
Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM), pages 76–87
December 6, 2023 ©2023 Association for Computational Linguistics

One-Shot and Few-Shot Exemplification Modeling

John Harvill1, Hee Suk Yoon2, Eunseop Yoon2, Mark Hasegawa-Johnson1, Chang D. Yoo2

1University of Illinois Urbana-Champaign,
2Korea Advanced Institute of Science and Technology

{harvill2, jhasegaw}@illinois.edu, {hskyoon, esyoon97, cd_yoo}@kaist.ac.kr

Abstract

Exemplification modeling is a task where the
goal is to produce a viable example sentence
that uses a target word with a target definition.
The task is non-trivial for polysemous words,
and previous works have only explored settings
where ample labeled training data is available.
In this paper, we demonstrate that exemplifi-
cation modeling can be performed without a
large labeled training corpus by either changing
the format of the task (one-shot) or prompting
large language models (few-shot), and ablate
key components of our proposed one-shot and
few-shot systems. We provide extensive au-
tomatic and human evaluations of model per-
formance and find that our proposed one-shot
and few-shot approaches perform similarly to
a fully supervised baseline. We compare and
contrast each method in terms of labeled train-
ing dataset size, performance, and model size,
and find that each technique has at least one
tradeoff that another approach does not.

1 Introduction

Many words can have several different meanings
depending on the context in which they are used.
Given this ambiguity, it is often necessary to re-
solve the meaning of words in context for the pur-
pose of understanding the semantics of a sentence
or learning how to use new words properly. This
task is called Word Sense Disambiguation (WSD)
and has been widely studied (Navigli, 2009; Scar-
lini et al., 2020; Barba et al., 2021b). Recently,
two related generative tasks have spawned from
WSD, namely Definition Modeling (DM) (Bevilac-
qua et al., 2020) and Exemplification Modeling
(EM) (Barba et al., 2021a; He and Yiu, 2022). DM
is similar to WSD, except that instead of choosing
a word sense from a predefined inventory (classifi-
cation), a definition is generated for a given word in
context. EM can be seen as the inverse task to DM,
where an example sentence is generated given a

target word and definition. We provide an example
input/output pair below:

Input Output
cool: composure
under strain

She kept her cool
during the interview.

In this paper, we examine the ability of different
systems to perform EM in one-shot or few-shot
settings.
One-shot EM. To perform EM in a one-shot fash-
ion (OneEM), we replace the definition with an
example sentence using the target word with the
intended sense. In this setting, the semantics of the
target word are inferred from context in a sentence.
We will show that the OneEM format of the task has
new applications not possible for EM (see Section
1.1) and can be trained in a self-supervised fashion,
requiring only raw text with no word sense labels.
An example input/output pair for the OneEM task
is provided below:

Input Output
cool: Drinking a cool
beverage is refreshing.

He felt the cool
breeze in his hair.

Few-shot EM. We explore the ability of Large Lan-
guage Models (LLM) to perform EM in a few-shot
setting (FewEM). The prompt is created from ex-
amples formatted as in Brown et al. (2020), where
the FewEM task is performed by completing the
last example (See Figure 3).

1.1 Applications
EM can be used for many downstream tasks. Pre-
vious works have focused on data augmentation,
but we introduce several important applications
that further motivate the need for high-quality EM
systems and the one-shot format of the task.
Data Augmentation. Previously proposed EM ap-
plications are data augmentation for WSD and dic-
tionary example augmentation (He and Yiu, 2022).

76

Barba et al. (2021a) showed that when used as an
augmentation strategy, EM can lead to state-of-the-
art performance for WSD.
Vocabulary Learning System. Segler (2007)
found that language learners can benefit from ex-
posure to multiple examples using a target word
when acquiring new vocabulary. He demonstrates
that, in addition to the gloss of a target word, mul-
tiple examples can be an integral part of an Intelli-
gent Computer-Aided Language Learning (ICALL)
Vocabulary Learning System. A trained OneEM
model can serve as an example generator for an
ICALL system using as input any reading passage,
because we can use the context sentence for a new
or confusing word as one-shot input for the OneEM
model. The benefits of OneEM over EM for this
application are: 1) No sense inventory is needed
during training of the OneEM system or at infer-
ence time. 2) When using an EM system for this
task, a WSD or DM system would be required first
to generate a definition for EM, possibly leading
to cascading errors and requiring large amounts of
labeled training data. The labeled data constraints
imposed by WSD, DM and EM make it difficult
to create ICALL systems for low-resourced lan-
guages, whereas OneEM does not have these re-
strictions and can be applied to any language with
sufficient raw text for self-supervised training.
Dialog. OneEM (or EM) could also be applied
to dialog systems where users express confusion
related to vocabulary used in context. Clarifying
examples could be generated automatically using
the aforementioned ICALL system and integrated
into dialog output.

1.2 Contributions

In this paper, we make several contributions: 1)
Introduce one-shot and few-shot versions of Ex-
emplification Modeling (EM). 2) Propose a self-
supervised OneEM system that achieves results
similar to a fully-supervised EM system. 3) Ex-
plore the ability of LLMs to perform EM in a few-
shot setting (FewEM). 4) Propose an example veri-
fication system that leads to improved performance.
5) Provide extensive quantitative and qualitative
evaluation of generated example sentences.

2 One-Shot Exemplification Modeling

One-shot Exemplification Modeling (OneEM) re-
lies on an example sentence for the semantic signal
of the target word sense instead of the gloss. As we

LSR

BART decoder

BART encoder

They might win.

<s> They might win.

They might win. </s>

<s> might </s>

Codebook

Figure 1: Proposed one-shot training setup. Shown here
is the vector quantization disentanglement method that
uses a synset codebook, where the red lines indicate
cutoff of information leakage from the raw LSR em-
bedding to the decoder. The LSR model and codebook
are kept frozen during training. The disentangled LSR
is concatenated to all timesteps of the BART encoder
output.

will show in the following subsections, OneEM
can be trained in a self-supervised fashion, re-
quiring only raw sentences as training data. Self-
supervised training is possible due to the empiri-
cal observation that bidirectional Language Mod-
els (LM) like BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) create high-quality
representations of words that indicate meaning in
context from Masked Language Modeling (MLM)
pretraining alone. The one-shot training approach
discussed here was proposed previously by Harvill
et al. (2023) but is significantly improved in this
paper via better disentanglement of information.

One-shot Training. To train a OneEM system
in a self-supervised fashion, we use a neural au-
toencoder and call our approach Sense2Sentence
(S2S). Given a sentence s, we want to reconstruct
it by conditioning on a target word w and a latent
vector representation of the intended target word
meaning. We call this vector the Latent Sense Rep-
resentation (LSR) and denote it as l. We create
one-shot training data by selecting w uniformly
from s and then extracting l from the LSR mod-
ule, i.e. l = LSR(s, w). We then maximize the
following probability mass function:

77

p(s|l, w) =
|s|∏

i=2

p(si|s1:i−1, l, w) (1)

We model the distribution using a pretrained BART
model (Lewis et al., 2020) and train using the cross-
entropy loss with teacher forcing. See Figure 1.
Latent Sense Representation. Previous work has
shown that word embeddings at the output of a
bidirectional transformer-based LM contain infor-
mation related to the meaning of a given word in
context (Vulić et al., 2020b; Liu et al., 2021), so
we use these Contextual Word Embeddings (CWE)
as the LSR. Concretely, given a target word w, we
take the average of all subword embeddings mak-
ing up w from sentence s.
Word Embedding Extraction. We use a variety of
models for the LSR in our experiments and extract
CWEs according to best practices for each model
type. For the Bi-Encoder Model (BEM) (Blevins
and Zettlemoyer, 2020), we use the last layer only
since it was trained using that representation. For
BERT (Devlin et al., 2019) and a further finetuned
model called MirrorWiC (Liu et al., 2021), we av-
erage over the last four layers since this was found
to be optimal by Liu et al. (2021).
Generating Examples. After training, we can
generate new examples in a one-shot setting by
using one example sentence to extract the LSR
for the given target word sense. Then we sample
autoregressively from the decoder using nucleus
sampling (top-p) (Holtzman et al., 2019).

3 Disentanglement of Word Meaning

While CWEs contain information relevant to a
given word’s meaning in context, CWEs also con-
tain information about the sentence in which the
word is placed. When using CWEs extracted from
pretrained models like BERT (Devlin et al., 2019)
as the LSR during training of our proposed OneEM
system, we find empirically that there is enough
information in the CWEs to make reconstruction
of the input sentence easy.1 This results in the
model learning to copy the input sentence and
makes it incapable of generating new and diverse
examples. Therefore, disentanglement of the target
word meaning from other information in the sen-
tence is critical for the proper functioning of our

1See Appendix B for further discussion. Figure 5 contains
training losses for the various disentanglement techniques
discussed in this section.

proposed autoencoding system. The two disentan-
glement methods we explore in this paper are: 1)
finetuning of BERT on WSD using the Bi-Encoder
Model (BEM) framework from Blevins and Zettle-
moyer (2020) or 2) Vector quantization via a synset
codebook.

3.1 Word Sense Disambiguation Finetuning

The Bi-Encoder Model (BEM) is a WSD system de-
veloped by Blevins and Zettlemoyer (2020) where
words in context and glosses are encoded separately.
Both encoders are pretrained BERT models (Devlin
et al., 2019), and the contextual word encoder fur-
ther refines CWEs to better represent information
about a given word’s sense. We find empirically
when using the BEM contextual word encoder that
information about other aspects of the sentence is
excluded to such a degree that our autoencoding
OneEM training scheme is no longer able to copy
its input and the trained system can generate di-
verse examples. As we will show later in the paper,
though, disentanglement is not perfect, because
information about input sentence length and the
general topic of the input sentence leaks through
to the decoder when using this disentanglement
method. These effects are seen in the generated
sentences by topical overlap and strong correlation
between input and generated sentence length.

3.2 Vector Quantization via Synset Codebook

Our second approach towards disentanglement is
to use a fixed codebook of vectors. During training
and inference, the CWE is extracted and then com-
pared to all codebook vectors via cosine similarity.
The most similar code replaces the original CWE
and is passed to the BART decoder (see Figure 1).
Unlike the WSD disentanglement approach, use of
the codebook does not allow information to leak
to the decoder and results in a better disentangled
representation of target word meaning.
Codebook Construction. To construct the code-
book, we extract many CWEs from the LSR model.
We then perform K-means clustering on the word
embeddings to form concept or synset represen-
tations. Due to Zipf’s law (Piantadosi, 2014),
we know that frequent words occur exponentially
more frequently in natural language than infrequent
words. For the codebook to represent concepts, we
must flatten this distribution when collecting CWEs
by clipping the number of occurances of any par-
ticular word. For our experiments, we limit the

78

number of embeddings for any given word to 50
and collect a total of 6M CWEs per LSR model.

3.3 Semi vs. Self-supervision

The main downside to the first disentanglement
approach is that BEM requires labeled training
data for finetuning on WSD, making the OneEM
system that uses this method for disentanglement
semi-supervised. The second disentanglement ap-
proach is completely self-supervised, and we exper-
iment with BEM (Blevins and Zettlemoyer, 2020),
BERT (Devlin et al., 2019) and MirrorWiC (Liu
et al., 2021) as the LSR model. Since the autoen-
coding approach to OneEM is self-supervised, the
entire approach is self-supervised when using ei-
ther BERT (Devlin et al., 2019) or MirrorWiC (Liu
et al., 2021) as the LSR model, because neither
model uses any labeled data during finetuning.

4 Few-Shot Exemplification Modeling

Given the recent success of LLMs across a variety
of tasks (Carlini et al., 2021; Kung et al., 2023;
Chen et al., 2021; Austin et al., 2021; Wei et al.,
2022; Ouyang et al., 2022), we explore the abil-
ity of LLMs to perform EM in a few-shot setting
(FewEM). We provide several formatted examples
as a prompt to BLOOM or BLOOMZ2 (Scao et al.,
2022) and perform few-shot inference by append-
ing an incomplete example and continuing genera-
tion using nucleus sampling (See Figure 3).

4.1 Verification via Definition Modeling

Definition Modeling (DM) (Bevilacqua et al., 2020)
can be seen as the inverse of EM, because the defini-
tion of the target word is generated based on its use
in an example sentence (see Figure 4). We find that,
in addition to EM, LLMs are capable of perform-
ing DM in a few-shot setting. We capitalize on this
ability to verify the quality of generated FewEM
examples by passing them as input for few-shot
DM and extracting the generated definition (gloss)
for the given target word. We then create semantic
vector representations of the generated definition
and gold gloss using the unsupervised version of
SimCSE (Gao et al., 2021). We compute the cosine
similarity between gold and generated glosses, sort
generated examples of a given word sense in or-
der of decreasing similarity, and choose examples
from the beginning of the list for evaluation. The
intuition for this process is that if the generated

2BLOOMZ is a BLOOM model finetuned on instructions.

definition of a given target word in a generated
FewEM example is similar in meaning to the in-
tended definition, the FewEM example likely uses
the target word with the proper meaning.

5 Baseline

Both previous works on exemplification model-
ing make use of the ExMaker model (Barba et al.,
2021a; He and Yiu, 2022). We reimplement Ex-
Maker from scratch, where we provide the target
word (lemma) and definition as input and train the
model to maximize the probability of a given la-
beled example sentence. For direct comparison
with our proposed OneEM system, we use the
same BART model for the ExMaker baseline. Ad-
ditionally, we train a sense-agnostic version of the
baseline where we exclude the definition and only
provide the target word as input. We call this the
vanilla version (ExMakerV) and use it to provide a
lower bound on EM performance for polysemous
words since it cannot take the target definition into
account.

6 Data

We focus our evaluation on polysemous words,
since EM is a trivial task for monosemous words.
We discuss the training, validation and test data for
EM, OneEM, and FewEM methods below.
Training. For our proposed OneEM system, we
do not require labels and thus train using the 74M
raw sentences from BookCorpus (Zhu et al., 2015).
For ExMaker, we use Oxford Dictionary3, which
contains 1.4M labeled examples.
Validation. Due to the relatively small size of
Oxford Dictionary, we must validate the ExMaker
baseline to avoid overfitting. We validate using
cross-entropy loss on 142k held-out examples.
Test Set. We create a test set4 of 167 word senses
by hand using polysemous words with two or more
distinct meanings (homographs). The goal of man-
ual construction of the dataset is to insure word
meanings for the test senses are clearly separate5

and that gold example sentences are high-quality
and easy to read. For each example, we provide the

3We use the version prepared by He and Yiu (2022), avail-
able at https://github.com/NLPCode/CDEG

4https://github.com/jharvill23/
OneShotFewShotEM

5For polysemous words, many senses are related and there
may be disagreement as to which meanings constitute separate
sense entries in a given inventory (see Section 2.1 in Navigli
(2009)).

79

word, lemma, word sense (WordNet 3.0), part-of-
speech, definition, and an example sentence. We
use the example sentence as input for the OneEM
models and as gold data in our evaluations.

7 Experimental Setup

Lemmatization of Target Word. For EM and
FewEM, we lemmatize the target word to allow
word form flexibility in a given generated sentence.
For OneEM, we do not lemmatize due to the main
target application for the task, which is a language
learning tool that further clarifies the meaning of
a word by generating more examples (see Sec-
tion 1.1). By not lemmatizing the target word for
OneEM, we force the generated sentence to pro-
duce the target word in the same form as is present
in the one-shot example. The main motivation for
this is that some words are only homographs in
certain forms. For example, the word "saw" is a
homograph, because it can refer to the past tense
of the verb "to see" and the noun meaning "instru-
ment used to cut wood." If we were to lemmatize
("saw"→"see"), we could produce an incorrect ex-
ample depending on which meaning was used in
the one-shot input example.
Training and Validation Hyperparameters. We
train for 500k steps and set batch size to 64 for
ExMaker and Sense2Sentence (S2S) models. We
validate ExMaker every 25k steps and use the 500k
checkpoint for S2S.
Generation. We use p = 0.5 for nucleus sampling
for all methods (ExMaker, S2S, LLM). For defi-
nition modeling (DM) verification, we use three
beams during beam search due to GPU memory
constraints (see Appendix C).

7.1 Additional One-Shot Configurations

Contextual Representation. In addition to using
BERT for the LSR, we also experiment with a self-
supervised method for refining contextual word
embeddings called MirrorWiC (Liu et al., 2021).
Codebook Size. To examine the effect of the code-
book size on performance, we run experiments
using codebooks of size 1k, 20k, 100k, and 150k
for the MirrorWiC LSR model.

8 Evaluations

We want to evaluate three aspects of generated ex-
ample sentences: 1) How well the target word takes
on its intended meaning (semantic match), 2) Flu-
ency of text, 3) Diversity of generated examples

from one another. We measure diversity automat-
ically and use both automatic and human evalua-
tions to measure semantic match and fluency. For
all OneEM approaches, we compute Pearson’s cor-
relation coefficient between input and output sen-
tence lengths to provide insight into how well each
LSR disentanglement method can remove informa-
tion unrelated to target word meaning.

8.1 Diversity
Self-BLEU. For a given method, we use Self-
BLEU (Zhu et al., 2018) to measure diversity of
generated sentences for any given word sense by us-
ing one example as the hypothesis and computing
the BLEU score with respect to the remaining gen-
erated sentences (references). Self-BLEU scores
are computed using five generated sentences per
word sense and averaged over all test word senses,
where a lower score indicates better diversity due
to less n-gram overlap with other sentences.
Vector Semantic Distance. Current sentence se-
mantic encoders create semantic vector represen-
tations that correlate well with human judgments
(Gao et al., 2021; Chuang et al., 2022). Given this
ability, we also measure diversity using the dis-
tance between two sentences in the semantic vector
space and use SimCSE (Gao et al., 2021) as the
encoder. For a given word sense, we use five gen-
erated sentences and compute the cosine distance
between each pair. We take the average over all
word senses and call this the Vector Semantic Dis-
tance (VSD). Higher VSD indicates more semantic
diversity among generated sentences.

8.2 Coherence
We use "coherence" here similarly to Barba et al.
(2021a) to describe the quality of a given generated
sentence. Both semantic match and fluency are
necessary for a generated example to be considered
coherent for EM, and we evaluate these two aspects
automatically and using human annotators. We
provide brief descriptions of human evaluations for
semantic match and fluency in this section, so refer
to Appendix D for further details about annotators
and evaluation.
Semantic Match. For the automatic evaluation,
we extract the Contextual Word Embedding (CWE)
of the target word from the generated sentence and
compare to its ARES sense embedding (Scarlini
et al., 2020) via cosine similarity as is done by
Barba et al. (2021a). Higher similarity indicates
a closer match of the target word to its intended

80

Model Task LSR Vector Train. # Param. Verif. In/Out Diversity Coherence
Model Quant. Data (billion) ρ ↓ SB4↓ VSD↑ SM↑ F↑

Self-supervised
S2S150k OneEM MWiC Yes BC 0.25 No 0.10 0.52 0.58 0.33 0.86
S2S20k OneEM MWiC Yes BC 0.25 No 0.07 0.52 0.58 0.32 0.92
S2S1k OneEM MWiC Yes BC 0.25 No 0.06 0.53 0.59 0.30 0.96
S2S100k OneEM MWiC Yes BC 0.25 No 0.20 0.53 0.56 0.33 0.86
S2S100k OneEM BERT Yes BC 0.25 No 0.06 0.51 0.63 0.32 0.94
S2S OneEM BERT No BC 0.25 No 0.90 0.77 0.27 0.36 0.95
ExMakerv EM n.a. n.a. OD 0.14 No n.a. 0.46 0.80 0.21 0.80

Semi-supervised
S2S100k OneEM BEM Yes BC 0.25 No 0.04 0.53 0.60 0.33 0.83
S2S OneEM BEM No BC 0.25 No 0.85 0.71 0.35 0.36 0.95

Fully-supervised
ExMaker EM n.a. n.a. OD 0.14 No n.a. 0.51 0.61 0.36 0.76

Few-shot (LLM)
BLOOMZ7B FewEM n.a. n.a. n.a. 7.1 Yes n.a. 0.62 0.46 0.33 0.97
BLOOMZ7B FewEM n.a. n.a. n.a. 7.1 No n.a. 0.59 0.51 0.31 0.94
BLOOMZ1B FewEM n.a. n.a. n.a. 1.1 Yes n.a. 0.57 0.51 0.31 0.95
BLOOMZ1B FewEM n.a. n.a. n.a. 1.1 No n.a. 0.56 0.55 0.29 0.93
BLOOM7B FewEM n.a. n.a. n.a. 7.1 Yes n.a. 0.62 0.46 0.34 0.98
BLOOM7B FewEM n.a. n.a. n.a. 7.1 No n.a. 0.58 0.54 0.32 0.97

Reference
Gold n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.37 0.97

Table 1: Automatic evaluations. Abbreviations are as follows - MWiC: MirrorWiC, BC: BookCorpus, OD: Oxford
Dictionary, SB4: Self-BLEU (4-gram), VSD: Vector Semantic Distance, SM: Semantic Match, F: Fluency. The
"Verif." column refers to whether Definition Modeling verification (LLM) was used. In/Out ρ is the Pearson
Correlation Coefficient between input and output sentence length.

Model Task LSR Vector Training # Param. Verif. Coherence
Model Quant. Data (billion) SMH ↑ FH ↑

Self-supervised
S2S150k OneEM MWiC Yes BC 0.25 No 4.35 4.89

Semi-supervised
S2S OneEM BEM No BC 0.25 No 4.82 4.78

Fully-supervised
ExMaker EM n.a. n.a. OD 0.14 No 4.70 4.83

Few-shot (LLM)
BLOOM7B FewEM n.a. n.a. n.a. 7.1 Yes 4.78 4.96

Reference
Gold n.a. n.a. n.a. n.a. n.a. n.a. 4.98 4.99

Table 2: Human evaluations. Abbreviations are the same from Table 1.

meaning. For human evaluations, we ask annota-
tors to rate example sentences on a scale from zero
to five, where five indicates the target word exactly
matches its intended meaning.
Fluency. For our automatic evaluation, we use a
classifier6 finetuned on the CoLA task (Warstadt
et al., 2019), which judges the grammatical accept-
ability of a given sentence. We report the average
probability of acceptability of generated sentences
for each method. For human evaluations, we ask
annotators to provide a score for each sentence
from zero to five, where five means the sentence is
perfectly grammatical.

6https://huggingface.co/textattack/
roberta-base-CoLA

9 Results

Numerical results for automatic and human evalua-
tions are given in Tables 1 and 2, respectively. We
discuss several key takeaways below.
Self-Supervised Performance (OneEM). Com-
pared to gold examples, those generated using
the self-supervised approach are of high qual-
ity based on both automatic and human evalua-
tions. The fully-supervised EM baseline, ExMaker,
only slightly outperforms the best self-supervised
method (row 1 in Tables 1 and 2) for semantic
match and fluency, and achieves almost identical
diversity values.

We find that codebook size only has a small
effect on performance, where we notice a slight

81

Word 1: fan Definition: An ardent follower and admirer
POS: noun One-shot example: I’ve been a fan of Hemingway’s writing for years.
S2S150k (MWiC) I wasn’t a big fan of the slow motion movies, but I had to admit, I liked the latter.
S2S (BEM) But she is a fan of the book of Juliet, and she likes to read.
ExMaker He is a fan of the arts, and a huge supporter of the arts in general.
BLOOM7B The Beatles were a huge fan of Elvis Presley.
Word 2: fan Definition: A device for creating a current of air by movement of a surface or surfaces
POS: noun One-shot example: She used a large fan during the summer to keep her shop cool.
S2S150k (MWiC) The voice in the room seemed to be some kind of a gas-powered fan.
S2S (BEM) The house was fitted with a fan and made the people to love the air.
ExMaker A pilot fan is used to provide air for the exhaust system.
BLOOM7B A fan is a device that creates a current of air by moving a surface or surfaces.
Word 3: lie Definition: Assume a reclining position
POS: verb One-shot example: I’m tired and need to go lie down.
S2S150k (MWiC) No, you don’t have to lie down, said Joshua.
S2S (BEM) I just need to go and stretch out to lie down.
ExMaker We were both watching the kids lie down on the couch.
BLOOM7B The boy lay down on the bed and fell asleep.
Word 4: lie Definition: Tell an untruth; pretend with intent to deceive
POS: verb One-shot example: I need to know what’s really going on, so don’t lie to me.
S2S150k (MWiC) She had a feeling that he wouldn’t lie to her.
S2S (BEM) I need to be able to hear you, so do it, then try to lie to me.
ExMaker He was willing to lie and deceive, but was not prepared to give his life for the sins of the Devil.
BLOOM7B The boy lies that he has a friend in the next room.
Word 5: object Definition: A tangible and visible entity; an entity that can cast a shadow
POS: noun One-shot example: She picked up the mysterious object and looked closely at it.
S2S150k (MWiC) She put the object back in its sheath and stood up.
S2S (BEM) He looked at the mysterious object and reached into his pocket for it.
ExMaker The ship, in fact, was a floating object, casting a shadow over the whole area.
BLOOM7B The house was built of solid stone, and the object was a tower.
Word 6: object Definition: Express or raise an objection or protest or criticism or express dissent
POS: verb One-shot example: He didn’t object to the new proposal, but he wished the timeline was a little more spaced out.
S2S150k (MWiC) The captain was a bit reluctant to object.
S2S (BEM) She didn’t object to the idea of the new program, but she wanted to get her head straight.
ExMaker It is wrong to object to a positive review of a health service for any reason.
BLOOM7B I object to the fact that the president is trying to take away the right to bear arms.

Table 3: Generation examples for different word senses.

reduction in automatic semantic match score as
the codebook size shrinks. Additionally, we find
a slight improvement in semantic match when us-
ing the refined CWEs extracted from MirrorWiC
(Liu et al., 2021) compared to those extracted from
BERT (Devlin et al., 2019), indicating that CWEs
from MirrorWiC produce higher quality represen-
tations of semantics in context.
Disentanglement (OneEM). Based on the in-
put/output length correlation shown in Table 1,
we can see that Vector Quantization (VQ) signif-
icantly outperforms WSD finetuning in terms of
disentanglement. For OneEM methods without
VQ, we see a correlation coefficient close to one,
whereas OneEM methods using VQ achieve corre-
lation coefficients close to zero. This indicates that
information related to the length of the one-shot
example sentence is almost entirely removed when
using VQ. Improved disentanglement also leads
to improved diversity scores, where we see that
VQ methods achieve Self-BLEU scores close to
0.5 whereas approaches without VQ achieve scores
in the range 0.7-0.8. Finally, by comparing diver-
sity and input/output correlation scores for BEM
and BERT with no VQ in Table 1, we see that
WSD finetuning improves performance compared

to using no disentanglement approach, but only
marginally.
LLM Performance (FewEM). Overall, LLMs are
able to perform Few-shot Exemplification Model-
ing (FewEM) extremely well, effectively matching
or outperforming all other methods on human eval-
uations, while achieving slightly worse diversity
scores. We also find performance improvements
when using Definition Modeling (DM) verification
to filter bad examples. There does not appear to be
much difference between models with and without
instruction finetuning (Wei et al., 2021) (BLOOMZ
vs. BLOOM), but we see the best performance
from BLOOM.

10 Generation Examples

We provide some generated examples drawn ran-
domly from our human evaluations in Table 3. We
show two noun senses for the word "fan," two verb
senses for "lie," and a noun and verb sense for "ob-
ject." Overall, the examples are fluent and use the
target word with the proper meaning, but there are
a few weaknesses that we highlight below.
Logic. In some cases an example sentence is gram-
matical and makes it clear which sense is being

82

Large Labeled
Training
Dataset

Small Labeled
Training
Dataset

Requires one
sense-specific

example
Small Model Fast

Generation
Best

Performance

OneEM

FewEM

EM

Figure 2: Pros and Cons of EM, OneEM and FewEM.

used for the target word, but overall the sentence
does not make sense. For example, the sentence
generated by S2S150k (MWiC) for word 2 obvi-
ously uses the word "fan" properly (gas-powered
fan), but says a voice is a gas-powered fan, which
is illogical.
Trivial Example. For those methods performing
traditional Exemplification Modeling (EM), where
the target word and definition are provided as input,
the models occasionally create a trivial example
by stating the definition of the target word. For ex-
ample, the BLOOM7B example for word 2 simply
defines the word "fan" using the provided defini-
tion. We see traces of the definition show up for
ExMaker as well in the example for word 5; "cast a
shadow" is in the definition, and "casting a shadow"
is in the generated example. Such behavior is some-
what expected given that autoregressive generation
is prone to producing repetitions (Holtzman et al.,
2019), but future work may mitigate this issue by
using a repetition penalty during decoding (Keskar
et al., 2019) or filtering out examples with high
n-gram overlap with respect to the gloss.

11 Discussion

The approaches to EM, OneEM, and FewEM dis-
cussed in this paper each have benefits and draw-
backs, which are summarized in Figure 2. Overall,
we find there is a tradeoff between amount of la-
beled training data and model size needed for good
performance. Based on human evaluations, we
see the best performance from the FewEM setting,
which uses a Large Language Model (LLM). Sim-
ilar performance can be achieved using a much
smaller model (ExMaker), but requires a large
amount of labeled training data. Finally, we can
achieve similar performance to ExMaker when us-
ing a small model without a large corpus of labeled
training data (self-supervised training), but require
at least one example at inference time in order to

generate more examples (OneEM).

12 Conclusions

In this paper, we proposed two variations of the
Exemplification Modeling (EM) task, namely One-
shot EM (OneEM) and Few-shot EM (FewEM).
We discussed novel applications and described
a self-supervised solution for the OneEM task,
and ablated several configurations (codebook size,
CWE model) to better understand performance. We
also performed extensive experiments using LLMs
to solve the FewEM task, and found that a pre-
trained LLM can perform FewEM extremely well
when prompted with only a few examples. We ad-
ditionally studied the use of few-shot Definition
Modeling (DM) to verify FewEM examples and
found that such an approach leads to improved
performance. In addition to being useful for down-
stream applications like data augmentation, ICALL
vocabulary learning systems, and dialog systems,
the family of EM tasks discussed in this paper pro-
vide evidence that pretrained language models have
a strong understanding of differences between vari-
ous word senses. Our experiments demonstrate that
target word meaning can be inferred from either a
definition (EM, FewEM) or an in-context example
(OneEM), providing flexibility for example genera-
tion depending on downstream task constraints.

13 Limitations

Each approach discussed in this paper has at least
one undesirable limitation. The baseline, ExMaker
(Barba et al., 2021a), works well but requires a
large, labeled dataset for training. Our proposed
one-shot system trains in a self-supervised fashion,
but requires at least one example at inference time
to be able to generate more examples. The few-
shot system requires only a handful of annotated
examples, but relies on a Large Language Model

83

(LLM), which is costly to train. A combination
of these systems may be better suited to different
downstream applications, but we leave exploration
of this kind to future work.

14 Ethics Statement

We rely on pretrained models for our experiments,
and biases present in training data may surface
when using our proposed systems (Nadeem et al.,
2021; Liang et al., 2021). We do not actively fo-
cus our efforts in this paper towards controlling
for such biases, so it is important to exercise cau-
tion when using generated example sentences in
downstream applications.

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten

Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Edoardo Barba, Luigi Procopio, Caterina Lacerra, Tom-
maso Pasini, and Roberto Navigli. 2021a. Exem-
plification modeling: Can you give me an example,
please? In IJCAI, pages 3779–3785.

Edoardo Barba, Luigi Procopio, and Roberto Navigli.
2021b. Consec: Word sense disambiguation as con-
tinuous sense comprehension. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1492–1503.

Michele Bevilacqua, Marco Maru, and Roberto Navigli.
2020. Generationary or “how we went beyond word
sense inventories and learned to gloss”. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7207–7221, Online. Association for Computational
Linguistics.

Terra Blevins and Luke Zettlemoyer. 2020. Moving
down the long tail of word sense disambiguation
with gloss informed bi-encoders. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1006–1017, Online.
Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom B Brown, Dawn Song, Ul-
far Erlingsson, et al. 2021. Extracting training data

from large language models. In USENIX Security
Symposium, volume 6.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo,
Yang Zhang, Shiyu Chang, Marin Soljacic, Shang-
Wen Li, Scott Yih, Yoon Kim, and James Glass. 2022.
DiffCSE: Difference-based contrastive learning for
sentence embeddings. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4207–4218, Seattle,
United States. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

John Harvill, Mark Hasegawa-Johnson, Hee Suk Yoon,
Chang D. Yoo, and Eunseop Yoon. 2023. One-shot
exemplification modeling via latent sense representa-
tions. In Proceedings of the 8th Workshop on Repre-
sentation Learning for NLP (RepL4NLP 2023), pages
303–314, Toronto, Canada. Association for Compu-
tational Linguistics.

Xingwei He and Siu Ming Yiu. 2022. Controllable
dictionary example generation: Generating example
sentences for specific targeted audiences. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 610–627.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. arXiv e-prints, pages arXiv–1904.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Tiffany H Kung, Morgan Cheatham, Arielle Medenilla,
Czarina Sillos, Lorie De Leon, Camille Elepaño,

84

Maria Madriaga, Rimel Aggabao, Giezel Diaz-
Candido, James Maningo, et al. 2023. Performance
of chatgpt on usmle: Potential for ai-assisted medical
education using large language models. PLoS digital
health, 2(2):e0000198.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and
Ruslan Salakhutdinov. 2021. Towards understand-
ing and mitigating social biases in language models.
In International Conference on Machine Learning,
pages 6565–6576. PMLR.

Qianchu Liu, Fangyu Liu, Nigel Collier, Anna Korho-
nen, and Ivan Vulić. 2021. MirrorWiC: On eliciting
word-in-context representations from pretrained lan-
guage models. In Proceedings of the 25th Confer-
ence on Computational Natural Language Learning,
pages 562–574, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371, Online. Association for
Computational Linguistics.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM computing surveys (CSUR), 41(2):1–
69.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Steven T Piantadosi. 2014. Zipf’s word frequency law
in natural language: A critical review and future di-
rections. Psychonomic bulletin & review, 21:1112–
1130.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,

Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Bianca Scarlini, Tommaso Pasini, and Roberto Navigli.
2020. With more contexts comes better performance:
Contextualized sense embeddings for all-round word
sense disambiguation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3528–3539.

Thomas M Segler. 2007. Investigating the selection of
example sentences for unknown target words in icall
reading texts for l2 german.

Ivan Vulić, Simon Baker, Edoardo Maria Ponti, Ulla
Petti, Ira Leviant, Kelly Wing, Olga Majewska, Eden
Bar, Matt Malone, Thierry Poibeau, Roi Reichart,
and Anna Korhonen. 2020a. Multi-SimLex: A large-
scale evaluation of multilingual and crosslingual lexi-
cal semantic similarity. Computational Linguistics,
46(4):847–897.

Ivan Vulić, Edoardo Maria Ponti, Robert Litschko,
Goran Glavaš, and Anna Korhonen. 2020b. Prob-
ing pretrained language models for lexical semantics.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7222–7240, Online. Association for Computa-
tional Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.
In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval,
pages 1097–1100.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In The IEEE International Con-
ference on Computer Vision (ICCV).

85

Few-Shot Exemplification Modeling

Word 1: tie
Part of speech 1: noun
Definition 1: a result in a game or other competitive
situation in which two or more competitors or teams
have the same score or ranking
Example 1: The game ended in a tie even though the
Rangers seemed to have outplayed the Devils.

Word 2: address
Part of speech 2: verb
Definition 2: to give a speech to a group of people
Example 2: The principal went up to the podium in
order to address the graduating student body.

.

.

.
Word 11: match
Part of speech 11: noun
Definition 11: a flammable material that can be
ignited by friction
Example 11: He struck a match and lit a candle.

Figure 3: Few-Shot Exemplification Modeling. Task is
inferred by placing the target word and definition first,
followed by the example sentence. The test instance is
given last with the example sentence field empty, and the
model generates text using nucleus sampling. Prompt
text is black and generated text is blue.

A Few-shot Exemplification and
Definition Modeling

We provide visual examples of the input format for
Few-shot Exemplification Modeling and Definition
Modeling in Figures 3 and 4, respectively.

B Disentanglement

Training losses for various one-shot settings are
shown in Figure 5. Note that the loss is much
smaller when using BERT embeddings for the LSR,
indicating that a lot of information is able to leak
from the input sentence to the decoder. When us-
ing vector quantization, much less information is
leaked and disentanglement of target word meaning
is better.

C Computational Details

We use two NVIDIA RTX 3090 Ti GPUs to run
our experiments. For the one-shot approach, con-
textual word embedding extraction for codebook
construction takes approximately four days. The
K-means clustering step takes approximately eight

Few-Shot Definition Modeling

Word 1: tie
Example 1: The game ended in a tie even though the
Rangers seemed to have outplayed the Devils.
Definition 1: a result in a game or other competitive
situation in which two or more competitors or teams
have the same score or ranking

Word 2: address
Example 2: The principal went up to the podium in
order to address the graduating student body.
Definition 2: to give a speech to a group of people

.

.

.
Word 11: match
Example 11: He struck a match and lit a candle
Definition 11: a small piece of wood that can be
used to start a fire

Figure 4: Few-Shot Definition Modeling. Task is in-
ferred by placing the target word and example sentence
first, followed by the definition. The test instance is
given last with the definition field empty, and the model
generates text using beam search.

Figure 5: Training losses for one-shot approach when
using different embeddings for LSR. We show vanilla
BERT embeddings (BERT), BERT embeddings af-
ter WSD finetuning (+ WSD Finetuning) and vector-
quantized (codebook) BERT embeddings (+ Vector
Quantization).

86

hours.7 Model training for the largest codebook
(150k) takes approximately five days.8

D Human Evaluations

The full set of instructions sent to the annotators
is available on GitHub.9 We discuss other relevant
details below.
Recruitment. We recruit three volunteer annota-
tors that are acquaintances of the authors, where all
annotators live in the United States. We informed
the annotators that all annotations would be kept
private and would only be used for evaluation of
our models.
Dataset Construction. We use a subset of 80 word
senses per method from our test dataset to make
the annotation workload manageable for our volun-
teer annotators and evaluate one example per word
sense.
Inter-Annotator Agreement. Since judgments
are inherently subjective, we use the Average Mean
Inter-Annotator Agreement (AMIAA) (Vulić et al.,
2020a), which measures how well the ranks of the
samples from each annotator match. This measure-
ment thus requires that all samples are evaluated by
each annotator, which is why we forego using an
online annotation tool such as Amazon Mechanical
Turk and must rely on volunteers willing to anno-
tate a large number of samples. The formula for
AMIAA is given below in Equation 2:

AMIAA =
1

K

∑

i

ρ(si, µi),

where µi,n =
1

K − 1

∑

j ̸=i

sj,n (2)

where K refers to the number of annotators, si
refers to the scores for annotator i, and µi refers
to the average scores when leaving out annotator
i. For our experiments, we find AMIAA values of
0.39 for both fluency and semantic match, respec-
tively, indicating moderate agreement.

7We accelerate K-means computation on one GPU with
FAISS (https://faiss.ai/).

8Training without a codebook takes approximately 1.5
days, so the extra training time comes from the codebook
lookup step for vector quantization.

9https://github.com/jharvill23/
OneShotFewShotEM

87

