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Abstract

Extracting relational triples from text is a cru-
cial task for constructing knowledge bases. Re-
cent advancements in joint entity and relation
extraction models have demonstrated remark-
able F1 scores (≥ 90%) in accurately extracting
relational triples from free text. However, these
models have been evaluated under restrictive
experimental settings and unrealistic datasets.
They overlook sentences with zero triples (zero-
cardinality), thereby simplifying the task. In
this paper, we present a benchmark study of
state-of-the-art joint entity and relation extrac-
tion models under a more realistic setting. We
include sentences that lack any triples in our
experiments, providing a comprehensive eval-
uation. Our findings reveal a significant de-
cline (approximately 10-15% in one dataset
and 6-14% in another dataset) in the models’ F1
scores within this realistic experimental setup.
Furthermore, we propose a two-step modeling
approach that utilizes a simple BERT-based
classifier. This approach leads to overall perfor-
mance improvement in these models within the
realistic experimental setting.

1 Introduction

A crucial aspect of the relation extraction task in-
volves the identification of sentences that lack any
relational triples. This aspect naturally arises in
real-world relation extraction scenarios. For in-
stance, when extracting knowledge graph triples
from online text, the majority of sentences may
not mention any such triples. Although this as-
pect has been explored in other NLP tasks, such
as machine reading comprehension, where mod-
els should correctly identify when a given passage
lacks an answer rather than providing an incorrect
one (Rajpurkar et al., 2018; Kundu and Ng, 2018;
Sulem et al., 2021), it has not received sufficient
attention in recent relation extraction research.

There are two distinct approaches for entity and
relation extraction: Classification approach and

joint approach. In the classification approach (Hoff-
mann et al., 2011; Zeng et al., 2014, 2015; Nayak
and Ng, 2019; Jat et al., 2017), entities are already
given and models focus on classifying the relations
among pairs of entities. This approach includes sen-
tences with zero triples in the experiments, where
the relation among all entity pairs in such sentences
is labeled as a ‘None’ relation. On the other hand,
the joint extraction approach (Zeng et al., 2018;
Takanobu et al., 2019; Nayak and Ng, 2020; Wei
et al., 2020; Wang et al., 2020; Zheng et al., 2021;
Li et al., 2021; Wei et al., 2020; Yan et al., 2021;
Shang et al., 2022) involves models extracting both
entities and relations simultaneously. However, in
this approach, sentences with zero triples are not
considered in the experiments, which makes the
task significantly easier. Consequently, recent joint
extraction models achieve exceptionally high F1
scores on benchmark datasets.

In this study, our objective is to assess the per-
formance of state-of-the-art relational triples ex-
traction models when sentences with zero triples
are included. To achieve this, we conduct compre-
hensive experiments using the widely used New
York Times (NYT) datasets. We evaluate a total of
9 recent state-of-the-art models in an end-to-end
fashion. The results of our experiments reveal a sig-
nificant decline in the performance of these models
under this experimental setting. Across all of the
evaluated models, we observe an approximate drop
of 10-15% in the F1 score in one dataset, and a drop
of around 6-14% in another dataset. These findings
highlight the challenges posed by sentences with-
out triples and emphasize the need for improved
approaches to handle such cases effectively.

Additionally, we have identified that sentences
often contain clue tokens that can be leveraged
to detect the presence of relations, even without
identifying the corresponding entities. We include
such examples in Table 1 for illustrations. Building
upon this observation, we introduce a BERT-based
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Sentence Triples
Paul Allen , a co-founder of Microsoft , paid the bills for aircraft
designer Burt Rutan to develop SpaceShipOne , the craft that
won the $ 10 million Ansari X Prize last year for reaching
suborbital space .

Microsoft ; Paul Allen ; /business/company/founders
Paul Allen ; Microsoft ; /business/person/company

But Schaap seems as comfortable in that role as Joe Buck , the
Fox baseball and football sportscaster who so clearly benefited
from learning beside his father , Jack Buck , the late voice of
the St. Louis Cardinals .

Jack Buck ; Joe Buck ; /people/person/children

Table 1: Examples of relation clue tokens (in Pink) for determining the presence of a relation in the sentences.

zero-cardinality classifier (ZCC) model that effec-
tively filters out sentences with zero triples. We
explore both binary classification and multi-class
multi-label (MCML) classification approaches for
this purpose. To tackle the task at hand, we propose
a two-step modeling approach. In the first step, we
employ the ZCC model to classify the sentences,
determining whether they contain zero triples or
not. In the second step, we utilize the outputs of the
ZCC model to guide the 9 state-of-the-art triples
extraction models, effectively solving the task. No-
tably, our experimental results demonstrate that
this two-step approach outperforms or achieves
competitive performance compared to end-to-end
modeling in this novel setting of the task. Further-
more, it offers advantages in terms of training time
for the models1.

2 End-to-End Modeling of Relation
Extraction with Zero-Cardinality

For our experiments, we select nine state-of-the-art
joint entity and relation extraction models: Ptr-
Net (Nayak and Ng, 2020), TPLinker (Wang et al.,
2020), CasRel (Wei et al., 2020), TDEER (Li et al.,
2021), PRGC (Zheng et al., 2021), PFN (Yan et al.,
2021), GRTE (Ren et al., 2021), OneRel (Shang
et al., 2022), and BiRTE (Ren et al., 2022). All of
these models utilize BERT (Devlin et al., 2019) as
an encoder. For our experiments with the NYT24*
dataset, where sentences are cased, we utilize the
BERT_base_cased model. On the other hand, for
the NYT29* dataset, where sentences are uncased,
we use the BERT_base_uncased model.

PtrNet (Nayak and Ng, 2020) adopts a sequence-
to-sequence (seq2seq) approach, extracting triples
uniformly regardless of the relations involved.
The remaining models employ relation-specific se-
quence or matrix labeling methods to extract triples.

1Any code or data related to this paper will be
made available at https://github.com/pratiksaini4/
ZeroCardinalityImpactOnRE.

Originally, these models are trained solely on sen-
tences containing one or more triples, excluding
sentences with zero triples from their training and
test datasets. However, we adapt these models
to handle sentences with zero triples as well. In
the case of sequence labeling or matrix labeling
approaches, all tokens in the zero-cardinality sen-
tences are labeled with the ’O’ tag (representing the
"other" tag). For sequence generation approaches
(such as seq2seq), the decoder generates the "end
of sequence" (EOS) tag as the first token, indicating
the absence of any relational triple in the sentence.

Below is a brief description of each of these
models. We employ the same hyper-parameters as
specified in their respective papers.

2.1 PtrNet (Nayak and Ng, 2020)

This model utilizes a seq2seq framework with
pointer network-based decoding for joint entity and
relation extraction. Each triple is represented by
the start and end indices of the subject and object
entities in the sentence, along with the correspond-
ing relation class label. To generate the complete
triple, their decoding framework extracts four in-
dexes at each time step, capturing the subject and
object entities as well as the relation between them.
This enables the model to incrementally construct
the entire triple. For a fair comparison with other
state-of-the-art (SOTA) models, the original BiL-
STM encoder is replaced with BERT, a powerful
language representation model. This integration
of BERT into the model ensures compatibility and
consistency with the advancements in the field, al-
lowing for more accurate and robust results.

2.2 CasRel (Wei et al., 2020)

CasRel employs a two-stage extraction process for
relation extraction. In the first stage, it utilizes a
0/1 tagging scheme to identify all subject entities
present in the text. This initial stage focuses on
accurately identifying and labeling the subject en-
tities involved in the relations. In the subsequent
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stage, for each subject entity and for each rela-
tion, CasRel applies another round of 0/1 tagging
to identify the corresponding object entities. This
object tagging process is iterative and carried out
sequentially for each subject entity. By perform-
ing this iterative tagging approach, CasRel ensures
comprehensive identification of the object entities
associated with each subject entity, enabling a more
precise extraction of relational triples.

2.3 TPLinker (Wang et al., 2020)
TPLinker also adopts a sequence labeling approach
for the relation extraction task. However, to effec-
tively address the challenges posed by overlapping
triples, it employs a separate sequence labeling pro-
cess for each relation. To link the tokens within the
sentence, TPLinker utilizes a handshaking tagging
scheme. It constructs a matrix representing the to-
kens in the sentence, where the rows and columns
correspond to the tokens. The handshaking tags
are employed to establish connections between to-
kens. Initially, TPLinker identifies all entities in
the sentence using the ‘EH-ET’ (entity head to en-
tity tail) tag. In the matrix, a cell with a value of 1
indicates that the token in the corresponding row
represents the start of an entity, while the token in
the column represents the end of the entity. Addi-
tionally, TPLinker employs two other handshaking
tags, namely SH-OH’ (subject head to object head)
and ST-OT’ (subject tail to object tail). These tags
are used to link the subject and object entities for
each specific relation. Separate matrices are tagged
for each relation using these handshaking tags. By
applying this approach, TPLinker effectively links
the subject and object entities for each relation, en-
abling accurate extraction of relational triples. The
initial set of entities obtained from the ‘EH-ET’
tagging stage serves to filter out unwanted triples
extracted during the relation-specific tagging stage.

2.4 TDEER (Li et al., 2021)
This task employs a multi-stage sequence labeling
approach. In the initial stage, a 0/1 tagging scheme
is utilized to extract subject and object entities. Ad-
ditionally, a multi-label classification technique is
employed to identify all possible relations present
in the sentence. In the subsequent stage, for each
subject entity and relation pair, the start position of
the corresponding object entity is identified. If this
start position aligns with any of the object entities
extracted in the first stage, the triple is considered
valid and retained. Conversely, if no match is found,

the triple is deemed invalid and discarded. This rig-
orous validation process ensures the accuracy and
reliability of the extracted triples.

2.5 PRGC (Zheng et al., 2021)
In this model, the first step involves identifying a
set of potential relations within the sentence, as
well as establishing a global correspondence ma-
trix between the subject and object entities. In the
subsequent stage, relation-specific sequence tag-
gers are employed to label the subject and object
entities accordingly. These taggers provide fine-
grained annotations, enabling precise identification
of the entities involved. Finally, the global cor-
respondence matrix is utilized to make informed
decisions regarding which triples to accept or dis-
card. By considering the interplay between the
subject and object entities and their respective rela-
tions, the model ensures the selection of valid and
meaningful triples while discarding any irrelevant
or incorrect ones.

2.6 GRTE (Ren et al., 2021)
This approach utilizes a table filling method where
separate tables are maintained for each relation.
Each cell in the table represents whether a token
pair is associated with the corresponding relation or
not. These tables are populated using local features
or the historical information of a limited number
of token pairs. GRTE enhances the table-filling
by incorporating two types of global features. The
first type pertains to the global association of entity
pairs, while the second type focuses on relations.
GRTE initially generates a table feature for each
relation. Subsequently, these table features for all
relations are combined, resulting in the creation
of a subject-related global feature and an object-
related global feature. These global features are
then utilized iteratively to refine the individual table
features. By employing this refined table-filling
approach, all triples can be extracted based on the
information stored in the populated tables. This
method enables the accurate and comprehensive
extraction of relational triples.

2.7 PFN (Yan et al., 2021)
The model consists of two main modules: the
Named Entity Recognition (NER) module and the
Relation Extraction (RE) module. In the NER mod-
ule, all named entities in the sentences are extracted,
capturing their complete spans. This module fo-
cuses on identifying and delineating entities present
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in the text. The RE module operates separately
for each relation. It employs matrix labeling tech-
niques to identify the starting tokens of subject and
object entity pairs. The full span of these entities is
obtained from the entities previously identified by
the NER module. By leveraging the information
provided by the NER module, the RE module can
accurately determine the boundaries and positions
of the subject and object entities for each relation.

2.8 OneRel (Shang et al., 2022)

The approach utilized in this task is a relation-
specific horns-tagging method. For each relation
in the set of relations, a matrix is maintained, con-
sisting of four types of tags: ‘HB-TB’, ‘HB-TE’,
‘HE-TE’, and ‘O’. Here, ‘H/T’ represents the head
or tail entity, while ‘B/E’ denotes the beginning and
ending of an entity. The rows of this matrix corre-
spond to the head entity tokens, while the columns
correspond to the tail entity tokens derived from
the source text. Following the tagging of these
matrices, a scoring-based classifier is employed
to iterate through all possible combinations and
discard triples with low confidence scores. This
process enables the identification and retention of
high-quality triples based on their associated confi-
dence scores.

2.9 BiRTE (Ren et al., 2022)

This model employs a multi-stage bidirectional
tagging-based mechanism. In the initial stage, the
model focuses on identifying subject and object en-
tities. Subsequently, in the second stage, it further
refines the identification of object entities based on
the previously identified subject entities, and vice
versa. Finally, in the last stage, subject-object pairs
are classified based on their respective relations.
All these stages are trained together as a single
model, ensuring a comprehensive and integrated
approach to relation extraction.

3 Two-step Modeling of Relation
Extraction with Zero-Cardinality

We have observed that most relational triples in
sentences are associated with specific clue tokens.
While this may not always hold true due to the dis-
tant supervision used in creating the NYT datasets,
it is applicable to many cases. We have included
relevant examples in Table 1. Based on this ob-
servation, we aim to investigate whether a BERT-
based classification model can learn to identify the

Figure 1: Architecture of our zero-cardinality classifier.
c is the number of relations.

presence of relational triples in these sentences us-
ing the clue tokens, without requiring knowledge
of the specific entities involved in the triples.

To accomplish this, we feed the sentences with a
‘CLS’ prefix token (CLS w1 w2 ..... wn) into a pre-
trained BERT_base model with a hidden dimension
of h. We utilize the vector representation of the
‘CLS’ token to determine whether the sentence con-
tains any relational triples or not. We refer to this
classifier as the zero-cardinality classifier (ZCC).

We explore two distinct approaches for this clas-
sifier:

(i) The first approach involves binary classifica-
tion to determine whether a sentence contains any
triples or not. However, in this approach, we do not
explicitly utilize the set of relations.

(ii) The second approach employs a multi-class
multi-label (MCML) classification, which focuses
on identifying the specific relations within the rela-
tion set. Sentences without any triples are assigned
no positive labels.

To begin, we train the classifier on the ‘WZ’
training dataset, while training the joint extraction
models on the ‘NZ’ training set. During the in-
ference phase, if the classifier model indicates the
presence of triples in a test instance, we subse-
quently pass it to the joint extraction models to
extract the exact triples. This two-step process en-
ables us to effectively filter out sentences that do
not contain any triples.

We include the architecture of our proposed zero-
cardinality classifier in Fig 1. We use binary cross-
entropy loss and AdamW (Loshchilov and Hutter,
2019) optimizer to update the model parameters.
We use mini-batch size of 16 and an early stop
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NYT24* NYT29*
Train Validation Test Train Validation Test

#sentences with >=1 triples 56,196 5,000 5,000 63,306 7,033 4,006
#triples in above sentences 88,366 8,489 8,120 78,973 8,766 5,859
#sentences with zero triples 145,767 4,969 4,969 177,861 4,940 4,601

Table 2: The statistics of the NYT24* and NYT29* datasets.

criterion during training. Our experiments have
demonstrated that this two-step approach signifi-
cantly enhances the overall performance of the joint
models on the test set, encompassing sentences
both with and without triples.

4 Datasets Preparation & Evaluation
Metric

The New York Times (NYT) dataset holds signifi-
cant importance as a benchmark for relation extrac-
tion. Several studies (Zeng et al., 2018; Takanobu
et al., 2019; Nayak and Ng, 2020) utilize the de-
rived NYT29 and NYT24 datasets, which originate
from the original NYT10 (Riedel et al., 2010) and
NYT11 (Hoffmann et al., 2011) training corpus,
respectively. Zeng et al. (2018); Takanobu et al.
(2019); Nayak and Ng (2020) exclude sentences
without triples and partition the dataset into train-
ing, validation, and test sets. Subsequent research
papers (Wei et al., 2020; Wang et al., 2020; Zheng
et al., 2021; Li et al., 2021; Wei et al., 2020; Yan
et al., 2021; Shang et al., 2022) build upon this
modified version of the datasets, which is compar-
atively easier, and achieve exceptionally high F1
scores on these datasets. This trend reflects the
prevalence of simplified datasets in recent works,
potentially overestimating the performance of re-
lation extraction models when faced with more
realistic scenarios.

In order to enhance the realism of the joint ex-
traction task, we augment the NYT29 and NYT24
datasets by incorporating sentences with zero
triples from the original NYT10 and NYT11 train-
ing corpus, respectively. These augmented datasets
are referred to as NYT29* and NYT24* hereafter.
The specifics regarding the training, validation, and
test splits of the NYT24* and NYT29* datasets can
be found in Table 2.

To evaluate the state-of-the-art (SOTA) models,
we conduct experiments using two distinct training
and test settings. These settings are as follows:

(i) NoZero (NZ): In this setting, only sentences
containing one or more triples are included for
training and testing purposes.

(ii) WithZero (WZ): This setting encompasses
the sentences from the NZ set, along with addi-
tional sentences with zero triples from the corre-
sponding original NYT datasets.

By employing these two different experimental
designs, we aim to gain insights into the robustness
of the joint extraction models and their ability to
handle different scenarios.

4.1 Evaluation Metric

For evaluating the performance of the state-of-the-
art (SOTA) models, we employ triple-level preci-
sion, recall, and F1 score as the evaluation met-
rics. In order to determine the correctness of an
extracted triple, we compare it with the ground
truth triple. A triple is considered correct if both
the corresponding entities and the relation match
accurately. In the case of an ’Exact’ match, we re-
quire the full span of the entities to match precisely,
as specified in the respective papers. However, in
the case of a ’Partial’ match, we only compare the
first or last token of the entities with the ground
truth.

5 Results & Discussion

To begin our analysis, we assess the performance of
state-of-the-art (SOTA) end-to-end models under
the new experiment settings, which now include
sentences with zero cardinality. The results of these
experiments are presented in Table 3. Initially, we
train these models solely on the ‘NZ’ sentences
and evaluate their performance on both the ‘NZ’
and ‘WZ’ sentences. Upon evaluation, we observe
a significant decline in the F1 score on the WZ’
sentences compared to the NZ’ sentences. Across
the NYT24* and NYT29* datasets, the F1 score
experiences a decrease of approximately 14-24%.
Furthermore, the precision score for all these mod-
els exhibits a sharp drop, as they extract triples
from sentences that do not contain any triples. This
outcome is expected since the models have not been
exposed to any examples featuring zero triples dur-
ing the training phase.

Next, we proceed to train these models using the
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Test setting → NZ WZ
Training
setting ↓ Model Prec. Rec. F1 Prec. Rec. F1 % point ↓

OneRel 0.926 0.918 0.922 0.678 0.918 0.780 14.2
BiRTE 0.914 0.920 0.917 0.628 0.920 0.747 17.0
TDEER 0.922 0.908 0.915 0.644 0.908 0.754 16.1
PRGC 0.918 0.884 0.901 0.670 0.884 0.762 13.9
GRTE 0.929 0.924 0.926 0.645 0.924 0.760 16.6
PtrNet 0.898 0.894 0.896 0.538 0.894 0.671 22.5
CasRel 0.894 0.890 0.892 0.612 0.890 0.725 16.7
TPLinker 0.913 0.917 0.915 0.643 0.917 0.756 15.9

NZ

PFN* 0.892 0.919 0.905 0.557 0.919 0.694 21.1
OneRel 0.926 0.773 0.843 0.828 0.773 0.800 4.3 12.2
BiRTE 0.898 0.858 0.878 0.786 0.858 0.820 5.8 9.7
TDEER 0.914 0.905 0.909 0.637 0.905 0.748 16.1 16.7
PRGC 0.905 0.777 0.836 0.791 0.777 0.784 5.2 11.7
GRTE 0.920 0.769 0.838 0.824 0.769 0.796 4.2 13.0
PtrNet 0.932 0.697 0.798 0.838 0.697 0.761 3.7 13.5
CasRel 0.915 0.878 0.896 0.643 0.878 0.742 15.4 15.0
TPLinker 0.923 0.808 0.861 0.823 0.807 0.815 4.6 10.0

NYT24*

WZ

PFN* 0.910 0.732 0.812 0.804 0.732 0.766 4.6 13.9
OneRel 0.805 0.726 0.763 0.528 0.726 0.611 15.2
BiRTE 0.794 0.724 0.757 0.484 0.724 0.580 17.7
TDEER 0.813 0.707 0.756 0.530 0.707 0.606 15.0
PRGC 0.807 0.701 0.750 0.509 0.701 0.590 16.0
GRTE 0.804 0.726 0.763 0.492 0.726 0.587 17.6
PtrNet 0.790 0.710 0.748 0.394 0.710 0.507 24.1
CasRel 0.795 0.712 0.751 0.488 0.712 0.579 17.2
TPLinker 0.805 0.718 0.759 0.456 0.718 0.558 20.1

NZ

PFN* 0.777 0.720 0.748 0.474 0.720 0.572 17.6
OneRel 0.841 0.657 0.738 0.755 0.657 0.703 3.5 6.0
BiRTE 0.833 0.663 0.738 0.698 0.663 0.680 5.8 7.7
TDEER 0.788 0.708 0.746 0.536 0.708 0.611 13.5 14.5
PRGC 0.842 0.639 0.727 0.755 0.639 0.692 3.5 5.8
GRTE 0.840 0.624 0.716 0.759 0.623 0.684 3.2 7.9
PtrNet 0.876 0.620 0.726 0.720 0.620 0.666 6.0 8.2
CasRel 0.807 0.708 0.754 0.541 0.708 0.613 14.1 13.8
TPLinker 0.775 0.636 0.698 0.686 0.636 0.660 3.8 9.9

NYT29*

WZ

PFN* 0.833 0.600 0.697 0.748 0.600 0.666 3.1 8.2

Table 3: Performance of the joint extraction models in the end-to-end approach on the NYT24* and NYT29*
datasets with different train/test settings. * marked models are evaluated using partial entity matching as per their
paper. F1 score in green color are the results obtained without zero-cardinality sentences. F1 score in red color are
the results obtained with zero-cardinality sentences. The % point ↓ numbers in bold are the difference between the
F1 scores in green and red.

‘WZ’ sentences. Upon analysis, we note that their
performance on the ‘NZ’ sentences experiences a
decline of 4-8%, with the exception of the TDEER
and CasRel models. Interestingly, the TDEER and
CasRel models exhibit comparable performance
on the ‘NZ’ test set, regardless of whether they
were trained on ‘NZ’ or ‘WZ’ training data. How-
ever, the introduction of sentences with zero triples
during the training process tends to confuse these
models, leading to a negative impact on their recall.
Consequently, the models struggle to accurately
extract valid triples due to the presence of such
adversarial examples. Furthermore, in this training
setting, we observe an improvement of 2-8% in the
models’ performance on ‘WZ’ sentences. Never-
theless, the best F1 score reported on the stringent

‘NZ’ test set for NYT24* is 0.926 (achieved by
the GRTE model). In contrast, the best F1 score
attained on the ‘WZ’ test set for NYT24* is 0.82
(achieved by the BiRTE model). This signifies a
10% drop in the best F1 score when transitioning
to the experiment’s more diverse setting. Similarly,
we observe a 6% decrease in the best achieved F1
scores on the ‘WZ’ test set for NYT29* compared
to the ‘NZ’ test set.

Next, we delve into the analysis of the impact
of our proposed two-step approach for this task.
The first step involves utilizing the zero-cardinality
classifier to predict sentences with zero cardinality,
i.e., sentences that either contain triples or do not.
The performance of the classification model using
both binary and multi-class multi-label (MCML)
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NYT24* NYT29*
Prec. Rec. F1 Prec. Rec. F1

ZCCbinary 0.887 0.867 0.877 0.801 0.888 0.842
ZCCMCML 0.881 0.884 0.883 0.823 0.824 0.823

Table 4: Performance of the zero cardinality classifier (ZCC) model on NYT24* and NYT29* datasets in the binary
classification and multi-class multi-label classification (MCML) settings.

NYT24* NYT29*
multi-class multi-label binary

Model Prec. Rec. F1 % ↑ Prec. Rec. F1 % ↑
OneRel 0.832 0.836 0.834 3.43 0.740 0.664 0.700 -0.27
BiRTE 0.819 0.839 0.829 0.85 0.679 0.663 0.671 -0.95
TDEER 0.830 0.830 0.830 8.23 0.749 0.649 0.696 8.52
PRGC 0.822 0.811 0.816 3.26 0.744 0.645 0.691 -0.14
GRTE 0.835 0.842 0.839 4.30 0.740 0.661 0.699 1.41
PtrNet 0.806 0.815 0.811 4.95 0.677 0.650 0.663 -0.33
CasRel 0.807 0.812 0.810 6.73 0.676 0.653 0.665 5.13
TPLinker 0.816 0.839 0.828 1.23 0.681 0.656 0.668 0.81
PFN* 0.805 0.833 0.818 5.20 0.726 0.658 0.690 2.42

Table 5: Performance of the SOTA models in the two-step modeling on the relational triple extraction task with
zero-cardinalty sentences. At the first-step, we use multi-class multi-label classification for NYT24* dataset and
binary classification for NYT29* dataset.

classification is provided in Table 4. The classifica-
tion model was trained on ‘WZ’ sentences for both
the NYT24* and NYT29* datasets. Both binary
classification and multi-class multi-label classifi-
cation demonstrate competitive performance on
both datasets. Multi-class multi-label classifica-
tion exhibits slightly higher performance on the
NYT24* dataset, while binary classification yields
marginally better results on the NYT29* dataset.

In the second step of our two-step approach, only
the sentences predicted by the classification model
to have existing triples are passed on to the triple
extraction model. For this step, we train the state-
of-the-art (SOTA) models exclusively on the ‘NZ’
sentences to facilitate triple extraction. In Table 5,
we present the comprehensive performance evalu-
ation of the state-of-the-art (SOTA) model using
the two-step approach for the triple extraction task.
For the NYT24* dataset, we utilize the multi-class
multi-label classifier, while for the NYT29* dataset,
we employ the binary classification approach for
zero-cardinality prediction.

Our observations reveal an improvement of ap-
proximately ∼ 8% in the ‘WZ’ sentences for both
the NYT24* and NYT29* datasets when employ-
ing the two-step approach compared to the end-to-
end approach. Specifically, for the NYT24* dataset,

all SOTA models exhibit enhanced performance
with the two-step approach over the end-to-end
approach. However, for the NYT29* dataset, the
performance is not consistently improved. In the
case of four models (OneRel, BiRTE, PRGC, and
PtrNet), we observed a minor drop of up to ∼ 1%
with the two-step approach.

Overall, we conclude that the two-step approach
either improves the performance of these models or
achieves competitive performance when compared
to the end-to-end approach in this new experimen-
tal setting for relation extraction.

5.1 Training Time of the Models

Table 6 presents the training time of various mod-
els used in our experiments. All training was con-
ducted on an NVIDIA A100 GPU with 20 GB GPU
memory. Our two-step approach for the relation
extraction task in this new setting offers advantages
over the end-to-end approach.

The training time for the SOTA models solely
using ‘NZ’ data is considerable, primarily due to
their utilization of BERT as the sentence encoder.
However, when we incorporate sentences with zero
triples in the training process (which account for
almost three times the number of sentences with
triples, as shown in Table 2), the training time sig-
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NYT24* NYT29*
NZ WZ NZ WZ

Onrel 18.33 68.35 21.05 83.06
BiRTE 6.67 25.49 6.24 32.74
TDEER 43.51 50.85 45.11 63.68
PRGC 20.25 56.70 18.96 62.87
GRTE 20.70 65.08 21.87 80.51
PtrNet 17.17 41.03 12.24 24.30
CasRel 18.23 65.20 20.54 75.95
TPLinker 26.19 122.65 43.40 168.91
PFN* 22.40 317.18 188.68 393.35
ZCCbinary - 14.67 - 25.55
ZCCMCML - 14.49 - 25.65

Table 6: Training time of the models. First 9 rows are
avg. training epoch time (in minutes) of five SOTA mod-
els on the ‘NZ’ and ‘WZ’ training data. Last two rows
are avg. training time of the zero cardinality classifica-
tion (ZCC) models with WZ training data.

nificantly increases for all models (refer to Table
6).

On the contrary, the zero-cardinality classifier
only needs to be trained once for all models, re-
sulting in substantial time savings. Additionally,
training the zero-cardinality classifier itself is rela-
tively quick due to its simple architecture.

6 Related Work

Extracting relational triples from text is a crucial
task for constructing new knowledge bases or en-
hancing existing ones. In their efforts to address
this task, Mintz et al. (2009); Riedel et al. (2010);
Hoffmann et al. (2011) employed feature-based
classification models. More recently, Zeng et al.
(2014, 2015) utilized CNN models, which auto-
matically extract features, for this purpose. Shen
and Huang (2016); Jat et al. (2017); Nayak and
Ng (2019) incorporated attention mechanisms into
their models to enhance performance. Approaches
such as Surdeanu et al. (2012); Lin et al. (2016);
Vashishth et al. (2018) adopted a multi-instance re-
lation extraction setting, where multiple sentences
are used to capture features associated with a pair
of entities. These approaches assume that entities
have already been identified and focus solely on
classifying relations between entity pairs.

Katiyar and Cardie (2016); Miwa and Bansal
(2016); Bekoulis et al. (2018); Nguyen and Ver-
spoor (2019); Nayak and Ng (2020) tried to bring
the named entity recognition task and relation clas-
sification task together. Zheng et al. (2017) used a
sequence tagging scheme to jointly extract the en-
tities and relations. Zeng et al. (2018); Nayak and
Ng (2020) proposed an encoder-decoder model to

extract relational triples with overlapping entities.
Takanobu et al. (2019) proposed a joint extraction
model based on hierarchical reinforcement learning
(HRL).

With the introduction of pre-trained models such
as BERT (Devlin et al., 2019), many models used
such models as sentence encoder to improve their
performance. Models such as TPLinker (Wang
et al., 2020), CasRel (Wei et al., 2020), TDEER
(Li et al., 2021), PRGC (Zheng et al., 2021), PFN
(Yan et al., 2021), GRTE (Ren et al., 2021), OneRel
(Shang et al., 2022), and BiRTE (Ren et al., 2022)
use BERT_base (Devlin et al., 2019) as an encoder
and proposed table-filling method or relation spe-
cific tagging mechanism for joint entity and rela-
tion extraction. These models show remarkable
performance on the NYT datasets in the restric-
tive experimental setting without considering the
zero-cardinal sentences.

7 Conclusion

In this work, we present an innovative and chal-
lenging experiment design for relation extrac-
tion, which incorporates sentences containing zero
triples (referred to as zero-cardinal sentences) in
the dataset. We conduct comprehensive experi-
ments involving 9 state-of-the-art (SOTA) models
using the widely-used New York Times datasets.
To tackle this task, we devise both an end-to-end
modeling approach and a two-step modeling ap-
proach.

During our investigations, we make a significant
observation in the end-to-end modeling, where we
notice a drop in the F1 score by approximately 10-
15% and 6-14% in two versions of the NYT dataset.
To address this issue, we propose the integration
of a BERT-based classifier as an additional step
for this task. Remarkably, this approach either
achieves performance comparable to the end-to-
end approach or even surpasses it.

We believe that our benchmark, focusing on re-
lational triple extraction with zero-cardinality, will
prove immensely valuable for future research in
this domain. By introducing this unique experiment
design, we aim to stimulate further advancements
and foster progress in this field.

8 Limitations

One limitation of this work is that we benchmark
this task using 9 SOTA joint models. There are
many other SOTA models published in this area but
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it is difficult to benchmark all of them. We chose
the 9 models in such as way that different kind
of design choices in these models are represented
in our study. We chose Seq2Seq model (Nayak
and Ng, 2020), horn tagging-based models (Wang
et al., 2020; Shang et al., 2022), 0/1 tagging-based
models (Wei et al., 2020; Li et al., 2021), table-
filling models (Ren et al., 2021) for rigorous study
of this area.

9 Ethics Statements

Our work does not have any ethical concerns.
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Motivation
Practical Cognitive Intrinsic Fairness

◦
Generalisation type

Compositional Structural Cross Task Cross Language Cross Domain Robustness
◦

Shift type
Covariate Label Full Assumed

◦
Shift source

Naturally occuring Partitioned natural Generated shift Fully generated
◦

Shift locus
Train–test Finetune train–test Pretrain–train Pretrain–test

◦

Table 7: We characterise all our experiments of Section 5 (◦) in this datacard.
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