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Abstract

Existing benchmarks for open-domain question
answering (ODQA) typically focus on ques-
tions whose answers are all in a single para-
graph. By contrast, many natural questions,
such as “What players were drafted by the
Brooklyn Nets?” have a long list of answers ex-
tracted from multiple paragraphs. Answering
such questions requires retrieving and reading
many passages from a large corpus. We intro-
duce QAMPARI, an ODQA benchmark, where
answers are lists of entities, spread across many
paragraphs. We created QAMPARI by (a) gen-
erating questions with multiple answers from
Wikipedia’s knowledge graph and tables, (b) au-
tomatically pairing answers with supporting ev-
idence in Wikipedia paragraphs, and (c) manu-
ally paraphrasing questions and validating each
answer. Across a wide range of ODQA mod-
els, we find that QAMPARI is challenging in
terms of both passage retrieval and answer gen-
eration, with models reaching an F1 score of
32.8 at best. We view QAMPARI as a valuable
resource for ODQA research, which will aid
to develop models that handle a broad range
of question types, including single and multi-
answer questions.

1 Introduction

Open-domain question answering (ODQA) is a
core language understanding task concerned with
answering factoid questions over large document
collections (Voorhees and Tice, 2000; Brill et al.,
2002). Due to its wide applicability, ODQA has
received substantial attention in recent years (Chen
et al., 2017; Lee et al., 2019; Karpukhin et al.,
2020). Typically, systems tackling ODQA tasks
follow the “retrieve-and-read” paradigm, where a
retriever first retrieves a set of candidate passages,
followed by a reader which receives the retrieved
passages and produces the final answer.

The retrieve-and-read paradigm has been effec-
tive for benchmarks such as Natural Questions

q: Who are the directors of movies produced by Eric Newman?
!"Producers Eric Newman and Marc 

Abraham developed the film […].

Dawn of the Dead is a 2004 American action 
horror film directed by Zack Snyder in his

directorial debut […]
!#

Zack Snyder

!$
Project power is a 2020 American science 

fiction action film directed by Henry Jost and 
Ariel Schulman, produced by Eric Newman.

Ariel 
Schulman

!%&"

Robocop is a 2014 American superhero film 
directed by José Padilha.

Newman conceived and produced […]. 
Remakes of The Thing (2011) and Robocop

(2014) followed […].

!%

José Padilha

q: Where was the 44th American president born?

!"
Barack Hussein Obama II […] served as the 44th

president of the United States. […] Obama was born in 
Honolulu, Hawaii.

Hawaii

.

.

.

Figure 1: An example from QAMPARI with a generated
question q, a subset of its evidence Wikipedia passages
(left, pi) and their corresponding answer.

(NQ) (Kwiatkowski et al., 2019) and TriviaQA
(Joshi et al., 2017), where the answer is a single
phrase from a single passage. However, in many
cases, a question might have many answers, spread
across multiple passages. Consider the example in
Fig. 1. Eric Newman produced multiple movies, so
finding them, along with their directors, requires in-
corporating information from many passages. Such
questions pose two main challenges to retrieve-and-
read systems. First, as there are multiple answers
that can be far apart, the reader must reason over a
long text sequence to generate all correct answers.
Second, since the reader is computationally con-
strained to process at most K passages, the retriever
must score all necessary passages at its top-K re-
sults, which is challenging and even impossible
when the number of relevant passages exceeds K.

Nevertheless, research on multi-answer ques-
tions has largely been underexplored. While previ-
ous works proposed questions that involve read-
ing multiple passages, the number of passages
was quite small. AMBIGQA (Min et al., 2020)
studied ambiguous questions from NQ with sev-
eral answers. However, as 70% of its questions
have at most two answers, retrieve-and-read models
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can be adapted to AMBIGQA. HOTPOTQA (Yang
et al., 2018) focused on multi-hop reasoning, but
its questions require no more than two passages
to answer. WIKINLDB (Thorne et al., 2021) is
a benchmark for testing reasoning over multiple
facts. However, WIKINLDB restricted its text cor-
pus to databases of 1,000 facts at most, making it
significantly smaller than standard ODQA corpora.
Moreover, these facts are model-generated utter-
ances rather than natural language passages. Multi-
answer questions are also rare in real-world user
questions (Bajaj et al., 2016; Kwiatkowski et al.,
2019), which can be attributed to the performance
bias of existing systems. Namely, people mostly
pose questions that they can successfully get an-
swers to with current technology. This does not
diminish the importance of multi-answer questions
(‘Which drugs are effective against skin cancer?’;
‘Which plants can be grown in an apartment?’),
which constitute an important research challenge.

In this work, we present QAMPARI, a bench-
mark for Questions with many Answers over
Multiple Paragraphs, Indeed. All questions in
QAMPARI have at least 5 answers, with an average
of 13 answers. Examples are semi-automatically
generated using two data sources, Wikidata (Vran-
dečić and Krötzsch, 2014) and Wikipedia tables.
We automatically generate multi-answer questions
of the form “What/Who has [relation] with [en-
tity]?” and convert these into pseudo-language
using manually defined templates. Then, we verify
that our questions are answerable from Wikipedia
by automatically extracting evidence passages for
all their answers. Finally, we use crowdsourcing
to validate example correctness, and paraphrase
questions into natural language (Wang et al., 2015).
To further enrich our data we also generate compo-
sition questions, that compose two relations (as in
Fig. 1), and intersection questions, such as “What
movies were produced and directed by Clint East-
wood?”. Overall, QAMPARI contains 2K develop-
ment and test questions and more than 60K training
examples – see Tab. 1 for some examples.

We evaluate a large suite of baselines, including
models from the retrieve-and-read family as well as
a closed-book question answering model (Roberts
et al., 2020), and find that they struggle on QAM-
PARI. In the retrieve-and-read setup, we experi-
ment with both BM25 (Robertson and Zaragoza,
2009) and DPR (Karpukhin et al., 2020) retrievers,
followed by either (a) a RAG-like reader (Lewis

et al., 2020) that given each retrieved passage either
decodes an answer or abstains, or (b) an FiD reader
(Izacard and Grave, 2021) that takes the encoded
representations of multiple passages and decodes
the list of answers directly.

When training models on QAMPARI alone, or
in a multi-task setup with NQ, we observe that
QAMPARI is challenging in terms of both passage
retrieval and answer generation. Namely, the best
model reaches an F1 score of 32.8. Moreover, mod-
els return more than 80% of the correct answers
in only 31.2% of the test examples, well below
performance on single-answer datasets like NQ.

To summarize, QAMPARI is a challenging
benchmark for evaluating the ability of ODQA
models to handle questions with many answers
over multiple passages. We advocate to evaluate
ODQA models not on QAMPARI alone, but along-
side benchmarks such as NQ and TriviaQA. Such
joint evaluation will test models’ ability to han-
dle both single- and multi-answer questions, an
evaluation that the community is currently lacking.
The QAMPARI benchmark, models and relevant
codebase are available at: https://anon/.

2 Dataset Construction

Each example in QAMPARI is a triple (q,A,P),
where q is a question, A is a set of answers and
P is a set of passages from our target corpus. An
answer a ∈ A has 1-2 evidence passages from P
(see Fig. 1).

We define passages as consecutive sentences
from our corpus (Wikipedia), that span on average
100 words. As our focus is multi-answer questions,
examples in QAMPARI have |A| ≥ 5.

Overview We generate examples in two steps.
First, we generate simple questions that involve a
single entity and relation, e.g., “Who was drafted
by the Brooklyn Nets?” (§2.1). Then, we expand
such questions to generate complex questions with
intersection and composition operations (§2.2).

To increase diversity, questions are generated
from two data sources, Wikidata and Wikipedia
tables. We first describe example generation over
Wikidata, then briefly present the generation pro-
cess from Wikipedia tables in §2.3. In both cases,
we ensure answers can be derived from evidence
passages in Wikipedia.1 Tab. 1 presents examples
from each data source and question type.

1Wikipedia dump: 2021-08-01
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Data source Question type Question Answer example

Wikidata
Simple Who is or was a member of the Australian Army? George Macarthur-Onslow
Intersection What movie produced by Jerry Ward was also directed by

Vincent Sherman?
Hard Way

Composition From which country did Seattle Storm make draft selections? Australia

Wiki. tables Simple What magazine is a satirical magazine? The Clinic
Composition What are the museums found in Concord, Massachusetts? The Wayside

Table 1: Example questions and one representative answer for all data sources and question types.

Query/question template generation
ReceivedAward(X)

Who received award X?

I.
Simple query generation

ReceivedAward(NobelPeacePrize): 
1. UN … N: Barack Obama

II.

Finding evidence
Obama: Nine months later he was named the 2009 Nobel 

Peace Prize […].

III.
Pseudo language question:

Who received the award Nobel Peace 
Prize?

IV.
Paraphrase + fact verification:

Who are all the Nobel Peace Prize
recipients?

V.

Figure 2: An overview of example generation for simple questions.

Notation We introduce notation for formal
queries over Wikidata to explain example gener-
ation. Wikidata is a knowledge graph, K, that
can be viewed as a set of labeled edges (e1, r, e2).
Graph nodes e1, e2 ∈ E are entities connected by
an edge labeled by the relation r ∈ R. For exam-
ple, a possible labeled edge is (BarackObama,
ReceivedAward, NobelPeacePrize).

One can query K by applying a relation r
over an entity e, resulting in a simple query r(e)
whose denotation (answer set) is Jr(e)K = {ei |
(ei, r, e) ∈ K}. Composition queries are formed
by applying a relation over the result of a sim-
ple query. We denote a composition query by
r2(r1(e)), and its denotation is Jr2(r1(e))K =
{ei | ∃ej s.t (ei, r2, ej) ∈ K ∧ (ej , r1, e) ∈ K}.
Last, an intersection query r1(e1) ⊓ r2(e2) corre-
sponds to the intersection of two simple queries,
Jr1(e1) ⊓ r2(e2)K = {ei | (ei, r1, e1) ∈ K ∧
(ei, r2, e2) ∈ K}.

2.1 Simple Questions

Fig. 2 provides an overview of our procedure for
creating simple question examples: (i) We manu-
ally define query templates, (ii) populate query tem-
plates using K to create queries with a sufficiently
large number of answers in K, (iii) automatically
identify evidence passages for the answers and fil-
ter out noisy examples, (iv) map query templates
to question templates to obtain pseudo-language
questions, and (v) validate answers and paraphrase
pseudo-language questions through crowdsourcing.
Next, we describe each of these steps in detail.

Generating query templates We manually se-
lect a set of 135 relations R̄ ⊂ R, which will be
used in our query templates. We select frequent
relations from Wikidata for which denotations con-
tain many entities (e.g., ReceivedAward). The
list of relations is in App. A. For each relation,
we manually write a template to map queries to
pseudo-language questions. For example, the tem-
plate for ReceivedAward is “Who received the
award X?”

Some relations are underspecified – for example,
LocatedIn can describe the location of build-
ings, geographical features, and cities. When gen-
erating synthetic questions, this leads to vague
questions such as “What is located in Paris?”. To
address this, we manually split these to typed re-
lations that specify the semantic type of their an-
swers/denotations. This is done using the type hier-
archy given in Wikidata and given the type t of an-
swer entities. We denote typed relations by rt, and
the denotation of rt(e) comprises all entities of type
t returned by r(e). For example, the entity The
Louvre has type cultural organization,
and we can map the relevant query template to the
pseudo-language question “Which cultural organi-
zation is located in Paris?”.

Simple query generation We instantiate all pos-
sible simple queries using all r ∈ R̄ and entities e
in Wikidata. For a relation r (or rt), we keep the
query r(e) iff |r(e)| ≥ 5. We denote this set of
instantiated simple queries by S, which contains
1,431,268 simple queries.
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Finding evidence sentences For an ODQA
benchmark, we must verify that every answer is
found in our target corpus. We do this by identify-
ing candidate evidence sentences from Wikipedia,
and verifying they entail the answer, using a Natu-
ral Language Inference (NLI) model.

Specifically, every simple query-answer pair
can be viewed as a triple (e1, r, e2). We use
a “distant supervision” approach (Mintz et al.,
2009), similar to KELM (Agarwal et al., 2021),
and define any sentence in the Wikipedia page
of entity e1 that contains the entity e2, or one
of its Wikidata aliases, as a candidate evidence
sentence (and vice versa in the page of e2).
E.g., in Fig. 2, the evidence for (BarackObama,
ReceivedAward, NobelPeacePrize) ap-
pears on the page Barack Obama, where ‘Nobel
Peace Prize’ appears.

Aligning Wikipedia sentences to Wikidata
can lead to false positives. E.g., for the
triple (TheGoonies, HasScreenwriter,
StevenSpielberg), most mentions of Spiel-
berg in the page TheGoonies are not as a
screenwriter. To account for this, we use an off-the-
shelf NLI model.2 For every answer, we consider
each candidate evidence sentence along with its
two preceding sentences, and check whether they
entail the hypothesis phrase describing the triple
(e1, r, e2). We use templates to phrase triples as
short declarative sentences (“The Goonies has
Steven Spielberg as screenwriter”). An answer
is validated if there is an evidence sentence that
entails the triple. Manual analysis shows this
process eliminates 70% of false positives, while
removing only 7.5% of the correct alignments.

Query filtering After finding evidence sentences,
we only keep queries that at least 80% of their an-
swers were validated and their number of validated
answers is between 5 and 200. The resulting set
contains 60,792 simple queries, where each query
has a set of validated answers, A, and of passages
P that contain the identified evidence sentences.3

2.2 Complex Questions

To increase diversity, we expand simple queries
to composition and intersection queries, for which
answers require reading two passages.

2huggingface.co/ynie/roberta-large-
snli_mnli_fever_anli_R1_R2_R3-nli

3We keep a single evidence passage for every triple.

Intersection Intersection queries are generated
by finding two simple queries such that the size
of the intersection of their denotations is at least
5. To avoid improbable questions such as “Which
competition was won by Manchester City and had
Manchester City as a participant?”, we add a
constraint that the denotation of one of the sim-
ple queries cannot be a subset of the other. For-
mally, the set of intersection queries are all queries
r1(e1) ⊓ r2(e2) such that |Jr2(e2) ⊓ r1(e1)K| ≥ 5,
Jr1(e1)K ⊈ Jr2(e2)K, and Jr2(e2)K ⊈ Jr1(e1)K.

Pseudo-language questions are generated by
heuristically combining the two simple questions,
for example “Which television program had Chris
Carter as screenwriter and had Frank Spotnitz as
screenwriter?”. There is no need to perform an-
swer validation since all of the underlying intersect-
ing answers were already validated.

Composition To create composition queries, we
manually handpick a set of 423 relations Rcomp ⊂
R (list in our codebase), in a process similar to
simple queries. Then, we generate all the possible
composition queries r2(r1(e)) such that r1(e) ∈ S ,
r2 ∈ Rcomp, and |Jr2(r1(e))K| ≥ 5. An example
composition query is “What is the height of build-
ings located in Dubai?”.

Unlike intersection queries, in composition
queries we need to validate that our new triples
(ei, r2, ej), where ej ∈ Jr1(e)K, are indeed sup-
ported by Wikipedia sentences. We use the same
procedure to find evidence sentences for triples
(ei, r2, ej), and consider an answer ei as validated
if both (ei, r2, ej) and (ej , r1, e) can be aligned to
Wikipedia. We keep all complex queries where
80% of the answers are validated. Finally, we man-
ually define templates for relations in Rcomp to
generate pseudo-language questions.

2.3 Questions from Wikipedia Tables

To further diversify QAMPARI, we create an anal-
ogous pipeline for generating simple and compo-
sition questions from Wikipedia tables, with more
open-ended relations compared to Wikidata. We
briefly describe this pipeline.

We look at all Wikipedia tables with title “List
of X” that have at least 5 rows, in total, 1,897 ta-
bles. We find the “key” column, ckey in each table
using the table classifier from Talmor et al. (2021),
which outputs the column of entities that the table
describes. For example, in the table List of nu-
clear whistle blowers, ckey is ‘name’ and specifies
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the whistle-blower names. This naturally creates
simple questions of the form “Who or what is X?”.

Simple questions are expanded to composition
questions by looking at non-key columns, cnon-key
and asking what rows in the table have the value v
in column cnon-key. For example, what is the value
in the column ‘Year’ for nuclear whistle-blowers.

Questions from Wikipedia are validated using
a procedure similar to Wikidata. For each answer
entity e, we validate that the Wikipedia page for
e contains the relevant words that are part of the
name of the table as well as the value (for compo-
sition questions), and only keep questions where
80% of the table rows are validated and the number
of validated answers is at least 5. Overall, we gen-
erate 170 simple questions and 6,036 composition
questions using this process.

2.4 Data Split

QAMPARI contains a training set, whose goal is to
teach the model to handle multi-answer questions.
However, we do not want the model to memorize
how particular Wikidata relations map to text pat-
terns. Consequently, we perform a relation split,
randomly splitting the set R̄ into two equally-sized
sets R̄train and R̄test. Simple queries are assigned
to the train/test set based on their relation, composi-
tion queries r2(r1(e)) are assigned to the test set iff
either r1 or r2 are in R̄test, and intersection queries
r1(e1) ⊓ r2(e2) are placed in the test set iff both r1
and r2 are in R̄test.

We now create the train/development/test split
(Tab. 2). The main bottleneck in our example
generation pipeline is validation of the test set
through crowdsourcing (§2.5), since each question
requires validating all of the answers. Thus, we
pre-determine the test set to contain 1,000 simple
questions (830 from Wikidata, 170 from Wikipedia
tables) and 1,000 complex questions (400 Wikidata
composition questions, 400 Wikidata intersection
questions, 200 Wikipedia tables composition ques-
tions). For simple Wikidata questions, we sample
830 questions such that the distribution over rela-
tions from R̄test is roughly uniform. All Wikipedia
tables simple questions are placed in the test set,
and for complex questions we randomly sample
the pre-determined number from the set of gener-
ated questions. Last, the test set is randomly split
in half to a development set and test set. We also
sub-sample training set examples, such that each
relation appears in at most 1,000 examples.

2.5 Crowdsourcing
Correctness validation For every question and
answer, we present a crowdsourcing worker with
the question, the answer, and links to the Wikipedia
page (or pages for complex questions) with the
evidence passage. We ask the worker to check if
the question can be answered from the given pages,
using the text only (no infoboxes or tables).

Since the vast majority of examples are correct,
we test worker performance by injecting wrong
answers in 10% of the cases and reject workers
that fail to identify wrong answers. Moreover, we
manually verify 5% of examples marked as correct
and all examples marked as incorrect, and again
reject low-performing workers. Overall, 24 anno-
tators validated 30,259 answers for an average pay
of 12.5$ per hour. We find that our process for
generating examples is accurate, with 96.6% of the
answers validated. Non-validated questions were
replaced until 2,000 questions were validated. A
question is defined non-validated if its number of
distinct answers goes below 5. Snapshots from the
presented tasks are in App. C.

Paraphrasing Since our questions are in pseudo-
language, we follow past work (Wang et al., 2015)
and ask workers to re-phrase 3,000 questions in the
training set and the entire development/test set. We
restrict this task to US or UK workers who pass a
qualification test. We randomly verified half of the
paraphrases for each worker for quality assurance.

3 Dataset Analysis

QAMPARI contains 61,911 training examples,
1,000 development examples and 1,000 test exam-
ples. Tab. 1 provides example questions of each
question type and data sources. We describe key
statistics in Tab. 2. Test examples in QAMPARI
have 13.23 answers on average and a median of 7
answers. For comparison, the number of answers
per question is substantially higher than in Am-
bigQA (Min et al., 2020), where the median is 2.
On average, simple questions have more answers
than complex ones while being shorter in length.
We note that since test and development questions
were manually re-phrased by annotators they are
generally shorter than the training questions.

Figure 3a presents a binned distribution of the
number of answers per question in the development
and test sets. Roughly half of the questions have 8
or more answers, with 20% having more than 15
answers and 3.5% with over 50 answers.
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Total Simp. WD Simp. WP Inter. WD Comp. WD Comp. WP

# Questions train 61,911 28,574 - 2,301 25,200 5,836
dev + test 2,000 830 170 400 400 200

Mean # Answers train 13.25 16.65 - 9.19 9.74 13.35
dev + test 13.23 15.69 23.84 8.94 8.77 11.51

Median # Answers train 8.0 9.0 - 7.0 7.0 8.0
dev + test 7.0 7.5 17.0 7.0 6.0 7.0

Mean Question len. train 12.69 8.78 - 16.69 15.18 19.47
dev + test 9.51 7.91 8.61 11.65 10.35 10.99

Table 2: QAMPARI questions breakdown by their type (Simple, Intersection or Composition questions) and
underlying data source (WD for Wikidata, WP for Wikipedia tables).
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Figure 3: Left: Distribution of the number of answers
per example. Right: Proportion of questions per number
of added answers in ExtendedSet.

Extended set As discussed in §2.5, we manually
validate each answer in QAMPARI is supported
by sentences from Wikipedia. However, Wikipedia
might contain additional correct answers. To allevi-
ate this issue, we manually annotate additional gold
answers for a subset of test questions, and name it
the ExtendedSet. We randomly sampled 200 ques-
tions from the test set and had an author manually
annotate as many additional answers as possible in
12 minutes, per question. This process is not guar-
anteed to be complete, as it would require manually
reviewing all of Wikipedia. Moreover, questions
with hundreds of gold answers (“Who worked for
Burton F. C?”) would incur hours of annotation,
which is too expensive. This is similar to work
in open information extraction (Vo and Bagheri,
2017), where creating the full gold set of triples
is not feasible. Fig. 3 plots the number of added
answers per question on the extended set. In 30%
of the questions, we did not add any answer, and
the median/average/maximum number of added an-
swers are 2/3.13/16 respectively. Evaluation on
the test set and the extended set in §4.3 shows that
model precision on the extended set is somewhat
higher, but does not alter model ranking, illustrat-
ing the reliability our test set.

4 Experimental Evaluation

4.1 Models

Retriever For retrieval, we experiment with both
sparse and dense retrieval models on Wikipedia. As

discussed in §2, we chunk Wikipedia into passages
of consecutive sentences, using NLTK’s sentence
tokenizer, where each passage is 100 words on
average. For all retrievers, we evaluate retrieval
accuracy of the top-200 passages returned per ques-
tion.

We use BM25 (Robertson and Zaragoza, 2009)
as a strong sparse retrieval model. BM25 scores
question-passage pairs based on their lexical sim-
ilarity. It has been shown that BM25 is notori-
ously hard to beat using unsupervised retrieval
methods (Izacard et al., 2021; Ram et al., 2022),
and achieves comparable performance to that of
supervised methods (Thakur et al., 2021). As our
dense retriever we finetune on QAMPARI a DPR
model (Karpukhin et al., 2020) trained on NQ. We
finetune DPR in the typical contrastive manner (in-
batch training), with one positive and one negative
passage per question. Positives are sampled from
the evidence passages, and negatives are sampled
from the top-10 highest scoring passages, accord-
ing to BM25, which do not contain the answer.

Reader We experiment with two readers – a
Passage-Independent Generator (PIG), which reads
each passage independently (a-là RAG (Lewis
et al., 2020)), and a Fusion-in-Decoder (FiD) model
(Izacard and Grave, 2021), which reads multiple
passages simultaneously.

PIG is an encoder-decoder model that takes each
of the retrieved passages as input and decodes a
single answer or outputs “Not Relevant” to indicate
there is no answer. The final output is the union of
all decoded answers across retrieved passages. We
initialize PIG with T5-large (Raffel et al., 2019) and
train with standard maximum likelihood. We use
evidence passages as positive examples and the top
scoring retrieved passage that is not an evidence
passage and does not contain an answer (or its
aliases) as a negative example.

FiD encodes each of the retrieved passages along
with the input question. Its decoder then attends
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to the encoded representation and outputs a list of
answers. We initialize FiD using a pretrained T5-
Large model (Raffel et al., 2019) and train with
standard maximum likelihood.

FiD is computationally expensive, as its decoder
attends to a large number of encoded tokens and
the generated output is long. Thus, we can only fit
the top-50 passages returned by the retriever on a
single A100 GPU.

Closed-book question answering We also ex-
periment with a closed-book setting, where the QA
model generates answers from knowledge encoded
in its parameters without any evidence passages.
We initialize our closed-book QA model with T5-
SSM with 3B parameters (Roberts et al., 2020),
and train it with standard maximum likelihood –
the question is provided as input, and the model is
trained to generate the gold set of answers.

Zero-shot We test the zero-shot ability of Open
AI’s text-davinci-003, from the Instruct-GPT fam-
ily (Ouyang et al., 2022). We use GPT-3 in: (a)
closed-book QA setup; (b) as a multi-passage
reader. In the closed-book setup, the model re-
ceives only the question and is asked to provide a
list of answers. In the reader setup, the model gets
the question and the 15 highest-ranking passages
from BM25 (the maximal number that fits in the
context) and is asked to output a list of answers.

4.2 Experimental Setup
We created QAMPARI as a benchmark to be evalu-
ated alongside additional ODQA benchmarks, such
as NQ. Since it is semi-automatically generated,
one can develop models tailored for QAMPARI.
However, our goal is to have a single model that
performs well across a wide variety of question
types. Thus, we train and test models in a multi-
task setup, on both NQ and QAMPARI, in addition
to a QAMPARI only setting. We also train our
models on NQ only and evaluate them on QAM-
PARI, to verify QAMPARI’s training set indeed
improves answering questions with many answers.

Our main metrics are recall, precision, and F1.
Specifically, for test example (q,P,A), and a pre-
dicted set of answers Apred, recall, precision, and
F1 are standardly computed by comparing A and
Apred, allowing for aliases (i.e., a gold answer is
covered if it or one of its aliases are in Apred). The
model scores are averaged across examples. To get
a sense of the average accuracy across examples,
we measure the fraction of examples with F1 of at

ARecall@K ERecall@K
BM25 DPR BM25 DPR

K=10 24.6 21.9 11.1 11.1
K=25 37.4 31.5 28.4 16.2
K=50 46.6 39.6 38.7 20.8
K=100 54.6 47.1 47.6 25.5
K=200 61.0 55.2 55.6 30.2

Table 3: Retriever test results.

least 0.5 (%F1 ≥0.5) and the fraction with recall of
at least 0.8 (%Recall≥0.8). For NQ, we report the
standard exact match (EM) metric.

We evaluate the retriever with RECALL@K, that
is, the fraction of answers that appear in the top-
K retrieved passages, averaged across examples.
This metric comes in two flavors: (a) Answer RE-
CALL@K (ARECALL@K): for every gold answer
whether it or one of its aliases appear in the top-K
retrieved passages. It is a loose metric since an an-
swer can appear in a passage that does not provide
any evidence to support the answer; (b) Evidence
RECALL@K (ERECALL@K): since we have evi-
dence paragraphs for every answer, we consider for
every gold answer the fraction of evidence passages
in the top-K retrieved passages. This is a strict met-
ric since an answer can sometimes be answered by
passages other than the ones we identified.

4.3 Results

Tab. 3 presents passage retrieval results on QAM-
PARI test. Scores for ARecall@200 for BM25
and DPR are 61.0% and 55.2%, respectively. As
for ERecall@K, results are unsurprisingly lower.
BM25 retrieves 55.6% of the evidence passages
with K=200, while DPR retrieves only 30.2% of ev-
idence passages.4 Overall, DPR pretrained on NQ
and finetuned on QAMPARI performs worse than
BM25. This is in line with Sciavolino et al. (2021)
who showed that, when tested on questions with
rare entities, DPR performs worse than BM25. We
hypothesize that rare entities in QAMPARI ques-
tions may account for DPR’s lower performance.

Tab. 4 lists results on the test sets of QAMPARI
and NQ. Overall, performance on QAMPARI is
low. FiD-DPR and PIG-DPR are more precision-
oriented with FiD-DPR achieving precision of 41.3
and PIG-DPR a precision of 44.8. PIG-BM25 is
recall-oriented, achieving recall of 47.9. Overall,
PIG variants perform best, with small differences

4While ERecall@K for DPR is substantially lower than
BM25, observe that Arecall@K is better correlated with QA
metrics (Tab. 4), as DPR retrieves non-evidence passages that
still lead to the correct answer.
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Rec. Prec. F1 %Rec≥.8 %F1 ≥.5

FiD-BM25 QO 25.1 36.8 28.3 6.8 24.2
MT 26.9 37.7 29.7 7.4 25.6

FiD-DPR QO 7.8 39.1 12.5 0 3.6
MT 7.8 41.3 12.5 0 2.6

PIG-BM25
NQO 34.6 19.3 20.8 18.5 11.9
QO 43.1 30.7 31.0 26.7 26
MT 47.9 28.2 30.5 31.2 22.3

PIG-DPR
NQO 9.0 13.7 8.4 0.5 2.6
QO 36.2 41.1 32.8 15.7 30.7
MT 34.1 44.8 32.4 15 31.3

Closed book ZS 12.9 17.4 13.8 1.9 9.5
Reader ZS 20.0 22.8 18.8 5.8 13.8

Closed book QO 1.7 7.3 2.6 0 0.3

Table 4: QAMPARI test results. QO: models trained
on QAMPARI only; NQO: models trained on NQ only;
MT: Multi-task training with NQ; ZS: Zero-shot setup.

between PIG-BM25 and PIG-DPR, and both are
slightly higher than FiD-BM25.

When training on both NQ and QAMPARI
(MT), performance on NQ (47.2 with BM25 and
53.1 with DPR) is similar to that reported by Izac-
ard and Grave (2021) (44.1 with BM25 and 51.4
with DPR). When training on NQ only, results on
QAMPARI are significantly lower than when train-
ing also on QAMPARI, showing that training on
QAMPARI improves performance on multi-answer
questions, as expected. The lower performance on
QAMPARI compared to NQ, despite the fact that
NQ’s EM evaluation metric is much more strict
than the metrics used for QAMPARI, illustrates
the challenge in answering multi-answer questions.

PIG-DPR has much higher recall than FiD-DPR,
showing that going over 200 passages indepen-
dently (PIG) leads to higher recall than jointly rea-
soning over 50 passages (FiD). Moreover, the solid
performance of PIG-DPR indicates that QA perfor-
mance is more correlated with ARecall@K than
ERecall@K (Tab. 3).

Finetuned closed-book performance is low with
an F1 of 2.6 for QAMPARI, which we attribute
to the relation-based train/test split (§2.4). This
guarantees that there is no overlap between train
and test questions. Lewis et al. (2021) have shown
that mitigating such train-test overlap causes a drop
in QA performance, with a drastic drop being ob-
served in closed-book models.

Zero-shot results The performance of zero-shot
models is lower than finetuned retrieve-and-read
models, as expected. However, text-davinci-003’s
performance in the closed book setup is impressive
and significantly better than finetuned T5-3B.

ExtendedSet results We report results for FiD
and PIG on the ExtendedSet (see §3) in §F. As ex-
pected, considering additional correct answers im-
proves the precision of all models. Since changes to
recall are small, the overall F1 is higher when con-
sidering manual annotations. Importantly, ranking
across models does not change, and the absolute
performance remains low, suggesting that our test
set can be safely used for evaluation.

Oracle analysis To disentangle retrieval from an-
swer extraction, we run PIG and FiD in an oracle
setup, where we assume a perfect retriever and run
our readers on the gold evidence passages only. Per-
formance of both models greatly improves in this
setup, with larger gains for PIG. This shows that
developing better retrieval mechanisms for multi-
answer questions can greatly benefit QAMPARI.
FiD’s recall is still limited (47.5), illustrating the
challenge of reading a large number of documents.
Full oracle results are in §G (Tab. §9).

5 Related work

ODQA tasks have largely been dedicated to single-
answer questions (Berant et al., 2013; Joshi et al.,
2017; Kwiatkowski et al., 2019). The same applies
for most multi-hop ODQA tasks (Welbl et al., 2018;
Yang et al., 2018; Trivedi et al., 2022a). While
they require 2-4 paragraphs, the answer is a sin-
gle phrase. Multi-answer questions were intro-
duced in the TREC QA tracks (Voorhees, 2004,
2005). However, evaluation was on 50 questions.
Trivedi et al. (2022b) introduced artificially gen-
erated multi-answer questions, but only for read-
ing comprehension rather than ODQA. Concur-
rent to QAMPARI, Zhong et al. (2022) introduced
RoMQA, a benchmark containing multi-answer
questions generated using Wikidata. While their
setup is closest to ours, they evaluate on a subset of
Wikipedia that is aligned to a subset of Wikidata.

6 Conclusions

We release QAMPARI, a dataset targeting ODQA
models ability to answer multi-answer questions,
and show that it is challenging for current state-
of-the-art models. QAMPARI will aid develop
models that answer a wide range of question types,
including single- and multi-answer questions.

Limitations

A key limitation of QAMPARI is that the gold set
of answers is incomplete. Thus, predicted answers
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might be correct but missing from the gold answer
set. The ExtendedSet addresses this problem par-
tially, allowing a more accurate model ranking, but
even in this set all the correct answers are not part
of the gold set. A second limitation is that our data
generation process is mostly automatic and is thus
amenable to reverse-engineering. Hence, we rec-
ommend evaluating models on QAMPARI along
with additional benchmarks created with a different
generation process. Last, our data generation pro-
cess can only generate answers based on relations
from Wikidata and relations that are in Wikipedia
tables, and thus its scope does not generalize to
arbitrary relations.
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A Simple Relations

In Tab. 5. we gathered all the 135 relations we used
to create our simple questions. The 423 relations
used to create our composition questions can be
found in our code base.

B Composition template

Composition questions overall template is:
What is the <comp_property> of <subtype>
who/which <base_property>?. All the templates
are in our code base.

C Crowdsourcing Validation

Fig. 4 shows two screenshots of the task crowd-
sourcing workers performed.

D Experimental setup details

For both readers (FiD and PIG), we used T5-large
which has 770 million parameters. We used an
A100 to train both of them, FiD with a batch size
of 8 and PIG with a batch size of 32 for a single

GPU. We trained each of them for around 48 hours
on two GPUs.
For FiD, we concatenated the answers using # as
a separator. At evaluation time, there is no impor-
tance to the order of the answers.
For both PIG and FiD, all aliases of a given gold en-
tity provided by Wikidata are used as additional cor-
rect answers. When verifying whether our model
predicted an answer A, we verify whether it pre-
dicted A or any of its aliases. We performed an
hyper parameter search around the learning rate,
the number of training steps, the ratio of positive to
negative (for PIG) and the number of times an NQ
example will appear in each epoch (for multi task).
Tab. 6 presents the parameters of the reported re-
sults.
We report the results of a single run with seed 0.

E Question type analaysis

We break test performance of FiD-BM25 (MT)
by question type (Tab. 7). Surprisingly, perfor-
mance on simple questions is lower than complex
questions, and intersection questions seem easi-
est. Possible explanations are: (a) simple ques-
tions have more answers (see Tab. 2), which makes
them harder, and (b) models can predict the answer
given just one evidence passage, due to “shortcuts”
(Chen and Durrett, 2019), or parametric knowledge
(Longpre et al., 2021).

F ExtendedSet Results

In Tab. 8 we present results analogous to those in
Tab. 4 for the ExtendedSet with BM25. Precision
improves by 5-6 points across models, while recall
changes are smaller leading to an overall increase
in F1. Nevertheless changes are not dramatic and
model ranking remains constant, suggesting the
full test set can be safely used.

G Development Set Results

In Tab. 9 we present results analogous to those in
Tab. 4 for the development set.

107



is a has author located in language occupation
sex or gender country of citizenship part of place of birth located in
educated at language spoken, written or signed has part played the sport employer
genre position held cast member country of origin award received
place of death made from material creator has participant depicts
maintained by operator performer member of political party owned by
religion headquarter location participant member of position played
original language competition class publisher role record label
work location director doctoral advisor residence native language
place of publication medical condition winner field of work form or work
conflict place of burial instrument composer league
screenwriter distribution format producer sponsor ethnicity
voice actor distributed by participating team academic degree manufacturer
architectural style fabrication method present in work production company cause of death
military branch manner of death industry director of photography narrative location
original broadcaster organizer student of location of creation located in or next to body of water
architect archives at nominated for country of registry allegiance
movement voice actor noble title based on dedicated to
legislated by location of formation developer contributor to creative work or subject lyrics written by
located in protected area tracklist editor presenter religious order
from narrative universe location of discovery media franchise commissioned by political ideology
commemorates port of registry influenced by indigenous to operating area
translator brand interested in designed by illustrator
vessel class costume designer drafted by coach of sports team convicted of
scenographer culture significant place executive producer represented by
broadcast by investor cover art by home port collection creator
armament inspired by first appearance choreographer animator
source of energy musical conductor adapted by sound designer has written for
academic major ratified by business model worshipped by narrator
partnership with colorist art director has work in the collection military rank

Table 5: Simple relations

Learning rate # steps pos. to neg. # NQ examples

FiD-BM25 QO 0.00005 90k - -
MT 0.00005 190k - 2

FiD-DPR QO 0.00005 85k - -
MT 0.00005 190k - 2

PIG-BM25 QO 0.000001 60k 1 -
MT 0.000001 75k 1 1

PIG-DPR QO 0.000001 60k 1 -
MT 0.000001 75k 1 1

Closed book QO 0.0001 95k - -

Table 6: Hyper parameters used for reported results.

Recall Precision F1

Wikidata simple 21.3 30.7 23.1
Wikidata intersection 37.0 47.1 40.0
Wikidata composition 18.6 32.4 22.2
Wikipedia simple 9.1 20.6 11.5
Wikipedia composition 31.2 37.4 32.7

Table 7: Question type analysis of FiD-BM25, trained
in MT setup on QAMPARI development set.
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QAMPARI
Recall Precision F1 %Recall≥0.8 %F1 ≥0.5

FiD-BM25 QO w.o. annotations 20.5 34.6 24.3 4.0 19.6
w. annotations 23.3 40.6 27.8 4.5 25.1

FiD-BM25 MT w.o. annotations 22.8 37.0 26.8 4.5 20.6
w. annotations 25.7 42.9 30.6 5.0 24.6

PIG-BM25 QO w.o. annotations 45.1 28.9 30.7 27.5 23
w. annotations 42.7 33.6 32.8 24 29.5

PIG-BM25 MT w.o. annotations 49.3 27.9 30.7 31.5 20.5
w. annotations 47.1 33.1 33.2 27 26

Table 8: QAMPARI ExtendedSet results with (w.) and without (w.o.) the additional manual annotations. The best
results with and without annotations are bolded. QO: models trained on QAMPARI only; MT: Multi-task training
with NQ.

QAMPARI
Recall Precision F1 %Recall≥0.8 %F1 ≥0.5

FiD-BM25 QO 23.3 35.6 26.3 5.9 22.7
MT 23.9 34.2 26.3 6.0 22.4

FiD-DPR QO 6.5 35.2 10.1 0 3.7
MT 7.2 39.8 11.4 0.0 2.8

PIG-BM25 QO 41.4 26.4 28.0 25.3 21.0
MT 43.7 26.9 28.9 26.6 22.0

PIG-DPR QO 33.9 38.6 29.9 15.8 26.2
MT 31.7 42.2 29.6 14.3 26.3

Closed book QO 2.4 7.2 3.1 0.1 0.7

FiD-Oracle MT 47.5 62.7 51.2 18.4 56.1
PIG-Oracle MT 71.5 60.9 62.4 55.7 73.8

Table 9: QAMPARI development results. QO: models trained on QAMPARI only; MT: Multi-task training with
NQ.
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(a) Instructions

(b) Task

Figure 4: Screenshots from crowdsourcing task.
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