@inproceedings{imperial-tayyar-madabushi-2023-flesch,
title = "Flesch or Fumble? Evaluating Readability Standard Alignment of Instruction-Tuned Language Models",
author = "Imperial, Joseph Marvin and
Tayyar Madabushi, Harish",
editor = "Gehrmann, Sebastian and
Wang, Alex and
Sedoc, Jo{\~a}o and
Clark, Elizabeth and
Dhole, Kaustubh and
Chandu, Khyathi Raghavi and
Santus, Enrico and
Sedghamiz, Hooman",
booktitle = "Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.gem-1.18/",
pages = "205--223",
abstract = "Readability metrics and standards such as Flesch Kincaid Grade Level (FKGL) and the Common European Framework of Reference for Languages (CEFR) exist to guide teachers and educators to properly assess the complexity of educational materials before administering them for classroom use. In this study, we select a diverse set of open and closed-source instruction-tuned language models and investigate their performances in writing story completions and simplifying narratives{---}tasks that teachers perform{---}using standard-guided prompts controlling text readability. Our extensive findings provide empirical proof of how globally recognized models like ChatGPT may be considered less effective and may require more refined prompts for these generative tasks compared to other open-sourced models such as BLOOMZ and FlanT5{---}which have shown promising results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="imperial-tayyar-madabushi-2023-flesch">
<titleInfo>
<title>Flesch or Fumble? Evaluating Readability Standard Alignment of Instruction-Tuned Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="given">Marvin</namePart>
<namePart type="family">Imperial</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Gehrmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">João</namePart>
<namePart type="family">Sedoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Clark</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaustubh</namePart>
<namePart type="family">Dhole</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khyathi</namePart>
<namePart type="given">Raghavi</namePart>
<namePart type="family">Chandu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hooman</namePart>
<namePart type="family">Sedghamiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Readability metrics and standards such as Flesch Kincaid Grade Level (FKGL) and the Common European Framework of Reference for Languages (CEFR) exist to guide teachers and educators to properly assess the complexity of educational materials before administering them for classroom use. In this study, we select a diverse set of open and closed-source instruction-tuned language models and investigate their performances in writing story completions and simplifying narratives—tasks that teachers perform—using standard-guided prompts controlling text readability. Our extensive findings provide empirical proof of how globally recognized models like ChatGPT may be considered less effective and may require more refined prompts for these generative tasks compared to other open-sourced models such as BLOOMZ and FlanT5—which have shown promising results.</abstract>
<identifier type="citekey">imperial-tayyar-madabushi-2023-flesch</identifier>
<location>
<url>https://aclanthology.org/2023.gem-1.18/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>205</start>
<end>223</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Flesch or Fumble? Evaluating Readability Standard Alignment of Instruction-Tuned Language Models
%A Imperial, Joseph Marvin
%A Tayyar Madabushi, Harish
%Y Gehrmann, Sebastian
%Y Wang, Alex
%Y Sedoc, João
%Y Clark, Elizabeth
%Y Dhole, Kaustubh
%Y Chandu, Khyathi Raghavi
%Y Santus, Enrico
%Y Sedghamiz, Hooman
%S Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F imperial-tayyar-madabushi-2023-flesch
%X Readability metrics and standards such as Flesch Kincaid Grade Level (FKGL) and the Common European Framework of Reference for Languages (CEFR) exist to guide teachers and educators to properly assess the complexity of educational materials before administering them for classroom use. In this study, we select a diverse set of open and closed-source instruction-tuned language models and investigate their performances in writing story completions and simplifying narratives—tasks that teachers perform—using standard-guided prompts controlling text readability. Our extensive findings provide empirical proof of how globally recognized models like ChatGPT may be considered less effective and may require more refined prompts for these generative tasks compared to other open-sourced models such as BLOOMZ and FlanT5—which have shown promising results.
%U https://aclanthology.org/2023.gem-1.18/
%P 205-223
Markdown (Informal)
[Flesch or Fumble? Evaluating Readability Standard Alignment of Instruction-Tuned Language Models](https://aclanthology.org/2023.gem-1.18/) (Imperial & Tayyar Madabushi, GEM 2023)
ACL