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Abstract
In the rapidly evolving landscape of Large Lan-
guage Models (LLMs), introduction of well-
defined and standardized evaluation method-
ologies remains a crucial challenge. This paper
traces the historical trajectory of LLM evalua-
tions, from the foundational questions posed by
Alan Turing to the modern era of AI research.
We categorize the evolution of LLMs into dis-
tinct periods, each characterized by its unique
benchmarks and evaluation criteria. As LLMs
increasingly mimic human-like behaviors, tra-
ditional evaluation proxies, such as the Turing
test, have become less reliable. We emphasize
the pressing need for a unified evaluation sys-
tem, given the broader societal implications of
these models. Through an analysis of common
evaluation methodologies, we advocate for a
qualitative shift in assessment approaches, un-
derscoring the importance of standardization
and objective criteria. This work serves as a
call for the AI community to collaboratively
address the challenges of LLM evaluation, en-
suring their reliability, fairness, and societal
benefit.

1 Introduction

Alan Turing began his famous article "Comput-
ing Machinery and Intelligence" (Turing, 1950) by
stating that it is extremely difficult to formulate
objective definitions of the terms "machine" and
"think" in the context of the question: Can ma-
chines think? Instead, he proposed looking for an
answer to another question: Can machines reliably
imitate human dialogue?

Back then, in 1950, the answers to both ques-
tions were so far apart from us that the difference
between them was insignificant, and this substi-
tution helped to set the "north star metric" for a
long time, the direction of development for the
entire field of research, including dialog systems,
human-machine interfaces, and various kinds of AI.
A possible reason for this success is that a practi-
cal solution to this imitation task implies the need

to fulfill (to some extent) several complex condi-
tions simultaneously, including natural language
proficiency, interactivity, and effective grasp on the
context of the conversation. Moreover, since the
initial setup does not specify the fixed protocol,
other strong requirements may be implied, such
as common knowledge of the world, reasoning,
abstract or creative thinking, concept of causality,
and so on, depending on the particular interviewer’s
questions.

Now, 73 years after Turing’s paper, modern sys-
tems have greatly evolved, successfully mimicking
human-like behaviors and interactions. The first
officially documented machine passed the Turing
test in 2014 (Warwick and Shah, 2016), long before
the era of Large Language Models. Since then, the
quality of dialog simulation and text generation in
general has increased even more, so the Turing test
has long since ceased to serve as a reliable proxy
for evaluation of modern systems. Instead, a wide
variety of approaches are used in practice, aimed to
assess different individual abilities and properties
of a system. However, we have neither a unified
system of criteria nor clear formulation of the eval-
uation goals. In the meantime this new evaluation
methodology will not only influence the trajectory
of AI research but will also have broader implica-
tions. Thus, it is paramount to ensure that LLMs
are reliable, unbiased, and beneficial for society.

This paper does not set a general goal for further
development of LLMs but tries to provide a compre-
hensive overview of the evaluation methodologies
for Large Language Models and dialog agents. In
Section 3, we present a chronological overview
of the recent history of LLM development and
their evaluation methods. Specifically, we explore
benchmarks, human assessments, and model as-
sessments, among others, that are prevalent in both
academic research and practical applications. In
Section 4, we propose a primary taxonomy of these
approaches and discuss their strengths and internal
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Figure 1: Cambrian explosion of large language models:
the number of monthly created text-generation model
repositories on huggingface, based on statistics by HF-
Community.1

issues, including noticeable errors, problems, and
contradictions. Section 5 examines which specific
aspects of LLMs are commonly evaluated in con-
temporary studies. Finally, in Section 6 we use the
proposed taxonomy to discuss current challenges
and possible directions for further progress in the
field.

One has to state that the current evaluation ap-
proaches have are not effective and do not meet
modern requirements. Moreover, further extensive
development of the existing approaches (for exam-
ple, increasing the number of benchmarks and cre-
ating new tasks within existing benchmarks) cannot
address these issues. We drastically need a qualita-
tive rather than quantitative leap in evaluation. In
our opinion, the first step towards a solution should
be the survey of the existing evaluation taxonomy,
and a detailed discussions of the weaknesses of
the available methods that we try to provide in this
paper.

2 "Cambrian explosion" of large
language models

Lately the landscape of language models has ex-
panded remarkably (Figure 1). As of October 2023,
the number of generative text models on Hugging
Face (HF) has reached a remarkable 25 000+ and
86 59 models are based explicitly on the LLaMA
model (Touvron et al., 2023). This explosion can
also be observed in real time2.

With such an abundance of models, it becomes
essential to evaluate and compare their quality. A

1https://som-research.github.io/HFCommunity/
index.html

2For example, visit https://github.com/hollobit/
GenAI_LLM_timeline

Figure 2: Trend of LLMs evaluation papers over time
from Chang et al., 2023

state-of-the-art survey by Yang et al., 2023 provides
valuable insights into the diverse applications and
capabilities of language models beyond ChatGPT.
However, the various works in this field employ
different methodologies for assessing quality. Ex-
pansion at such a rate brings inevitable confusion3

within the field. So, common evaluation method-
ologies are not only far from consistent but are also
contradictory sometime.

This paper has no intention to provide a complete
and comprehensive survey of the field. We suggest
focusing on one aspect of LLM development that
we personally see as the most crucial for the future
progress of the field, namely, evaluation. However,
even in this narrowed context, it is hardly possible
to guarantee any form of a complete review due to
the number of relevant papers on the topic (Figure
2). We address the reader to Chang et al., 2023
for an example of such a survey. In this paper, we
instead discuss selected examples to illustrate the
trends and challenges we are facing. We believe
those examples are relevant to the field and had a
high impact at the moment of their release. We
do not claim we can provide a full review of all
evaluation techniques used for LLMs, but to the
best of our knowledge, this paper lists all significant
conceptual approaches.

3For example, the very term "large language models" is
constantly used, but there is no universally accepted thresh-
old for the number of parameters after which the model is
considered large.
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3 Evolution of LLM Evaluation

Let us review the trends in LLM Evaluation. Sub-
jectively, we split LLM development into three core
periods with specific properties. We list some of
the models for every period and briefly describe
the methods used for performance evaluation. We
do not imply that the list of the models is complete.
We also list only some of the evaluation methods
used for every model since they are numerous and
tend to overlap. Nevertheless, we enumerate the
primary evaluation methodologies so the reader can
have a fair and complete representation of the spec-
trum of evaluation methods available today. Let us
briefly discuss each period and highlight some of
the methods that were used for evaluation.

3.1 "Prehistoric" LLM Evaluations
In this subsection, we discuss evaluations of mod-
els that emerged before the appearance of GPT-34,
which was initially released in beta on June 11,
2020. We have mentioned above that there is no
consensus on the threshold for the "large" language
model. Thus, we suggest discussing models with
more than one billion parameters5.

During this period, the models are mainly as-
sessed on relatively simple and common NLU
benchmarks such as LAMBADA (Paperno et al.,
2016), GLUE (Wang et al., 2018), SuperGLUE
(Wang et al., 2019), SQuAD (Rajpurkar et al.,
2016), MNLI (Williams et al., 2018), QQP (Wang
et al., 2017), SQuAD, Winograd Schema Challenge
(Levesque et al., 2012), RACE (Lai et al., 2017),
or similiar. Since LLMs from this period achieved
at most 50%-80% of human-level performance on
these tasks, the progress across various models was
clearly visible. In some papers, the authors try to
devise additional metrics for model performance
comparison. For example, several papers compare
the perplexities using the same WikiText dataset,
which is questionable since models often have dif-
ferent tokenization vocabularies. Hence, compar-
ing such perplexities could only be fair with some
additional tricks (see, for example, Mosin et al.,
2023).

3.2 From GPT-3 to ChatGPT
During this period, before the end of 2022, the
number of new LLMs has increased6, since several

4https://openai.com/blog/gpt-3-apps/
5Appendix contains Table 1 with comprehensive overview

of all core models discussed in the paper
6See Table 1B

major developers joined the race. These new mod-
els consistently achieved scores of 90% or higher
on some of the old benchmarks (e.g., SuperGLUE,
LAMBADA, SQuAD, GLUE), so they became less
informative because of limitations of their sensitiv-
ity.

Consequently, researchers tend to use more com-
plex and/or specific benchmarks, such as Sto-
ryCloze (Mostafazadeh et al., 2017), HellaSwag
(Zellers et al., 2019), TriviaQA (Joshi et al., 2017),
ARC (Clark et al., 2018), CoQA (Reddy et al.,
2019), DROP (Dua et al., 2019), QuAC (Choi et al.,
2018), SQuADv2 (Rajpurkar et al., 2018), hoping
to capture nuances of different models’ quality.

Moreover, new complex benchmarks (such as
PIQA (Bisk et al., 2020) and Closed Book Question
Answering (Wang et al., 2021)) were introduced.
Notably, benchmarks such as MMLU (Hendrycks
et al.), BIG-Bench (Srivastava et al., 2022) as well
as HELM meta benchmark (Liang et al., 2022),
often covering multiple disciplines akin to a human
exam, have emerged as evaluation tools.

However, there is no universally agreed-upon
system of benchmarks, leading to arbitrary com-
parisons across various evaluation criteria. At the
same time, such an abundance of comparison scales
leads to the absence of Pareto superiority for any
given model7. Instead, authors now commonly
state, "our model outperforms the prior state-of-
the-art on X out of Y tasks."

Another essential trend of this period is the wide
usage of human labeling primarily used to deal with
specific or subjective aspects of evaluation. Since
the costs of high-quality human labeling are high,
using an analog of the chess Elo rating, known as
ELO (Arpad, 1978), established itself as a potential
solution for sparse pairwise comparisons.

During this period, researchers attempt to assess
the toxicity, biases, and harmful behavior of LLMs,
using dedicated benchmarks together with human
evaluation. In this paper, we deliberately do not
discuss toxicity assessment or alignment issues, as
this is a separate significant topic for which we
refer to Sorensen et al., 2023.

3.3 Modern Era

Finally, we would like to highlight notable lan-
guage models released in 2023 (Table 1C) and pro-
vide details about their evaluations.

7Pareto superiority is as a situation when a new model
outperforms the previous ones on all evaluation tasks.
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The introduction of open models such as LLaMA
and Pythia (Biderman et al., 2023), among oth-
ers, has significantly increased the number of
researchers conducting experiments with LLMs.
Since the number of models is rising exponentially,
see Figure 1, probably, a couple of new models
appeared just while you read this paper. We have
no intent to enumerate all available LLMs; instead,
we try to capture the main trends and patterns here:

• the development and heavy usage of various
complex benchmarks continues,

• many new evaluations are based on human
school exams or other tests initially designed
for humans, such as GMAT, SAT, LSAT, etc.

• toxicity/bias/hate speech assessments (as well
as helpfulness, honesty, and harmlessness)
become a mandatory attribute of the overall
model evaluation,

• the complexity of the evaluation criteria mo-
tivates researchers to use pairwise evaluation
when possible,

• high costs of pairwise labeling lead to the ex-
tensive use of other, superior models (mainly
ChatGPT or GPT-4) for evaluation,

• these sparse pairwise or side-by-side evalu-
ations, combined with an Elo rating system,
enable the creation of leaderboards for model
comparison.

Another trend worth mentioning is the rise of
code-generation LLMs since they have significant
specifics in application and evaluation approaches.
We mention just some of them, including StarCoder
(Li et al., 2023), CodeGeeX (Zheng et al., 2023b),
and WizardCoder (Luo et al., 2023). Such models
usually utilize special benchmarks with auto-tests
for generated code (including HumanEval (Chen
et al., 2021), HumanEval+ (Liu et al., 2023), DS-
1000 (Lai et al., 2022), or MBPP (Austin et al.,
2021)).

4 Prevalent Evaluation Methodologies

As the field evolved, several generalized ap-
proaches to evaluation established themselves.
These include comparing the models on a set of
benchmarks, assessment by humans, and model-
ing human evaluation (either using heuristics, ded-
icated models, or a superior LLM model). Each

of these approaches has its advantages, limitations,
and potential drawbacks. Let us analyze them se-
quentially to understand their specifics.

4.1 Comparison on benchmarks
Benchmarks may provide a fast and reliable eval-
uation of models. In some sense, benchmark eval-
uation resembles commonly used tests for human
performance evaluation. The critical requirements
here are the standardization of test sets and the
controlled environment of evaluation. There are
several interesting developments towards standard-
ization such as HELM8, BIG-Bench9 or Gao et al.,
2021. The last one makes an interesting step to
provide a unified benchmarking framework that
includes 200+ tasks for evaluation and supports a
variety of available LLMs.

At the same time, similarly to human tests, LLM
benchmarks have disadvantages:

• While we are in the active phase of LLM qual-
ity improvement, old benchmarks become ob-
solete quickly; however, they are often still
included in the evaluation procedures.

• Since new benchmarks are not fully standard-
ized yet, they often overlap or contradict,
which may lead to some inconsistency.

• Taking into account the low number of tasks
per topic (for example, MMLU consists of 57
types of questions on mathematics, history,
psychology, etc., with an average of 280 ques-
tions per topic), the randomness may affect
the outcome for each topic a lot. For exam-
ple, it was shown that minor changes in the
multiple-choice formatting can cause a perfor-
mance jump of 6-10 points on MMLU10. The
standard way to deal with noise is to measure
confidence intervals; however, the limited data
available does not enable the use of bucket test
statistics.

• A tempting idea for noise control is averaging
results across several different independent
benchmarks and publishing the resulting rat-
ings11. However, the resulting rating often

8https://crfm.stanford.edu/helm
9https://github.com/google/BIG-bench

10https://twitter.com/ArmenAgha/status/
1669084129261162497

11See some examples: https://huggingface.co/
spaces/HuggingFaceH4/open_llm_leaderboard,
https://shorturl.at/DGPW3, https://github.

401



fails to account for possible methodological
flaws or deliver a tangible value to a larger
NLP community (Ethayarajh and Jurafsky,
2020).

• The known problem of standardized bench-
mark evaluations is leakage or so-called test
set pollution since some of the benchmarks
have been available on the internet for years
(e.g., MMLU since 2021) and can easily oc-
cur in pre-training or fine-tuning datasets. A
couple of such recent high-profile cases have
sparked heated discussion in the community12,
and led to criticism in satirical papers like
Schaeffer, 2023.

• Another known issue of modern benchmark-
ing is its massive computational costs: bench-
marks typically have the order of 105 valida-
tion examples, with 103 - 104 per task, extend-
ing the load up to hundreds of GPU hours per
model evaluation. Some recent works, like
Vivek et al., 2023 and Perlitz et al., 2023, try
to reduce these computational costs, but it is
still hard to keep the reasonable stability of
results simultaneously.

• Also, as we mentioned before, reducing the
number of test topics or tasks may be danger-
ous in terms of intended or unintended cherry-
picking, making it easy to choose the ones
where a particular model performs well.

Summing up, using benchmarks is a good start-
ing point for rough evaluation. However, bench-
marks have several significant drawbacks, includ-
ing insufficient standardization, high computational
costs, poor robustness to noise, and frequent cases
of test set leakage. Moreover, benchmark assess-
ments often do not agree with the human assess-
ment of the model performance13, making, poten-
tially, the whole evaluation inconsistent. Let us now
discuss the human evaluation more thoroughly.

com/FranxYao/chain-of-thought-hub, https://
cevalbenchmark.com/static/leaderboard.html, https:
//bellard.org/ts_server/, https://huggingface.co/
spaces/toloka/open-llm-leaderboard

12Check, for instance, https://huggingface.co/
spaces/HuggingFaceH4/open_llm_leaderboard/
discussions/213

13Some examples of such inconsistency are available at
https://llm-leaderboard.streamlit.app/ or https://
github.com/LudwigStumpp/llm-leaderboard

4.2 Evaluation by Human Assessors

Evaluation by human assessors is an expensive yet
widely used approach. While it may be possible
to train and use a dedicated model for almost any
well-formulated aspect of evaluation, the core prob-
lem is precisely in formulating a detailed definition
of the evaluation criteria. The typical way to evade
this is by asking about assessors’ overall preference
in a pairwise (side-by-side) setup and then building
a rating between available models or configura-
tions based on these pairwise scores. However, this
workaround comes with its own set of challenges
and drawbacks.

First, the complete pairwise evaluation is too
expensive and time-consuming to compare a sig-
nificant number of models since the complexity of
the procedure grows like O(n2) with the number of
compared models.

Second, pairwise comparisons can yield non-
transitive results, making it challenging to establish
a consistent global ranking. In other words, without
clearly articulated criteria, human assessors may
prefer system A to system B, system B to system
C, and system C to system A. Researchers use dif-
ferent methods to deal with such situations. One
alternative could be Elo rating14 or relative compar-
ison of evaluated models with one clearly weaker
LLM. For an example of a more advanced ranking
method, see Lou et al., 2022.

On the other hand, numerous co-existing leader-
boards15 may provide different rankings for the
same models since they are based on different sets
of noisy human pairwise labels, while the noise
measurements and confidence intervals are usually
absent due to the low amount of data.

Another significant issue is the quality of human
labels, which can be relatively low for different
reasons. Human assessors’ motivation is some-
times insufficient to provide high-quality answers;
moreover, some assessors secretly use LLMs as
to speed up the labelling (Veselovsky et al., 2023).
This might introduce unexpected shifts in the ob-
tained assessments. Furthermore, the absence of
global criteria may lead to situations when human
assessors prefer more good-looking and stylish re-
sponses to correct and factual ones (Gudibande

14Elo ratings have their own limitations discussed in
(Szczecinski and Djebbi, 2020).

15Examples include https://chat.lmsys.org/
?leaderboard, https://github.com/LudwigStumpp/
llm-leaderboard, https://aviary.anyscale.com/, and
https://llm-leaderboard.streamlit.app/
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et al., 2023).
Since the research community tend to treat hu-

man assessment as an expensive ground truth, re-
searchers often try to model human evaluation with
heuristics or some dedicated algorithm to reduce
the evaluation’s complexity and cost. Let us discuss
these methods in the following subsection.

4.3 Modeling Human Evaluation

One of the common ways to obtain a cheaper esti-
mation of human assessment is to train a dedicated
model on existing human labels to predict them
and then use it as a replacement for human asses-
sors. Dozens of such approaches are proposed; for
example, in the domain of dialog agents evaluation
there are methods like FED (Mehri and Eskenazi,
2020), USL (Phy et al., 2020), Flowscore (Li et al.,
2021), QuestEval (Scialom et al., 2021), Open AI
detector16, CT Score17, FULL score (De Bruyn
et al., 2022), Reranker18, Cross-Encoder19 for MS-
Macro20, Quality Adapt (Mendonca et al., 2022),
Deam score (Ghazarian et al., 2022), RankGen (Kr-
ishna et al., 2022) and many others.

Although successfully implementing a human
preferences model is usually necessary for the
RLHF to have the so-called Reward Modeling,
there is still no ultimate solution. However, the
situation has changed significantly with the appear-
ance of modern LLMs since one can compare the
outputs of to models using a superior one.

As of today, GPT-4 is the most prominent candi-
date for such a superior model, which can be used
(see, for example, Zheng et al., 2023a) to evaluate
or compare the candidates instead of humans with-
out additional fine-tuning. Moreover, Thomas et al.,
2023 reports that GPT-4 produces better relevance
labels than third-party workers. However, even
GPT-4 has a couple of known significant issues,
including:

• GPT-4 is also known to have a specific vo-
cabulary bias, particularly it prefers its own
generations more than humans do (Zhou et al.,
2023),

16https://huggingface.co/
roberta-base-openai-detector

17https://github.com/tanyuqian/ctc-gen-eval
18https://github.com/luyug/Reranker
19https://huggingface.co/cross-encoder/

ms-marco-MiniLM-L-6-v2
20https://github.com/microsoft/

MSMARCO-Passage-Ranking

• GPT-4 seems to have specific positional bi-
ases21,

• Some systematic contradictions between GPT-
4 and human assessment are reported (Xu
et al., 2023),

• GPT-4 biases may be misaligned with human
biases, which makes the idea of the blind com-
parison by a GPT-4 model quite challenging.

Such problems are not specific to GPT-4 but ap-
pear in the results of different models in different
ways. The recent paper on the CoBBLEr bench-
mark (Koo et al., 2023) studies these effects across
15 existing LLMs.

Overall, it seems like we cannot avoid a clear
definition of what we are evaluating without intro-
ducing significant noise or bias into the results.

5 What Are We Evaluating?

With dozens of actively used benchmarks with hun-
dreds of task types, researchers naturally tend to
group them into general aspects of the model’s per-
formance, so providing several high-level scores be-
comes standard practice. Often, researchers present
them as so-called radar diagrams to highlight the
advantages and disadvantages of the given model
over baselines.

However, an overview of recent papers reveals
no structure or system of these aspects, even on
the highest level (see Figure 3). Sometimes, they
remind the famous fiction animals classification
(Borges), mixing different types and principles al-
together. Building a proper taxonomy for these
aspects is a complex and extensive endeavor, far
beyond the scope of this paper. For deeper insights
on this topic, we address the reader, for example, to
Ziyu et al., 2023 or Xuanfan and Piji, 2023. Here,
we just mention some commonly used approaches
and group them intuitively, then discuss the results.

• Text-specific and dialog-specific abilities are
crucial since textual dialogues are the com-
mon medium for modern LLMs. They may
include:

– General text comprehension and natu-
ral language understanding (for example,
LAMBADA benchmark);

21https://twitter.com/nazneenrajani/status/
1667224735573487616
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Figure 3: Radar diagrams for several recent models. Top-left is from (Jain et al., 2023), top-right is from Mosaic
Eval Gauntlet, bottom-left is from (Ye et al., 2023), bottom-right is from the Giraffe-70b release.

– Multilingualism (many options, includ-
ing recently published BELEBELE (Ban-
darkar et al., 2023));

– Plausibility of dialog communication;
– Capability to understand and control the

text quality, style, and level of details;

• Knowledge-specific characteristics - charac-
teristics of knowledge obtained by the model
during training:

– Common knowledge is essential since
human communication is built on the
existence of implicitly shared contexts
(Clark and Brennan, 1991);

– Depending on the context or applica-
tion, we may want to assess models’
niche knowledge, such as Humanities
or STEM; benchmarks here are usually
compiled based on human exams or man-
ually crafted tests like BIG-Bench;

• Skill-specific abilities - abilities to solve prob-
lems that require some skills besides knowl-
edge:

– Commonsense reasoning22;

– Abstract reasoning and ability to gener-
alize23;

– Specific skills (Code generation, Role-
play, Math reasoning, Image manipula-
tion, Chess problem solving, etc.)24;

• Personality and CogSci features - since the
general modern models’ UI is a dialog via
chat, users and researchers tend to treat them

22See a survey on Commonsense Reasoning benchmarks in
(Davis, 2023)

23(Chollet, 2019) proposes to assess reasoning without mod-
ulation by prior knowledge and experience

24There are many specific skills benchmarks, see, for exam-
ple, the recent NuclearQA bencmark (Acharya et al., 2023) or
the RoleLLM framework (Wang et al., 2023b)
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as personalities; this leads to the idea of corre-
sponding attributes measurement:

– Creativity25, Empathy, Emotional Intel-
ligence (Wang et al., 2023a), or Social
awareness (Zhan et al., 2023);

– Cognitive Science-related aspects in-
clude planning and cognitive mapping
abilities (Momennejad et al., 2023), de-
ductive competence (Seals and Shalin,
2023), and complex reasoning skills
(Kuo et al., 2023);

• Alignment, Reliability, and Safety related
features, including

– Alignment to human values26;
– Security, which encompasses various as-

pects, like privacy, preventing malicious
use, and addressing potential biases;

– H4 attributes27, namely being Helpful,
Honest, Harmless, and Huggy, reflecting
positive social qualities;

– Factuality (Chen et al., 2023), truthful-
ness, and the ability to acknowledge un-
certainty or lack of knowledge;

– Explainability28;

• Technical characteristics (including Long-
range context (Dong et al., 2023), tokenization
quality, etc)

These diverse evaluation dimensions highlight
the multifaceted nature of assessing language mod-
els, each with unique considerations and challenges.
For example, the precise definition of text style re-
mains challenging (Tikhonov and Yamshchikov,
2018), while storytelling evaluation needs a deeper
understanding of the concept of narrative (Gervás
et al., 2019; Yamshchikov and Tikhonov, 2023).
Indeed, the evaluation guidelines proposed in
(Hämäläinen and Alnajjar, 2021) for creative, gen-
erative systems are relevant for the LLM evalua-
tion in general: "clearly defining the goal of the
generative system, asking questions as concrete as
possible, testing the evaluation setup, using mul-
tiple different evaluation setups, reporting the en-
tire evaluation process and potential biases clearly,

25https://bit.ly/3rKZWLm
26See the survey by Yao et al., 2023
27https://huggingface.co/HuggingFaceH4
28Though, Hsia et al., 2023 recently showed the flaws of

available explainability metrics.

and finally analyzing the evaluation results more
profoundly than merely reporting the most typical
statistics."

A well-defined and structured list of aspects we
want to evaluate LLM on is essential to optimize
and prioritize the evaluation of language models.
Do we really need them all? How do they interre-
late? Without a clear understanding of what aspects
we are assessing and why, it becomes difficult to fo-
cus on specific areas for improvement or to allocate
resources effectively.

6 Discussion

Let us now try to sketch the main trends in evalu-
ation approaches and hypothesize their further de-
velopment in the context of the multiple challenges
we highlighted above.

6.1 Human-like Evaluation

It is worth noting that most of the current ap-
proaches to model evaluation listed in this paper
are essentially anthropocentric. One reason for this
may be that benchmarks are opportunity-driven.
Instead of creating new, specifically targeted tests,
many researchers adapt existing ones created for
humans in the past.

At first glance, this simplifies not only their cre-
ation but also the interpretation of results. However,
some of these tests are designed specifically for as-
sessing human adults and might not be well suited
for evaluating a broader range of signatures of in-
telligent behavior (Eisenstein, 2023).

Another disadvantage of this approach is that
it may limit the assessment scale. Now, when su-
perhuman performance has been achieved in some
tasks, this may become a constraint or an extra in-
centive that distorts goal setting. For example, the
need to pass a classical Turing test may encour-
age a model to deceive the tester and hide part of
its abilities (as it may be given away by too high
a calculation speed or too deep an encyclopedic
knowledge).

Suppose we want to drive and track the devel-
opment of models’ abilities at levels qualitatively
higher than the current humans. In that case, we
should consider creating fundamentally new ap-
proaches, for example, developing particular com-
petitive evaluation environments that assess not
built-in knowledge and abilities but the speed and
quality of forming new skills in an interactive, un-
familiar environment. We see the ARC benchmark

405



from Chollet, 2019 as a good step in this direction.

6.2 Decompose and Conquer

However, there is one thing we might want to use
from the experience of human skills testing. Just
like human IQ test are split into several subcate-
gories, like Short-Term Memory, Reasoning, and
Verbal (Hampshire et al., 2012), we need to divide
potential LLM skills into a standardized system
and define generic baselines.

There still are debates about whether it is possi-
ble to develop a universal measure of intelligence.
In the meantime, we clearly see the progress of
LLMs across specifically defined tasks. With lim-
ited resources and various practical tasks, devel-
opers may not want to build universally superior
models. Instead, they can focus on the selected
skills and abilities. For example, creators of a code
assistant should not bother themselves with improv-
ing the literature style of their model too much. We
believe that this tactic of "decompose and conquer"
will further dominate the field, so making the rules,
requirements, and systematic baselines global and
public should benefit the whole community.

6.3 Nobody’s Perfect

Another interesting observation is that we tend to
perceive and evaluate modern models as agents in
communication with humans. We earnestly expect
LLMs to behave in a socially acceptable way – im-
posing requirements like factuality, harmlessness,
helpfulness, etc.

For some parameters, we impose stricter require-
ments on the evaluated models than we would if
we were evaluating ordinary people (e.g., we may
allow some sloppiness, inattention, or carelessness
from a living person, but we require models to
be free of such problems). These strong demands
might be rooted in the fact that we already use such
models to create mass services in which they act
as experts in some narrow field (data processing,
science, medicine, law, etc).

Accordingly, we already expect LLMs to have
confident and stable expert knowledge and skills in
the target domain, implying that requirements like
natural language skills and the ability to maintain
a conversation are self-evident. This perfectionist
bias appears likely to stay with us and potentially
intensify, as testing specific skills in models will
become increasingly complex and expensive.

6.4 Independent Evaluation Bodies
The evaluation and certification of LLMs could be
a separate field in itself. Indeed, various global or-
ganizations work on evaluations of various human
cognitive skills. There is no reason why a simi-
lar pattern could not emerge for LLMs. Creating
efficient leak-proof test methodologies will only
be more demanding as the models progress. At
the same time, for-profit organizations clearly need
some form of evaluation to compare their solutions
with the competition. This might create a market
incentive for the creation of for-profit organizations
that could be centered around LLM certification
and evaluation.

7 Conclusion

This paper provides an overview of the current state
of evaluation techniques used for LLMs and ana-
lyzes them. We trace the progress of LLMs in the
last few years and create a taxonomy of the meth-
ods used to evaluate LLM performance. One by
one, we analyze significant approaches and high-
light challenges that arise with them, including in-
sufficient standardization, poor robustness to noise,
and test set leakage of benchmarks; frequent cases
of disagreement between benchmark-based evalua-
tions, humans’ and superior models’ preferences;
humans’ and superior models’ biases; dead ends
of Pareto optimization and non-transitive results in
the absence of global criteria; no structure or sys-
tem of aspects of evaluations, even on the highest
level.

Based on these observations, the current evalu-
ation approaches have lost their effectiveness and
do not meet modern requirements, and there is no
clear way to patch them. In our opinion, the first
step towards a solution should be the standardiza-
tion of tasks and evaluation methods, including a
precise formulation of the assessed aspects. We
still do not know whether there is a new single
"Turing question" that can set the main direction
of the industry for the following decades. What is
certain is that to figure out how to move forward,
we need to precisely articulate what we want to
measure and for what reason.
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A. The "prehistoric" era of LLM
2019, GPT-2a LAMBADA, WSC, QA, summarization, translation tasks, etc.

2019, T5 (Raffel et al., 2020) GLUE, SuperGLUE, SQuAD, QA, summarization, translation tasks, etc.

2019, CTRL (Keskar et al., 2019) no include explicit quality measurements.

2019, Megatron-LM (Shoeybi et al., 2019) LAMBADA, MNLI, QQP, SQuAD, RACE, etc.

2020, Turing-NLGb LAMBADA, summarization, etc.

B. From GPT-3 to ChatGPT

2020, GPT-3(Brown et al., 2020)

LAMBADA, StoryCloze, HellaSwag, Closed Book Question Answering,
TriviaQA, PIQA, ARC, CoQA, DROP, QuAC, SQuADv2, RACE, Super-
GLUE, NLI, OpenBookQA, some other tasks inspired by human school
exams, and human side-by-side evaluation.

2021, Blenderbot (Shuster et al., 2021) human side-by-side evaluation.

2021, Gopher (Rae et al., 2021)

152 diverse tasks from different benchmarks, including LAMBADA, MMLU,
BIG-bench, TriviaQA, NaturalQuestions, TruthfulQA, PIQA, WinoGrande,
SocialIQA, HellaSwag, plus some tasks inspired by human school exams,
plus some toxicity, bias and hate speech evaluation.

2021, GLaM (Du et al., 2022) compared to GPT-3 and Gopher across 29 benchmarks.

2022, OPT (Zhang et al., 2022) compared to GPT-3 across 16 tasks, plus some toxicity, bias and hate speech
evaluation.

2022, LaMDA (Thoppilan et al., 2022) human assessments on specific aspects, including sensibleness, specificity,
interestingness, safety, and factual grounding.

2022, PaLM (Chowdhery et al., 2022) evaluated on 29 benchmarks, which were similar to the set of tasks used for
GPT-3 + MMLU and BIG-Bench.

2022, Chinchilla (Hoffmann et al., 2022a,b) benchmarks included MMLU, BIG-bench, and other.

2022, BLOOM (Scao et al., 2022) 20 benchmarks, which were a subset of those used for GPT-3.

2022, InstructGPTc human assessments of specific aspects, used Elo rating.

2022, ChatGPTd evaluations were conducted based on InstructGPT.

C. The "modern" era

2023, GPT-4e benchmarks including MMLU, HellaSwag, WinoGrande, and others + aca-
demic and professional examinations.

2023, LLaMA (Touvron et al., 2023) MMLU, HellaSwag, WinoGrande, ARC, and more.

2023, Alpaca (Taori et al., 2023) minimal evaluation.

2023, Claudef minimal evaluation.

2023, Vicuna (Chiang et al., 2023) side-by-side compared to Alpaca and LLaMa by GPT-4 as a judge.

2023, WizardLM (Xu et al., 2023) side-by-side assessment by human evaluators and GPT-4.

2023, MPT family of modelsg several standard benchmarks + code specific tasks, like HumanEval.

2023, Palm-2 (Anil et al., 2023) similar to GPT-4 - a lot of standard benchmarks (including, for example,
BIG-Bench and Winogrande) + language proficiency exams.

2023, Claude-2h benchmarks, alignment, lanugages, long context.

2023, Falcon (Almazrouei et al., 2023) standard benchmarks, including ARC, HellaSwag, MMLU, TruthfulQA.
a https://openai.com/research/better-language-models
b https://shorturl.at/epK79
c https://openai.com/research/instruction-following
d https://openai.com/blog/chatgpt/
e https://openai.com/gpt-4
f https://www.anthropic.com/index/introducing-claude
g https://github.com/mosaicml/llm-foundry
h https://www.anthropic.com/index/claude-2

Table 1: Selected examples of LLM Evaluation approaches
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