labels, and
to achieve this, we proposed several BERT-based
models.

Among our models, the one based on the
RoBERTa classifier emerged as a standout per-
former, securing the second-place ranking for
the English language. It was just 2 points be-
hind the top-performing model. Additionally, our
RoBERTa-based model also demonstrated its ca-
pability in the French language, sharing the fifth
place, with a slight margin of 3 points from the
leading result. Finally, our SVM-based model for
the Chinese data claimed the second-place ranking,
further illustrating our competitive performance.

These results underscore the competitive edge
and potential of our models in accurately classify-
ing ESG issue classes across different languages.
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Abstract

This paper presents our participation in the
FinNLP-2023 shared task on multi-lingual en-
vironmental, social, and corporate governance
issue identification (ML-ESG). The task’s ob-
jective is to classify news articles based on the
35 ESG key issues defined by the MSCI ESG
rating guidelines. Our approach focuses on the
English and French subtasks, employing the
CerebrasGPT, OPT, and Pythia models, along
with the zero-shot and GPT3Mix Augmenta-
tion techniques. We utilize various encoder
models, such as RoBERTa, DeBERTa, and Fin-
BERT, subjecting them to knowledge distilla-
tion and additional training.

Our approach yielded exceptional results, se-
curing the first position in the English text sub-
task with F1-score 0.69 and the second position
in the French text subtask with F1-score 0.78.
These outcomes underscore the effectiveness
of our methodology in identifying ESG issues
in news articles across different languages. Our
findings contribute to the exploration of ESG
topics and highlight the potential of leverag-
ing advanced language models for ESG issue
identification.

1 Introduction

Environmental, Social, and Governance (ESG) fac-
tors have gained significant attention in the realm of
corporate sustainability in recent years. Companies
are increasingly recognizing the profound impact
of ESG practices on their long-term success and
resilience. Numerous research have highlighted
the positive correlation between robust ESG strate-
gies and improved financial performance(Eccles
et al., 2019). For instance, a comprehensive meta-
analysis of over 2000 empirical studies revealed
a positive correlation between ESG and corporate
financial performance, indicating the integral role
of ESG in value creation(Gunnar et al., 2015). Con-
sequently, understanding and integrating ESG prin-
ciples into corporate strategies have become crucial

for ensuring sustainable and resilient businesses in
the modern era.

In parallel, there has been a growing recognition
of the importance of leveraging natural language
processing (NLP) techniques to incorporate ESG
factors effectively. The integration of NLP holds
great potential for enhancing our understanding of
ESG-related information and its impact on busi-
nesses and society. By leveraging NLP, we can
effectively analyze and extract insights from vast
amounts of textual data, such as news articles, to
gain deeper insights into companies’ ESG perfor-
mance and their societal impact.

Motivated by these developments, our team par-
ticipated in the FinNLP-2023 shared task on multi-
lingual ESG issue identification(ML-ESG)(Chen
et al., 2023). The objective was to classify ESG-
related news articles into 35 key issues based on
the MSCI ESG rating guidelines. To accomplish
this, We employed useful techniques such as Zero-
shot and GPT3Mix Augmentation. Furthermore,
we trained and evaluated various encoder models to
assess their performance in the English and French
text domains. Our best-performing model ranked
first in the English Text subtask and second in the
French Text subtask, highlighting the effectiveness
of our approach in advancing NLP capabilities for
ESG issue identification.

2 SharedTask ML-ESG

The SharedTask ML-ESG focuses on identifying
ESG issues in news articles written in multiple lan-
guages. It builds upon the FinSim4-ESG shared
task(Kang and El Maarouf, 2022) from FinNLP-
2022. Our participation was specifically in the
English subtask and the French task. The goal is to
classify news articles into 35 ESG key issues based
on MSCI ESG rating guidelines. The dataset in-
cludes separate training and testing sets in English
and French, with 1,119 English articles and 1,200
French articles in the training set, and 300 articles
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Figure 1: Overview of our approaches

in each language in the testing set.

3 Approaches

The primary objective of our work is to distill the
capabilities of various well-known generative large
language models to create a lightweight yet power-
ful encoder model. ESG Issue classification allows
for generative model and sequence-to-sequence
model approaches, but due to limitations in our
computing resources and time constraints, we de-
vised an approach focused primarily on the encoder
models. Given the ML-ESG task’s limited sample
size (around 1200) and imbalanced label distribu-
tion, training on the available data alone is insuf-
ficient to fully train on 35 labels. To overcome
these challenges, we employed three renowned
open-source generative models: Pythia(Biderman
et al., 2023), CerebrasGPT(Dey et al., 2023), and
OPT(Zhang et al., 2022). Due to limitations in
computational resources, we utilized a 12B model
for Pythia, while CerebrasGPT and OPT utilized
13B models.

3.1 GPT3Mix
To augment the available data, we employed the
GPT3Mix(Yoo et al., 2021) technique, which lever-
ages large-scale language models to generate syn-
thetic text samples. By blending real samples and
leveraging soft-labels derived from the language
models, GPT3Mix captures the intricacies of hu-
man language effectively. We integrated the MSCI
guideline’s label descriptions into the GPT3Mix
template, enhancing the generation process and en-
suring augmented data aligns with the desired label
semantics.

3.2 Zero-Shot Classification
The ML-ESG task includes English and French
subtasks, each with 35 classification criteria based

on the MSCI guideline. However, the complexity
of each criterion’s decision boundaries poses chal-
lenges when relying solely on the available train-
ing data. To address this, we performed zero-shot
classification(Xian et al., 2020) using ESG-related
news collected through web scraping. To prevent
prior exposure to the model, we excluded news
articles from the training set originating from the
same sources as the train set. We ensured label
consistency by utilizing additional data only when
Pythia, CerebrasGPT, and OPT provided identical
labeling.

3.3 Translation

To train both multilingual and monolingual models,
we leveraged translated versions of the English and
French training sets as additional data. For transla-
tion, we utilized the widely recognized translation
service, Deepl 1.

By employing these approaches, we aimed to op-
timize the use of generative models, apply data aug-
mentation through GPT3Mix, perform zero-shot
classification, and incorporate translated data to en-
hance the capabilities of our encoder models for
the ML-ESG task.

4 Experiments and Results

Our experiments were conducted in two phases. In
the first phase, our aim was to identify effective
encoder models and approaches by combining var-
ious techniques. In the second phase, we aimed to
build an optimal model based on the findings from
the first phase.

All experiments were conducted using the same
hyperparameters: learning rate of 3e-4, epoch of 20,
and optimizer of AdamW(Loshchilov and Hutter,
2019). The experiments were run on a single A100
GPU.

4.1 First Experiment

In the first experiment, we aimed to validate
the performance of various encoder models for
the ML-ESG task. We utilized well-known en-
coder models, including DeBERTa(He et al., 2021),
RoBERTa(Liu et al., 2019), and FinBERT(Araci,
2019) which is specifically designed for financial
text. To ensure applicability across both English
and French subtasks, we also incorporated multi-
lingual encoder models, namely mDeBERTa(He
et al., 2023) and mRoBERTa(Goyal et al., 2021).

1https://www.deepl.com/translator
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Model Subtask Valid F1 Test F1
RoBERTa-base English 0.66 0.67
DeBERTa-large English 0.65 0.69
FinBERT English 0.53 0.56
mRoBERTa-xl English 0.61 0.69
DeBERTa-base English 0.51 0.58
mDeBERTa English 0.44 0.52
mRoBERTa-xl French 0.76 0.75
mDeBERTa French 0.49 0.47

Table 1: Overview of baseline experiment results

To evaluate the capabilities of these models, we
employed stratified sampling to extract a validation
set comprising approximately 5% of the training
set. Due to the unbalanced label distribution, we
utilized the weighted F1 score as the primary eval-
uation metric. Baseline scores were obtained for
each model, and any model with a validation F1
score below 0.45 was excluded from further exper-
imentation. The summarized performance results
of the baseline models are presented in the table 1,
serving as the baseline for further experiments.

Method EN FR
Original 1199 1200
GPTMix-OPT (opt) 2866 2867
GPTMix-Pythia (pyt) 2900 2901
GPTMix-CerebrasGPT (cpt) 2906 2907
GPTMix-Mixed Models (mix) 7473 7474
Crawled (da) 4816 -
Translation (ts) 2279 2279

Table 2: Size of dataset for each approaches, The con-
tent within parentheses represents the abbreviation of
the respective datasets.

In addition to the initial experimentation, we
employed data augmentation techniques to further
enhance the performance of our models. We lever-
aged large-scale language models, including Pythia,
CerebrasGPT, and OPT, for augmentation. For
each news article, we generated additional sam-
ples and removed poorly generated ones to form a
training dataset for each GPT3Mix augmentation
technique.

Furthermore, we crawled ESG-related news ar-
ticles in both languages, assigning labels to the
collected data using Zero-shot Classification. Du-
plicate labels were removed, resulting in a cleaner
dataset. Additionally, we added a translated ver-
sion of the original training dataset to train mono-

lingual models for English and French. We also
constructed the ’GPTMix-Mixed Models (mix)’
dataset by aggregating all GPT3Mix Augmenta-
tion datasets for further experimentation. Finally,
we merged the augmented data for English and
French to train a multilingual model.

Experiment Name Subtask Valid F1 Test F1
RoBERTa-base-mix English 0.749 0.597
DeBERTa-large-ts English 0.737 0.705
RoBERTa-base-pyt English 0.735 0.629
RoBERTa-base-opt English 0.730 0.603
RoBERTa-base-cpt English 0.709 0.628
DeBERTa-base-da English 0.694 0.615
mDeBERTa-mix French 0.760 0.731
mRoBERTa-xl-cpt French 0.702 0.714
mDeBERTa-pyt French 0.671 0.663
mDeBERTa-opt French 0.657 0.656
mRoBERTa-xl-ts French 0.625 0.695

Table 3: Best performing models for each methodology

Among the English models, "roberta-base-mix"
trained on data augmented by large language mod-
els OPT, Pythia, and CerebrasGPT and subse-
quently merged, achieved the highest validation
F1 score of 0.7489. Furthermore, models trained
on data augmented through translation and crawl-
ing obtained higher validation F1 scores than those
trained on the original dataset. These results
demonstrate the significant effectiveness of our pro-
posed augmentation methodologies.

Similarly, for the French subtask, "mdeberta-
mix" trained on data augmented using large lan-
guage models, achieved a high validation F1 score
of 0.7602, indicating that most of models trained
on augmented data outperformed the baselines.

These experimental results highlight the efficacy
of our approach and the positive impact of data
augmentation on the performance of the encoder
models in the ML-ESG task.

4.2 Second Experiment
Experiment 1 aimed to analyze the performance
of various encoder models in multifarious ways.
In contrast, experiment 2 focused on conducting
experiments on several datasets using both base
and large models from a specific subset of models,
providing a more targeted investigation.

4.2.1 Effect of Model Size
The size of language models is a significant factor
that impacts their performance. In this experiment,
we compared the classification performance of two
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Figure 2: Experiment Results for experiment 2 on test
set

well-performing language models from Experiment
1, DeBERTa and RoBERTa, at their base and large
versions to analyze the effect of model size.

Figure 2 illustrates that the large models of
RoBERTa and DeBERTa consistently achieved
higher F1 scores compared to their base models.
Notably, the F1 scores of the large models were
concentrated within a narrower range, indicating
a more reliable and accurate performance. This
suggests that the base models do not offer supe-
rior performance and are more susceptible to bias
in classification results, struggling to accurately
distinguish certain labels.

4.2.2 Model Robustness
Despite our efforts to construct a training dataset
with a balanced label distribution in Experiment
1, our language models faced challenges in han-
dling out-of-distribution issues. The complexity
arose from the large number of MSCI ESG stan-
dard labels (35 in total), which strained the models’
predictive abilities. Certain labels, such as contro-
versial sourcing, revealed noticeable weaknesses in
our models’ predictions.

To address these shortcomings and enhance the
robustness of the language models, we modified
our training and validation datasets in the second
experiment. We allocated a greater number of sam-
ples to labels from web-crawled dataset that had
proven challenging for the models to predict accu-
rately.

4.2.3 Integration of data and ensembling
Our research aimed to enhance ESG issue clas-
sification in a multilingual context by adopting a
diverse and multi-faceted approach. We utilized

four types of datasets(ts,pyt,da,combined) and ex-
perimented with eight different models, exploring
data mixing and ensemble methods to optimize
model performance.

Although the combined datasets showed promis-
ing performance, they did not outperform mod-
els trained exclusively on translated data in sec-
ond experiment. This indicates that incorporating
data from diverse sources may introduce additional
noise and potentially decrease performance. In
such circumstances, ensembling the results from
various models proved beneficial(Ruta and Gabrys,
2005). For the English task, we employed a hard-
voting ensemble of the top-scoring models, trained
on different datasets using various encoder mod-
els. This ensemble approach achieved the highest
performance, with an F1 score of 0.69 on the test
set and 0.81 on the validation set, demonstrating
the effectiveness of combining diverse models and
datasets. Similarly, for the French task, we applied
an ensemble technique by combining predictions
from three models trained on different datasets and
diverse encoder models, resulting in an impressive
F1 score of 0.78 on the test set (0.8 on the vali-
dation set), further highlighting the effectiveness
of combining models in a multilingual context for
ESG issue classification.

5 Conclusion

In this paper, we presented our approach for the
FinNLP-2023 shared task on multi-lingual ESG is-
sue identification. By leveraging advanced encoder
models and techniques like GPT3Mix Augmenta-
tion, zero-shot classification, and translation, we
achieved promising results. Our models ranked
first in the English text subtask and second in the
French text subtask, highlighting the effectiveness
of our methodology across different languages.
Our research contributes to exploring ESG topics
and showcases the potential of advanced language
models in identifying ESG issues. Future work
would focus on exploring decoder and sequence-
to-sequence architectures, expanding to other lan-
guages, and employing alternative models to im-
prove the accuracy and generalizability of ESG
issue identification systems.

Availability

The code is available at https://github.com/
finMU/ML-ESG_codes.
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A Appendix

A.1 GPT3Mix Prompt Details

Based on the GPT3Mix paper, we developed a Task
Specification Template for the MLESG Shared
Task and randomly extracted examples. However,
considering the high probability of introducing
imbalanced data when extracting augmented data
with imbalanced labels, we equalized the extraction
probability for each label to mitigate the imbalance
issue. In this process, including descriptions for
all 35 labels in the prompt could lead to excessive
context, so we only utilized label descriptions for
the labels present in the samples. Below is an ex-
ample showcasing a partial portion of the prompt
we employed.

A.1.1 Example of Task Description
Each item in the following list should contain
#ESG News headline, #ESG news and the related
#ESG key issues. #ESG key issues are based on
MSCI ESG rating guidelines.

A.1.2 Example of Label Description
Access to Finance: This label is about their
efforts to expand financial services to
historically underserved markets, including
small-business lending and the development of
innovative distribution channels.
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A.2 Data distributions
In our study, we utilized GPT3Mix to augment the
dataset, resulting in a well-balanced distribution of
labels. Each of the 35 labels accounted for approx-
imately 2.85% (plus or minus 0.7%) of the dataset.
However, when performing zero-shot classification
on the data obtained through web crawling, we en-
countered limitations. This was due to either the
scarcity of relevant data available on the web or
the presence of insufficient labels caused by model
bias. To provide further insights, we present a
detailed table 4 showcasing the label distribution
exclusively based on the crawled data.

Label Percentage
(%)

Board 8.80
Carbon Emissions 6.94
Responsible Investment 5.64
Accounting 5.53
Pay 5.36
Packaging Material & Waste 4.57
Business Ethics 4.35
Water Stress 4.23
Financing Environmental Impact 4.01
Opportunities in Renewable Energy 3.89
Human Capital Development 3.84
Community Relations 3.78
Consumer Financial Protection 3.78
Product Carbon Footprint 3.67
Opportunities in Clean Tech 3.50
Biodiversity & Land Use 2.99
Electronic Waste 2.82
Chemical Safety 2.60
Raw Material Sourcing 2.54
Opportunities in Green Building 2.48
Ownership & Control 2.37
Climate Change Vulnerability 1.81
Toxic Emissions & Waste 1.58
Health & Demographic Risk 1.24
Access to Finance 1.24
Opportunities in Nutrition & Health 1.24
Access to Health Care 1.19
Privacy & Data Security 0.96
Access to Communications 0.73
Product Safety & Quality 0.68
Supply Chain Labor Standards 0.62
Labor Management 0.51
Controversial Sourcing 0.51

Table 4: Label Distribution of Crawled Data
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Abstract

In this paper, we describe the various ap-
proaches by the Jetsons team for the Multilin-
gual ESG Issue Identification Task (ML-ESG)
to classify articles into ESG (environmental, so-
cial, and corporate governance) issues they are
related to. For English and French articles, we
finetune multilingual BERT with synthetic data
in a single-label classification setting. For the
Chinese articles, we employ transfer learning
to leverage the full breadth of the multilingual
training data. Our methods achieve 1st place
on the leaderboard for French, and 5th place
for both English and Chinese.

1 Introduction

ESG (environmental, social, and governance) in-
vesting introduces a set of standards to judge in-
vestments by values corresponding to specific is-
sues. Examples of these issues include “Chemical
Safety”, “Controversial Sourcing”, and “Carbon
Emissions”. The International Joint Conferences
on Artificial Intelligence (IJCAI) shared task (Chen
et al., 2023) presents a fine-grained multilingual
classification task based on a taxonomy of these
ESG issues.

We approach this task using several strategies,
including 1) transfer learning to the multi-label
Chinese data using mBERT (Devlin et al., 2018),
2) augmentation with synthetic data generated with
LLMs in zero-shot and few-shot settings, and 3)
T5 variants (Xue et al., 2021, 2022) for multiclass
text classification.

2 Related work

Language models have been used for various fi-
nancial tasks like named-entity recognition, senti-
ment analysis, or document classification. Previous
works have performed domain-specific pre-training
of language models for different financial tasks

*These authors contributed equally to this work

(Araci, 2019; Huang et al., 2022; Shah et al., 2022;
Lu et al., 2023; Wu et al., 2023). However, until
recently, only a few works have explored using lan-
guage models for ESG-related tasks. Raman et al.
2020 evaluate the impact of using embeddings gen-
erated by language models on the classification of
sentences concerning their relevance to the ESG
domain. Mehra et al. 2022 pre-train a BERT model
on ESG-related text to show improvement on clas-
sification tasks. Nugent et al. fine-tune an English
BERT-style model on an ESG document classifica-
tion dataset and evaluate using data generation as
an augmentation strategy.

Kær Jørgensen et al. 2021 extend the idea of
pre-training on financial text to multilingual text
and evaluate different sentence classification tasks
in seven languages. Jørgensen et al. 2023 evaluate
various language models on a multilingual financial
topic classification dataset to highlight areas of
improvement for low-resource languages.

The work of Nugent et al. 2021 is closest to
work presented in the paper. The authors use the
back-translation task to generate additional input
data. This work, however, performs ESG document
classification in a mono- and multilingual setting.
Additionally, we use a large language model to
generate additional data using just the ESG topic
compared to performing back-translation.

3 Data

We use the dataset described in Chen et al. (2023)
for this task. The training dataset consists of ar-
ticles in three languages: English (en), French
(fr), and Chinese (zh). Alongside the articles are
the corresponding ESG issues these articles are
related to. The English and French dataset each
contains about 1200 articles. These datasets are
single-labeled with one out of 35 ESG classes, as
designated by the MSCI1. The Chinese training set

1https://www.msci.com/our-solutions/esg-investing/esg-
industry-materiality-map
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contains 996 articles. The Chinese labels merge the
MSCI classes with those designated by the SASB2

for a total of 46 total labels. These Chinese data
points are multilabel, and each article is classified
with a minimum of one and a maximum of 13 la-
bels. Figure 1 shows the distribution of training
and validation instances on the 24 most popular
classes.

3.1 Synthetic Data Generation with large
language models

We leverage the power of open-source large lan-
guage models (gpt-3.5-turbo3) in generating text
for augmenting the dataset to improve the class im-
balance. For all three languages (English, French,
and Chinese), given an ESG label, we generate
‘News Title’ and ‘News Summary’ for each in-
stance. We generate a total of 413 data points for
11 different labels. We choose these labels based
on the class-wise performance metrics and class
distribution.

We categorize the ESG labels into two categories
- ambiguous and non-ambiguous. Here we define
ambiguity as a label being open to more than one
interpretation and requiring some domain expertise
to resolve the ambiguity. We employ two differ-
ent strategies for generating samples for these two
categories. For non-ambiguous topics, we use zero-
shot generation. For ambiguous topics, we use
few-shot generation to ensure that the generated
samples are related to the ESG domain. Below is
an example of a zero-shot prompt.

Give 10 examples of news related
to ESG (Environmental, Social, Governance)
topic 'Electronic Waste'. Each example
should have a news title, news summary and
tags related to the article. Generate
these examples in french language.

4 Models

4.1 Chinese

Given the disjoint task setup of the Chinese data
with the English and French data (multilabel vs.
multiclass, respectively), it is difficult to train a
single multilingual clasifier for all three languages.
To utilize the value of English and French data, we
adopt a transfer learning technique to train a model

2https://www.sasb.org/standards/materiality-
finder/?lang=en-us

3https://platform.openai.com/docs/models/gpt-3-5

Figure 1: Frequency of the most popular 24 labels in
the Train and Validation splits across the 3 languages.

to classify Chinese texts. We use the bert-base-
multilingual-cased4, which is based on the BERT
model (Devlin et al., 2018), as our base model to
reconcile different languages. We first fine-tune
the base model using the English and French data
to do single-class classification. Subsequently, we
further fine-tune the model from the previous steps
using Chinese data, changing the output layer to
enable multi-class classification.

After observing the mean, median, and standard
deviation of the number of labels in the training
data, we adjust our label selection criteria to mimic
that distribution of labels. For this multi-label clas-
sification problem, we apply the sigmoid function
on the raw output and use the resulting probabili-
ties to select labels. We found that selecting up to
10 labels with a probability larger than 0.2 yields a
similar distribution of labels to that in the training
data so that the mean, median, and standard devia-
tion are roughly comparable between the training
data and our model outputs. For all Chinese mod-
els, we discard those articles with empty ESG label
fields5.

4.2 English and French
Given the small size of the individual En-
glish and French datasets, we finetune bert-base-
multilingual-cased on the combined datasets for
single-label classification. We concatenate the arti-
cle title and content separated by “∥” and use it as
input for the model. 80% of the combined dataset
with 2,399 French and English articles is used for
training, and the rest is used for validation. We
perform 5-fold cross-validation and use a majority
vote from the five predictions to choose the final

4https://huggingface.co/bert-base-multilingual-cased
5As there was no specific [not ESG-related] label provided

and some non-labeled articles appeared related to ESG issues,
we believed these datapoints represented noise.
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ESG label. The learning rate is set at 2.5e− 5 and
the model is trained for 10 or 20 epochs.

We also finetune multilingual BERT for single-
label classification by augmenting the training data
using synthetic data described in subsection 3.1
and/or using the given Chinese dataset. We val-
idate these models using the given English and
French articles. We train different models using
three levels of augmentation - (1) use synthetic data
in English and French, (2) use the given Chinese
dataset for augmentation, and (3) use synthetic ar-
ticles in all three languages along with the given
Chinese dataset. At inference time, we generate our
predictions on the test set using a majority voting
ensemble from the models trained on each fold.

T5-based Filtration In converting the ESG la-
bels to indices on a probability vector, we ignore
features embedded in the labels’ text. For example,
the semantic distance between “Toxic Emissions
& Waste” and “Packaging Material & Waste” is
arguably smaller than between “Board” and “Pay”.
In the traditional multiclass classification paradigm,
these relationships are ignored.

To remedy this, we experiment with using vari-
ants of T5 for multiclass classification. Specifically,
we take those labels from the French and English
data with the top-k highest softmax probabilities
as judged by the classifier described in Section 4.2
and encode them with T5 alongside the article con-
tent and title. The T5 decoder selects one of the
top-k labels as a final prediction. Setting k too high
results in too large of a search space, sometimes
resulting in context overflow. Setting k too low can
cause the fatal mistake of the gold label being ab-
sent in the input to T5, dooming the filtration model
to an incorrect prediction. We experiment with two
multilingual T5 variants: ByT5 (Xue et al., 2022)
and MT5 (Xue et al., 2021).

5 Results

5.1 Chinese

Due to the reasons stated in Section 4.1, we exclude
those non-labeled data points. Thus, the reported
model results do not consider those articles. Our
Chinese model achieves the following results on
the Chinese validation dataset obtained from the
training data provided: F1 score: 36.81, precision:
29.10, and recall: 52.62. The three versions of our
submissions to the official test set are the results
from the single model with the above performance

Figure 2: Classes with change in accuracy in the French
test set due to augmentation using synthetic English and
French data on training for 20 epochs.

using different label selection criteria.

5.2 English and French

Table 1 shows the precision (P), recall (R), and
F1 score for English and French articles in the
test set. Figure 2 shows the change in class-wise
performance when using the synthetic counterparts.

Best French Result Finetuning multilingual
BERT for 20 epochs on the original English and
French training dataset augmented with synthetic
articles in English and French achieves the F1 score
of 79.96 for the French articles in the test split. Us-
ing data augmentation increases the F1 score by
1.39 when trained for 10 epochs. When trained for
20 epochs, using data augmentation increases the
F1 score by up to 0.63.

Best English Result Finetuning multilingual
BERT for 20 epochs on the original English and
French training dataset augmented with the origi-
nal Chinese dataset achieves the best F1 score of
66.33 for the English test split. As shown in Table
1, the augmentation increases the F1 score by a
maximum of 0.66.

5.3 Classification with T5

As shown in Table 2, the multilingual variants of
T5 were not successful in filtering the top-k predic-
tions of the original BERT-based classifier. In the
best setting, an mt5-large6 model was able to boost
the English F1 score by +0.77 when provided with
the ranked top-5 predictions of the BERT classifier.

Analyzing the outputs of the mt5-large model, it
suffered from a strong tendency to hyper-fixate on
the positional signal provided by the ranked inputs.
Specifically, the mt5-large model only predicted
a label different from what the original classifier

6https://huggingface.co/google/mt5-large
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Training Data Epochs Pen Ren F1en Pfr Rfr F1fr
en + fr (Jetsons_3) 10 65.36 66.00 64.88 78.39 78.33 77.38
en + fr 20 66.77 66.67 66.01 80.00 80.00 79.33
en + fr + Syn (Jetsons_2) 10 64.11 65.00 63.75 80.34 79.00 78.77
en + fr + Syn 20 64.31 64.67 63.90 81.32 80.33 79.96
en + fr + zh 20 66.96 67.33 66.33 81.05 79.67 79.68
en + fr + zh + Synall 20 66.63 66.33 65.45 80.34 79.67 79.25

Table 1: Results of finetuning multilingual BERT on the English(en) and French(fr) articles in the test set with and
without data augmentation. Official submissions on the test set are designated in bold. Syn - Synthetically generated
en and fr articles, Synall - Synthetically generated en, fr, and zh articles.

Model K EN F1 EN F1 Change FR F1 FR F1 Change

Labels
Shuffled

byt5-base 5 28.08 -28.39 32.08 -42.10

mt5-base 10 25.58 -30.89 30.37 -43.91

mt5-large 5 33.89 -22.58 39.1 -35.10

Labels
Ranked by Logits

byt5-base 10 56.63 +0.16 74.18 +0.0

mt5-large 5 57.24 +0.77 73.74 -0.44

Table 2: Results of the various T5-based models for
filtering the top-k predictions made by the initial BERT-
based classifier. We use the predictions from the 1st fold
of Jetsons_2 in these experiments.

predicted in 6 out of 600 instances, resulting in a
0.77 improvement in English samples. The model
appears to get stuck in a local minimum in that
merely predicting the label that appears first gives
decent performance (whatever the original BERT-
based classifier achieved). In an attempt to solve
this hyper-fixation on positional signals, we run
experiments with shuffled label inputs as well. This
further highlighted the inability of the T5 variants
to perform well in this task.

6 Analysis

6.1 Synthetic Data vs. Original

Surprisingly, the synthetic data generated using
the methods described in Section 3.1 did not al-
ways improve performance on the final test set. To
explore this further, we plot the embedding rep-
resentation of the synthetic and original training
data in Figure 3. Embeddings were generated us-
ing the paraphrase-MiniLM-L6-v2 model (Reimers
and Gurevych, 2019), and cast to a 2-dimensional
space using TSNE (Van der Maaten and Hinton,
2008). Qualitatively, we see that the synthetic data
seems to have a lower variance in this embedding
space than the original data.

Many of the synthetic data points appear to be
simpler to classify than the original data points.
Notably within the EN + FR data, 185 synthetic

Figure 3: Plotting the embedding space of the original
EN+FR articles against the synthetic articles generated
with the LLM described in Section 3.1. The synthetic
data points appear to be more tightly grouped together
than the original training data.

article titles contained at least one token appearing
in the gold label, whereas only 6 of the original
data points contained this token overlap7. This
represents a token overlap rate of 62.29% for the
synthetic data and only 2.79% for the original data.

7 Conclusion

Excelling at the task of ESG issue identification
moves the field of financial NLP to a more well-
rounded state, where the primary focus of monetary
factors is balanced with other qualitative, social
factors. We carry out experiments on the FinNLP
shared task of fine-grained ESG issue identification,
and find that a BERT-based classifier augmented
with synthetic data performs best on French and
English data. Additionally, we see that utilizing
transfer learning boosts performance on Chinese
data.

7For example, the synthetic article with the title “BP an-
nounces net-zero emissions target by 2050” contains a token
overlap (“emissions”) with the gold label “Carbon Emissions”.
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A Appendix

A.1 Few-Shot Prompt for Data Generation

ESG label: Accounting

Type: few-shot prompt for english language

Prompt: Give 10 examples of news related
to ESG (Environmental, Social, Governance)
topic 'Accounting'. Each example should have
a news title, news summary, Tags related
to the article. Generate these examples in
english language. An example news for
'Accounting' topic - News Title:
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"Institutional Investors: Fossil Fuel
Companies Must Align Numbers with Paris
Agreement", News Summary: "The group of
investors engaged bp in its campaign in
November, and sent parallel letters to
other energy majors, including Royal
Dutch Shell and Total. While Shell
and Total have also lowered their oil
and gas price assumptions, the statement
notes that most other companies have yet
to bring their assumptions in line with
the Paris Agreement, and calls on them
to do so: Other fossil fuel dependent
companies need to sit up and take note.
Based on our analysis of major European
fossil fuel companies 2019 financial
statements... it is clear that almost
none have aligned their critical accounting
assumptions with the Paris Agreement.
The level of BP's impairments demonstrates
the potential materiality of this risk
hidden in companies balance sheets."

Sample Generated Content:

French language -

Titre de l’article: Les entreprises doivent
inclure la diversité dans leur comptabilité, selon
une étude
Résumé de l’article: Selon une étude du cabinet
de conseil PwC, les entreprises doivent inclure
la diversité dans leur comptabilité. Cette étude
a examiné les pratiques de comptabilité de 100
grandes entreprises aux États-Unis. Les résultats
ont montré que seulement 10 informations sur la
diversité dans leurs rapports financiers. Les experts
affirment que l’inclusion de la diversité dans la
comptabilité peut aider les entreprises à mieux
comprendre leur personnel et à améliorer la prise
de décision.
Tags : Accounting, Diversity, États-Unis.

English language -

News Title: The Impact of Diversity and
Inclusion on Financial Performance
News Summary: Diversity and inclusion are
increasingly seen as key drivers of financial
performance, with studies showing that diverse
companies outperform their peers. This article

discusses the accounting implications of diversity
and inclusion and the need for better diversity
reporting standards.
Tags: ESG, diversity and inclusion, financial
performance, accounting implications, reporting
standards.

A.2 T5 Modeling
Hyperparameter settings All models are fine-
tuned with Adafactor (Shazeer and Stern, 2018)
and a learning rate of 1e-3, and a batch size of 32.
A linear warm-up for the first 10% of training steps
is employed, followed by cosine decay.

Inputs We display an example input to the T5
model described in Section 2 below, with the place-
holder {article_content}.

Lenovo, Kuehne+Nagel Partner
on Solution to Offset
Shipping Emissions
with SAF Purchases
| {article_content}
|| LABELS:
opportunities in renewable energy,
carbon emissions,
financing environmental impact,
opportunities in clean tech,
opportunities in green building

In the example above, the BERT-based classifier
predicted “Opportunities in Renewable Energy”.
However, the gold label is “Carbon Emissions”. By
passing in the ranked predictions from the BERT-
based classifier, the T5 model is tasked with reme-
dying the mistaken prediction and instead choosing
the 2nd highest ranked ESG label.

Effect of k Figure 4 plots the relationship be-
tween k and the percentage of ranked data points
which would contain the gold label.

A.3 Effects of Data Augmentation
Figures 6, 7, 5, 8 and 9 show change in class-wise
accuracy in French and English test set as a result
of different settings of data augmentation. For the
French articles, performance for classes like Raw
Material Sourcing, Labor Management, Opportu-
nities in Green Building, Consumer Financial Pro-
tection, Community Relations, and Supply Chain
Labor Standards improve on training for 10 epochs
using augmented data.
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Figure 4: Plotting the relationship between k and the
hypothetical upper-bound performance of the T5 model.
By setting k = 5, 85% of the predictions we pass to T5
includes the gold label on the test split. This represents
an upper performance bound of 87% for French and
83% for English.

Figure 5: Change in the accuracy of English test in-
stances on training for 10 epochs after augmentation
using synthetic English and French data.

Figure 6: Change in accuracy of French test instances
on training for 10 epochs after augmentation using syn-
thetic English and French data.

Figure 7: Change in accuracy of French test instances on
training for 20 epochs after augmentation using original
Chinese dataset.

Figure 8: Classes with change in accuracy of English
test cases due to augmentation using original Chinese
dataset on training for 20 epochs.

Figure 9: Change in accuracy of French test instances
on training for 20 epochs after augmentation synthetic
English and French data.
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Abstract

Environmental, Social and Governance reports
have to be periodically released by financial
companies, as they represent an essential guide
for the potential, socially-responsible new in-
vestors. Therefore, automatizing the analysis
of reports and extracting the main ESG issues
mentioned in the text is a goal of primary im-
portance for financial Natural Language Pro-
cessing (NLP) systems.

In this paper, we report our experiments for
the FinSim4-ESG Shared Task, dedicated to
the problem of multilingual ESG issue iden-
tification in English and French. Our results
show that even simple classifiers trained on
multilingual data and using crosslingual Trans-
former representations can achieve a strong per-
formance in the task.

1 Introduction

Sustainable, Responsible and Impact investing
(SRI) has gained a lot of prominence in the last
decades (Serafeim and Yoon, 2022; Mehra et al.,
2022). As a discipline, one of its primary goals is
to specify environmental, social and governance
criteria to generate long-term financial returns and
produce a positive impact on the society (Mukher-
jee, 2020). For corporations, adherence to Envi-
ronmental, Social and Governance (ESG) practices
has become a requirement: for example, SEC fil-
ings in the US have to follow standard for Climate
Change and Human Governance, and the European
Commission stipulated, at the end of 2022, that all
the companies providing investment products will
have to disclose how their economic activity align
with the taxonomy of the European Union and with
the ESG regulations for sustainability (Kang et al.,
2022). It is thus not a surprise that the demand for
language technologies to automatize the analysis
of ESG reports is correspondingly increasing.

With the rising popularity of machine learning
and NLP technologies for Natural Language Pro-
cessing (Loughran and McDonald, 2016), there is
also a number of academic initiatives dedicated to
research on development of systems for extract-
ing relevant issues from ESG reports. The present
paper aims at reporting our findings on the multi-
lingual datasets of the FinSim4-ESG Shared Task
(Chen et al., 2023). We participated in the En-
glish and in the French track and our best model, a
simple SVM classifier relying on the crosslingual
representations of the Distilled Universal Sentence
Encoder (Reimers and Gurevych, 2019), achieves
a F1-score of 0.62 and 0.71 on the English and the
French test data, respectively.

2 Related Work

2.1 ESG and NLP

The field of corporate sustainability is interested
in the set of self-regulatory acts that international
business perform to mitigate the negative impacts
on the society (Van Marrewijk, 2003; Sheehy, 2015;
Feng and Ngai, 2020). Such practices are regulated
by international standards and policies (Sheehy and
Farneti, 2021). The issues ESG reports have to
deal with are organized in taxonomies, and their
automatic identification recently attracted attention
in the NLP research community, in the form of the
organization of a dedicated workshop at the LREC
conference (Wan and Huang, 2022) and a shared
task co-located with the IJCAI conference (Kang
et al., 2022).

In the former, the topics of the contributions
showed a varied interest in analyzing the language
data in ESG reports, including machine learning
models to fight stereotypes and improve inclusiv-
ity (Lu et al., 2022), corpus-based analyses of the
metaphors in the legitimation strategies for the busi-
ness of oil companies in China and in the United
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Category Labels

Environment

Carbon Emissions, Climate Change Vulnerability, Product Carbon Footprint
Biodiversity & Land Use, Water Stress, Electronic Waste, Packaging Material & Waste
Toxic Emissions & Waste, Opportunities in Renewable Energy, Opportunities in Clean

Tech, Opportunities in Green Building, Opportunities in Renewable Energy

Social

Health & Demographic Risk, Human Capital Development, Labor Management,
Supply Chain Labor Standards, Chemical Safety, Consumer Financial

Protection, Privacy & Data Security, Product Safety & Quality, Community
Relations, Raw Material Sourcing, Access to Health Care, Opportunities in

Nutrition & Health, Health & Safety

Governance Ownership & Control, Accounting, Board, Tax Transparency,
Business Ethics, Pay, Responsible Investment

Table 1: Map of the dataset labels, divided into the three main categories of Environment, Social and Governance.

States (Chen et al., 2022), and diachronic distribu-
tional methods to identify changes in the usage of
ESG terms over time (Purver et al., 2022).

The shared task organized by Kang et al. (2022)
was challenging the teams on two different sub-
tasks: a taxonomy enrichment task, in the form of
unsupervised discovery of hypernyms (Camacho-
Collados et al., 2018) in sentences from ESG re-
ports; and a binary classification task of the sus-
tainability (sustainable / not sustainable) of excepts
from the same type of reports.

2.2 Language Models for Financial Natural
Language Understanding

Language models based on the Transformer archi-
tecture have been taking NLP by storm in recent
years (Vaswani et al., 2017; Devlin et al., 2019),
and a consequence of the success of Transform-
ers, researchers working on NLP for specialized
domains turned to domain adaptation techniques to
exploit the full potential of such architectures (Guo
and Yu, 2022). The financial domain makes no
exception: the recently-developed models include
adaptations of BERT (e.g. FinBERT, Araci (2019);
Yang et al. (2020); Liu et al. (2020)), ELECTRA
(FLANG-ELECTRA, Shah et al. (2022)) and even
large language models such as BloombergGPT (Wu
et al., 2023).

Transformers for financial NLP have been eval-
uated on a variety of tasks, either supervised (e.g.
sentiment analysis, named entity recognition, nu-
meral understanding; Peng et al. (2021); Shah et al.
(2022); Wu et al. (2023)) or unsupervised ones (e.g.
hypernym detection; Chersoni and Huang (2021);
Peng et al. (2022)), showing important gains over
the performance of general domain models.

Interestingly, models specialized for dealing
with ESG issue identification have also been de-
veloped and made publicly available (Yang et al.,

2020; Mukherjee, 2020; Mehra et al., 2022). Such
models benefit from additional training on corpora
of annual sustainability reports.

2.3 Multilingual Language Models

Transformers also led to impressive improvements
in multilingual NLP, thanks to the introduction
of large architectures that have been pretrained
with language modeling objectives on multiple lan-
guages at the same time (e.g Multilingual BERT
(Devlin et al., 2019), XLM-R (Conneau et al.,
2020); BLOOM (Scao et al., 2022)). Such mod-
els are initialized with a large shared vocabulary,
and utilize sophisticated sampling methods to bal-
ance the representation of high-resource and low-
resource languages in the same semantic space.

In parallel with the development of Sentence
Transformers (Reimers and Gurevych, 2019, 2020),
which are able to generate vector representations of
entire sentences and paragraphs, NLP researchers
also introduced multilingual sentence embeddings.
Those are based on the idea of having first a mono-
lingual model generating sentence embeddings for
a source language, and then having multiple stu-
dent models trained on the translated sentences in
other languages to mimic the original model.

3 Experimental Settings

3.1 Dataset Description

The organizers of the shared task made available
training datasets in French and English, containing
respectively 1200 and 1199 labeled examples. The
35 labels were defined on the basis of the MSCI
ESG standard rating guidelines 1, and were gener-
ally related to three macro categories: Environment,
Social and Governance (see Table 1). Finally, they
released test sets for the two languages, each one

1https://www.msci.com/
esg-and-climate-methodologies.
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including 300 examples without labels. The gold
labels were later made available for further evalua-
tion and analysis.

The raw materials of the dataset were multilin-
gual news articles, which were labeled by experts
in ESG annotation: the news were collected, re-
spectively, from ESGToday for English 2 and from
RSEDATANEWS3 and Novethic4 for French. The
English and French datasets are annotated by ex-
perts (2 annotators and 1 reviewer) in Fortia’s Data
& Language Analyst teams. The dataset instances
include both the title and the main body of the news
and the labels are mutually exclusive (in the cases
where multiple labels could apply to one article,
the texts were split into multiple instances). Notice-
ably, two of the labels (”Health & Safety” and ”Tax
Transparency”) are present in the French but not in
the English dataset, and thus we just excluded the
examples with those labels (16 instances, in total)
in the experiments in which we use French training
data to make predictions on the English test set.

3.2 Systems Description and Settings

As a preprocessing step, we concatenated the text
of the title and the text of the body of the news.
Next, we adopted two different approaches for rep-
resenting the ESG news with Transformers.

3.2.1 Approach 1: ESG Transformers with
Sentence Translation

In the first approach, we used Transformer models
that are specialized for ESG data, in particular the
ESG-BERT model by Mukherjee (2020) 5 and the
FinBERT model by Yang et al. (2020) with a pre-
vious fine-tuning on a dataset of 2000 ESG reports
and three output labels (Environment, Social and
Governance). 6 We chose to use ESG Transform-
ers as they were fine-tuned on a similar type of
textual data. Since both models are available only
for English, we translated the French dataset with
the help of the Google Translator API. 7

2https://www.esgtoday.com/category/
esg-news/companies/

3https://www.rsedatanews.net/
4https://www.novethic.fr/actualite/

environnement.html
5https://huggingface.co/nbroad/

ESG-BERT.
6https://huggingface.co/yiyanghkust/

finbert-esg.
7For both approach 1 and approach 2, when the test dataset

was the English one we excluded from the training data the
16 French instances with either ”Health & Safety” or the ”Tax
Transparency” gold standard labels.

We initially fine-tuned the models via 5-fold
stratified sampling, to be sure that each fold had
similar class distribution. However, we realized
that the models were underfitting, probably because
of the small size of the dataset. 8 Therefore we
decided to use the fine-tuned Transformer models
to generate vector representations of the dataset
instances and to utilize different types of classifiers
on top of them.

In particular, we used Logistic Regression (LR),
Random Forests (RF), Support Vector Machine
(SVM), all of them in the standard implementation
in the Scikit-learn library (Pedregosa et al., 2011).
For the classifiers, the parameters were optimized
via the Skopt library for Bayesian optimization 9

and using 5-fold stratified sampling, similarly to
what we originally did for model fine-tuning.

3.2.2 Approach 2: Sentence Transformers and
Multilingual Training

In the second approach, we adopted a multilingual
training approach: we used the Distilled Univer-
sal Sentence Encoder (DUSE) from the Sentence
Transformers library 10 to encode directly the En-
glish and the French sentences, and then we simply
merged the two datasets for multilingual training.
We chose this approach because it maps the French-
English data onto a unified vector space, so it al-
lows us to simply merge the two datasets for train-
ing. Given the previous results, this time we used
directly the pretrained Transformers to generate the
input vectors for the classifiers (LR, RF and SVM)
and we did not try to fine-tune the models. For find-
ing the best parameters for the classifiers, we used
the same procedure described above, combining
5-fold stratified sampling and the Skopt library for
Bayesian optimization.

4 Results

The metrics for all the systems can be seen in Table
2 for English and in Table 3 for French.

A first notable finding in our result is that the
multilingual representation of the Universal En-

8With fine-tuned models, the preliminary results on the
validation data always showed Accuracy scores in the low
40s, while the classifiers on top of the Transformer vectors
performed more closely to the reported scores on the test set.

9https://scikit-optimize.github.
io/stable/modules/generated/skopt.
BayesSearchCV.html

10https://huggingface.
co/sentence-transformers/
distiluse-base-multilingual-cased-v1.
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System Accuracy Precision Recall F1-score (Macro)
LR-ESG-BERT 0.59 0.55 0.59 0.56
RF-ESG-BERT 0.58 0.52 0.57 0.52

SVM-ESG-BERT 0.60 0.61 0.62 0.60
LR-FinBERT 0.59 0.54 0.56 0.53
RF-FinBERT 0.62 0.53 0.53 0.53

SVM-FinBERT 0.62 0.59 0.59 0.58
LR-DUSE 0.58 0.56 0.57 0.55
RF-DUSE 0.58 0.57 0.60 0.56

SVM-DUSE 0.58 0.63 0.63 0.62

Table 2: Results for all the systems on the English test dataset (300 examples, best scores per metric are in bold).

System Accuracy Precision Recall F1-score (Macro)
LR-ESG-BERT 0.67 0.66 0.67 0.66
RF-ESG-BERT 0.59 0.56 0.59 0.56

SVM-ESG-BERT 0.64 0.65 0.62 0.62
LR-FinBERT 0.70 0.69 0.70 0.68
RF-FinBERT 0.67 0.63 0.64 0.62

SVM-FinBERT 0.69 0.69 0.68 0.67
LR-DUSE 0.62 0.56 0.58 0.56
RF-DUSE 0.64 0.57 0.61 0.58

SVM-DUSE 0.71 0.72 0.72 0.71

Table 3: Results for all the systems on the French test dataset (300 examples, best scores per metric are in bold).

coder generally perform better than the domain-
adapted ones of FinBERT and ESG-BERT. The
translation of the French sentences to English to
fit in the English-language domain-adapted Trans-
formers does not seem to affect the trend too much.
Among the classifiers that we explored, SVM is
consistently the best option in the English dataset;
it performs closely to LR on the French data with
the two ESG Transformers, but it outperforms the
other classifiers by a large margin with DUSE.

It is noticeable that when we compare Accuracy
and F1-Score Macro, which is computed by using
the mean of the F1-score of the single classes, most
systems tend to have a higher value of Accuracy.
We interpret this as an effect of imbalanced classes.
However, SVM-DUSE is the only system for which
F1-Score is the same, or even higher than Accuracy.

In the French dataset, the more frequent classes
are generally predicted better: the accuracy is at
least above 0.6 for all the classes with at least 10
examples in the test data. This does not hold for
English, where we noticed that, for several classes
with relatively high support, the accuracy is below
chance level, e.g. Electronic Waste, Health &
Demographic Risk, Financing Environmental
Impact, Privacy & Data Security, which are all
in the top-10 of the most frequent classes. We
hypothesized that this might be due to diverging
label distributions between the English test set and
the joint training set. A Pearson correlation test
revealed that, indeed, the class frequency correla-

tion between the joint training and the English test
data is lower than for the French data (r = 0.62 vs.
r = 0.74), so this could be a partial explanation of
the different performance across languages.

For the shared task, we submitted our systems
with the following names: SVM-ESG-BERT as
HKESG1, SVM-FinBERT as HKESG2 and SVM-
DUSE as HKESG3. Our best ranks, both obtained
by SVM-DUSE, are the 9th place out of 23 systems
in the English track and the 10th place out of 21
systems of in the French track.

5 Conclusions

In this paper, we presented the systems that we
used to compete in the ML-ESG shared task on
Multilingual ESG Issue Identification. We took
part in both the English and the French track, and
our best system was -perhaps surprisingly- a simple
linear SVM model relying on the sentence vector
representation generated by the Distilled Universal
Sentence Encoder (Reimers and Gurevych, 2019).

The dataset size was too small for the fine-
tuning of Transformers. However, multilingual
training was sufficient to obtain robust results on
both dataset (0.62 of F1-score for English and 0.71
for French). The scores for the English dataset are
generally higher, probably due to a more diverging
distribution between training and test sets.
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Abstract

In this paper, we discuss our submission to the
Multi-Lingual ESG Issue Identification (ML-
ESG) 2023, where we classify news articles
into different ESG key-issues defined by MSCI.
We use an adapter-based approach and evaluate
different approaches and configurations, finally
showing that it is advantageous to use multiple
models in order to first classify articles into
E/S/G classes before determining the final sub-
issues.

1 Introduction

The surge in Environmental, Social, and Gover-
nance (ESG) research over the past few years is a
testament to the growing importance of these issues
in the corporate world (Zumente and Bistrova,
2021). Companies are increasingly recognizing
that ESG-related matters can pose significant
risks if not addressed properly (Aue et al., 2022).
Beyond risk management, ESG topics are also
crucial for a company’s reputation, as they often
reflect the company’s values and commitment to
sustainable practices (Schramm-Klein et al., 2016),
(Islam et al., 2021).
Investors, too, are becoming more attentive to
the ESG behaviors of companies. One common
method of evaluating a company’s ESG practices
is through the human-curated scores provided by
major rating agencies like MSCI1 or Sustainalyt-
ics2. These agencies assess whether a company
adheres to good ESG practices and assign a
numerical value to represent the company’s ESG
performance. MSCI does this by considering 35
key-issues which they combine in different ways
depending on the specific industry a company
operates in (Nagy et al.). The final weight of a

1https://www.sustainalytics.com/
esg-data

2https://www.msci.com/our-solutions/
esg-investing/esg-ratings

key-issues in the ESG score calculation is deter-
mined by quantitatively assessing each industry
and consulting with investment practitioners.
Upon closer scrutiny of the evaluation metrics
employed by the different ESG rating agencies, it
becomes evident that these metrics do not com-
pletely incorporate sustainability principles into
their process of assessing corporate sustainability
(Escrig-Olmedo et al., 2019). In addition, (Crona,
2021) raises several concerns with the traditional
rating agencies. One point of critique mentioned
by them is that companies might self report data
on positive environmental initiatives that are
not connected to their negative environmental
impact, but are similarly considered by the rating
agencies. On the other hand, scoring mechanisms
like the one used by MSCI are problematic in the
sense that the weighting mechanism might not
consider key ESG issues, depending on how the
weights were created. These uncertainties in the
evaluation process underscore the need for more
comprehensive and nuanced methods of assessing
ESG practices.
In order to create independent analyses, machine
learning techniques, particularly those in Natural
Language Processing (NLP), can be used. Over
the past few years, NLP research has seen a
significant uptick, with advancements in this field
offering promising solutions for more in-depth
ESG analysis (Min et al., 2021), (Chen et al.,
2022), (Fischbach et al., 2022). By leveraging
NLP, investors can conduct their own research to
determine the sustainability of potential investment
companies.

The Machine Learning for ESG (ML-ESG)
task (Chen et al.) aims to motivate research in
this direction and has annotated news articles in
English, French, and Chinese based on the 35
key-issues used by MSCI. The task challenges par-
ticipants to develop a system capable of classifying
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Figure 1: Occurrences of the different labels in the training- and test-data of the task. The top row represents the
English data, the bottom row the French data. Each column represents one out of E/S/G as written above the figure.
Training data is shown in red, test data in blue. Note: The test data was released after the task deadline and was not
used during training unless mentioned.

articles in these languages into the appropriate
ESG issues. This represents a significant stride
towards more nuanced and comprehensive ESG
analysis, ultimately enabling more informed and
sustainable investment decisions.

In this paper, we present our solution for the ML-
ESG task for the English and French datasets. We
train a set of adapters for each language and try out
different approaches to classify the news articles,
ultimately showing that it is preferable to first clas-
sify a news article into one of the three main classes
(Environmental, Social or Governance), before fur-
ther classifying into the key-issues belonging to
each category. Our approach achieves third place
for the French language and nineteenth for the En-
glish language.

2 Task Description and Dataset

The dataset contains 1200 French and 1199 En-
glish news articles. Each article has the following
properties: "URL", "news_title", "news_content",
"ESG_label" (Chen et al.). The "ESG_label" is one
of the 35 key-issues described in the ESG Indus-
try Materiality Map of MSCI3. Each key-issue is
attributed to one of the three top ESG components,
"environmental", "social" and "governance". In

3https://www.msci.com/
our-solutions/esg-investing/
esg-industry-materiality-map

Figure 1, different histograms for each ESG com-
ponent show the occurrence of all the key-issues
per language. Most news articles are classified as
one of the environmental key-issues while the least
articles belong to governance key-issues.

3 Experimental Approach

3.1 Adapters

Adapters are an efficient and flexible method for
fine-tuning a foundational model for unique tasks
(Houlsby et al., 2019) or transferring task-specific
knowledge across different languages (Pfeiffer
et al., 2020b). These tools are particularly useful
when dealing with a dataset composed of multiple
languages.
Adapter modules, which are incorporated into the
layers of pre-existing models, are designed to mas-
ter a particular task without altering the weights
of the original model (Pfeiffer et al., 2020a). They
are more parameter efficient than fine-tuning the
full model while achieving nearly the same perfor-
mance (Houlsby et al., 2019). Much like adapters
that are trained for specific tasks, we can also train
language-specific adapters. This is achieved by
adding an adapter to a multilingual base model and
then training it using Masked Language Modeling
(MLM) (Pfeiffer et al., 2020b). If a task adapter is
being trained with a multilingual base model, it is
beneficial to also utilize a fixed language adapter
because it captures and applies language-specific
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Figure 2: Schematic description of method 3. We first train a model to determine if a news article describes
environmental, social or governance thematics. A second model then classifies the article with regards to the
different key-issues belonging to that component. Each model in this case is constituted by a base-model, a
language-adapter and a task-adapter as explained in subsection 3.1.

knowledge, which can enhance the final perfor-
mance (Pfeiffer et al., 2020b).

3.2 Title or Content?

Classific. Target Title Content
Key-issues 0.63 0.41
Components 0.88 0.80

Table 1: Comparison of the F1-macro scores when using
the title vs using the content of the news articles for the
French dataset. The first row shows results when di-
rectly classifying for the 35 key-issues while the second
row classifies only for the rough E/S/G components.

We performed several experiments in order to
determine if it is better to use the title or the content
in order to classify the news articles. In Table 1, we
show the F1-macro scores when classifying the 35
key-issues directly in the first row, and the results
for classifying the rough compontents (E/S/G) in
the second row for the French dataset. In both
cases, we achieve the best result when simply using
the title to train the adapter. Since we observed a
similar result for the English dataset, we decided
to continue working without the "news_content"
element.

3.3 Data Augmentation

Classific. Target EN FR
No Augmentation 0.58 0.69
Augmentation 0.68 0.67

Table 2: Comparison of the F1-macro scores when aug-
menting the data by translating from the dataset in the
other language and training on classifying the 35 key-
issues directly. The top row shows the results without
augmentation, the bottom row with augmentation.

Since we have data in two languages, we tried
augmenting the data of each language by translat-
ing the data of the other language. For this, we use
the OPUS-MT models published by (Tiedemann
and Thottingal, 2020) from the huggingface-hub4.
In Table 2, we show results on the key-issue clas-
sification for French and English. The results are
conflicting, as we can see an improvement for the
English dataset, while the French dataset performs
slightly worse with the augmentation.

3.4 Configurations

We designed three different configurations:

• Method 1: Train an adapter on the 35 key-
issues directly.

• Method 2: Augment the data by translating
from the other language, then train on the 35
key-issues.

• Method 3: First train an adapter to classify an
article into the ESG component, then train a
set of three adapters, one for each ESG com-
ponent, in order to classify the key-issues.

A rough schema for the third approach is shown
in Figure 2. Since we achieved a better perfor-
mance when translating for the English dataset (see
Table 2), we decided to augment the data for the
third approach for this language.
For all configurations, we evaluate the approach on
10% of the original training dataset. This is without
augmentation, meaning the size of the eval dataset
is only 5% the size of the total dataset for method
2.
As a base model, we use mBERT (Devlin et al.,

4https://huggingface.co/Helsinki-NLP
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Pre-Deadline Post-Deadline
Language Method 1 Method 2 Method 3 Method 1 Method 3
EN 0.56 0.35 0.57 0.61 0.61
FR 0.75 0.73 0.77 0.78 0.80

Table 3: Weighted F1-scores of the trained adapters for the test-set. On the left side, the official results. On the right
side, the post-deadline results in which we evaluate on the test set during training.

2018). We then stack a pre-trained language
adapter with fixed weights (from the AdapterHub
5, (Pfeiffer et al., 2020a)) on top of it followed by
a task adapter (this setup is explained with more
detail in (Pfeiffer et al., 2020b)). For training, we
used a learning rate of 5 · 10−5 and a simple cross-
entropy loss-function.

4 Results

The submitted results of the three approaches are
displayed on the left side of Table 3. Note that we
display the weighted F1-score here as opposed to
F1-macro we used in the previous section. For both
languages method 3 shows the best performance,
followed by method 1. However, while we placed
third for French, the final placement for English
was much worse. Our first guess at a reason for this
was the imbalance of the training dataset, which we
did not consider during the training. However, as
we can see in Figure 1 in blue, the test data (which
was released after the task-deadline) is similarly
distributed as the training data.

4.1 Augmenting Key-Issues

Classific. Target EN FR
No Augmentation 0.60 0.77
Aug. Key-issue Model 0.58 0.78
Aug. Rough Model 0.59 0.77
Augmentation Both 0.57 0.77

Table 4: Comparison of weighted F1-scores of the test-
set when augmenting different parts of the data for
method 3 (Figure 2). The first row shows the results
without augmentation, the second row when augment-
ing only during training of the models classifying into
the key-issues, the third row when augmenting only the
first (rough) model and the fourth row when augmenting
for all models.

In Table 3 we can see that the approach augment-
ing the data with the dataset of the other language
(method 2) performs the worst for both languages.

5https://adapterhub.ml/

But since we augmented the English data for the
method 3 and still measure good results (compared
to method 1), we are unsure of the impact of the
augmentation here. For that reason, we performed
several tests where we train a model using aug-
mented data at different stages. The results are
shown in Table 4. We can see that the results are
very similar among each language, especially for
the French dataset where the configuration which
augments the second models (classifying the key-
issues) performs slightly better than the rest of the
configurations. For the English dataset, the config-
uration without augmentation shows the best per-
formance, while augmenting both models performs
worst.

4.2 Evaluation on Test-Set

In order to determine the best performance possible
with our setup, we train adapters on the whole train-
ing set, using the labelled test set to evaluate. The
results are displayed in the right part of Table 3. Be-
cause method 2 performed the worst before, we do
not include it here anymore. In addition, we do not
augment the English approach for method 3 since
we saw a better performance not augmenting in Ta-
ble 4. We observe that the results improve slightly,
but don’t account for the difference in F1-scores
between the two languages.

5 Conclusion

We successfully trained several configurations ca-
pable of classifying news articles into the 35 key-
issues defined by MSCI, showing that using the
title instead of the content of the news article is
more performant. We also tried to augment the
datasets by translating from the other language but
saw that this has little impact, even decreasing the
performance in some cases. Out of the three differ-
ent approaches, we observe that it is generally best
to first classify the news articles into their rough
ESG components (environmental, social & gov-
ernance) before using a second model in order to
determine the final key-issue.
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