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Abstract

Data quality is a problem that perpetually resur-
faces throughout the field of NLP, regardless
of task, domain, or architecture, and remains
especially severe for lower-resource languages.
A typical and insidious issue, affecting both
training data and model output, is data that is
repetitive and dominated by linguistically un-
interesting boilerplate, such as price catalogs
or computer-generated log files. Though this
problem permeates many web-scraped corpora,
there has yet to be a benchmark to test against,
or a systematic study to find simple metrics that
generalize across languages and agree with hu-
man judgements of data quality. In the present
work, we create and release BREAD, a human-
labeled benchmark on repetitive boilerplate vs.
plausible linguistic content, spanning 360 lan-
guages. We release several baseline CRED
(Character REDundancy) scores along with it,
and evaluate their effectiveness on BREAD. We
hope that the community will use this resource
to develop better filtering methods, and that
our reference implementations of CRED scores
can become standard corpus evaluation tools,
driving the development of cleaner language
modeling corpora, especially in low-resource
languages. 1

1 Introduction

In this paper, we introduce a benchmark and pro-
pose a suite of metrics to help identify a common
facet of low-quality data: repetitive boilerplate that
is not reflective of natural linguistic content. Large
language corpora scraped from the internet are
becoming invaluable tools as self-supervised lan-
guage modeling has gained prominence as a driving
force of advancements in NLP (Devlin et al., 2018;
Chowdhery et al., 2022; Brown et al., 2020, inter
alia). In the case of many low-resource languages,

1Our data for the BREAD benchmark and code for
the CRED scores suite is at https://github.com/toizzy/
bread

Figure 1: Character ngram based metrics compare the
ngram frequency histogram between natural text and
repetitive text, and assign a score of how repetitive it is.
In this toy example, the character 6-gram histogram on
the left is clearly distinguishable from the more natural
distribution on the right. The CRED metrics rely on
this intuition, applying simple metrics based on ngram
frequency in order to detect repetitive boilerplate data
in a language-agnostic manner.

noisy in-language data often makes up a signifi-
cant proportion of any scraped corpus (Kreutzer
et al., 2022). Very often, this noise is in the form
of repetitive boilerplate: uninteresting data without
linguistic diversity, such as a long list of similar
products from an e-commerce website. Automati-
cally reducing repetitive boilerplate in low-resource
language corpora remains an important problem to
extend NLP to the thousands of languages currently
underserved by language technology.

To address the problem of redundant boilerplate,
our contributions in the current work are two-fold:

1. We release BREAD (Boilerplate and Redun-
dancy Evaluation on Assorted Documents),
the first benchmark to measure redundancy
and boilerplate in text;

2. We test and open-source CRED (Character
REDundancy) scores, a suite of interpretable,
fast, language-agnostic metrics for detecting
repetition in documents.

Since data noise disproportionately affects low-
resource languages, we only consider metrics that
are language-agnostic (meaning their performance
doesn’t depend on any particular language). As
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such, we do not consider neural methods for the
baselines released with BREAD: though they are
more expressive than surface-level metrics, they
rely on high-quality training data, and are therefore
less reliable for low-resource languages where the
training data is scarce, noisy, or highly overlap-
ping with eval or model-training data. Similarly,
neural metrics struggle with interpretability and
reproducibility.

The difference between a paragraph of natural
text and a long, repetitive list does not depend on
the source language or the particular thing that
is repeating. Therefore, it is possible to build
language-agnostic metrics that ignore textual fea-
tures entirely, and operate purely on the token-
frequency distribution. Using this intuition, we
explore three ngram-based metrics: type-token ra-
tio (TTR), measuring the percentage of unique
ngrams; ngram-moment, measuring the peaki-
ness of the frequency distribution; and ngram-
Zipfianness, measuring the distance from the ex-
pected frequency distribution of natural language.

Our objective is to detect redundant language
within one document. This is different from a com-
monly studied problem in data quality manage-
ment, where redundancy refers to a dataset con-
taining many redundant copies of similar natural
documents. We open-source the BREAD bench-
mark and the CRED metrics, making it a replicable
resource for the community.

2 Related Work

In the field of Data-Quality management, quality
scores are used for measurement and improvement,
and often incorporated into an iterative process
(Wang, 1998). For NLP, there are many exist-
ing works highlighting the importance of clean-
ing data for training neural models (Khayrallah
and Koehn, 2018; Junczys-Dowmunt, 2018a; Wang
et al., 2018b). Many denoising approaches rely on
classifiers (Chen and Huang, 2016; Chen et al.,
2016; Wang et al., 2017) or cross-entropy distance
between models (Moore and Lewis, 2010; Axelrod
et al., 2011; van der Wees et al., 2017; Axelrod,
2017), an approach often applied to data weight-
ing and curriculum training (Zhang et al., 2017;
Wang et al., 2018a, 2019). There are neural di-
versity metrics, like Miranda et al. (2022), which
uses the cosine distance between Task2Vec embed-
dings (Achille et al., 2019), and has been applied to
measure LLM output diversity (Lee et al., 2023).

Although data noise has always been a recog-
nized problem, it has become a more pressing is-
sue in recent years, as models have become more
and more expressive, therefore also more capable
of memorizing noise. Statistical machine transla-
tion models were more robust to data noise and
tended only to benefit from bigger data (Goutte
et al., 2012) (with a few exceptions, like Taghipour
et al. (2011)), and works on data filtering were usu-
ally focused on improving training efficiency (for
instance, Johnson et al. (2007)). Despite their gen-
erally higher performance, neural models tended to
be much more sensitive to data noise (Khayrallah
and Koehn, 2018), possibly as a result of being
able to memorize statistical outliers (Arpit et al.,
2017; Feldman and Zhang, 2020). Even early
versions of Paracrawl damaged MT performance
(Junczys-Dowmunt, 2018b; Schamper et al., 2018),
and the winners of the yearly WMT campaign tend
to rely heavily on data filtering (Junczys-Dowmunt,
2018a; Chaudhary et al., 2019; Lu et al., 2020; Lo
and Joanis, 2020). As a result, there have been
several data filtering shared tasks in WMT (Koehn
et al., 2018, 2019, 2020), and open-sourcing of var-
ious iterations of data cleaner BICLEANER (Esplà-
Gomis et al., 2020; Ramírez-Sánchez et al., 2020;
Zaragoza-Bernabeu et al., 2022), which use a vari-
ety of approaches, including bilingual dictionaries,
random forests, and neural models.

While neural metrics or complex ensembles like
BICLEANER are often effective, they 1) are harder
to interpret; 2) may filter on artifacts like domain,
rather than quality; 3) will tend only to work for
languages they have explicitly been trained on; and
4) cannot be replicated between works unless a
public implementation is released. For this reason,
the baseline metrics released with BREAD are sim-
ple, interpretable, surface-level metrics, that work
independent of language and domain.

A token-based metric to measure the diversity
and redundancy of token ngrams between docu-
ments in a corpus (rather than within segments of
one document) is SELF-BLEU (Zhu et al., 2018),
which is based on the widely used BLEU score (Pa-
pineni et al., 2002). On a more granular level of
character ngrams, the CHRF (Popović, 2015) and
CHRF++ (Popović, 2017) metrics measure similar-
ity between documents, correlating better with hu-
man judgement than token-level metrics like BLEU,
especially for low-resource and highly-inflecting
languages (Kocmi et al., 2021; Freitag et al., 2022;
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Bapna et al., 2022; Caswell et al., 2020). We fol-
low this intuition and use character-ngram metrics.
The frequency moment score defined in the present
work is similar to segment-level CHRF applied with
itself as its own reference.

Perhaps the most similar approaches to those
in the present work come from a separate field,
namely detecting redundancy and diversity in rela-
tional or tabular data (Ehrlinger and Wöß, 2022).
Batista and Salgado (2007) and Ehrlinger and Wöß
(2019) define interpretable minimality scores to
measure redundancy at a schema-level for tabular
data, based on cluster density, which is equivalent
to the TTR in the present work.

3 BREAD: Dataset and Annotation

We release BREAD (Boilerplate and Redundancy
Evaluation on Assorted Documents), an expert-
annotated dataset spanning 360 languages, to tune
and benchmark methods for filtering repetitive
boilerplate. BREAD consists of randomly-chosen
documents from the multilingual, common-crawl-
based MADLAD-400 dataset (Kudugunta et al.,
2023), which are then annotated by expert NLP-
practitioner annotators.

Our annotation schema consists of two high-
confidence classes and two low-confidence classes.
The high-confidence classes are 1) REP, repeti-
tive boilerplate (N=449), and 2) OK, natural text
(N=863). To keep the examples in REP and OK
high-confidence, we also use two low-confidence
codes: BOIL, for documents that are clearly non-
linguistic boilerplate or noise, but are not neces-
sarily repeating (N=499); and UNK for where the
annotator was not sure (N=3339). Documents la-
beled as UNK were discarded. See Appendix Table
2 for examples of each class. The examples labeled
OK cover 360 languages, with no individual lan-
guage having more than 6 samples; the language
distribution of the other three codes are harder to
measure, since they are often nonlinguistic content
or noisy ambiguous text. Examples are capped at
5000 character for ease of processing.

BREAD is split into a tune and a test set, each
with 1000 documents. We propose two bench-
marks, scored with F1 on the following binary pre-
diction problems:

1. BREAD-REPEAT: positive class is OK; nega-
tive is REP.

2. BREAD-NOISY: positive class is OK; nega-
tive is union of REP and BOIL.

4 Methods

We explore three well-studied, straightforward met-
rics based on ngram frequency distributions and
evaluate their effectiveness in the domain of mea-
suring repetitive boilerplate. We explore both char-
acter ngrams and token ngrams, as well as combi-
nations of the two. As with BLEU (Papineni et al.,
2002), we consider using multiple n-gram lengths
at once, and combining these scores by averaging
them. By construction, all metrics assign a higher
score to noisier text.

The input to all our metrics is the smoothed
frequency distribution of ngrams within a docu-
ment. Distributions of ngrams tend to be noisier
for shorter texts, so we apply Laplace smoothing
with parameter λ, and clip the distribution with
ϵ-thresholding (keeping only ngrams with probabil-
ity over some ϵ (Freitag et al., 2023)). Let f (i)

n be
the raw frequency of the ith most common n-gram.
We define our smoothed frequency distribution as:

f̃ (i)
n ∝

(
f (i)
n + λ

)
1{f (i)

n > ϵ} (1)

This said, the authors would like to foreshadow
that this distribution clipping and smoothing end
up not being very important parameters for well-
performing metrics, so the reader may safely ignore
this and imagine that the metrics are a function of
raw frequency.

The metrics we explored are as follows:

TTR: As an intuitive and well-known baseline
metric, we use the Token-Type Ratio (TTR) (Tem-
plin, 1957), which is the fraction of unique tokens
in a document (types) over the total number of
tokens. We use n-grams as tokens.

Frequency Moment score: The second score
we consider is the generalized moment of the fre-
quency probability distribution, the sum of all fre-
quencies when applying a with a nonlinearity g(x).
For a character n-gram with length n, the momet
score is defined as:

mn =
∑

i

g
(
f̃ (i)
n

)
(2)

The nonlinearity g(x) is a parameter we can vary
to best fit out benchmark. Intuitively, setting any
superlinear g(x), this metric measures redundancy,
or peakiness, of the ngram counts, as the score is
larger when there is more weight in the head of
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Figure 2: F1 scores for the three metrics proposed in this work, for all four combinations of tuning and testing on
BREAD-REPEAT and BREAD-NOISY. The reported values are the average of the top ten parameter settings on the
tuning set. Error bars represent 95% confidence intervals.

the distribution. When g(x) = xk, the score corre-
sponds to the kth moment of the distribution; when
g(x) = −x log(x), it corresponds to the entropy.

Zipfianness: Human languages have a largely
consistent word distribution: across languages, the
empirical frequency of how often different words
appear follows a Zipfian, or power-law distribution,
where the word in frequency rank r has frequency
roughly proportional to 1

r (Zipf, 1936; Piantadosi,
2014). For example, in English the most common
word “the” occurs around double the rate of the
second most common word “of”. To test whether
a document is distributed like natural text, we can
check whether its ngram distribution matches the
empirical ngram distribution of a human language,
which we estimate as a function of the n-gram
length with a slight modification of the classic 1

r
value (details in Appendix D). 2 Therefore, we de-
fine the Zipfianness score as follows:

zn =
∑

i

d
(
f̂ (i)
n , f̃ (i)

n

)
(3)

Where f̂i is the estimated frequency of the ith
most common token, and d(x, y) is a distance met-

2We also experiment with the empirical token distribution
from a random sample of 10,000 English documents from
MADLAD-400-clean, and find the results to be the same (but
much more painful to calculate), so for simplicity we focus
only on the analytic approximation in this paper.

ric. For d(x, y), we consider |x − y|2, log(|x −
y|), log2(|x− y|) and JSD(x, y). We initially also
considered KL divergence (in both directions) and
absolute distance, but they proved less effective.

4.1 Compensating for Length Dependency

All three of these scores are dependent on the
length of the document and are all minimized when
the document consists only of unique n-grams (i.e.
input distribution is uniform). Therefore, we nor-
malize the score on a candidate document by what
the score would be for a document of the same
length with only unique n-grams. This leads to the
interpretation of something like “How much more
redundant is this document than a natural document
of the same length?". However, since natural lan-
guages are drawn from a finite and non-uniform
set of symbols, the uniform distribution becomes
an increasingly bad approximation of a “natural"
document as the document length increases, and
leads to the reverse skew of what the length nor-
malization was originally trying to address. To
compensate for this, we introduce a simple asymp-
tote for the number of tokens in a document, and
normalize by the uniform distribution for a doc-
ument with that length. This approach is chosen
over the more typical approach of a fixed-width
sliding window over characters, as is often done
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with TTR (Kettunen, 2014), because BREAD has
a significant range in document lengths, so we ex-
pect this approach to capture the variation in scores
more cleanly. Details are in Appendix Section A.

4.2 Grid Search

Each metric is dependent on the parameters used
to smooth and nonlinearize the frequency distri-
bution, the length normalization asymptote, and
the appropriate threshold when used as a classifier.
Therefore, we split the dataset into a 50/50 vali-
dation/test split, and perform a grid search on the
validation split, optimizing for F1 score. Variants
of the scores optimized for different metrics are
also open-sourced (§6); details in Appendix B.

5 Baseline Metric Results on BREAD

As shown in Fig. 2, all metrics have fairly good
correlation with human judgement, even when they
are trained on the out-of-domain split of BREAD

(the off-diagonal entries). For detecting repetition
alone (BREAD-REPEAT; top row), both the mo-
ment score and the Zipfianness score performed
about 5% better on both tuning and test sets than
TTR. When detecting both noise and boilerplate
(BREAD-NOISY), the difference in scores is more
pronounced, with Zipfianness outperforming TTR
by 9% on the test split. The moment score, which
like TTR is only able to detect redundancy but not
other types of noise, barely outperforms TTR.

It is worth noting that for questions of data noise,
there is a large difference between apparently close
scores, if they are both close to 100. Caswell et al.
(2020) note (§Massive Class Imbalances: 99% Ac-
curacy Is Not Enough) that if a Language Identi-
fication model has a precision of 99.0, using it to
generate a dataset for a typical low-resource lan-
guage will yeild a dataset with just under a tenth
of a percent of sentences in the target language.
Increasing this precision to 99.9%, though under
1% better in additive terms, is a 10x improvement
in dataset precision. Keeping this in mind, we see
that although we have a ways to go with better data
quality scores, the improvement in noise detection
from 78 F1 to 85 F1 is quite substantial!

For a qualitative understanding of what scores on
BREAD look like, one can refer to Figure 3, which
shows the moment score as a function of length,
along with the decision boundary. Details of the
best hyperparameters per ngram length are given
in Appendix Table 5.

5.1 Which Parameters Worked the Best?

Unsurprisingly, the most important parameter was
the choice of n-gram length(s). Our initial grid
search went over a deep grid of different values.
However, since many of these factors ended up not
being very important, they led to overfitting and
poor test scores. Therefore, for the final values,
we re-ran the grid search with a very limited set
of parameters (§B). Findings from both rounds are
summarized here:

• n-grams: For the purely repetition-based met-
rics (TTR, Moment), the most effective n-
gram length seemed to be anything of length
6-grams and up. For Zipfianness, the peak
was considerably earlier, at 4-grams and 5-
grams. The best single n-gram value for
across all approaches would therefore be a
5-gram or 6-gram, similar to the finding by
Popović (2015) that 6-grams corresponded
the best with human-judged quality for CHRF.
Ensembles of different types of n-grams usu-
ally achieved slightly higher quality, but the
improvements were minor.

• Smoothing: There was no obvious pattern to
the best smoothing value λ.

• Distribution truncation: The optimal ϵ value
for ϵ-clipping was almost always 0, and the op-
timal k for top-k clipping was almost always
∞. We conclude that using the full distribu-
tion is generally optimal, and omitted distri-
bution truncation in the final grid search.

• Nonlinearity: The best nonlinearity for the
moment score tended to be x2, corresponding
nicely with the variance, though the squared
entropy (x log(x))2, x1.5, and x3 also fre-
quently came out on top for different settings
of the other parameters. The best distance
function for Zipfianness was generally the
squared distance, though log(|x − y|) also
performed well.

• lengthnorm asymptote: The best asymptote
for the document length (used when normaliz-
ing by length; §4.1) was usually 2000.

5.2 CRED as a Metric for Data Quality

To validate these metrics on existing datasets and
to demonstrate how they can be used to assess
data quality, we report their average scores on the
MADLAD-400 dataset. This resource is an excel-
lent testing ground because it has both clean and
noisy splits, and furthermore covers many very low-
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Figure 3: Moment scores on BREAD as a function of document length, with the learned decision boundary in green,
demonstrating how moment scores effectively separate noisy data from clean data along the y-axis. Each point
represents a document in BREAD, with the OK labels in blue, REP labels in red, and BOIL labels in orange. The
cluster at the right reflects the truncation of BREAD documents at 5000 characters.

TTR moment zipf.
MAD. CLEAN HRL 0.116 0.677 0.679
MAD. CLEAN LRL 0.175 0.972 0.688
MAD. NOISY HRL 0.136 0.802 1.064
MAD. NOISY LRL 0.189 1.473 2.063

Table 1: Scores on the noisy and clean splits of
MADLAD-400, for 45 high-resource languages (HRL,
>1M documents in the clean split) and 368 low-resource
languages (LRL). All scores show more severe noise for
low-resource languages, and for the noisy split.

resource languages, where we expect more noise in
the data. Results are reported in Table 1. We make
the following observations:

1. All three metrics agree that the noisy split
indeed has more repetitive content. This offers
more evidence that our metrics are effective
at detecting noise and assessing data quality.

2. For low-resource languages (LRL), all metrics
indicate that both clean and noisy splits are
noisier compared to the respective splits in
high-resource languages (HRL), which would
align with intuition.

3. The relative scores also allow us to make
the interesting inference that the clean split
of the low-resource languages has a similar
noisiness level to the noisy split of the high-
resource languages.

6 Open-Sourcing

We open-source reference implementations of these
metrics. Following the example of SACREBLEU

(Post, 2018), each score has a unique signature re-

porting all relevant hyperparameters, so it is fully
reproducible. In order to suit different levels of
noise and different preferences of precision versus
recall, we release versions of each classifier that
have been tuned for F1 on a balanced version of
BREAD, as well as a version that has been tuned
on the P4 score (Sitarz, 2022) with BREAD up-
weighted so it is 75% clean data.

7 Conclusion

Data quality is an evergreen problem, and as NLP
is widening to a growing set of low-resource lan-
guages, where noise is a more severe problem, the
need for more interpretable metrics to asses noise
becomes especially prominent. Recent approaches
to highly multilingual technologies like NMT and
LangID have reported severe noise issues for low-
resource languages (Caswell et al., 2020; Bapna
et al., 2022), and many publicly available datasets
with low-resource languages in fact contain no in-
language content (Kreutzer et al., 2022). Nonethe-
less, there was heretofore no public benchmark for
boilerplate and noise detection.The present work in-
troduces BREAD, a multilingual, expert-annotated
benchmark for detecting noise. It also investigates
several interpretable, language-agnostic baseline
metrics based on character ngram frequency distri-
butions, as well as their scores on the public dataset
MADLAD-400. Finally, it open-sources reference
implementations of several language-agnostic met-
rics for scoring and classifying data.
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Limitations

While the BREAD and the metrics introduced in
this paper are useful approximations, there are
many forms of noise they can’t detect. They
can’t detect poor grammar, scrambled text, trans-
lationese, toxicity, or other noise that follows a
Zipfian-distribution. Furthermore they can’t detect
inter-example redundancy, for which a better-suited
metric would be something like SELF-BLEU.

Furthermore, such a metric may not general-
ize well to all languages. Although the language-
agnostic approach to the creation of the BREAD

eval set is constructed to work for all languages,
many languages, especially those with more dis-
tinct character sets like Chinese and Japanese, may
exhibit unique forms of noise or token distributions.

Finally, these metrics will tend to be less useful
for shorter texts, and practitioners are cautioned
against using them on sentence-level data.

Ethics Statement

We introduce a benchmark dataset and scoring
mechanisms for improving the quality of low-
resource language corpora. Like any metrics based
on surface-level features, our metrics are coarse and
do not reflect the subtleties of different languages.
We propose for our CRED scores to be used in a
battery of data quality evaluation methods.
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A Length normalization details

As mentioned in Section 4.1, these simple metrics
have a dependency on the length of the document,
which is undesirable. Therefore, we normalize
them by dividing by their minimum possible value
for a document of that length, which is achieved on
the uniform distribution. (The maximizing value,
achieved by the one-hot distribution, grows very
quickly only seemed to add noise.)

A.1 Moment

The distribution of moment scores on a sample of
filtered, web-mined text across a variety of lan-
guages3 can be seen in Figure 4a. There is a
clear lower bound on this distribution, which corre-
sponds to a uniform token distribution. In Figure
4b, the distribution is plotted alongside the score
on the uniform distribution (in red) and in Figure
4c, the moment scores are shown when normalized
by the uniform distribution. It is clear that this is a
poor fit for longer documents, where the uniform
distribution is more unlikely, and indeed (in the
case of a finite alphabet) impossible. Therefore,
we introduce an asymptote on the length of the
document. For a document with true length n, we
instead calculate the uniform distribution moment
on a scaled length ñ = n∗α

n+α , for some asymptote
α. The yellow line in Figure 4b shows the uniform
distribution on ñ with an asymptote of α = 5000,
and Figure 4d demonstrates that after dividing by
this, the length dependency, at least when it comes
to the lower bound, has nicely flattened out.

A.2 Zipfianness

We normalize the Zipfianness score in the same
way as the moment score, namely by the score
on the uniform distribution, with some asymptote
parameter α.

B Grid Search

Each metric is dependent on the parameters used to
smooth and nonlinearize the frequency distribution
(Section 4). Furthermore, in order to use such a
metric as a classifier for whether text is noisy or not,
an appropriate threshold is needed as the decision
boundary. Therefore, for each metric, we carry out
a grid search over its possible hyperparameters. We
split the BREAD dataset into a 50/50 tune/test split,

3Equal mix of Arabic, English, Finnish, German, Russian,
Swahili, and Turkish

and perform the grid search on the tune split. 4 The
hyperparameter ranges initially explored were as
follows:

Grid Search 1:
• ngrams: we explore every contiguous com-

bination of ngrams from character 2-grams to
character 10-grams. We also explore token
1-grams and 2-grams, and combinations of to-
ken 2-grams with character 5- and 6-grams,
as in CHRF++.

• ϵ values: we cover the range of [0, 0.01]
• k values: we cover the range of [2, 1024], as

well as no top-k filtering
• smoothing: we cover the range of [0, 2].
• nonlinearities: These vary by method and are

described along with each method.

However, given the small size of the tuning met-
ric, this led to severe overfitting. Based on analysis
of which parameters were or were not very impor-
tant, we re-did the final, simpler grid search:

Grid Search 2 (constrained):
• ngrams: we explored only sets of one to two

ngram values at once, for instance a mixture
of 4-grams and 5-grams, but not larger sets
like in the first gridsearch. For multiple-ngram
settings we looked at contiguous lengths as
well as skip-2 lengths. We explored character
1-grams to character 10-grams.

• ϵ values: we did not do epsilon truncation.
• k values: we did not perform top-k filtering
• smoothing: we only explored 0 and 1.
• nonlinearities: We limited ourselves to
x1.5, x2, x3 for the moment, and |x −
y|2, log(|x− y|), log2(|x− y|), JSD(x, y) for
Zipfianness.

We optimized the grid search with the F1 metric.
The choice of the optimization metric is inherently
dependent on the data balance, and a one-size-fits-
all solution is not possible; as such, though this is
the metric explored in this paper, variants of the
scores optimized for different metrics are open-
sourced (See Section 6).

C Dataset classes and examples

Several examples of documents annotated with dif-
ferent classes from the BREAD dataset are given in
Table 2.

4A train split per se is not necessary, as we are not training
any models.
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(a) Distribution of the fourth moment score on char-
acter 7-grams (found to be the most effective for
BREAD-REPEAT) on relatively clean samples of

seven languages, as a function of document length.

(b) The moment of the uniform distribution (red) and
the adjusted uniform distribution (yellow), where the
latter simply interpolates between the number of n-

grams in a document and a max-ngram value of 5000

(c) Moment score normalized by the uniform moment.
It is apparent that the score is still length-dependent.

(d) Moment score normalized by the adjusted uni-
form moment. The length dependency is much less.

Figure 4: Length normalization for the moment score
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Class Description Example
OK natural text Alokba den Sangremer Sensaksem | Tir Yimyim

By nungsang on November 28, 2017 Comments Off on Alokba den Sangremer Sensaksem
Sangremer : Alokba, nenok ashiakang kijong tepenjem kibong, Okolai nabo tulura ta
meteta lir, saka nü kinungtsü indangang junga memetet. La kechi inyaker-aka?
Tenünga shiba aka?
Alokba : Oko, Labo mapangshia polashia tzüwa awaba dak alaka kecha balaka
meinyakerako, la tenünga Tzüwala, süra ner tantsüa kechi inyaker?
Kipirde basylan türkmen migrantlar
Türk polisiýasy we migrant.
Kipriň demirgazyk böleginiň metbugatynda soňky wagtlarda türkmen migrantlary
barada köp maglumat çykyp başlady. Diňe soňky birnäçe günüň dowamynda ol ýerde
birnäçe türkmen zähmet migrantlarynyň ogurlykda aýyplanyp, suda çekilip, soňra-da
wagtlaýynça tussag edilendigi habar berilýär.
Belli bolşy ýaly Türkmenistan garaşsyzlygyny alandan soň Türkiýe türkmen zähmet
migrantlarynyň esasy ýykgyn edýän ýurtlarynyň birine öwrüldi. Türkiýedäki türkmen
zähmet migrantlary barasynda türk metbugatynda yzygiderli maglumatlar çap edilýär.
Ýöne indi Türkiýeden Kipriň demirgazyk bölegine gidip işleýän türkmenistanly zähmet
migrantlary barada hem metbugatda çap edilýän maglumatlar köpelýär.

REP repetitive Shabir May 13, 2019 at 8:24 PM
boilerplate Shabir May 13, 2019 at 8:27 PM

Shabir May 13, 2019 at 8:28 PM
Do visit the site Eduassam jobs in Assam
tridip May 31, 2019 at 8:24 PM
golam June 12, 2019 at 10:48 PM
3.6 miles 18° 2020-01-13 12:16:54
3.7 miles 181° 2020-01-18 14:04:11
3.7 miles 181° 2020-01-19 19:29:48
3.8 miles 235° 2020-01-20 19:43:23
Stations qui ont entendu WA1PLE-13 directement par radio –
2020-012019-122019-112019-102019-092019-082019-07
1 2020-01-14 03:19:07 2020-01-14 03:19:07 FN42JD >
FN31ST 67.3 miles 250° 2020-01-14 03:19:07
54 2020-01-09 00:45:56 2020-01-19 06:52:58 FN42JD >
FN42BF 32.4 miles 282° 2020-01-19 06:52:58
1 2020-01-15 01:20:00 2020-01-15 01:20:00 FN42JD >
FN33TA 84.8 miles 317° 2020-01-15 01:20:00

BOIL boilerplate jasa service rolling door murah: jasa service kunci rolling
but not murah jakarta selatan,utara,pusat,slipi,sunter, tangerang.
repeating jasa service kunci rolling murah jakarta selatan,utara,pusat,slipi,sunter, tangerang.

Diposting oleh ardicom di 18.53
E5500/6500 68" Cabinet 4U Rack Mount Kit – Sun Parts from AnySystem.com.
X9674A 595-5540 For pricing and availability, please call 201-445-3122
or email sales@anysystem.com .
AnySystem - Home / X9674A 595-5540 E5500/6500 68" Cabinet 4U Rack Mount Kit
– Sun Parts E5500/6500 68" Cabinet 4U Rack Mount Kit – Sun Parts from AnySystem.com.

Table 2: BREAD Dataset classes and corresponding examples. Note that some examples are excerpts from longer
documents.
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D Zipf Approximation via Random
Gradient Descent

We initially calculated the empirical Zipf distribu-
tion from a linguistically diverse set of data. How-
ever, this was cumbersome to deal with, since we
needed a value for every n-gram length and for
every n-gram index, leading to a 20x10000 table.
Although the approximation of fr ∝ 1

rb
, for the

1-indexed rank of a token r and some exponent
b, is an ok approximation, it is known to be fairly
poor near the edges of the distribution. Therefore,
we used the following algorithm to determine a
better approximation, which we call Random Gra-
dient Descent (RGD). The basic approach is to
perturb a point randomly until the loss function
improves, and then follow that direction in the pa-
rameter space until the loss stops decreasing, and
alternate doing these two steps until convergence.
In pseudocode, this algorithm looks like this:

def rgd ( i n i t i a l _ a r g s , l o s s _ f n ,
l r = 0 . 0 1 ,
b ranch_n =10 ,
max_s teps =10000 ,
max_a t t empt s = 1 0 ) :

t o t a l _ s t e p s = 0
b e s t _ a r g s = i n i t i a l _ a r g s . copy ( )
n _ f a i l e d = 0
c u r _ l o s s = l o s s _ f n ( b e s t _ a r g s )
i n i t i a l _ l o s s = c u r _ l o s s
i t = 0
whi le True :

i t += 1
i f t o t a l _ s t e p s >= max_s teps : break
t o t a l _ s t e p s += branch_n
branch , b ranch_grad , b r a n c h _ l o s s =
g e t _ b e s t _ b r a n c h ( b e s t _ a r g s , l o s s _ f n ,
l r , b ranch_n )
i f b ra n c h i s None :

# T h i s means t h a t no branch
# improved on t h e b e s t a rg s .
# As a r e s u l t , t h e r e i s no
# g r a d i e n t t o f o l l o w .
n _ f a i l e d += 1
i f max_a t t empt s

and n _ f a i l e d >= max_a t t empt s :
break

c o n t i n u e
c u r _ l o s s = b r a n c h _ l o s s
n _ f a i l e d = 0
b e s t _ a r g s , f o l l o w _ s t e p s , f o l l o w _ l o s s =
f o l l o w _ g r a d ( branch , b ranch_grad ,
l o s s _ f n )
t o t a l _ s t e p s += f o l l o w _ s t e p s
c u r _ l o s s = f o l l o w _ l o s s

re turn b e s t _ a r g s , c u r _ l o s s , t o t a l _ s t e p s

def g e t _ b e s t _ b r a n c h ( a rgs , l o s s _ f n ,
l r , b ranch_n ) :

" " " Look a t branch_n random p o i n t s
around args . Re tu rn t h e one w i t h
t h e l o w e s t l o s s , and i f none o f them
d e c r e a s e s t h e l o s s , r e t u r n None ’ s .
" " "
c u r _ l o s s = l o s s _ f n ( a r g s )
p o o l _ a r g s = [ ( a rgs , l r , l o s s _ f n )
f o r _ in range ( b ranch_n ) ]

w i th Pool ( ) a s p :
r e s u l t =
p . map ( e v a l _ b r a n c h , p o o l _ a r g s )

b ranches , l o s s e s , g r a d s = z i p (* r e s u l t )
b e s t _ l o s s = min ( l o s s e s )
i f b e s t _ l o s s >= c u r _ l o s s :

re turn None , None , None
i = l o s s e s . i n d e x ( b e s t _ l o s s )
re turn b r a n c h e s [ i ] , g r a d s [ i ] , b e s t _ l o s s

def f o l l o w _ g r a d ( a rgs , grad , l o s s _ f n ,
m a x _ f l a t = 2 0 ) :

" " " Fol low t h e g r a d i e n t grad
u n t i l t h e l o s s s t o p s i m p r o v i n g .
Guaranteed n e v e r t o make t h e
l o s s worse ; migh t n o t change i t .
" " "
c u r _ l o s s = l o s s _ f n ( a r g s )
i n i t i a l _ l o s s = c u r _ l o s s
b e s t _ a r g s = a r g s . copy ( )
n _ f l a t = 0
t o t a l _ s t e p s = 0
whi le True :

new_args = t a k e _ s t e p ( b e s t _ a r g s , g r ad )
new_loss = l o s s _ f n ( new_args )
i f new_loss > c u r _ l o s s : break
e l i f new_loss == c u r _ l o s s :

n _ f l a t += 1
i f n _ f l a t >= m a x _ f l a t :

break
e l i f new_loss < c u r _ l o s s :

t o t a l _ s t e p s += 1 + n _ f l a t
n _ f l a t = 0
b e s t _ a r g s = new_args . copy ( )
c u r _ l o s s = new_loss

re turn b e s t _ a r g s , t o t a l _ s t e p s , c u r _ l o s s

The literature is certainly rich with better and
subtler ways to find a good approximation, but this
method yielded an approximation that performed
as well as the empirical Zipf distribution with our
methods. The approximation we found with this
method, and which we used in the main paper, is
as follows, for the rth most common character n-
grams of length n :

b = 6.809 ∗ (r + 2.768)−1.487 + 0.527

s = 0.107 ∗ (n+ 12.0147)−12.654 + 0.0139

fn
r = s

1

rb
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score n Tune Test α nl λ

TTR 1 82.6 82.0 NA NA NA
TTR 2 82.8 82.4 NA NA NA
TTR 3 83.9 83.4 NA NA NA
TTR 4 86.3 85.1 NA NA NA
TTR 5 87.9 87.5 NA NA NA
TTR 6 89.4 89.2 NA NA NA
TTR 7 90.8 90.2 NA NA NA
TTR 8 91.8 90.4 NA NA NA
TTR 9 92.4 90.7 NA NA NA
TTR 10 92.5 90.1 NA NA NA
mmt. 1 83.3 82.9 ∞ x1.5 1
mmt. 2 84.4 84.6 2k x1.5 0
mmt. 3 87.4 88.0 2k x1.5 0
mmt. 4 92.3 91.7 2k x1.5 1
mmt. 5 95.2 93.7 2k x1.5 0
mmt. 6 95.8 94.9 2k x1.5 0
mmt. 7 95.8 94.3 2k x3 1
mmt. 8 95.8 94.6 2k x3 1
mmt. 9 95.4 94.7 2k x3 1
mmt. 10 95.1 94.5 5k x2 0
Zipf 1 83.1 82.2 2k log(x) 1
Zipf 2 84.7 84.0 ∞ log(x) 0
Zipf 3 90.1 89.7 2k JSD 1
Zipf 4 94.7 93.7 2k x2 0
Zipf 5 95.5 94.3 5k x2 0
Zipf 6 94.5 93.4 ∞ x2 0
Zipf 7 93.5 92.8 2k x2 0
Zipf 8 92.7 92.3 2k x2 0
Zipf 9 91.8 91.3 2k x2 0
Zipf 10 91.2 90.7 2k x2 0

Table 3: Eval on BREAD-REPEAT

score n Tune Test α nl λ

TTR 1 70.7 70.3 NA NA NA
TTR 2 70.8 70.5 NA NA NA
TTR 3 71.6 71.3 NA NA NA
TTR 4 73.6 72.8 NA NA NA
TTR 5 75.2 74.8 NA NA NA
TTR 6 77.3 76.7 NA NA NA
TTR 7 79.0 77.7 NA NA NA
TTR 8 80.6 79.1 NA NA NA
TTR 9 81.6 79.7 NA NA NA
TTR 10 81.9 79.6 NA NA NA
mmt. 1 71.3 49.5 ∞ x1.5 1
mmt. 2 72.7 56.4 2k x1.5 0
mmt. 3 75.4 58.5 2k x1.5 0
mmt. 4 81.2 57.7 2k x1.5 1
mmt. 5 86.2 66.9 2k x1.5 1
mmt. 6 88.0 79.6 2k x2 1
mmt. 7 88.0 87.6 2k x2 0
mmt. 8 88.3 87.9 2k x2 0
mmt. 9 88.1 87.2 2k x2 0
mmt. 10 87.5 64.1 5k x3 1
Zipf 1 71.0 61.3 2k log(x) 1
Zipf 2 73.0 72.4 ∞ log(x) 0
Zipf 3 78.6 48.7 2k JSD 1
Zipf 4 86.2 85.5 2k x2 0
Zipf 5 86.0 85.4 2k x2 0
Zipf 6 84.2 84.4 2k x2 0
Zipf 7 82.5 82.4 2k x2 0
Zipf 8 81.4 81.2 2k x2 0
Zipf 9 80.1 79.8 2k x2 0
Zipf 10 80.0 72.0 ∞ log(x) 1

Table 4: Eval on BREAD-NOISY

Table 5: F1 and Parameters of the scores that maximized the tune F1 on BREAD-REPEAT and BREAD-NOISY, for
all combinations of character n-gram length and score type. The parameters in question are the length-normalization
asymptote α, the nonlinearity nl, and the Laplace smoothing parameter λ. Perhaps the most interesting thing to
note is when the tune/test F1 scores as a function of ngram size: for the two metrics that only detect repetition (TTR
and Moment), larger ngrams are generally better, whereas for Zipfianness, utility peaks around 5.
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