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Abstract

Artificial neural networks typically struggle in
generalizing to out-of-context examples. One
reason for this limitation is caused by having
datasets that incorporate only partial informa-
tion regarding the potential correlational struc-
ture of the world. In this work, we propose
TIDA (Targeted Image-editing Data Augmen-
tation), a targeted data augmentation method
focused on improving models’ human-like abil-
ities (e.g., gender recognition) by filling the cor-
relational structure gap using a text-to-image
generative model. More specifically, TIDA
identifies specific skills in captions describing
images (e.g., the presence of a specific gen-
der in the image), changes the caption (e.g.,
"woman" to "man"), and then uses a text-to-
image model to edit the image in order to match
the novel caption (e.g., uniquely changing a
woman to a man while maintaining the context
identical). Based on the Flickr30K benchmark,
we show that, compared with the original data
set, a TIDA-enhanced dataset related to gender,
color, and counting abilities induces better per-
formance in several image captioning metrics.
Furthermore, on top of relying on the classical
BLEU metric, we conduct a fine-grained analy-
sis of the improvements of our models against
the baseline in different ways. We compared
text-to-image generative models and found dif-
ferent behaviors of the image captioning mod-
els in terms of encoding visual encoding and
textual decoding.1

1 Introduction

Humans and animals develop all kinds of cogni-
tive abilities from a very early age that allow them
to interact with their world (Spelke et al., 1992;
Spelke and Kinzler, 2007). For instance, infants dis-
play numerical cognition abilities (Feigenson et al.,
2004; Xu and Spelke, 2000), can recognize emo-
tions (Bornstein and Arterberry, 2003) or even the

1Code will be available online after submission.

danger associated with other agents’ action plans
(Liu et al., 2022a). Comparatively, animals also
display similar numerical cognition abilities (Davis
and Memmott, 1982; Dacke and Srinivasan, 2008),
or recognize emotions in order to better commu-
nicate within a social group (Hantke et al., 2018).
These abilities are crucial in order to build models
of the world that are necessary for planning, reason-
ing, and solving complex decision-making tasks
(Lake et al., 2017).

Deep learning systems can solve these tasks by
optimizing an objective function via supervised,
semi-supervised or unsupervised learning (LeCun
et al., 2015). Within this framework, it has been
shown that deeper layers progressively represent
increasingly abstract concepts (Krizhevsky et al.,
2017), akin to what has been observed in the hu-
man visual or auditive processing pathways (Cichy
et al., 2016; Caucheteux et al., 2023). Moreover,
empirical work has shown that pretrained state-
of-the-art transformer models (Devlin et al., 2019)
encode factual knowledge within sets of knowledge
neurons (Dai et al., 2022); strongly related to the
concepts of "grandmother" cells in neuroscience
(Quiroga et al., 2005). Importantly, not only factual
knowledge but also conceptual knowledge (such as
"sentiment" in a text or "written language" in an im-
age) are encoded by nodes in deep layers (Radford
et al., 2017; Yosinski et al., 2015). Whereas recent
methods have been proposed to access and edit fac-
tual knowledge (Meng et al., 2022b), and thus eval-
uate how and where facts are being encoded in deep
networks (Meng et al., 2022a), it is much harder
to evaluate the abilities associated with conceptual
knowledge stored in these networks. Yet, possess-
ing such a conceptual knowledge base is crucial for
out-of-distribution generalization (Bosselut et al.,
2019).

Although deep networks seem to encode concep-
tual knowledge that allows them to display human-
like abilities such as counting, emotion, gender,
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Figure 1: TIDA Framework (Example generated with Null-Text-Inversion (Mokady et al., 2022))

color, and sentiment recognition/categorization
(Wallace et al., 2019; Barriere et al., 2022; Hen-
dricks et al., 2018; Anderson et al., 2016a; Barriere,
2017), these same networks typically struggle in
producing out-of-context (or out-of-distribution)
generalizations (Marcus, 2018; Lake and Baroni,
2018; Ruis et al., 2020; del Rio et al., 2023; Ribeiro
et al., 2020). These limitations are due to the in-
herent functioning of Artificial Neural Networks
(ANNs). Indeed, generalization performances of
ANNs largely depend on their ability to extract the
correlational structure in the training data set, mem-
orize this structure, and extrapolate it to a novel
(test) data set (Krizhevsky et al., 2017; Saxe et al.,
2019).

Indeed, given that the performance of vanilla
deep networks is constrained by the structural cor-
relation observed in the training data set, a straight-
forward way to maximize the generalization perfor-
mance in ANNs is to augment data sets in targeted
ways (Sharmanska et al., 2020; He et al., 2023).
Thereby, targeted data augmentation would in-
crease the span of potential correlations that could
be observed in the world, and as such improve the
human-like abilities of deep networks. By targeting
specific human-like abilities and augmenting the
data set to encapsulate unseen examples associated
with these abilities, we hypothesize that models can
increase their conceptual knowledge, and thus im-
prove their performance on specific benchmarks we
discuss below. Moreover, similar to editing unique
factual knowledge (Meng et al., 2022b), one would
ideally want to target unique conceptual knowledge
(e.g., gender, color, numerosity, emotion, shape...)
to induce such ability-selective performance, which
has been widely studied (Anderson et al., 2016b;
Hu et al., 2023).

We will propose a simple way to overcome the

issues raised above, for Image Captioning (IC) task.
Interestingly, novel text-to-image generation mod-
els (Rombach et al., 2022b) in combination with
text-generation or manipulation (He et al., 2023;
Mitkov, 2022; Murty et al., 2022) affords novel pos-
sibilities for targeted data augmentation for vision-
language tasks. Hence, we propose to enhance the
capabilities of an Image Captioning model by us-
ing a targeted data-augmentation on several specific
abilities (or skills). We use simple regular expres-
sions (regex) to identify these skills in the caption,
to change the caption for another version of it, and
to generate the image related to this caption. The
main contributions of this work are twofold. First,
we propose a simple method to identify data related
to a specific human-like ability in image captioning
(e.g., color identification, emotion recognition...).
Second, we propose a novel data augmentation
method based on image-to-text generation mod-
els that allows one to generate data sets that can
selectively improve a single or combinations of
human-like skills in image captioning performance.
Instead of manipulating or fine-tuning information
processing within image captioning models, our
method increases the span of potential object corre-
lations and thus allows us to generalize image cap-
tioning abilities to a broader spectrum of situations
that can be observed in the real world (Zhang et al.,
2021). In what follows, we first describe related
work while specifying the original contribution of
our work. Subsequently, we describe the Targeted
Image-editing Data Augmentation (TIDA; see Fig-
ure 1) method and present the results associated
with fine-tuning models with our TIDA-augmented
data sets. Finally, we discuss the implications of
our work.
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2 Previous and Related Work

Image Captioning Image captioning (IC) mod-
els provide human-like captions to images (Cornia
et al., 2020; Herdade et al., 2019). Such an ability
lies in the intersection between computer vision and
natural language processing (Devlin et al., 2015),
and is therefore, in essence, a multimodal problem.
Early IC models proposed to sequentially combine
convolutional neural networks (CNN) with recur-
rent neural networks (RNN) into a single imaged-
conditioned language model (Karpathy and Fei-
Fei, 2015; Chen and Lawrence Zitnick, 2015; Fang
et al., 2015). Given the success of these models and
their potential industrial applications, subsequent
work has focused on improving the models’ image
captioning ability by focusing on specific proper-
ties of IC models. For instance, it has been shown
that top-down visual attention mechanisms improve
captioning performance (Anderson et al., 2018; Lu
et al., 2017). Alternatively, focusing on the learn-
ing process, it has been shown that implementing
self-critical sequence training (a variant of the RE-
INFORCE algorithm) improves IC performances
by avoiding the exposure bias (Ranzato et al., 2016)
and directly optimizing the relevant task metrics
(Rennie et al., 2017). Furthermore, many IC mod-
els are pre-trained using tasks like Masked Lan-
guage Modeling (MLM) and Image-Text Matching
(ITM). These tasks possess losses that differ from
image captioning (or other downstream tasks), and
thus IC models require further fine-tuning. Hence,
recent work has focused on unifying generative
vision-language models through text generation
(Cho et al., 2021; Wang et al., 2022a,b), in order
to optimize knowledge transfer from train to test.
Lastly, novel methods have focused on optimally
leveraging language caption supervision during pre-
training, as small datasets with large caption vari-
ability can lead to detrimental effects (Santurkar
et al., 2023).

Symbolic Knowledge Vision-language (VL)
tasks can also be improved by incorporating sym-
bolic knowledge into the VL models. For instance,
providing a knowledge base, instantiated as subject-
relation-object triplets associated with the images,
both improve performance in vision-question an-
swering (VQA) tasks, on top of allowing to ex-
plain the VQA model’s predictions (Riquelme et al.,
2020). In the same vein, adding high-level (seman-
tic) attributes as inputs to IC models can increase

captioning benchmarks (You et al., 2016; Yao et al.,
2017). Alternative efforts have shown that using
object tags to facilitate the semantic image-text
alignment during pre-training, and improves bench-
mark metrics in downstream fine-tuned image cap-
tioning tasks (Li et al., 2020). Moreover, aligning
directional semantic and spatial relationships be-
tween text and image (i.e., relation-level alignment)
improves compositional reasoning (Pandey et al.,
2022). Finally, symbolic knowledge and reasoning
capability aim to enhance textual model’s robust-
ness when faced with out-of-distribution examples,
thereby enabling them to engage in more human-
like reasoning (Collins et al., 2022).

Bias/Bug detection, and Evaluation TIDA en-
hances the likelihood of simultaneously observing
distinct attributes in an image within the augmented
dataset. Thereby, our work relates to studies that
focus on improving the predictive abilities of mod-
els in domains that suffer from bias-induced incor-
rect predictions. In line with this idea, the Equal-
izer model is constrained to attend to the person
attribute in images, increasing the IC abilities to
detect the gender in the image (Hendricks et al.,
2018). Interestingly, other attributes such as numer-
acy (e.g., counting) naturally emerge in standard
embeddings (Wallace et al., 2019), and may thus
be less prone to biased predictions. Alternative
debiasing methods focus on "decoupling" biased
directions within text embeddings (Chuang et al.,
2023).

Other approaches focus on discovering the spe-
cific images where IC models fail (i.e., bugs). An
instance of such a method uses a sequential pipeline
that generates images from specific captions, clas-
sifies the object in the image, creates captions from
the incorrectly classified images, generates cap-
tions of these images, and finally regenerates novel
images based on the previously generated caption
via a text-to-image generative process. These last
images can be used to assess the robustness of vi-
sion models, as well as improve their performance
(Wiles et al., 2022).

Moreover, while image captioning is usually
scored on automatic metrics like SPICE (Ander-
son et al., 2016b) or CIDEr (Vedantam et al., 2015),
it has been suggested that metrics evaluating both
precision and recall leading to better correlations
with human judgments (Kasai et al., 2022). Finally,
(Hu et al., 2023) propose a method to compare
image captioning models correlated with human
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judgment by leveraging LLM (OpenAI, 2023).

Data augmentation and Image generation
Data augmentation has been shown to improve per-
formance both in vision (Ho et al., 2019; Cubuk
et al., 2020) and language (Sennrich et al., 2015;
Karimi et al., 2021; Andreas, 2020; Wei and Zou,
2019) tasks. Typically, data augmentation tech-
niques involve procedures such as geometric trans-
formations, color space augmentations, kernel fil-
ters, or mixing images (see (Shorten and Khoshgof-
taar, 2019) for review). To further improve these
augmentation methods, a multi-task view of aug-
mentation proposes to incorporate both original
data and augmented examples during the training
procedure (Wei et al., 2021). This proposal has
the benefit to relax the assumption that augmented
examples cannot be too dissimilar from the orig-
inal data. In the same vein, Neurocounterfactu-
als is a method that allows augmenting data via
large counterfactual perturbations that still bear re-
semblance to the original data but can nonetheless
provide richer data augmentation (Howard et al.,
2022). More recent studies have investigated data
augmentation methods in multimodal settings such
as VL tasks. For instance, LeMDA is a method
that learns an augmentation network alongside a
task-dedicated network (Liu et al., 2022b). This
method augments the latent representation of the
network and thus preserves the semantic structure
in each modality.

Moreover, not restricting data augmentation to
the specificity of inputs can have detrimental ef-
fects, as augmented examples may possibly be as-
sociated to another label (e.g., a color change from
green to red rock may induce a label change from
emerald to ruby). To avoid this pitfall, instance-
specific augmentation (InstaAug) learns to apply in-
variances to specific parts of the input space (Miao
et al., 2022). Similar work suggests estimating
invariances by learning a distribution over augmen-
tations, and jointly optimizing both the network
and augmentation distribution parameters (Benton
et al., 2020).

Other methods belong to a class of automated
data augmentation algorithms. These algorithms
can for example use reinforcement learning (RL) to
optimize a data augmentation policy (e.g., (Cubuk
et al., 2019)). Furthermore, differentiable data aug-
mentation proposes a method that relaxes the dis-
crete state search assumption of RL, and allows for
a more efficient data augmentation by implement-

ing an end-to-end differentiable search procedure
(Hataya et al., 2020). Notably, other methods such
as AdaAug extend previous research by focusing
not only on instance-depend data augmentation but
also on class-dependent ones through the imple-
mentation of adaptive augmentation policies (Che-
ung and Yeung, 2022).

Our method differentiates from policy-based
methods for data augmentation but remains both au-
tomated, class-dependent, and targeted (i.e., we can
focus on specific attributes such as gender, count-
ing, or color). In particular, we leverage the im-
pressive natural language-driven image synthesis
abilities of text-to-image generative models (Yu
et al., 2022; Saharia et al., 2022; Ramesh et al.,
2022) (see methods). In particular, we focus on
their image editing or inpainting ability, which is
a difficult challenge for these models given that
only part of the image has to be changed while
the rest has to be maintained. To solve this issue,
traditional methods make use of explicit masks to
circumscribe the inpainting region (Nichol et al.,
2022; Avrahami et al., 2022). However, masking
methods are both time-consuming and do not lever-
age structural information in the image. To circum-
vent this issue, recent work proposes the use of a
prompt-to-prompt procedure in combination with
a cross-attentional control mechanism that allows
to edit of specific objects in the image while tak-
ing into account the contextual information (Hertz
et al., 2022). Another method proposes to use of
null-text inversion to achieve maskless image edit-
ing (Mokady et al., 2022).

Interestingly, these state-of-the-art inpainting
models open up the possibility to implement novel
data augmentation methods. For instance, a recent
paper showed that fine-tuning large-scale image-
to-text generative models allows producing high-
quality synthetic data that can improve ImageNet
benchmark scores (Azizi et al., 2023). TIDA ex-
tends this idea in VL models, in order to improve
specific target skills of these models within the
framework of image captioning tasks.

3 Method and Experiments

We propose a two-step method that allows retriev-
ing certain images using their captions, regarding a
specific concept that we call skill. These skills re-
fer to human- and animal-like basic abilities, such
as gender categorization, counting, or recogniz-
ing colors. We first use a text mining method to
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detect whether or not a caption contains specific
words that are related to the skill (Subsection 3.1).
Second, we generate variants of the original skill-
related captions and create new images with these
new captions in order to augment the dataset for
each type of skill (Subsection 3.2). An overview of
the method is shown in Figure 1.

3.1 Skill-related retrieval

We assume a list of S skills {Si, i = 1...S}, a
training dataset of captions and images Dtrain =
{(Ck, Ik), k = 1..ktrain}, Ck being a set of ground
truth captions.

For each skill Si we create a binary classifier fSi

that detects whether or not the skill Si is present
in a pair of image and associated captions. By
applying this function to a dataset D, it is possible
to create a subpart of this dataset DSi containing
samples related to the aforementioned skill. By
using this method and for each skill Si, we retrieve
a subpart of the train Dtrain dataset that we call
DtrainSi and a subpart of the test Dtest dataset that
we call DtestSi . The former will be used for data-
augmentation and the latter will be used for the
evaluation of the different models.

3.2 Targeted Data Augmentation

In order to improve the performances of the model
with regard to several skills, we augment the dataset
with sets of new examples. Those examples are cre-
ated so that they depict new situations that are not
necessarily in the training set, but should help the
model generalize. For this purpose, we create a set
of text generators functions {Gt,Si , i = 1...S} tak-
ing as input a text caption containing a skill Si and
generating a slightly different version of this cap-
tion. The generator function perturbs the caption’s
text in such a way that it remains related to the skill.
For example, it would inverse the gender of one
of the words in the sentence: The caption "a man
is playing basketball" would be changed (or per-
turbed) to "a woman is playing basketball". Mathe-
matically, for any caption ckl

2 containing the skill
Si, we create another caption ckli = Gt,Si(ckl).

Finally, for every perturbated caption ckli we
use a text-to-image generator GV in order to create
an image Ikli associated with the novel caption.
We obtain an artificial set of image-caption pairs,
which gives with the original images, the dataset
DtrainGV −Si .

2caption l of the image k

Those augmented datasetsDtrainGV −Si are used
to train several image captioning models, which
should focus more on the specific skill Si. Each of
the models is then evaluated on the different test
sets DtestSi which contain the pairs of images and
list of captions that are related to the skill Si. The
pseudo-code is visible in Algorithm 1.

Algorithm 1 The TIDA method on train
Require: Skills Si, Textual skill detectors fSi ,

Text generators Gt,Si , Image generator GV , Train
set Dtrain = {(ckl, Ik)}
for i in 1...S do
DtrainGV −Si ← Dtrain ▷ Initialize
DtrainSi ← fSi(Dtrain) ▷ IC pairs with skill i
for (c′kl, I

′
k) in DtrainSi do

c′kli ← Gt,Si(c
′
kl) ▷ Caption perturbation

I ′kli ← GV (c′kli) ▷ Image generation
DtrainGV −Si ← DtrainGV −Si ∪

{(c′kli, I ′kli)} ▷ Adding the new pair
end for

end for

3.3 Dataset

For the image captioning task, we use the
Flickr30K (Young et al., 2014), which is composed
of 31K photographs of everyday activities, events,
and scenes harvested from Flickr and 159K cap-
tions. Each image is described independently by
five annotators who are not familiar with the spe-
cific entities and circumstances depicted in them.
We follow Karpathy’s split3 (Karpathy and Fei-
Fei, 2017), which gives 29.8k/1k/1k images for
train/val/test.

3.4 Methodology

Skill used We augment the data regarding three
basic human skills: gender detection, counting ca-
pability and color recognition. We focus on these
skills for consistency with previous work (Ander-
son et al., 2016b), and because they are consid-
ered as essential and acquired early in humans and
present in animals (Wang et al., 2010; Dacke and
Srinivasan, 2008; Davis and Memmott, 1982).

Text generation For each skill, and for each of
the captions that were retrieved as containing it, we

3cs.stanford.edu/people/karpathy/
deepimagesent/captiondatasets.zip
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#DA BLEU@1-4 RefCLIPScore Spice
Test Dtest

clr Dtest
ctg Dtest

gdr Dtest Dtest
clr Dtest

ctg Dtest
gdr Dtest F1clr F1ctg F1allTrain

Dtrain (Vanilla) 0 51.8 44.0 49.9 49.7 79.9 79.3 79.8 80.3 24.1 19.7 20.7
Dtrain

SD−rnd 60k 51.3 44.1 49.2 49.6 80.0 79.5 79.7 80.2 24.7 25.2 20.6
Dtrain

SD−clr 20k 51.7 44.0 49.3 49.5 79.8 79.4 79.6 80.1 24.3 19.8 20.2
Dtrain

SD−ctg 20k 51.7 44.4 49.2 49.7 79.9 79.5 79.7 80.2 23.4 22.0 20.4
Dtrain

SD−gdr 20k 51.2 43.4 48.5 48.8 80.0 79.2 79.9 80.3 24.5 24.4 20.6
Dtrain

SD−all 60k 51.8 44.9 50.1 50.5 80.1 79.7 80.1 80.5 24.7 23.6 21.0

Table 1: Average of the BLEU@1-4 scores of the different TIDA-enhanced models on the different test sets. The
TIDA models depicted used different image generation strategies: SD uses Stable Diffusion and AAE Attend-and-
Excite. The first line contains the performance of the model trained with the Vanilla train set. Then, the first to third
line of each TIDA model contain the results of the model trained with data-augmentation on the color, counting, and
gender skills, respectively. And, the last line of each, depicts the results of the model trained with all three types of
data-augmentation. The scores in bold are the best scores on each test set, while the scores in italic are the best
scores of each of the models trained with (skill-related) data-augmentation.

changed the caption text by using an alternative at-
tribute of the targeted skill. For this, we employed
a list of defined words that were related to the tar-
geted skills. Each of the skill-related words has a
list of other words that can be used as a replace-
ment. For gender, masculine words like "man"
were replaced by their feminine counterparts like
"woman". For color, we swapped the different col-
ors altogether. For counting, we either added or
subtracted 1 to the detected written number in the
sentence (±1). See Appendix A for more details.

Baseline We compared our method with a data-
augmentation that consists of generating images
from random captions of the dataset. In this way,
we aim to show that the improvement in differ-
ent performances do not only come from having
a larger training set, but also to have a larger and
more diverse training set. In the following, we call
this augmented training set Dtrain

SD−rnd.

3.5 Implementation details

Text generator We used simple regular expres-
sions to find the different attributes of each skill.
The replacement words were chosen randomly
within the list of possible alternatives. More de-
tails are available in Appendix A.4

Image generator We test a classical text-to-
image generation technique with Stable Diffusion
(Rombach et al., 2022b) and generated 20k images
per skill. For Stable Diffusion, we used the version
1.55 as described in (Rombach et al., 2022b), lever-
aging the Diffusers library for its implementation

4All our code will be made available after publication.
5https://huggingface.co/runwayml/

stable-diffusion-v1-5

(von Platen et al., 2022). We used a 16-bit floating-
point data type and a guidance scale set at 8, which
constrained the extent to which textual prompts
generated the resultant images. The resolution of
the generated images was 128 x 128 pixels. The
remainder of the parameters were set as default, as
specified by the Diffusers library. In the Appendix
B, we show experiments with more generators.

Image captioning We used the BLIP model (Li
et al., 2022) because of its state-of-the-art perfor-
mances on Image Captioning, with a publicly avail-
able code and pre-trained weights. We kept the
same original hyper-parameters, adjusting only the
batch size from 32 to 24 and using the ViT Base
model as the image encoder, due to hardware limi-
tations. For the training, we also kept the AdamW
(Loshchilov and Hutter, 2019) original optimiza-
tion algorithm with an initial learning rate of 10−5

that is decreased through the training based on a
cos(·) function until it reaches 0. In order to com-
pare models with different amounts of available
data, we used early stopping with a patience of 5.

Metrics We used the classical BLEU metric (Pa-
pineni et al., 2002) to evaluate the performances
of the models. Moreover, we used another metric
that relies on learned representations. We com-
puted RefCLIPScore (Hessel et al., 2021) which is
based on the similarity between the embedding of
the caption and the embedding of the image com-
ing from CLIP (Radford et al., 2021). This metric
was shown to have a better correlation with human
judgments than other classical metrics (Kasai et al.,
2022).
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4 Results and Analysis

4.1 Results
The results of the models trained with different
skill-based data-augmentation on different test sets
are shown in Table 1. We can see that the overall
best scores on each test set are obtained with the
model using the three types of data-augmentation
techniques, either using BLEU (from 49.7 to 50.5)
or RefCLIPScore (from 80.3 to 80.5).

We also provide the F1-scores computed with
Spice, and especially the ones related to counting
and color because we aim to quantify the perfor-
mances of the models on those skills. The data-
augmentation helps to augment both of the metrics
individually, more than the overall one.

4.2 Analysis
We analyze the results in three different ways: (i)
by using classical natural language generation met-
rics for image captioning, (ii) by assessing the use
of skill words regarding the captions and quanti-
fying the right use of the skill-related terms, (iii)
by probing the representation of the image on a
skill detection task for a finer comprehension of the
image encoder and text decoder behavior.

Classical metrics By analyzing the classical met-
rics we can make several observations. Contrary
to what we would have expected, the skill-related
TIDA are not necessarily leading to the best scores
in their respective test sets. Note however that
the metrics are not homogeneous. The counting-
related TIDA obtains the best results on the count-
ing test set for BLEU and RefCLIPScore, but Spice
F1-counting is better with gender. Interestingly,
counting (compared with color and gender) leads
to the worst metrics with BLEU but the best one
when focusing on the RefCLIPScore and Spice
metrics. More details and metrics are available in
Appendix C.

Skill-related words In order to analyze the re-
sults of the model by going beyond the classical
opaque metrics like BLEU and RefCLIPScore, we
used a similar method to spice (Anderson et al.,
2016b) that allows to investigate specific semantic
words. TIDA relies on using certain variations of
words, hence we are evaluating the propensity of
the model to use those words in the right context.
If a word associated with a skill is present in the
ground truth or in the generated caption, it allows
us to quantify the results of the model as false/true

positive/negative. Specifically, when the model is
using a word associated with a skill in the gener-
ated caption, and this skill is indeed associated with
the image-caption ground truth, we count this as a
true positive. If the model does not use any word
associated with a skill and the skill is not present
in the ground truth, we count this as a true negative.
The other combinations are regarded as false posi-
tives or negatives. The precision, recall, and F1 for
color, counting, and gender TIDAs are available in
Table 2.

For the color TIDA, the precision and recall are
both increasing for the positive and negative cases.
This means that the model is using more often color
words when the caption should contain one and
less when it should not. For the counting TIDA,
the recall of the negative class is augmenting from
39.1 to 45.9, which means that the model uses
fewer counting-related words when it should not.
At the same time the precision for the positive class
augments which means the use of counting-related
words is more pertinent. For the gender TIDA, the
model is using more gender words (recall positive
going from 88.8 to 92.4) while being a bit less
precise (recall negative decreasing from 79.0 to
77.8). Overall, we observe that the color TIDA
gives better results for color, but surprisingly the
counting TIDA is better for gender and the gender
TIDA is better for counting.

Probing with visual representations We tried
to analyze how TIDA influences the model not
only using the raw results of the text decoder but
also using the representation of the image encoder.
For this purpose, we proposed to probe the image
representations to predict whether or not the image
is associated with a specific skill.

As we previously did, we used the text-mining
method to label whether or not a sample is associ-
ated with one of the three skills. We then trained a
linear multi-layer perceptron on the representations
produced by the image encoder and these labels. As
is usual with transformer-based models, we used
the class embedding coming from the image en-
coder as the image representation embedding. We
use binary cross entropy loss and SGD to train the
probe and perform early stopping and a grid search
on each model to find the best model hidden size
and learning rate. The results with the five TIDA
models are shown in Table 3.

Looking at the F1-score, it seems that none of
the TIDAs bring any significant change regarding
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Skill Color Counting Gender
Train P+ R+ P- R- F1 P+ R+ P- R- F1 P+ R+ P- R- F1
Dtrain 64.4 89.8 80.5 45.8 66.7 73.6 97.9 91.7 39.1 69.4 46.5 88.8 97.2 79.0 74.1

Dtrain
SD−rnd 64.8 88.1 78.6 47.7 67.0 77.2 97.5 92.0 50.0 75.5 45.4 89.4 97.3 78.0 73.4

Dtrain
SD−clr 66.0 86.8 78.0 51.3 68.4 73.4 98.4 93.3 38.3 69.2 43.8 91.8 97.8 75.9 72.4

Dtrain
SD−ctg 65.5 88.5 79.7 49.2 68.1 74.4 98.1 92.7 41.5 71.0 44.8 91.8 97.9 76.9 73.2

Dtrain
SD−gdr 64.1 88.5 78.5 45.8 66.1 75.3 96.8 89.2 45.1 72.3 43.9 90.6 97.5 76.3 72.4

Dtrain
SD−all 65.7 90.8 82.8 48.3 68.6 75.8 97.8 92.3 45.9 73.4 46.0 92.4 98.0 77.8 74.1

Table 2: Precision, Recall and F1-score regarding the use of skill-related words in the captions generated by the BLIP
models trained using different TIDA techniques on the different test sets. The two best F1 scores are highlighted in
bold.

Skill Color Counting Gender
Dtrain 72.0 88.2 84.1

Dtrain
SD−rnd 73.0 88.3 84.3

Dtrain
SD−clr 72.9 88.6 84.7

Dtrain
SD−ctg 71.6 88.7 84.1

Dtrain
SD−gdr 71.7 89.0 84.0

Dtrain
SD−all 71.8 87.7 84.3

Table 3: F1-score for skill probing using the models
learned with different targeted data-augmentations

the skill-related information in the image encoding.
However, the models are improving in terms of
general Image Captioning performances (Table 1),
and we saw previously that they are using more
frequently targeted words when they should use
them (Table 2). We can conclude that TIDA-related
improvements are caused by changes in the text
decoder rather than the image decoder.

5 Conclusion and Future Work

This paper assesses the effectiveness of generative
data augmentation with current diffusion models
for improving specific skills of image captioning
models. We use the Flickr30k image captioning
dataset and ran experiments with BLIP, a recent
vision-language state-of-the-art model. We show
that TIDA, our targeted image data-augmentation
techniques allows for gains regarding classical met-
rics that are recognized by the community like
BLEU or RefCLIPScore. On top of that, we also
propose a fine-grained analysis to analyze the re-
sults of the model by going beyond the classical
opaque metrics by investigating the occurrences of
specific semantic words related to the target skills.
We found out that TIDA helps the image captioning
model to use those words more efficiently. Finally,
we investigate the visual part, we probe the repre-
sentations from the visual encoder and reveal that

they do not contain more information on the skill,
meaning the improvement relies on the textual de-
coder.

Our results open several avenues for further re-
search. For instance, it remains unclear why we
observe the boost in results on a specific skill when
using data-augmentation on another skill. It would
also be useful to investigate more in details the
reasons of the improvement of performances the
text decoder or the visual encoder, or to use a more
precised metric powered by a LLM like (Hu et al.,
2023).

It would also be useful to investigate more in de-
tails the reasons of the gain of performances of the
text decoder or the visual encoder, or to using com-
plex interpretable metrics from LLM like the Text-
to-Image Faithfulness Evaluation with Question
Answering (Hu et al., 2023). It would be to see im-
provements with text-to-image models known to be
better at generating images related to color, count-
ing, like Attend-and-Excite (Chefer et al., 2023)
with newer versions of stable diffusion. Finally, we
would like to extend our method to Visual Question
Answering. Using symbolic knowledge to extract
the objects of the image-caption and the relation
as implemented in (Riquelme et al., 2020), we can
adapt the model to new situations and help to de-
bias a VQA model. Finally, given the recent results
of (Azizi et al., 2023), we should run a random
data-augmentation on the train set and see whether
this procedure may help to improve the results com-
pared with TIDA.

6 Limitations

The focus of this work has been on abstract skills
shown to be learned by humans at an early age, but
it is not clear which skills are the most important to
image captioning in particular or another particular
task in general. And it is an empirical study to
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determine which skills result in the most improve-
ment in a task. Making it not straightforward to add
new skills, requiring thoughtfulness and empirical
validation.

In terms of computational cost, TIDA’s necessity
to generate a number of new examples compara-
ble to the original dataset size using costly neural
image generation models signifies it is a challenge
to apply to larger datasets and that the technique
doesn’t scale well to dataset size. And although
each generated example can be leveraged many
times, the process is heavily limited by the compu-
tation capabilities.
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A List of skill-related words

Color We used seven colors: blue, brown, green,
grey, orange, pink, purple, red, and yellow. We
inverted them randomly.

Counting We used all the numbers from one to
six. All the captions only contained written num-
bers.

Gender For male, we used the words boy, boys,
man, men, guy, and guys. They were changed with
the words girl, girls, woman, and women.

B Other Image Generators

We generate the images with different techniques.
In-Painting mode, in order to change the images
the less possible, and another image generator al-
gorithm called Attend-and-Excite (Chefer et al.,
2023), in order to stress specific tokens of the sen-
tence used to generated, related to the attribute we
want to enhance. Results are in Tables 4 and 5.

B.1 In Painting Model
We ran more experiments with another configura-
tion for image generation that we call Inpainting
(INP). It consists of changing only a subpart of
the initial image in order to perturbate it. For this
configuration, we first segmented the desired ob-
ject in the scene by using a pretrained ClipSeg
model (Lüddecke and Ecker, 2022), by prompt-
ing the nominal group of the skill-related word.
The segmentation mask was obtained by setting an
element-wise threshold of 0.1 in the final output of
the model, after applying sigmoid and a min-max
normalization. The mask was then dilated using a
square kernel of 10 x 10 pixels. The original image
was finally inpainted using the pretrained model of
(Rombach et al., 2022a).

B.2 Attend-and-Excite
We tried to change the classical stable diffusion
by another version called Attend-and-Excite (AAE;
Chefer et al., 2023), which enhance the classical
stable diffusion model to make it better at generat-
ing specific attribute.

We used the model described in (Chefer et al.,
2023), using as backbone the version 1.56 of stable
diffusion, with the official implementation of the
authors which is also built on top of the Diffusers
library. The default parameters were used as de-
fault, expect regarding the number maximum of
refinement steps, which has been downgraded from
20 to 5.

C Other metrics

Results using other metrics are shown in the section.
Table 6 and Table 7 contain respectively the results
with Spice and Cider.

D Probing

More results on the probing experiments are shown
in Table 8.

6https://huggingface.co/runwayml/
stable-diffusion-v1-5
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BLEU@1-4 RefCLIPScore Spice
Test Dtest

clr Dtest
ctg Dtest

gdr Dtest Dtest
clr Dtest

ctg Dtest
gdr Dtest F1clr F1ctg F1allTrain

Dtrain 51.8 44.0 49.9 49.7 79.9 79.3 79.8 80.3 24.1 19.7 20.7
Dtrain

INP−clr 51.4 44.8 49.8 50.1 79.8 79.1 79.6 80.1 23.1 20.1 20.4
Dtrain

INP−ctg 52.2 45.1 49.3 49.8 80.2 79.3 79.7 80.2 25.2 21.3 20.6
Dtrain

INP−gdr 50.9 42.8 48.3 48.7 80.3 79.6 80.2 80.5 23.1 22.4 20.7
Dtrain

INP−all 51.3 44.0 49.2 49.5 79.7 79.0 79.6 80.1 23.9 21.3 20.4
Dtrain

AAE−clr 51.7 42.8 48.7 49.1 80.0 79.0 79.7 80.2 22.6 20.8 20.5
Dtrain

AAE−ctg 52.1 44.6 49.7 49.9 79.8 79.2 79.7 80.2 24.6 20.3 20.5
Dtrain

AAE−gdr 51.4 43.5 49.3 49.4 80.1 79.4 80.1 80.5 23.7 19.2 20.5
Dtrain

AAE−all 51.1 43.4 48.8 49.1 79.9 79.5 80.1 80.4 22.9 20.7 21.0

Table 4: Average of the BLEU@1-4 scores of the different TIDA-enhanced models on the different test sets. The
TIDA models depicted used different image generation strategies: SD uses Stable Diffusion, AAE Attend-and-Excite,
and INP Inpaiting. The first line contains the performance of the model trained with the Vanilla train set. Then, the
first to third line of each TIDA model contain the results of the model trained with data-augmentation on the color,
counting, and gender skills, respectively. And, the last line of each, depicts the results of the model trained with all
three types of data-augmentation. The scores in bold are the best scores on each test set, while the scores in italic
are the best scores of each of the models trained with (skill-related) data-augmentation.

Skill Color Counting Gender
Train P+ R+ P- R- F1 P+ R+ P- R- F1 P+ R+ P- R- F1
Dtrain 64.4 89.8 80.5 45.8 66.7 73.6 97.9 91.7 39.1 69.4 46.5 88.8 97.2 79.0 74.1

Dtrain
INP−clr 63.6 91.2 81.7 42.9 65.6 73.3 98.4 93.3 38.0 69.0 45.1 89.4 97.3 77.7 73.2

Dtrain
INP−ctg 64.7 87.9 78.4 47.7 66.9 74.5 96.8 88.6 42.6 70.9 42.6 91.8 97.8 74.7 71.5

Dtrain
INP−gdr 63.1 88.7 77.8 43.3 64.7 74.4 96.8 88.6 42.3 70.7 44.7 90.0 97.4 77.2 73.0

Dtrain
INP−all 64.5 88.9 79.4 46.7 66.8 74.3 97.8 91.6 41.5 70.8 45.8 92.9 98.2 77.5 74.0

Dtrain
AAE−clr 62.8 90.4 79.9 41.6 64.5 74.3 97.5 90.5 41.5 70.6 47.4 91.2 97.8 79.3 75.0

Dtrain
AAE−ctg 64.0 88.7 78.6 45.4 65.9 74.0 98.4 93.6 40.2 70.4 47.3 91.2 97.8 79.2 74.9

Dtrain
AAE−gdr 63.9 90.0 80.3 44.4 65.9 74.3 97.8 91.6 41.5 70.8 42.9 90.0 97.4 75.4 71.5

Dtrain
AAE−all 64.4 90.6 81.5 45.2 66.7 75.4 97.3 90.7 45.1 72.6 48.6 90.6 97.7 80.4 75.7

Table 5: Precision, Recall and F1-score regarding the use of skill-related words in the captions generated by the
BLIP models trained using different TIDA techniques on the different test sets

Test Dtest
clr Dtest

ctg Dtest
gdr Dtest

Train
Dtrain 21.3 18.5 20.3 20.7

Dtrain
SD−rnd 21.4 18.2 20.1 20.6

Dtrain
SD−clr 20.9 17.9 19.7 20.2

Dtrain
SD−ctg 21.0 18.2 20.0 20.4

Dtrain
SD−gdr 20.8 18.8 19.9 20.6

Dtrain
SD−all 21.0 19.3 20.3 21.0

Dtrain
AAE−clr 20.8 18.0 19.8 20.5

Dtrain
AAE−ctg 21.1 18.6 20.0 20.5

Dtrain
AAE−gdr 21.0 18.3 19.9 20.5

Dtrain
AAE−all 21.2 18.7 20.3 21.0

Dtrain
INP−clr 20.7 18.4 19.9 20.4

Dtrain
INP−ctg 21.6 18.8 20.2 20.6

Dtrain
INP−gdr 21.1 18.9 20.1 20.7

Dtrain
INP−all 20.9 18.4 19.9 20.4

Table 6: Average of the Spice F1 scores of the different
models on the different test sets

Test Dtest
clr Dtest

ctg Dtest
gdr Dtest

Train
Dtrain 102.5 81.1 95.3 99.6

Dtrain
SD−rnd 100.9 81.7 94.9 99.3

Dtrain
SD−clr 102.2 80.3 94.0 98.8

Dtrain
SD−ctg 102.2 82.3 93.9 99.0

Dtrain
SD−gdr 100.1 81.9 92.7 98.0

Dtrain
SD−all 101.0 81.4 95.7 101.5

Dtrain
AAE−clr 102.2 77.8 92.7 98.0

Dtrain
AAE−ctg 101.7 82.0 95.1 100.5

Dtrain
AAE−gdr 99.5 78.1 93.6 98.0

Dtrain
AAE−all 99.5 78.5 92.8 98.2

Dtrain
INP−clr 100.8 82.9 95.3 100.5

Dtrain
INP−ctg 104.5 83.7 94.7 99.8

Dtrain
INP−gdr 101.7 80.6 94.1 99.0

Dtrain
INP−all 100.7 82.3 94.5 99.4

Table 7: Average of the Cider scores of the different
models on the different test sets
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Skill Color Counting Gender
Train P R F1 P R F1 P R F1
Dtrain 67.5 77.2 72.0 87.9 88.6 88.2 83.1 85.1 84.1

Dtrain
SD−rnd 70.7 75.4 73.0 86.1 90.5 88.3 83.2 85.4 84.3

Dtrain
SD−clr 69.1 77.2 72.9 86.0 91.4 88.6 83.3 86.2 84.7

Dtrain
SD−ctg 66.3 77.8 71.6 85.1 92.6 88.7 82.6 85.7 84.1

Dtrain
SD−gdr 67.8 76.1 71.7 85.5 92.7 89.0 83.9 84.2 84.0

Dtrain
SD−all 60.1 89.1 71.8 86.8 88.6 87.7 83.3 85.3 84.3

Dtrain
AAE−clr 68.5 75.9 72.0 86.7 89.2 88.0 84.1 86.5 85.3

Dtrain
AAE−ctg 65.3 83.5 73.3 86.1 90.6 88.3 82.9 86.7 84.7

Dtrain
AAE−gdr 71.8 73.7 72.7 85.2 91.9 88.4 84.0 86.7 85.3

Dtrain
AAE−all 72.5 75.6 74.0 89.0 90.2 89.6 81.4 87.8 84.5

Dtrain
INP−clr 63.7 80.5 71.1 84.3 91.0 87.5 84.6 83.4 84.0

Dtrain
INP−ctg 67.6 79.1 72.9 88.1 89.1 88.6 83.9 84.8 84.3

Dtrain
INP−gdr 66.0 81.0 72.7 88.6 89.5 89.0 82.2 85.9 84.0

Dtrain
INP−all 66.4 79.4 72.3 87.4 91.1 89.2 85.9 83.7 84.8

Table 8: Skill Probing
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