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Abstract

Controllable text generation is a growing field
within natural language generation (NLG) that
focuses on producing text that meets specific
constraints in real-world applications. Previ-
ous approaches, such as plug-and-play con-
trollers (PPCs), aimed to steer the properties
of generated text in a flexible manner. How-
ever, these methods often compromised the in-
tegrity of the language model’s decoding pro-
cess, resulting in less smooth text generation.
Alternatively, other techniques utilized multi-
ple attribute prompts to align the generated text
with desired attributes, but this approach re-
quired prompt design for each attribute and was
dependent on the size of the language model.
This paper introduces a novel method for flex-
ible attribute control in text generation using
pre-trained language models (PLMs). The pro-
posed approach aims to enhance the fluency of
generated text by guiding the generation pro-
cess with PPCs. The key idea is to dynamically
adjust the distribution of generated text by mod-
ifying prompts, effectively constraining the out-
put space of the language model and influenc-
ing the desired attribute. To enable smooth
cooperation between the PLM and the PPC,
our work innovatively proposes a new model
fine-tuning method: Reinforcement Learning
with Dynamic Adjust Feedback (RLDAF).This
fine-tuning process adapts a small subset of the
language model’s parameters based on the gen-
erating actions taken during the PPC control
process. The resulting harmonious collabora-
tion between the PLM and PPC leads to im-
proved smoothness in text generation during
inference. Extensive experiments were con-
ducted on the SST2 dataset, and the proposed
method outperformed previous approaches in
various evaluation metrics, including text flu-
ency and attribute consistency.

∗Corresponding author

Figure 1: This is a sketch of our proposed method,
which illustrates the process of adjusting the prefix and
fine-tuning the language model. It demonstrates how
text generation is optimized within the constraints of
prefix parameters.

1 Introduction

Enough studies have shown that large-scale PLMs
can largely improve the performance of down-
stream tasks (Radford et al., 2019). These models
can generate fluent text which is close to the hu-
man level (Raffel et al., 2020) through simple pre-
training tasks on a large number of unlabeled text.
PLMs are also capable of making the generated text
meet the specific constraints in real applications,
which has become a hot research field in natural
language processing (Zhang et al., 2022). To pre-
vent fine-tuning the massive parameters of PLMs,
Plug-and-Play Controllers (PPC) are proposed to
dynamically control the specific attributes of the
generated text by an external module. For example,
PPLM (Dathathri et al., 2019) uses an external at-
tribute discriminator to guide and modify a small
portion of parameters in PLMs.

However, we found that since the core parame-
ters of PLMs have to be changed every time a token
is generated, this method destroys the integrity of
PLMs, making the results easy to fall into the lo-
cal optimum, and thus generating repetitive and
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meaningless text.
Another method used to control text generation

is prefix-tuning (Li and Liang, 2021). This method
controls text generation by inserting a trainable
prefix parameter before the model input, but the
prefix parameter of this method is fixed once it is
trained, which is difficult to be used for complex
constraint control tasks.

Therefore, in this work, we propose a novel
method to improve the smoothness of PPC-guided
text generation. This method inserts a set of train-
able prompt parameters at the beginning of the
input sequence of PLM and tunes a small portion
of LM parameters to make the LM adapted to the
external controller. In detail, during the fine-tuning
phase, we generate the text under the control of
the external attribute discriminator, which adjusts
the parameters of prompts in each timestep. Then,
we calculate a reward according to the generated
results to evaluate the generation quality, enabling
the language model to learn how to interact with
dynamic prompts parameters via on-policy rein-
forcement learning. During the inference phase,
the attributes discriminator adjusts the prompt pa-
rameters based on the current generated results, and
the model will generate the required text based on
the current prompt constraints. Since the language
model already learns how to cooperate smoothly
with the controller in the fine-tuning phase, the in-
tegrity of PLM is improved during the generation
process with the prefixes being the flexible global
constraints.

We have conducted sufficient experiments on
topic control and emotion control tasks. The experi-
mental results show that our method is significantly
superior to the previous methods in terms of text
generation fluency and quality, which proves that
our method is very effective.

Our main contributions can be described as fol-
lows:

• We propose a novel plug-and-play control-
lable text generation method by dynamically
adjusting prompts. Compared with the pre-
vious methods, the text generated by our ap-
proach has a significant improvement in flu-
ency and generation quality.

• We have innovatively proposed a fine-tuning
method RLDAF (Reinforcement Learning
with Dynamic Adjust Feedback) that encour-
ages language models to better work together
with external controllers so that language mod-

els can better understand “dynamic” prefix
instructions.

• We have conducted extensive experiments to
evaluate the fluency and attribute control qual-
ity of the generated text. The experimental
results proved the effectiveness of our model.

2 Related Work

The method to control the specific attributes or
contents of the generated text has been widely stud-
ied (Kale and Rastogi, 2020; Sha et al., 2021; Liu
et al., 2021a; Sha and Lukasiewicz, 2021). The
most recent methods are built upon the large-scale
pre-training language model (PLM), which is based
on transformers and used a large-scale corpus to
learn copious language knowledge. In terms of
NLG, PLMs can generate text with unprecedented
quality. In general, an NLG system that is valuable
in practical applications should be able to generate
text that meets human expectations reliably.

Fine-tuning. In the above background, many
pieces of research on controllable text generation
based on PLMs have emerged. Kale and Rastogi
(2020) have studied the fine-tuning PLMs to com-
plete the data-to-text task. The experiment shows
that the effect of the model is better than that of
the previous pipelined neural network model. Rein-
forcement learning can also be used to control text
generation. Such methods fine-tune PLM by tak-
ing whether constraints are met as rewards (Ziegler
et al., 2019). (Stiennon et al., 2020) training a scor-
ing model to directly capture human preferences,
then use this model to calculate rewards and train
the Generative model through Reinforcement learn-
ing.

Prompt Learning In order to make better use
of the language understanding ability of PLMs, re-
searchers have proposed a method called prompt
learning, which allows PLMs to complete sen-
tences according to the constructed prompt tem-
plate without fine-tuning PLMs. The research of
this method mainly focuses on how to build tem-
plates. Jiang et al. (2020) propose the method of
manually constructing templates. Shin et al. (2020)
use an automatic search method to generate dis-
crete prompts. After that, researchers proposed
a continuous token template (Lester et al., 2021),
this method is called Prompt Tuning. Due to the
serious impact of prompt design on its effective-
ness, Liu et al. (2021b)proposed to convert it into

166



a learnable Embedding layer. A similar method is
prefix-tuning (Li and Liang, 2021), which realizes
controllable text generation by fine-tuning continu-
ous parameters inserted in front of sentences. This
method maintains the integrity of the PLMs and
makes the survival text have a high fluency. How-
ever, the prefix parameters are fixed after training,
which makes it necessary to train multiple different
prefixes for different scenes, that is, this method is
not plug-and-play.

Directly Modeling. Another important method
is to start from the pre-training task and directly
model the controlled text generation, such as
CTRL (Keskar et al., 2019), POINTER (Zhang
et al., 2020), CoCon (Chan et al., 2020), etc. How-
ever, this kind of approach requires a large amount
of parallel data for training, which is usually hard
to get in many real-world situations.

Plug-and-play Controllers. Due to the increas-
ing parameters of PLMs, reranking the generated
text in the post-processing mode becomes feasible
and promising. Plug-and-play language models
proposed by Dathathri et al. (2019); Sha (2020)
provide a new idea for controllable text genera-
tion tasks. This method uses a discriminator with
fewer parameters to guide the PLMs and controls
the distribution of text generated by changing the
hidden states of PLMs. There are also other kinds
of plug-and-play controllers. GeDi (Krause et al.,
2021) trains different small class-conditional lan-
guage models (CC-LMs) to guide the PLMs by
contrast. Similarly, DEXPERTS (Liu et al., 2021a)
proposes to reorder the PLMs results in the de-
coding stage according to the opinions of experts
and anti-experts. FUDGE (Yang and Klein, 2021)
adjusts the probability of PLM generation by learn-
ing future discriminators that operate on partial
sequences. The above methods do not carry out
any further training on the pre-training model, and
any distinguishable attribute control can use this
method. However, each token generated by this
method will adjust the hidden states of the PLMs,
which makes the model easy to fall into local opti-
mization during the generation process, resulting in
low fluency of the generated text (Yang and Klein,
2021).

3 Prompting PPC

3.1 Motivation
Compared with the traditional method of fine-
tuning the PLMs, the Plug-and-Play controller can
adjust the model parameters according to the cur-
rent generation state (Pascual et al., 2021). The
model parameters corresponding to each token dur-
ing generation are different, which conforms to the
generation method of the autoregressive language
model. However, in practice, this method destroys
the integrity of the PLM, and it is easy to fall into
the local optimal solution when controlling the gen-
eration distribution of the next token.

Therefore, we believe that this method of dy-
namically adjusting the parameters of the PLMs
in the inference phase is not stable, and intuitively,
dynamically adjusting the prompt (similar to prefix
tuning (Li and Liang, 2021)) instead of the PLM’s
parameters in the inference phase will lead to a
much more stable result. To make the PLM work
more smoothly with the dynamic prompt, we bor-
rowed the idea of instruct-tuning (Ouyang et al.,
2022) and proposed to fine-tune part of the param-
eters in the language models to learn to understand
dynamic prefix instructions and generate text that
meets constraint requirements.

3.2 Methodology Overview
Based on the above inspiration, we propose
the Prompt-PPC model, which is a controllable
text generation method based on dynamic prefix
prompts. In our method, the attributes discrimi-
nator will first update the prefix parameters of the
model to adjust them to appropriate instructions,
and then the fine-tuned language model will gener-
ate the next token based on the prompts and current
input.

Assume that we have a language model parame-
terized by the prefix parameters and the fine-tuned
parameters: LMθprefix,θlm and an attribute dis-
criminator Dattr. In order to obtain a continu-
ous prefix parameter, we add a group of vector
(p1, p2, . . . , pm) with length l before the sequence
(x1, x2, . . . , xn). Unlike prefix tuning (Li and
Liang, 2021), the prefix parameters in our method
are not fixed during the generate stage. Before each
token is generated, the attribute discriminator will
adjust the prefix parameters to constrain the gen-
eration of language models so that the constraint
information is transmitted to the language model.

However, it is difficult for PLMs to understand
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these dynamically changing continuous prompts,
so we need to fine-tune PLMs themselves to ob-
tain the ability to understand it. Firstly, Dynami-
cally tuning prompts. The attribute discriminator
adjusts the prefix parameters through the current
hidden states of the model, so that the prefix pa-
rameters act as dynamic prompts to guide the gen-
eration of the model to meet constraints. Based
on the control signal emitted by the prefix param-
eters, the language model continues to generate n
steps. Secondly, Calculate rewards. The reward
model (including the attribute discriminator and a
fluency evaluator) will calculate rewards according
to the results generated in the previous step. Then,
we propose an innovative model training method:
Reinforcement Learning with Dynamic Adjust
Feedback (RLDAF). In this process, the language
model continuously attempts to generate sentences
under the control of the dynamic prompts and op-
timizes a portion of the PLM’s parameters based
on the rewards given by the attribute discriminator
and fluency evaluator to learn how to understand
dynamic prompts and generate text that meets the
conditions based on these constraints.

3.3 Dynamic inference
As mentioned above, in our method, the prefix
parameters of the generative model in the inference
phase are dynamically adjusted. Specifically, for
an autoregressive language model Pϕ(y|x) with a
Transformer (Vaswani et al., 2017) architecture and
parametrized by ϕ, the hidden states at time step
i is hi ∈ Rd (d represents the length of the word
vector) where hi = [h

(1)
i ; · · · ;h(n)i ] and h

(j)
i is the

hidden states of the j-th Transformer layer at time
step i. Assume the prefix length is l, we insert a
trainable set of parameters in front of the hi:

hi = [h
(p1)
i ; · · ·;h(pl)

i ;h
(1)
i ; · · · ;h(n)i ]. (1)

If the current input text is X(x1, · · · , xi),
through the language model we can calculate the
output and hidden states at time step i+ 1:

oi+1 = LM(X; θprefix, θlm). (2)

The hidden states hi+1 of the model will be con-
catenated with the previous h≤i as input to the
attribute discriminator Dattr, the attribute discrim-
inator will output the control effect of the current
generated result and provide a gradient towards the
direction of constraint generation as in Eqn. 3.

di+1 = Dattr(h1, . . . , hi+1; θattr). (3)

Figure 2: The illustration of the Prompt-PPC infer-
ence process, which shows how the fine-tuned language
model generates text that satisfies constraints through
dynamic prefix instructions.

The loss function of this part shall be constructed
separately according to different constraint tasks.
For emotional control, the emotion classification
result obtained by the discriminator (di) and the
target (yi) calculation cross-entropy loss can be
used as the discriminator loss:

Ld = − 1

N

N∑

i=1

yi log(di). (4)

Then, we can use the following formula to up-
date the inserted prefix parameters:

h
(p)
i = h

(p)
i + α ∗ ∇Ld

(h
(p)
i ). (5)

The above parameter update process will be iter-
ated m times. To enhance computational efficiency,
we typically set m within the range of 3 to 5. No-
tably, the hidden states beyond the prefix range
remain unaffected by the update, thereby ensuring
that the model retains the previously generated con-
tent and maintains its integrity. Once the attribute
discriminator adjusts the prefix parameters to the
appropriate prompt, the fine-tuned model gener-
ates the next token based on the current prompt.
The above process will iterate to obtain complete
sentences that meet the constraint conditions.

3.4 Reinforcement Learning with Dynamic
Adjust Feedback (RLDAF)

In this section, we will discuss in detail how to
fine-tune the language model to understand the
instructions expressed by dynamic prompts. Due
to the lack of the prefix parameters during the pre-
training phase of the language model, the language
model cannot understand the instruction signals
issued by the adjusted prefix. To enable the model
to possess this capability, we innovatively propose
a method to fine-tune the language model, enabling
it to perform better in the inference phase.
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Assuming that the input to the model is
X(x1, x2, · · · , xi), we first adjust the prefix param-
eters to an appropriate value through the attribute
discriminator as described in 3.3. At this time, the
output of the model can be represented as:

oi+1 = LM(X; θprefix, θlm), (6)

where oi+1 is the output of the model. We hope
that the language model can understand the con-
tinuous prompts to adjust the generation strategy,
which can generate text that meets attribute con-
straints and has high fluency. We primarily use
reinforcement learning to fine-tune the language
model from two rewards. (1) Control Reward: by
using the output of the attribute discriminator. (2)
Fluency Reward: the opposite of the KL diver-
gence between the learned RL policy πRL

θ
1 with

parameters θ and this original pretrained model
πθ. Assume that yi is the target attribute, the full
reward can be written as:

Rd = Dattr(yi|(x1, x2, · · · , xi+k)), (7)

Rf = −β

k

k∑

j=1

KL[πRL
θ (X), πθ(X)], (8)

R = Rd +Rf . (9)

Rd in Eqn. 7 represents the reward for satisfying
constraints. It should be noted that the attribute
discriminator we use here is the same as the one
used for prompts adjustment. The difference is
that when adjusting the prompts, we only generate
one token preceding the current position from the
model and input the corresponding hidden states.
In contrast, during the fine-tuning process of the
language model, we typically generate an addi-
tional n tokens in the backward direction and cal-
culate the reward once. Generally, n falls within
the range of 2 to 4.

The calculation of KL divergence primarily aids
in measuring the fluency of language model genera-
tion, ensuring that the output of the model remains
consistent with that of the pre-trained language
model. As mentioned earlier, we usually calculate
a reward once after the model generates several ad-
ditional tokens. During this process, we compute
the KL divergence for each token, subsequently
averaging them to obtain a fluency reward as Rf in
Eqn. 8.

1for simplicity, we use θ to represent (θprefix, θlm)

Figure 3: Schematic diagram of fine-tuning the language
model in our method. Firstly, the attribute model adjusts
the prefix parameters to issue appropriate instructions.
The language model generates text based on the instruc-
tions, and then, calculates rewards for the generated text
through the attribute model and fluency model. Based
on this reward, the language model is fine-tuned to gain
the ability to understand dynamic instructions.

Finally, we optimize our language model param-
eters by the PPO strategy gradient algorithm (Schul-
man et al., 2017), enabling the language model to
have the ability to understand dynamic prompts. In
practical experiments, to improve the efficiency of
model tuning, we use the LORA (Hu et al., 2021)
method to only fine-tune a small portion of the
model. PPO algorithm is a policy gradient method,
we can sample and calculate the rewards of differ-
ent generation strategies of the model, and calcu-
late the reward expectations of different strategies.
Then, we update the model parameters by gradient
descent as shown in Eqn. 10 and Eqn. 11:

∇θJ(θ) = E

[
T∑

t=0

∇θ log(π
RL
θ (Xt)) ·Rt

]
,

(10)

θnew = θold + α · ∇θJ(θ). (11)

In the above equation, πRL
θ represents the training

language model, Rt is the reward at time step t,
T is the number of forward steps and the α is the
learning rate.

4 Experiment

4.1 Datasets and Metrics
In our experiment, we mainly used two data sets:
the bag-of-words data set and the SST2 emotion
data set, which correspond to the topic control task
and the emotion control task, respectively.

• Bag of Words: The “Bag of Words” dataset
was first proposed in PPLM (Dathathri et al.,
2019), which includes seven topics: SCI-
ENCE, MILITARY, LEGAL, TECHNOL-
OGY, SPACE, POLITICS, and RELIGION,
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each of which contains hundreds of words
that match the topic. The dataset can well
represent the characteristics of different top-
ics through the words in the same “bag” and
has a high degree of differentiation between
different topics, which has been used in many
studies to achieve the topic control task.

• SST-2: The SST-2 dataset (Socher et al., 2013)
is a widely used dataset for training and evalu-
ating models for sentiment analysis, which is
the task of determining the sentiment or emo-
tion expressed in a piece of text. The SST-2
dataset consists of approximately 67,000 En-
glish language sentences drawn from movie
reviews, annotated with labels indicating the
sentiment expressed in the sentence. The la-
bels are either “positive” or “negative”, and
the task is to classify a given sentence as be-
longing to one of these two categories. The
SST-2 dataset is often used to evaluate the
performance of machine learning models for
natural language processing tasks, such as text
classification.

We divide sentence generation metrics into gen-
eral metrics and attribute metrics. For general met-
rics, it refers to metrics that can be used to evaluate
the effect of sentence generation for any gener-
ated sentence. Here, we mainly consider two met-
rics: perplexity (PPL) and distinct (Dist)(Li et al.,
2015). PPL is widely used to evaluate sentence flu-
ency. For a fair comparison, we calculate PPL by
a third-party pretrained GPT model2. Specifically,
we think that the text generated by initial PLMs
has high fluency. So, we take the output of initial
PLMs in the next step as the label:

Li = argmax(PGPT (x1, x2, · · · , xi−1)). (12)

Then, we use the prompt-ppc model to calculate
the probability of the label Li:

P (Li) = Pprompt−ppc(Li|(x1, x2, · · · , xi−1)).
(13)

Then, we calculate the cross entropy loss from the
third-party pretrained GPT model output p(xi) and
the tag to get the PPL:

PPL = exp

(
−

N∑

i=1

log(P (Li))

)
. (14)

2https://huggingface.co/openai-gpt

Another indicator Dist(Li et al., 2015) is a com-
mon indicator to evaluate the richness of the text.
This indicator is based on the BOW model, and the
calculation formula is:

Distn =
Uniquen−grams

Totaln−grams
, (15)

where Uniquen−grams represents the number of
non-repeating binary phrases in the generated text,
and Totaln−grams represents the total number of
binary phrases in the generated text.

Next, we introduce attribute metrics, which de-
scribe the degree to which the generated sentences
conform to the control attribute. Obviously, for
different attribute control tasks, we need to design
different metrics to describe the constraint effect of
sentences. Here we mainly introduce our two exper-
iments: how to design attribute metrics for theme
control and emotion control. For the topic con-
trol task, we use the synonym expansion method
to get a new test word bag according to the word
bag in the dataset, and then calculate the propor-
tion of words in the test word bag in the generated
sample as the topic evaluation metric (TOPIC).
For the emotion control task, we use the model
with the highest accuracy of emotion classifica-
tion in the SST-2 data set in Huggingface3 to an-
notate the generated text with emotion. Then, we
calculate the accuracy rate of emotional control
according to the labeling results and control objec-
tives as the evaluation metric of emotional control
task (Sentimentacc).

4.2 Architectures and Hyperparameters

For the topic control task and emotion control
task, we use GPT2_MEDIUM as the PLM used in our
method. GPT2_MEDIUM is a version of the GPT-2
model with 345 million parameters, which is less
than a quarter of the original GPT-2 model.

Our experiments are based on the HuggingFace
Transformer models (Wolf et al., 2020). We use the
AdamW optimizer (Loshchilov and Hutter, 2017)
during prefix tuning and the PPO algorithm (Schul-
man et al., 2017) in dynamic instruction fine-tuning.
We use the PEFT (Mangrulkar et al., 2022) frame-
work for the implementation of prefix adjustment.
For our two tasks in the experiment, the number of
iterations m, which represents the number of times
the prefix parameter is adjusted before the model

3https://huggingface.co/
distilbert-base-uncased-finetuned-sst-2-english
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generates a token, is set to 5 in our experiment, the
prefix length is set to 10 and the sampling steps n
in dynamic instruction fine-tuning is 3 according
to grid search.

4.3 Ablation test and baselines

We use four models for the ablation test:

• Prompt-PPC: The method proposed in this ar-
ticle involves fine-tuning the language model
to gain the ability to understand dynamic pre-
fix instructions, and dynamically adjusting
prefix parameters to constrain model gener-
ation during the inference stage;

• PPC-KV: Dynamically adjust all K and V
parameters during the inference phase without
inserting prefix parameters;

• PPC-Prefix: Directly using dynamic prefixes
as global control for language model genera-
tion without fine-tuning;

• PLM-RL: Only Reinforcement learning is
used to fine-tune the language model, and the
language model parameters are fixed during
reasoning;

• PPC-Fluency: Do not consider fluency when
calculating rewards.

In addition to the ablation study, we also compared
five baseline models, namely:

• GPT2: we use the origin pretrained GPT-2
(with the version name gpt2-medium) as the
baseline.

• PPLM: a plug-and-play language model for
controlled text generation;

• Prefix: a controllable text generative model
with only fine tuning prefix parameters;

• FUDGE: a model for post-processing gener-
ated results using future discriminators;

• GEDI:a plug-and-play model based on di-
rectly model;

Diffusion-LM:a controllable text generation model
based on diffusion theory.

4.4 Main Result

4.4.1 Topic Control
First, we consider the topic experiment based on
the “Bag of Words” dataset. Our goal is to make
the model generate sentences belonging to different

topics according to the same prefix when inputting
different topic word bags under the premise of en-
suring the fluency of sentences. For a given subject
word bag, we use the most common maximum
likelihood model to give the attribute description.
Given a word bag [w1, w2, ...wk], the probability
distribution of model output is pi+1, the attribute
can be described as:

log(a|x) = log(
k∑

i=1

Pi+1[wi]). (16)

Based on the results of the ablation experiment
as Table 1, we found that dynamically adjusting the
k and v parameters of the model without adding
prefix parameters can disrupt the consistency of the
model, leading to a decrease in the fluency of the
generated text. If the language model is not fine-
tuned, the fluency and attribute consistency of the
model will be insufficient. This indicates that the
dynamic prefix adjustment and model fine-tuning
proposed in this study significantly improve the
results.

Model Perplexity↓ Topic↑ Dist1↑ Dist2↑ Dist3↑
PPC-KV 48.25 0.75 0.31 0.71 0.91
PPC-Prefix 37.93 0.66 0.33 0.75 0.92
PLM-RL 32.36 0.77 0.29 0.70 0.90
PPC-Fluency 54.13 0.88 0.25 0.68 0.89
Prompt-PPC 29.41 0.83 0.32 0.72 0.92

Table 1: The ablation test result of topic-controlled text
generation.

We also tested our proposed method and other
methods separately, evaluated it according to the
above metrics, and obtained the following results
as Table 2. From the results, we can see that our
method achieves the generation performance of
the original GPT2 in terms of fluency, and outper-
formed other methods in terms of diversity, which
shows that our method can avoid the repeated gen-
eration phenomenon caused by the model falling
into local optimization. In terms of subject control,
our method also shows a satisfactory control effect.

Model Perplexity↓ Topic↑ Dist1↑ Dist2↑ Dist3↑
GPT2 23.57 0.37 0.35 0.74 0.92
PPLM 51.26 0.76 0.30 0.71 0.88
FUDGE 44.26 0.78 0.35 0.74 0.90
Prompt-PPC 29.41 0.83 0.32 0.72 0.92

Table 2: The baselines result of topic-controlled text
generation

Through the generated results of the model, we
found that the model not only learns the given
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words in the word bag, but also generates the words
that are not in the word bag but conform to the topic
description, which shows that the model is not only
learning to generate specific words but also under-
standing the meaning of the topic through the word
bag.Some generated instances such as Table 3:

[legal]The pizza delivery service company has been
accused of using a fake company name to advertise
its service. The company has denied the allegations.
[military]The pizza delivery war is heating up again.
The battle between delivery drivers and pizza com-
panies is because of a conflict.
[science]The pizza chain was accused of using fake
lab to refund 1.5 million in taxes. They said they had
data to prove that the money was used for experi-
ment to make pizza.
[technology]The pizza delivery app is now available.
The app icon is a red circle.It’s a great app for those
who want to get their pizza delivered to their door.

Table 3: Instances of topic control generation control
text generation

4.4.2 Sentiment Control
Since the subject control experiment can use the
content of the word bag to calculate the loss, it
does not need an external discriminator. However,
for some control tasks that cannot be solved us-
ing the word bag, a discriminator can provide an
external gradient to guide the model to adjust the
parameters. Here we take the emotional control
task as an example. We use the “SST-2” datasets
to test the effect of our method on the emotion
control task. For this task, our goal is to make the
model learn how to generate positive or negative
emotional text according to the input tags through
the training set. we first need to train an external
emotion discriminator. This discriminator is based
on the pre-training model we use, and it is trained
by fine-tuning the “SST-2” datasets. Then, we can
get the emotional attribute description of the output
according to the discriminator D:

log(a|x) = D(x1, x2, ...xn). (17)

For emotion control tasks, from the results of ab-
lation experiments in Table 4, we can see that our
method has a fluency level close to that of the tradi-
tional Reinforcement learning fine-tuning language
model, while improving the effect of attribute con-
trol.This is because our method uses dynamic pre-
fix parameters as global constraints to dynamically

control model generation during the inference pro-
cess, improving attribute consistency.

Model Perplexity↓ Sentiment-acc↑ Dist1↑ Dist2↑ Dist3↑
PPC-KV 38.45 0.73 0.34 0.78 0.91
PPC-Prefix 40.61 0.75 0.33 0.81 0.92
PLM-RL 30.35 0.76 0.31 0.77 0.90
PPC-Fluency 51.21 0.79 0.24 0.69 0.88
Prompt-PPC 30.93 0.83 0.32 0.77 0.91

Table 4: The ablation test result of the sentiment control
text generation.

We compared more baseline methods for emo-
tion control tasks to demonstrate the effectiveness
of our approach, as shown in in Table 5. By fine-
tuning the language model to adapt to the dynamic
inference process, Prompt PPC achieved high flu-
ency and emotion control effects among many
methods.

Model Perplexity↓ Sentiment-acc↑ Dist1↑ Dist2↑ Dist3↑
GPT2 27.54 0.62 0.30 0.78 0.91
PPLM 51.20 0.79 0.24 0.51 0.88
Prefix 29.74 0.76 0.31 0.77 0.90
FUDGE 37.26 0.81 0.35 0.77 0.90
GEDI 35.24 0.70 0.39 0.81 0.92
Diffution-LM 41.35 0.77 0.33 0.80 0.87
Prompt-PPC 30.93 0.83 0.32 0.77 0.91

Table 5: The baselines result of the sentiment control
text generation

The following instances in Table 6 shows the
generation examples of the model under the emo-
tion control task. We show the generation examples
of different labels under the same prefix.

[SST-2]it’s not original ,and,robbed of the element
of surprise,it doesn’t have any huge laughs in its
story of irresponsible cops who love to play pranks.
[Negative]
[Prompt-PPC]it’s not original,but it’s still good, and
it’s not a bad game.[Positive]
[Prompt-PPC]it’s not original. I’m not sure if it’s a
joke or not. I hate that.[Negative]

Table 6: Instances of sentiment control generation con-
trol text generation

5 Conclusion

In this work, we propose Prompt-PPC, which is
a method to realize controllable text generation
by dynamically adjusting prompts during model
generation. We first propose a fine-tuning method
to enable language models to understand dynamic
prefix instructions, and in inference process, this
method takes the prefix as a global constraint, pro-
vides a gradient through an external discriminator,
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and flexibly adjusts the prefix during the generation
process to prompt PLMs to generate in the direction
of the constraint. We have conducted experiments
on topic control and emotion control tasks. The ex-
perimental results show that the fluency of the text
generated by our method is very close to PLMs,
and the diversity and control effect of the generated
text is better than the previous methods. We hope
that this work can broaden the thinking of prompt
learning in the field of text generation. In the fu-
ture, our method is expected to be applied to more
complex and fine-grained control tasks.

Limitations

First of all, like the traditional plug-and-play
method, our method only uses the externally
decoupled attribute discriminator to control at-
tributes(Pascual et al., 2021). This method leads
to the lack of information interaction between the
discriminator and the generator, which leads to the
coarse-grained control in the generation process
and the quality of the generated text. In this work,
we use the method of dynamically adjusting the
prefix as the global constraint, which improves the
above problems to some extent, but in our method,
the attribute discriminator is still independent of
the model.

Secondly, how to properly initialize prefix pa-
rameters is also a challenge. For given different
inputs, the model uses the same initialization prefix
parameters, which will cause the generation per-
formance of the model to be unstable for different
inputs. At the same time, during the generation
of each token, the prefix parameter will affect the
generation effect of the model due to the limited
number of plug-and-play tuning epochs. This prob-
lem can be improved by increasing the number
of plug-and-play tuning epochs, but at the same
time, it will increase the complexity of the model
calculation and the generation time of the token.
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