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Abstract

Compositional generalization, the ability of in-
telligent models to extrapolate understanding
of components to novel compositions, is a fun-
damental yet challenging facet in AI research,
especially within multimodal environments. In
this work, we address this challenge by exploit-
ing the syntactic structure of language to boost
compositional generalization. This paper ele-
vates the importance of syntactic grounding,
particularly through attention masking tech-
niques derived from text input parsing. We
introduce and evaluate the merits of using syn-
tactic information in the multimodal grounding
problem. Our results on grounded composi-
tional generalization underscore the positive
impact of dependency parsing across diverse
tasks when utilized with Weight Sharing across
the Transformer encoder. The results push the
state-of-the-art in multimodal grounding and
parameter-efficient modeling and provide in-
sights for future research.

1 Introduction

Compositional Generalization refers to the ability
of an intelligent agent to generalize its understand-
ing of the underlying structure of a problem, es-
pecially when it is faced with novel compositions
of the previously seen building blocks or compo-
nents (Chomsky, 1957; Montague, 1970). It is
fundamental for models to be able to extrapolate
from their training environment to novel situations,
a common occurrence in real-world applications.
Hupkes et al. (2020) categorizes compositional gen-
eralization capabilities into five categories, system-
aticity, substitutivity, localism & globalism, and
overgeneralization. These abilities are crucial for
models to achieve strong performance on tasks that
require reasoning and understanding of hierarchical
structures, such as natural language understanding,
object classification, and robotics.

Humans understand new compositions of pre-
viously observed concepts and simpler constructs.

Input Command: pull the small blue object that
is inside of the small green box and in the same
row as the red circle while zigzagging.
Action sequence: turn left, turn left, walk, turn
right, walk, turn right, walk, pull

Figure 1: This example is taken from the ReaSCAN
dataset. Here, an agent is provided with a command. Its
objective is to generate/execute a series of predefined
actions to fulfill the task within the given environment.

On the other hand, despite remarkable progress in
the field of Artificial Intelligence, even state-of-the-
art language models demonstrate limitations in this
aspect (Lake and Baroni, 2018; Thomas McCoy
et al., 2020; Shaw et al., 2021). Especially, they
often fail to effectively generalize in the reasoning
depth, which involves handling multi-turn reason-
ing about entities and their properties in the world
or even the co-occurrence of unseen spatial rela-
tions (Wu et al., 2021). These limitations indicate
a crucial need for innovative approaches to address
these issues.

In this research, our objective is to exploit the
syntactic structure of language to enhance compo-
sitional generalization. Our focus is mainly on the
multimodal problem setting that entangles vision
and language. In this unique setting, compositional
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linguistic descriptions must be accurately grounded
in the environment to devise coherent action plans
or achieve specific goals. An illustrative example
of this scenario is shown in Figure 1.

The motivation behind leveraging syntax in our
approach stems from the inherent structure and
compositionality of natural language. Syntac-
tic parsing provides crucial structural information
about how words in a sentence relate to each other.
We hypothesize that syntactic structure can im-
prove intelligent agents’ ability to discern the appli-
cable attributes and descriptions for each object in
its environment and better apprehend deeper levels
of reasoning.

By imposing an understanding of language struc-
ture through syntactic parsing, we aim to extend
the capabilities of current multimodal language
models. This could potentially pave the way for
more sophisticated models capable of robustly in-
teracting with dynamic and complex vision and lan-
guage environments. Apart from using structure,
we equipped our end-to-end model with weight
sharing that has demonstrated improving the gener-
alization capabilities in single-modality tasks.

As a result, we reach state-of-the-art perfor-
mance on the ReaSCAN compositional general-
ization benchmark, showing improvement across
all test splits, especially ones requiring sentence
structure comprehension. In summary, our contri-
butions include:

• Enhancing grounded compositional general-
ization by integrating syntactic parsing into
our model.

• Using syntax-guided attention masking along
with weight sharing, we build a highly
parameter-efficient model compared to base-
lines.

• Our model has shown marked improvement
in performance across a variety of tasks that
are designed for compositional generalization
evaluation while enhancing computational ef-
ficacy.

2 Related Work

The machine learning research community primar-
ily focused on understanding the error bounds and
the bias-variance trade-off (Hastie et al., 2009)
to understand and improve the models’ general-
izability. Later, techniques like dropout (Srivastava

et al., 2014) were introduced to improve neural
models’ generalization. Recently, studies have
examined the generalizability of various neural
network architectures using specialized general-
ization evaluation tasks (Hupkes et al., 2020; On-
tanon et al., 2022; Csordás et al., 2021). Addition-
ally, numerous datasets such as SCAN (Lake and
Baroni, 2018), CFQ (Keysers et al., 2020), and
COGS (Kim and Linzen, 2020) have been devel-
oped to assess compositional generalization capa-
bilities. Diverse strategies such as data augmen-
tation (Andreas, 2020; Shaw et al., 2021), inno-
vative architectural designs (Korrel et al., 2019;
Gao et al., 2020), and neuro-symbolic methods
(Mao et al., 2019), have been proposed to enhance
these capabilities. Consequently, these advances
in text-based generalization have inspired research
in multimodal compositional generalization, with
developments including complex benchmarks like
gSCAN (Ruis et al., 2020) and ReaSCAN (Wu
et al., 2021), and advanced architectures applied
to multimodal grounding (Kuo et al., 2021; Jiang
and Bansal, 2021; Qiu et al., 2021a; Sikarwar et al.,
2022; Shaw et al., 2021).

Furthermore, recent research highlights the sig-
nificant role of syntactic information in enhanc-
ing neural models’ compositional generalization
capability. Kuo et al. (2021) suggested aligning
the compositional structure of networks with the
problem domain, resulting in a dynamic compo-
sitional neural network. Moreover, Shaw et al.
(2021) and Qiu et al. (2022) recommended gram-
mar induction-based data augmentation techniques
to improve compositional generalization. Unlike
our work that focuses on input command struc-
ture, Kim et al. (2021b) introduced the concept of
using parse tree node annotations in the target se-
quence of sequence-to-sequence tasks for enhanc-
ing compositional generalization. Meanwhile, Kim
et al. (2021a) incorporated parse tree nodes into the
ETC (Ainslie et al., 2020) model. They employed
attention masking specific for ETC to symbolize
the relations of tokens and aid this model in a sim-
plified classification task based on the CFQ dataset.

We are inspired by previous research (Kim et al.,
2021a) that employs a similar technique with man-
ually extracted parses for compositional general-
ization on the single text modality. However, our
model utilizes off-the-shelf parsers instead of ac-
curate manually generated parse trees, and it is
generally applicable independent of the underlying
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models.

3 Problem Setting

Various studies on compositional generalization
have presented a range of tasks and problem set-
tings (Lake and Baroni, 2018; Keysers et al., 2020;
Kim and Linzen, 2020; Wu et al., 2021; Ruis et al.,
2020). These datasets are comprised of a training
set and several test sets. To ensure rigorous eval-
uation, the test sets have been deliberately struc-
tured to differ from the training set in a way that
requires the compositional capability to succeed.
Our paper focuses on grounding natural language
instructions in the visual modality, where we map
words to specific objects or actions in a multimodal
environment that provides a framework to evaluate
an intelligent agent’s compositional structures and
spatial reasoning capabilities.

We use the most recent multimodal composi-
tional generalization benchmarks to assess our
models comprehensively. In these benchmarks, an
agent receives natural language instruction to carry
out an action or navigate specific environments.
These datasets are inherently synthetic, and they
have been carefully crafted to guarantee that the
test sets are systematically different from the train-
ing sets. By placing commands within a spatial
context, these benchmarks bridge the gap between
abstract cognitive understanding and practical ac-
tion execution. Consequently, they stand as both
a scholarly tool for studying compositional gen-
eralization and a valuable resource for fields like
robotics that require comprehension of spatially
anchored commands.

Among these benchmarks, our primary focus
is ReaSCAN, owing to its heightened complexity
and recent introduction to the academic community.
An example of this dataset, depicted in Figure 1,
consists of three main components: The initial
state of the world, the provided input command,
and the corresponding target command. Tasked
with this information, the agent aims to infer the
target command by leveraging both the informa-
tion from the input command and the initial state.
Structurally, the world’s representation in ReaS-
CAN is formulated as a 6×6×17 matrix. Each
matrix cell comprises a 17-dimensional vector en-
capsulating information pertaining to an object’s
attributes—namely, color, shape, and size—along
with indicators of the agent’s positioning and ori-
entation. The evaluation metric for this dataset is

Split Held-out Examples
Random Random.

A1 yellow square referred with color & shape.

A2 red square referred in the command.

A3 small cylinder referred with size and shape

B1
co-occur of small red circle and big blue

square.

B2
co-occur of same size as and inside of

relations.

C1
Additional conjunction clause depth added

to 2-relative-clause commands.

C2
2-relative-clause command with that is

instead of and.

Table 1: ReaSCAN dataset test splits.

the percentage of exact matches of the predicted
action sequence. The ReaSCAN dataset includes
one random test split that mirrors the training’s
component and compound distribution, in addition
to seven compositional generalization test splits.
Each of these splits is designed to probe a spe-
cific facet of a model’s grounding generalization
capability, as detailed in Table 1. Category A test
splits delve into novel attribute compositions at
both the command and object levels, drawing inspi-
ration from gSCAN. Category B test splits assess
the model’s ability to generalize to unprecedented
co-occurrences of concepts and spatial relations.
Meanwhile, Category C probes the model’s capac-
ity to extrapolate from simple command structures
to more intricate structures with higher levels of
reasoning (Wu et al., 2021). To illustrate the A1
split, all examples with commands containing vari-
ations of "yellow square" (such as "small yellow
square" or "big yellow square") are excluded from
the training data. This prevents models from as-
sociating targets with that phrase. However, the
training set does include examples like "yellow
cylinder" and "blue square." As a result, during
testing, models are expected to accurately interpret
the "yellow square" even without prior exposure to
the actual composition.

4 Proposed Method

To address the challenge at hand, we implemented
a multimodal transformer, as illustrated in Figure 2.
In this model, input commands are tokenized and
then supplemented with positional encoding be-
fore passing to the transformer. Concurrently, the
visual environment is segmented into 36 distinct
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walk to the cylinder that is inside of a yellow box 
and in the same size as a red circle cautiously

Parsing

<sos>, turn left, walk, 
turn right.... 
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Figure 2: Overall architecture of the proposed model.
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Figure 3: Examples of parse trees.

cells, each serving as a visual token. After pass-
ing the visual token to a linear layer, these tokens
receive positional encoding and are passed to the
transformer.

We’ve employed a generic parser to seamlessly
embed the structure of the textual modality into
our model, thereby shaping attention masks for the
encoder’s textual self-attention. Prioritizing effi-
ciency, parsing each input command is conducted
during a preprocessing phase.

Our transformer is based on the GroCoT
model (Sikarwar et al., 2022). Each encoder
layer employs a cross-attention mechanism be-
tween modalities, followed by modality-specific
self-attention. Our computed input command
masks are utilized in the self-attention modules
of the textual modality. Remarkably, encoder layer
weights are consistently shared across all layers.

In the end, we concatenate the encoded result
of each modality and pass it to the transformer’s
auto-regressive decoder to generate the action se-
quence corresponding to the input command given
the environment.

4.1 Syntax-guided attention

One main component of our proposed model is
exploiting the syntactic structure of the command.
For this aim, we investigate using both dependency
and constituency parsing. Dependency and con-
stituency trees can be used to analyze the gram-
matical structure of sentences. Dependency trees
focus on the grammatical relationships between in-
dividual words, where each word except the root
depends on another, and the edges of the tree sig-
nify these dependencies. However, constituency
trees emphasize the hierarchical organization of
words into larger syntactic units or constituents,
with internal nodes representing these groupings
and leaves representing individual words. While
dependency trees are more concerned with identi-
fying grammatical roles and relationships between
words, constituency trees aim to show how words
group together into larger syntactic units, often car-
rying syntactic labels like NP (noun phrase) or VP
(verb phrase) (Foscarin et al., 2023; Hearne et al.,
2008). Examples of these parse trees are shown in
Figure 3.

Syntax-guided attention masking. We use the
syntactic information to guide the self-attention
module of transformer encoder layers as depicted
in Figures 2 and 4b. We force each token to only
attend to the tokens connected in the syntax tree.
In this way, we avoid faulty attention patterns and
overfitting irrelevant parts of the sentence. In ad-
dition, by imposing the structure with a parse tree,
our model can capture the nesting structure of the
command’s meaning and the relationships between
its components. By making the structural informa-
tion explicit, our model can potentially extrapolate
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the meaning of novel combinations and nesting lin-
guistic structures encompassing higher reasoning
depth.

4.2 Weight Sharing

Parameter sharing is a strategic approach where
identical learned parameters are applied across var-
ious positions or layers within a model. This tech-
nique enables the reuse of the same encoder unit at
each phase of the transformer encoder (Dehghani
et al., 2019). Such an approach not only streamlines
the model but also nurtures the acquisition of more
robust and adaptable representations of the input
(Ontanon et al., 2022). The findings of Kim et al.
(2021a) demonstrate that a transformer employ-
ing attention masking requires extended training
epochs for convergence, potentially due to masking-
induced backpropagation constraints. In light of
this, we hypothesize that introducing weight shar-
ing might counterbalance this challenge. Weight
sharing reduces the model’s complexity by decreas-
ing the number of parameters, which could lead
to faster convergence. This method acts as a form
of regularization, stabilizing training and facilitat-
ing smoother optimization landscapes. In addition,
Ontanon et al. (2022) show that a transformer with
shared weights across its encoder layers is arguably
endowed with a more suitable inductive bias that
allows the model to learn the primitive concepts.
We hypothesize this will positively affect learning
spatial relations or object-property relations, which
are frequently used in our model’s input. Motivated
by these advantages, we incorporated this weight
sharing technique into our transformer model to
evaluate its efficacy in a multimodal setting. Be-
yond the enhanced generalizability, weight sharing
serves as a computational benefit by reducing the
number of learnable parameters during the training
phase.

5 Experiments

Implementation Details. Our model architecture
is founded on the GroCoT framework as detailed
by Sikarwar et al. (2022) and is implemented us-
ing the PyTorch machine learning library (Paszke
et al., 2019). Also, we employed the pre-trained
stanza toolkit (Qi et al., 2020) for constituency
and dependency parsing. We used 48 GB A6000
GPUs accompanied by 756GB RAM. On average,
each experiment took about 52 hours to train the
models from scratch, with the Adam optimizer

(a) Self-attention w/o masking

(b) Self-Attention w/ masking

Figure 4: Self-Attention example from the A2 test set
of ReaSCAN dataset. Figures (a) and (b) depict the
averaged self-attention map from our models’ over all
encoder layers and heads. Rows and columns corre-
spond to text tokens. Brighter attention cells indicate
higher attention weights

(Kingma and Ba, 2017) parameter updates through-
out the training regimen. To ensure a rigorous
evaluation, we used the same specialized compo-
sitional validation set as Sikarwar et al. (2022),
drawing 500 samples from each compositional di-
vision of the primary dataset. Model proficiency
was assessed against this validation set, with the
highest-performing model designated as our opti-
mal choice. Our results are presented as an average
derived from three independent runs, each initial-
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ized with a random seed. We ran the models for
the ReaSCAN benchmark for 120 epochs, and the
models for the gSCAN and GSRR benchmarks for
100 epochs. Hyperparameters used for the exper-
iments of each dataset are shown in Appendix A.
The code and models proposed in this work are all
available in GitHub1.

Datasets. We used gSCAN (Ruis et al., 2020),
GSRR (Qiu et al., 2021b), ReaSCAN (Wu et al.,
2021) benchmarks for evaluation. The Grounded
SCAN (gSCAN) dataset is a benchmark tailored
for examining compositional generalization in ma-
chine learning models by translating natural lan-
guage commands into actions in a grid-world sce-
nario. Its unique splits ensure models move be-
yond rote memorization to deep compositional un-
derstanding of concepts. The Grounded System-
atic Relation Reasoning (GSRR) dataset extends
gSCAN by aligning natural language instructions
intricately with visual elements, emphasizing spa-
tial relationships and object references. ReaSCAN,
a further development, brings the challenges of real-
world reasoning into this environment by introduc-
ing more challenging tasks and concept relations.
Together, these datasets offer a high-complexity
framework for assessing the compositional and re-
lational understanding of machine learning models
in visual environments. A detailed explanation of
both the gSCAN and Grounded Systematic Rela-
tion Reasoning datasets can be found in Appendix
B.

Baselines. We embarked on a series of ex-
periments designed to evaluate our model’s ef-
fectiveness compared to the most recent state-of-
the-art models on the mentioned multimodal com-
positional generalization datasets. We include
the following baselines. (a) Ruis et al. (2020)
(Multimodal LSTM) is a fusion of sequence-to-
sequence (seq2seq) architecture with a visual en-
coder, employing a recurrent ’command encoder’
to process the instructions. (b) Gao et al. (2020)
(GCN-LSTM) integrates a Graph Convolutional
Neural (GCN) network with a multimodal LSTM.
The command encoding is achieved via a BiL-
STM equipped with multi-step textual attention,
while the world is encoded through a GCN layer.
(c) Qiu et al. (2021b) (Multimodal Transformer)
is a multimodal transformer equipped with cross-
attention for multimodal compositional general-

1https://github.com/HLR/
Syntax-Guided-Transformers

ization. (d) Sikarwar et al. (2022) (GroCoT) is
another transformer-based model that incorporates
interleaved self-attention into the multimodal trans-
former with cross-attention.

Results. We comprehensively evaluated our ap-
proach across all the previously mentioned bench-
marks compared to the baselines. Alongside the
accuracy and efficacy metrics, we also provide in-
sights into the computational overhead associated
with our method. Furthermore, a qualitative analy-
sis is presented, delving deeper into our approach’s
performance nuances and strengths.

The benchmark results, presented in Tables 2,
3, and 4, demonstrate our model’s superior per-
formance over all reported models, with a no-
table 3% improvement on the average of ReaS-
CAN benchmark splits. This substantiates our hy-
pothesis that incorporating syntactic parsing sig-
nificantly boosts the model’s generalization de-
rived from grounded compositional training data.
Moreover, dependency parsing consistently out-
performed constituency or marked a very similar
performance across multiple benchmarks, includ-
ing GSRR and gSCAN. Our model displayed im-
provements across nearly all ReaSCAN splits ex-
cept for C2. As per Sikarwar et al. (2022), the C2
split is "unfair," lacking the required information
in training data for comprehensive model training.
Even including syntactic information could not im-
prove the model’s performance on this split and
even caused a decrease in the performance. Our
methodology also showcased its merit in the object
property test cases (A1-3), effectively constrain-
ing attention to words pertinent to target object
descriptors. For instance, as shown in Figure 4,
the attention weights from the properties to the
corresponding objects are high.

Notably, our model exhibited considerable
strides in the C1 split, indicative of the value added
by syntactic information. For a more reliable com-
parison, we applied a t-test to our C1 test split
results. Using a significance level (α) of 0.05, this
statistical analysis provided further validation for
the observed enhancements in our model’s perfor-
mance, particularly within the context of the C1 test
split. Furthermore, our model exhibits enhanced
performance on the GSRR dataset. As illustrated
in Table 4, both variants of our model demonstrate
improvements in the II split. It is worth noting that
the II split shares the same challenge as the A2 split
from the ReaSCAN dataset but in a less complex
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Model A1 A2 A3 B1 B2 C1 C2 Avg
LSTM* 50.4 14.7 50.9 52.2 39.4 49.7 25.7 40.40

GCN-LSTM 92.3 42.1 87.5 69.7 52.8 57.0 22.1 60.50

Transformer* 96.7 58.9 93.3 79.8 59.3 75.9 25.5 69.90

GroCoT 99.6 93.1 98.9 93.9 86.0 76.3 27.3 82.2

Constituency† 99.75±0.11 96.70±1.40 99.68±0.10 95.19±1.17 88.37±1.50 69.07±0.60 27.00±0.54 82.25±0.63

Dependency† 99.65±0.9 97.37±0.48 99.62±0.07 95.46±2.01 90.15±3.88 92.55±1.51 21.77±5.25 85.22±0.87

Table 2: The result of our proposed model on the ReaSCAN dataset test splits. The results are an average of
three runs. † denotes the models with masking. Models marked with * refer to the multimodal version of their
implementation.

Model A B C E F H Comp. Avg
LSTM* 97.7 54.9 23.5 35.0 92.5 22.7 32.7

GCN-LSTM 98.6 99.1 80.3 87.3 99.3 33.6 -

Transformer* 99.9 99.9 99.3 99.0 99.9 22.2 60.0

GroCoT 99.9 99.9 99.9 99.8 99.9 22.9 60.4

Constituency† 99.95±0.07 99.92±0.06 99.88±0.11 99.88±0.09 100.00±0.00 22.84±0.93 60.36±0.11

Dependency† 99.92±0.09 99.85±0.18 99.86±0.11 99.96±0.06 99.89±0.16 23.89±1.54 60.49±0.20

Table 3: The result of our proposed model on the gSCAN dataset test splits. The results are an average of three runs.
We did not report the results on D and G splits since we achieved 0.00±0.00 % performance, But take them into
account in the averaged result. † denotes the models with masking. Models marked with * refer to the
multimodal version of their implementation.

environment.
While our proposed techniques effectively ad-

dress splits A, B, C, E, and F, mirroring the suc-
cesses of previous works such as (Sikarwar et al.,
2022) and (Qiu et al., 2021b), they struggle with
challenges presented by specific gSCAN composi-
tionality splits, notably D, G, and H. These particu-
lar splits are designed to assess the model’s capacity
for systematic generalization when novel patterns
should occur on the output sequence rather than
in grounding the input instruction (Sikarwar et al.,
2022), a facet that is not expected to be captured
by our proposed model.

5.1 Ablation

For a granular understanding of the contributions
from each alteration to the baseline model, we un-
dertook an ablation study. This involved the sequen-
tial removal of each modification to measure its
individual impact. As depicted in Table 5, while in-
dividual modifications did not significantly change
the baseline, their collective integration enhanced
the model’s generalization. Remarkably, eliminat-
ing dependency parsing or weight sharing resulted
in a noticeable performance dip. The improvement
upon integration posits that weight sharing can po-
tentially offset the masking prolonged convergence

challenge by reducing parameter count, thereby
mitigating the convergence issues.

5.2 Qualitative Analysis

In our previous discussions, we highlighted the sig-
nificance of integrating dependency parsing as a
fundamental approach to understanding the com-
plex structures inherent in sentences. This inte-
gration is not a mere enhancement; it critically
enriches the model’s grounding capabilities, of-
fering a more robust bridge between raw textual
sequences and their semantic structure.

To provide empirical evidence of our technique
for guiding attention, we conducted an analysis
of the cross-attention module. We aimed to com-
pare its behavior before and after applying attention
masking. The results, presented in Figure 5, indi-
cate a clear trend: in 86% of validation samples,
the cross-attention module exhibits a pronounced
focus on the target object.

Figures 5b and 5c elucidate the impact of self-
attention masking on these weights. After using
attention masking (see Figure 5b), the attention
distribution becomes notably sparser; instead of
individual words attending in isolation to every
potentially relevant cell, they now form cohesive
compositional expressions, each attending to the
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Model I II III IV V VI Comp. Avg
LSTM* 86.5 40.1 86.1 5.5 81.4 81.8 58.9

Transformer* 94.7 64.4 94.9 49.6 59.3 49.5 63.5

GroCoT 99.9 98.6 99.9 99.7 99.5 96.5 98.8

Constituency† 99.85±0.00 99.90±0.03 99.16±0.26 99.88±0.03 96.73±2.16 97.85±0.46 98.58±0.39

Dependency† 99.91±0.02 99.93±0.01 99.41±0.28 99.96±0.01 99.03±0.23 97.38±0.63 99.07±0.16

Table 4: The result of our proposed model on the GSRR dataset test splits. The results are an average of three runs.
† denotes the models with masking. Models marked with * refer to the multimodal version of their implementation.

W/S Mask A1 A2 A3 B1 B2 C1 C2 Avg
- - 99.29±0.27 91.82±6.50 98.49±1.17 93.50±0.85 83.15±1.41 75.85±1.35 25.03±6.82 81.02±0.22

✓ - 99.68±0.22 97.09±1.72 99.64±0.20 94.86±0.77 81.49±4.27 66.30±6.65 21.66±1.83 80.10±1.08

- Dep. 98.09±0.27 85.21±6.85 97.35±0.75 93.61±2.75 90.62±1.59 75.27±1.77 21.91±1.63 80.29±1.43

✓ Dep. 99.65±0.9 97.37±0.48 99.62±0.07 95.46±2.01 90.15±3.88 92.55±1.51 21.77±5.25 85.22±0.87

Table 5: The ablation study result of our modifications on ReaSCAN dataset test splits. Results are reported on an
average of three runs. We evaluate every combination of components from our best model. W/S stands for weight
sharing, and the ✓shows the presence of the module. Dep in this table refers to the Dependency masking. We
evaluate the model with or without dependency masking in the masking part.

(a) Environment (b) Cross-attention w/o masking (c) Cross-Attention w/ masking

Figure 5: Cross-Attention from Text-to-Image. In Figure (a), the purple zone indicates the model’s incorrect object
selection, while the red zone highlights the accurate choice. Figures (b) and (c) depict the averaged cross-attention
map from our models over encoder layers and attention heads. The rows represent environment cells (the first
element shows the row, and the second shows the column index, both starting from 0), and the columns correspond
to text tokens. Brighter attention cells signify elevated attention weights.

corresponding cells as a whole. For instance, in
Figure 5c, "and in the same," phrase’s tokens attend
to cells (1,2), (4,3), and (5,2) together with greater
attention on the target object in contrast to their
attention pattern without masking.

5.3 Efficiency Analysis

In the realm of modern model design, the chal-
lenge lies in amplifying capabilities while man-
aging computational overhead. Our methodology
adeptly navigates this balance. A cornerstone of
our model’s efficiency is the strategic adoption of
weight sharing within the transformer encoder. By
reusing weights across different components, we
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Model #Parameters
Multimodal LSTM 74K
Multimodal Transformer 3M
GroCoT 4.6M
Dependency† (ours) 1.9M

Table 6: Comparing model parameters: our model vs.
current state-of-the-art models. Dependency† refers to
the model with dependency parsing for attention mask-
ing.

significantly reduce the parameter space. This not
only streamlines memory utilization and acceler-
ates training but also acts as an implicit regularizer,
bolstering the model’s generalization capabilities
and reducing overfitting. Further enhancing this is
our implementation of attention masking, which
refines computational efficiency. By enabling the
model to selectively bypass attention to certain to-
kens, we can optimize the model to avoid redun-
dant computational processes, ensuring optimal
resource allocation and superior performance.

As illustrated in Table 6, our model stands out in
terms of efficiency. Despite having fewer parame-
ters (1.9M) than the models by Qiu et al. (2021a)
and Sikarwar et al. (2022), which have 3M and
4.6M parameters respectively, our model consis-
tently outperforms them across all benchmarks.

6 Conclusion

Our research demonstrated that exploiting the
syntactic structure of compositional and complex
linguistic and spatial expressions improved the
grounding ability of the instruction-follower agent
in multimodal environments. Our results indicated
improvements compared to the previous state-of-
the-art models. In particular, we show that our
proposed model is effective for generalization on
tasks and test splits that require generalization over
unobserved reasoning depths, such as the C1 split
in the ReaSCAN dataset. By utilizing the syntactic-
guided attention masking along with the weight
sharing, we achieved not only more accurate but
also more parameter-efficient models for grounded
compositional generalization.

Limitations

Despite the promising results achieved in our study,
several limitations warrant consideration:

Synthetic Data: Our experiments predomi-
nantly rely on synthetic datasets. While these

datasets provide a controlled environment for as-
sessing model performance, they might not capture
the complexities and nuances of real-world data.
Evaluating the models on real-world datasets is
crucial to ensure their practical applicability.

Error Propagation from the Parser: The
model’s performance is intrinsically tied to the ac-
curacy of the pre-trained parsers we utilized. Errors
or inaccuracies in parsing can lead to suboptimal
model outputs. Additionally, our synthetic data, be-
ing unambiguous, might not reveal the full extent
of potential parser-related issues.

Computational Constraints: Due to computa-
tional limitations, the hyperparameter search might
not have been exhaustive. A more comprehensive
exploration might yield better model configura-
tions.
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A Hyperparameters

Here, we present the hyperparameters used in the
models for every benchmark in Table 7.

B Datasets Description

B.1 Grounded SCAN dataset
The Grounded SCAN (gSCAN) dataset is a pivotal
benchmark for assessing compositional generaliza-
tion in machine learning models. Evolving from
the foundational SCAN (Lake and Baroni, 2018)
dataset, gSCAN is designed to evaluate a model’s
proficiency in translating command sequences into
actions within a grid world environment, emphasiz-
ing on compositional challenges.

This benchmark offers systematic test splits that
rigorously examine a model’s capability to general-
ize beyond its training data. These compositional
splits include:

• A (Random): Random data with a similar
distribution to the training data.

• B (Color-Shape): Novel composition of ob-
ject properties in the testing. Yellow squares
are referred to by color and shape.

• C (Color Only): Red squares as target.

• D (Novel Direction): Challenges a model’s
spatial comprehension, with targets set in un-
familiar directions, the southwest.

• E (Novel Contextual References): Evalu-
ates a model’s understanding of relative sizes,
with commands pointing to circles of size 2
described as "small."

• F (Novel Composition of Actions and Ar-
guments): Probes a model’s grasp of ob-
ject classes and their nuances, exemplified by
squares of size 3 necessitating two pushes.

• G (Adverb): Commands carrying the adverb
"cautiously" test how well the model inter-
prets action modifiers after seeing limited
training samples (k=1).
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Hyperparameter gSCAN GSRR ReaSCAN
Number of Vision Self-Attention Layers 3 3 6
Number of Text Self-Attention Layers 3 3 6
Number of Cross-Attention Layers 3 3 6
Number of Decoder Layers 3 3 6
Embedding Size 128 128 128
Hidden Layer Size 256 256 256
Number of Attention Heads 8 8 8
Learning Rate 5× 10−5 1× 10−5 1× 10−5

Batch Size 64 64 32
Dropout 0.1 0.1 0.1
Number of Epochs 100 100 120

Table 7: Hypterparameters used in the experiments.

• H (Adverb-Verb Combination): Generalizes
to commands pairing actions and their mod-
ifiers, like "while spinning" combined with
"pull."

The compositional test splits of the gSCAN
dataset ensure that models are not indulging in
learning statistical shortcuts but are genuinely mas-
tering compositional reasoning. In gSCAN, every
command is mapped to an action sequence for an
agent in the grid world, whether moving to a par-
ticular spot or interacting with a distinct described
object.

B.2 Grounded Systematic Relation Reasoning
dataset (GSRR)

The Grounded Systematic Relation Reasoning
(GSRR) dataset, introduced by (Qiu et al., 2021b),
extends the gSCAN benchmark. Their initial analy-
ses of the gSCAN dataset indicated its efficacy; the
authors observed that several remaining challenges
might not be primarily tied to visual grounding. In
light of this, they proposed the GSRR task, char-
acterized by an elevated complexity in aligning
natural language instructions with the visual envi-
ronment.

In this dataset, language expressions specifically
delineate target objects and explicitly describe their
relationships with a secondary referenced object.
They incorporate two types of relations into our
dataset: immediate adjacency ("next to") and car-
dinal directions such as "north" and "west." In ad-
dition, they put visual distractors objects within
the environment to emphasize the critical role of
spatial relations in identifying the target objects.

The dataset is systematically divided into various
splits to ensure a comprehensive assessment:

• I (Random): Similar distribution as the train-
ing.

• II (Visual): Commands centering on "red
squares" either as targets or references.

• III (Relation): Complex instructions involv-
ing combinations like "green squares" and
"blue circles."

• IV (Referent) Emphasizing "yellow squares"
as primary targets.

• V (Relative Position 1): Commands where
targets are situated to the "north" of their ref-
erence points.

• VI (Relative Position 2): Instructions where
targets are located "southwest" relative to their
references.

C Evaluation Card

Here, we present the evaluation card of our compo-
sitional generalization experiments based on (Hup-
kes et al., 2023) taxonomy.
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Motivation
Practical Cognitive Intrinsic Fairness

□ □
Generalisation type

Compo-
sitional Structural Cross

Task
Cross

Language
Cross

Domain
Robust-

ness
□ □

Shift type
Covariate Label Full Assumed

□
Shift source

Naturally
occuring

Partitioned
natural

Generated shift Fully
generated

□

Shift locus
Train–test Finetune

train–test
Pretrain–train Pretrain–test

□

142


