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Abstract

Due to the finite nature of any evidence used
in learning, systematic generalization is cru-
cially reliant on the presence of inductive bias
(Mitchell, 1980). We examine inductive biases
in different types of sequence-to-sequence neu-
ral network models, including CNNs, LSTMs
(with and without attention), and transformers,
inspired by Kharitonov and Chaabouni (2021).
Crucially, however, we consider a wider range
of possible inductive biases than their study
did. Investigating preferences for hierarchical
generalization compared to other types of gen-
eralization, we find that, contrary to their re-
sults, transformers display no preference for
hierarchical generalization, but instead prefer
a counting strategy. We also investigate biases
toward different types of compositionality. By
controlling for a confound in Kharitonov and
Chaabouni (2021)’s test set, we find much less
consistent generalization overall, and find that
a large number of responses were among types
other than the two types of generalization they
considered. Nevertheless, we observe consis-
tent compositional generalization to held out
combinations of primitives and functions on a
SCAN task (Lake and Baroni, 2017) by mod-
els of all types, but only when primitives occur
with other functions in the training set. The
pattern of success indicates generalization in
models of these types is highly sensitive to dis-
tributional properties of their training data.

1 Introduction

Learners, both human and machine, systemati-
cally generalize from finite sets of data, and it is
such generalization that makes them such effective
agents. Hupkes et al. (2023a,b) review the wealth
of work focused on understanding the efficacy of
different models for different types of generaliza-
tion in NLP tasks. As Mitchell (1980) notes, the
kind of systematic generalization we hope our mod-
els will show is only possible in the presence of
inductive bias, a preference for some generaliza-

tion over others. Inductive bias can derive from
inherent properties of a model or from previous
training. In this paper, we focus on the former.
While such inherent inductive bias can be read off
to a reasonable degree from the structure of a sym-
bolic model, it is much less easy to understand the
biases of a neural network architecture trained with
some variant of backpropagation.

Work that documents variation among models
in their ability to solve a certain NLP task can
be understood as illuminating inductive biases in
these models: ones that fare better are more biased
toward the correct solution (modulo training differ-
ences). Yet because of the complexity of most such
tasks, it is typically difficult to identify the spe-
cific preferences that lead to a model’s generaliza-
tion behavior. The recent work of Kharitonov and
Chaabouni (2021, henceforth KC) aims to avoid
this issue by focusing on carefully controlled induc-
tion problems, which we can think of as “model in-
duction organisms," where the range of solutions is
limited. We aim to build on KC’s important ground-
work, focusing on two of the tasks that they pro-
posed: Hierarchical-or-Linear and Composition-
or-Memorization. We show that the evaluation of
model behavior and assessment of inductive bias
with even apparently trivial tasks requires great
care. In particular, assessing inductive bias requires
the consideration of the widest possible range of
possible hypotheses, and failing to do so can lead
to over- or under-estimating inductive bias for a
certain type of hypothesis. In addition, we demon-
strate that the process of constructing such model
organism tasks must avoid the presence of quirks
that lead even appropriately biased models astray.

2 Experiment 1: Hierarchy vs. Counting

In experiment 1, we adapt KC’s hierarchical-
or-linear task to further explore the question of
whether any of a range of model architectures dis-
plays a bias toward hierarchical generalizations.
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2.1 Materials & methods

In this task, we train sequence-to-sequence models
on four example mappings of the form xdyxd → y,
where x,y ∈ {a,b} and d = 4. This describes the
following four pairs of inputs and outputs.

1. Input: aaaaaaaaa; Output: a
2. Input: aaaabaaaa; Output: b
3. Input: bbbbbbbbb; Output: b
4. Input: bbbbabbbb; Output: a

As KC observe, this training set is consistent with
multiple rules characterizing the mapping between
inputs to outputs. A hierarchical rule could assign
to the input a center-embedded structure that asso-
ciates matching symbols in the prefix and suffix, so
that the target output is the most deeply embedded
element, i.e., the middle symbol. A linear rule
instead identifies the output through its absolute
sequential position in the source, in this case the
fifth symbol. A third rule that KC do not consider
involves a counting strategy, where the output is
the symbol that occurs least frequently, but at least
once, in the source.

KC’s test set went beyond this training set to in-
clude inputs of the form xmyxm for m ∈ [2,6]. This
set of inputs allows the hierarchical and linear rules
to be distinguished: the former would yield output
y, while the latter would yield whatever element
occurs in fifth position. This set does not, however,
allow the counting rule to be distinguished from
the hierarchical rule, which would both predict
output y. As a result, our testing regime evalu-
ated models on outputs of the form xmyxn, where
m ≥ 0, n ≥ 0, and m+n = d, for d ∈ [2,6], which
includes strings like abbbb, babbb, bbabb, etc. To
see how this expanded test set distinguishes hier-
archical, linear, and counting rules, consider the
input abaaa. Both hierarchical and linear learners
would produce a (which occurs both as the middle
and the fifth symbol in this string). However, a
learner with a bias toward counting would produce
b, the least frequently occurring symbol in the input.
On the other hand, an example like aabaa would
lead hierarchical- and counting-biased learners to
produce b (the middle and least frequent symbol),
while linear learners would produce a (the fifth
symbol).

We consider two measures of performance. The
first we adopt from KC: “fraction of perfect agree-
ment” (FPA). We train and evaluate 100 models of
each architecture we consider with different ran-

Dataset Architecture
FPA

PrAg with counting (100 seeds/row)
Counting Linear Hierar.

KC H-or-L

LSTM (w/o attn.) 0.00 0.00 0.00

LSTM (w/ attn.) 0.00 0.00 0.00

CNN 0.00 0.84 0.00

Transformer 0.79 0.00 0.00

Mirror CFG

LSTM (w/o attn.) 0.00 – 0.00

LSTM (w/ attn.) 0.00 – 0.00

CNN 0.00 – 0.00

Transformer 1.00 – 0.00

Mirror CFG (brackets)

LSTM (w/o attn.) 0.00 – 0.00

LSTM (w/ attn.) 0.00 – 0.00

CNN 0.00 – 0.74

Transformer 0.70 – 0.00

Mirror PCFG

LSTM (w/o attn.) 0.00 – 0.00

LSTM (w/ attn.) 0.00 – 0.00

CNN 0.00 – 0.00

Transformer 0.95 – 0.00

Mirror PCFG (brackets)

LSTM (w/o attn.) 0.00 – 0.00

LSTM (w/ attn.) 0.00 – 0.00

CNN 0.00 – 0.55

Transformer 0.18 – 0.00
      0.00 0.25 0.50 0.75 1.00      

Table 1: Results of experiment 1 and follow-up experi-
ments. Overlapping points are jittered on the y-axis.

dom initial states. FPA is the proportion of these
models for which all outputs adhere to a particular
rule, whether hierarchical, linear, or counting.

Our second measure is the proportion of agree-
ment (PrAg) with a particular generalization for in-
dividual examples in our test set in a single model.
Note that for this task, no example can be entirely
unambiguous due to the simplicity of the training
language: if one response unambiguously signals
the counting generalization (e.g., baaaa → b), then
the other possible response, a, is compatible with
both the linear and hierarchical generalizations. For
this reason, for this initial task, we provide plots
showing only the PrAg with the counting general-
ization as compared to the hierarchical generaliza-
tion out of examples where the two would predict
different responses.

We train the same types of networks as KC:
CNNs, LSTMs (with and without attention), and
transformers, using the same hyperparameters; see
KC for network architecture and training details.1

2.2 Results

Results for experiment 1 are shown in the first set
of rows in table 1 (under KC H-or-L). Notably,
no model consistently generalizes in accordance
with the hierarchical rule on our test set. While we
observe, like KC, that CNNs display an inductive
bias toward linear generalizations, we find quite
different results for transformers: rather than a hier-
archical bias, it appears that they actually display a
bias toward counting or determination of majority

1Our data and code are available at github.com/ma-
wilson1234/FIND.
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(Merrill and Sabharwal, 2023), revealed by exam-
ining performance on a test set that distinguishes
these competing possibilities.

The PrAg results reflect this bias for CNNs and
Transformers. LSTMs show a moderate but not
overwhelming proportion of counting responses—
less than might have been expected from the results
of Weiss et al. (2018). However, the plots in the
table of necessity only present PrAg with the count-
ing generalization for examples whose possible
responses distinguish counting, on the one hand,
from hierarchical or linear strategies, on the other.
This means these plots alone do not reveal whether
LSTMs tend to produce more linear or hierarchical
responses in cases that could distinguish those two
possibilities. When we consider such examples, we
in fact find that LSTMs of both types produce more
responses consistent with the hierarchical strategy
compared to the linear strategy (50%ile for hierar.
responses for LSTMs w/o attn.: 0.875; LSTMs w/
attn.: 0.75), which echoes what KC found using
their description length-based measure.

2.3 Attempts to induce hierarchical
generalization

The results of experiment 1 indicate that no model
architecture exhibits a strong bias toward hierar-
chical generalizations when we evaluate behavior
against a wider space of hypotheses. However,
the success of various model architectures, espe-
cially transformers, on linguistic data raises the
question of whether a richer kind of training data
could be sufficient to induce such a bias. In partic-
ular, language is replete with rules and constraints
that make crucial reference to hierarchical struc-
ture. The fact that large pre-trained transformer
models have shown general success on tasks prob-
ing their sensitivity to such structure clearly shows
us that they are able to learn hierarchical generaliza-
tions (Mueller et al., 2022). Such large pre-trained
models receive input much richer than the four ex-
amples given to the models in experiment 1.

Rather than attempting to replicate this full rich-
ness, we ask instead whether three changes that
begin to approach the ways in which language is
richer than the original four-example training set
could suffice to induce hierarchical generalizations
as opposed to counting generalizations.

Variable length We enrich our training set, so
that it is now described by the following recursive
phrase structure rules:

• S → a S′ a | b S′ b

• S′ → a S′ a | b S′ b | a | b

We refer to this as the “Mirror CFG” set. We cap
the maximum length of an example to 11, and ran-
domly generate 2 examples for each length in {3, 5,
7, 9, 11} for each center symbol a or b.2 We also in-
clude two instances of each of these lengths where
all symbols are identical. For examples where sym-
bols were not all identical, we ensured that the
center symbol was also the least frequently occur-
ring symbol for each example. This creates a set
of 40 sentences. We train models using the same
hyperparameters as above, with all 40 examples
run as a single batch. Note that including differing
example lengths means that a linear hypothesis, in
which an element at a fixed position is output, is no
longer compatible with the training set.

Our test set consists of all examples of lengths
{3, 5, 7, 9, 11} for which the two possible responses
distinguish between the counting and hierarchical
strategies (i.e., for which the middle symbol and
the least frequent symbol are different). For the test
set, we ensured that the center symbol was always
the most frequently occurring symbol, which will
allow us to distinguish the hierarchical and linear
generalization strategies. Because of this property
of our test items, a model with low PrAg score for
counting will have a correspondingly high score
for the hierarchical hypothesis. Results are shown
in the second row of table 1. Both FPA and PrAg
measures indicate that all architectures show a bias
toward counting, transformers most strongly.

Statistical signature of recursion Next, we con-
sider a dataset generated by a probabilistic version
of the grammar above, where the probability of
recursion is 0.5, which we call the “Mirror PCFG”
set. This provides information not only about exam-
ples of different lengths, but also about the relative
frequencies of different lengths. The resulting geo-
metric distribution over example lengths is consis-
tent with generation by a recursive process: at each
point in generation the structure can either recurse
with probability with p or stop with probability
1− p, resulting in structures with k levels of recur-
sion being generated with probability pk(1− p). If
each step of recursion introduces a fixed amount of
material, this will yield a geometric distribution on
string lengths. We cap examples to at most length

2The 2 examples per length were randomly generated only
once, and reused for every architecture/seed.
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11, and otherwise randomly generate 10 examples
for each center symbol in {a, b}, and 10 examples
where all symbols are identical for each symbol in
{a, b} (40 total). We train the same way as before,
and use the same Mirror CFG test set.

Results are again shown in table 1. Interestingly,
the CNNs and LSTMs now show a bias toward hi-
erarchical generalization revealed by the PrAg mea-
sure, though none generalized consistently. Never-
theless, transformers remain strongly biased toward
the counting generalization.

Explicit Encoding of Structure Finally, we
modified the previous two datasets adding left and
right brackets to mark constituency (e.g., babab be-
comes [b[a[b]a]b]). We also added brackets to the
test set. As pointed out by an anonymous reviewer,
this means there is now a linear way of produc-
ing a “hierarchical” response—choose the symbol
with a preceding “[” and a following “]”. Our goal
was to see how far we needed to go to produce any
kind of generalization consistent with hierarchical
structure—even if such a generalization could also
be a linear generalization. In other words, if we
make the hierarchical generalization “easier,” will
the models be more likely to take the bait?

Table 1 shows that adding brackets changes the
behavior of the CNNs, which show a bias toward
the “hierarchical” generalization. We suspect this
sharp change is due to the fact that in the bracketed
dataset, the “hierarchical” generalization can now
be expressed in linear terms (as detailed above).
What we find more interesting is that in spite of
the availability of this simple strategy, no substan-
tial change in overall bias is seen for LSTMs or
transformers—the transformers remain biased to-
ward a counting strategy, and the LSTMs’ prefer-
ences do not change.3 For the constant-frequency
training set, the LSTMs retain their counting bias;
for the PCFG training set, the LSTMs retain their
hierarchical bias without much change. The trans-
formers in both cases retain a bias toward the count-
ing generalization, though it is somewhat less pro-
nounced with the addition of brackets.

2.4 Discussion

Experiment 1 showed that despite KC’s claims,
transformers do not have a bias toward hierarchical
generalizations. When we considered a richer set

3See also McCoy et al. (2020) for a similar lack of change
in LSTM performance in the face of explicit evidence about
hierarchical structure.

of possible generalizations, we found that trans-
formers favor counting generalizations over hier-
archical generalizations when both are compatible
with the input. This shows the importance of con-
sidering ambiguities in the hypothesis space when
discussing inductive biases.

This result led us to see whether we could enrich
the training set to induce a hierarchical bias. We
considered two simple changes that could make
the simple training set more like human language:
first, we considered inputs of different lengths de-
scribed by a CFG. Second, we considered inputs of
different lengths generated by a recursive PCFG so
that shorter strings were more frequent than longer
strings. Finally, we considered both of these manip-
ulations with the addition of brackets in the input
that marked the underlying hierarchical structure.

Two manipulations made a difference. First,
going from a uniform distribution over example
lengths to a geometric distribution of lengths pro-
duced by a PCFG reversed the bias of the CNNs
and LSTMs from counting to hierarchical, with the
change being more noticeable for LSTMs. Second,
adding brackets made CNNs strongly biased to-
ward apparently hierarchical responses, but had rel-
atively little effect on other model types.4 Most in-
terestingly, despite the high success of transformer-
based models on linguistic tasks that require refer-
ence to hierarchical structure, we found that none
of our manipulations sufficed to induce a hierarchi-
cal bias in these models—they remained stubbornly
in favor of the counting generalization.

3 Experiment 2: Compositionality

In experiment 2, we examine the question of
whether different model architectures display a bias
toward compositional generalizations of various
types. By “compositional,” we mean a process
whose output is a function of its individual input
symbols and their mode of combination (Szabó,
2022). This question has been explored using a
variety of tasks and datasets, e.g., SCAN (Lake and
Baroni, 2017) and COGS (Kim and Linzen, 2020a),
which both explore the problem of assigning struc-
tured semantic interpretations to English sentences.
While offering useful measures of compositional
generalization, the complexity of these datasets
makes it difficult to assess the propensity for com-

4As noted above, the presence of the brackets gives rise a
non-hierarchical alternative, which the CNN may be exploit-
ing.
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positional generalization in its simplest guise. Here,
we focus on a distilled task probing compositional
generalization proposed by KC, which they call
Composition-or-Memorization. This task targets
compositional generalization in a way that is not
specific to its role in natural language.

3.1 Materials & methods
In KC’s Composition-or-Memorization task,
models are trained on two types of examples. In
one type, input symbols (which we represent as
natural numbers) are presented in isolation in the
input and are mapped to corresponding output sym-
bols (which we represent as lower case letters) in
a one-to-one way. Thus an input symbol a would
be mapped to the corresponding output symbol A
(which we encode as the corresponding upper case
letters). The examples are “non-compositional ex-
amples”. For a second type of input, there is a
modifier, F , which precedes one of these input
symbols. Under the intended interpretation of our
dataset, F is interpreted like “thrice,” so that input
F a is mapped to a three copies of the correspond-
ing output symbol, namely A A A (“compositional
examples”). For experiment 2, we consider the
same model architectures as in experiment 1, and
train 100 random seeds/architecture.

KC vary the number of input symbols that are
presented in compositional form in the training
data, and consider how models perform on held-
out compositional examples. They define M as
the number of distinct compositional examples
in the training set, and N as the number of dis-
tinct input (and output) symbols that occur in non-
compositional examples in the training set (in all
cases, such symbols are a superset of the ones that
occur in compositional examples). They consider
N = 40 with M ∈ {6,24,36}; that is, they train
learners on all 40 non-compositional examples and
M compositional examples.5 Their test set con-
sists of all unobserved compositional examples
within the 40 symbol range. For example, when
M = 36, their test set consists of the four inputs
F x37, F x38, F x39, F x40; when M = 24, their test
set consists of sixteen inputs, and so on.

A problem with this approach is that it makes

5Of course, we have presented this task as mapping low-
ercase letters to uppercase letters, and English would only
provide a maximum of 26 possible input-output pairs for this
task—fewer than the 40 described. In practice, we used the
natural numbers as input symbols, and the natural numbers
prefixed with O as output symbols, to avoid this complication.
We use the alphabetic notation for presentational convenience.

it easier for a model to show perfect agreement
with a generalization as the number of training ex-
amples increases, because this corresponds to the
size of the test set decreasing. In other words, a
model trained with M = 36 need only consistently
generalize on 4 examples to be counted as per-
fectly agreeing with a particular generalization. A
model trained with M = 24 would instead need to
consistently generalize on 16 examples, and so on,
making perfect agreement more difficult to achieve.

To address this, we increase N to 100. We still
train on M ∈ {6,24,36} and all non-compositional
examples. However, we test only on compositional
examples from F xi for i ∈ [50,100], i.e., composi-
tional examples that did not occur for any value of
M. This means that the size of the test set remains
identical for all M, and eliminates the confound
between M and the size of the test set.

3.2 Results

KC evaluate model performance by considering
two possible hypotheses. “Composition” for them
means that a model generalizes such that F a →
A A A. In contrast, they interpret “memorization”
to indicate that a model produces the single sym-
bol output associated with the non-modifier in-
put symbol, i.e., F a → A. However, this is cer-
tainly not the full space of possible hypotheses, and
narrowly restricts what constitutes compositional
behavior. For instance, suppose that the model
learns that F means “produce any two identical
symbols, followed by the symbol a maps to in non-
compositional examples” (i.e, F a = B B A, with
B an output symbol other than the one associated
with input a). This is also a kind of compositional
generalization: the output related to the complex in-
put is a function of its individual input symbols and
their mode of combination (Szabó, 2022). In this
case, JFK = λx.B B x and JaK = A with concate-
nation associated with function application. Fol-
lowing this intuition, we consider as compositional
any mapping in which the input a is associated
with at least one occurrence of A in the output,
and which includes at least two other symbols in
output, possibly, but not necessarily identical to
A. Many other generalizations are possible under
this interpretation of compositionality, even if they
don’t correspond to the “thrice" interpretation, i.e.,
JFK = λx.x x x. Determining that models fail to
generalize according to one compositional interpre-
tation does not preclude the possibility that they
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have generalized compositionally according to an-
other.

For this reason, we classify responses according
to a considerably wider range of possible templates.
In particular, we consider all ways in which sym-
bols in the output might be identical or differ for
numbers of output symbols from 1–3.6 We define
A as the output symbol corresponding to input sym-
bol a, and B, C, D as symbols other than A that do
not correspond to a. For instance, the generaliza-
tion F a = B B A means the model produced two
(identical) non-A symbols, followed by the symbol
corresponding to a; while F a = B C A means that
the model produced two (distinct) non-A symbols,
followed by the symbol corresponding to a. Non-
A symbols B, C, and D identify identical output
symbols within a response, but may differ across
responses from the same model.7 Both of these re-
sponses would, we argue, qualify as compositional
in a broader sense, even if they don’t instantiate the
“thrice” interpretation: the output is a function of
both input symbols, with a being mapped to A, and
F requiring an output sequence of length 3.

We report the same measures as for experiment
1: the fraction of perfect agreement (Table 2), and
the proportion of productions matching a particular
generalization (Figure 1). Due to the high num-
ber (22) of generalizations we consider, for FPA
we only report non-zero results. Only CNNs ever
responded completely consistently, and even then,
only a very small number of seeds did so (3 of 300
models). Instead, the vast majority of models pro-
duced responses consistent with a variety of answer

6Models sometimes produced longer responses (up to the
maximum length of 200 symbols). We present results for
responses up to at most 3 symbols for perspicuity. In prac-
tice, longer responses were entirely absent from CNNs (0%
of responses), and almost entirely absent from LSTMs w/o
attention (M = 6: 0.04%, M = 24: 0.16%, M = 36: 0%) and
LSTMs w/attention (M = 6: 0.04%, M = 24: 0.08%, M = 36:
0.04%). Consequently, our analysis for these networks is es-
sentially exhaustive. For transformers, longer responses were
more common, but still a minority, with differences depending
on M: longer responses accounted for 29.2% of responses for
M = 6, 9.2% of responses for M = 24, and 2.5% of responses
for M = 36. Of these, for M = 6 the most common lengths
were 200 (the maximum length, 20.9% of responses) and 4
(2.86%). For M = 24, 1.3% of responses were length-200 and
7.06% were length-4; and for M = 36, 0.46% of responses
were length-200 and 1.86% were length-4.

7In the computation of the FPA measure, we did not require
that a model make use of a consistent choice of symbols. That
is, in order to count as consistently F a = B B A, the model’s
choice of B in the output could vary by response, but was
required to be distinct from A. Since the PrAg measure was
calculated at the level of the individual trial, no consistent
choice of non-A symbols was required.

Architecture M Generalization FPA

CNN
6 F a = B B B 0.02

24 F a = A A A 0.01

Table 2: FPA results from experiment 2. Architectures,
M, and generalizations not shown have FPA = 0.00.
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Figure 1: Distributions of PrAg with generalizations of
up to 3 symbols in experiment 2. Within each row of
plots, generalizations are omitted from the y-axis if no
model of that architecture produced any response fitting
that template for any M.

types. Making the size of the test set consistent for
all M appears to have made it harder for models to
consistently generalize, as expected.

The distribution of response proportions (figure
1) reveals a more nuanced picture of model pref-
erences. Both types of LSTMs have a preference
for non-compositional F a = B B B responses for
M = 6, with KC’s memorization F a= A responses
also among the more common. As M increases,
however, the proportion of the (compositional)
F a = A B B responses increases, with LSTMs
with attention appearing to have equal preference
for F a= B B B and the compositional F a= A B B
when M = 36. CNNs, in contrast, display a wider
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range of common response types for smaller M, but
as M increases, the compositional “thrice" response
F a = A A A becomes the modal response. Finally,
transformers with M = 6 show equal preference
for non-compositional F a = A and F a = B, but
with the preference for F a=B being replaced with
a preference for the similarly non-compositional
F a = B B B for M ∈ {24,36}.

Non-A symbols for responses of length > 1
overwhelmingly were drawn from the symbols
seen with compositional training examples, with
the mean proportion of these symbols in out-
puts with non-A symbols uniformly being between
[0.976,0.999]. However, we did not observe any
tendency for particular models to use the same non-
A symbols across responses.

In spite of our use of the PrAg measure as op-
posed to KC’s minimal description length-based
measure, our results are generally compatible with
theirs, especially when we limit our focus to the
two hypotheses they considered, namely F a = A
(their “memorization”) and F a = A A A (their
“composition”). For LSTMs, KC found a general
preference for memorization over composition, ex-
cept for LSTMs with attention with M = 36, where
the preference is (barely) reversed. In figure 1, we
similarly see that the proportion of F a = A re-
sponses for LSTMs with and without attention is
consistently higher than that of the F a = A A A
responses. Our more fine grained analysis reveals
however that LSTMs show even stronger prefer-
ences for F a = B B B or F a = A B B than either
of the hypotheses KC considered. As noted above,
this latter rule is plausibly interpreted as composi-
tional, as its output does not include a reflection
of the input symbol a. This suggests that LSTMs
do not show such a uniform dispreference for com-
positional generalization. For CNNs, KC report
a strong preference for composition over memo-
rization for larger values of M, and our Figure 1
reveals the same preference. We note, however,
that many of the responses we observed fell into
the F a = B B B, F a = A B B and F a = A B A
categories, of which the former is plausibly non-
compositional. Finally, for transformers, KC report
a uniform preference for memorization over com-
position, which we also see in figure 1. Again,
Figure 1 reveals that other preferences are often
stronger than either of these. Transformers, for
M = 6, show a nearly equal preference for F a = B
as compared to KC’s memorization hypothesis, and

for larger values of M, F a = B B B is compara-
bly frequent to memorization. Nonetheless, these
are both plausibly considered non-compositional
responses, once again because the output lacks a
symbol corresponding to the input a.

To take stock, we see that expanding the space
of hypotheses we consider reveals that learners are
less likely to generalize consistently. Further, while
CNNs retained a bias for F a = A A A responses
with larger Ms, LSTMs and transformers behave
considerably differently from what KC reported.

3.3 Inducing compositional generalization

Why are the networks we studied in our previous
experiment resistant to systematic compositional
generalization? This seems surprising in the face
of apparent compositionality in state of the art lan-
guage models, which are constructed from some of
the same architectures we have explored.

One difference between our experiments and
such models lies in the training dataset. Our dataset
is extremely simple, consisting of single symbol
input-output mappings and one compositional op-
erator. It is possible that a model trained on a rich
variety of structures, each showing the kind of com-
binatorics associated with compositionality, could
evince more compositional generalization.8

To explore this possibility, we conducted an
evaluation of the SCAN dataset (Lake and Baroni,
2018). SCAN consists of a finite set of English-
like inputs that represent intended movements of a
robot, and outputs are step-by-step instructions for
achieving these movements. SCAN includes a fair
number of different predicates that can combine in
different ways. This permits a training set to exhibit
broad evidence for compositional combination, and
allows us to test for systematic compositional gen-
eralization. We experiment with two splits of the
SCAN dataset. The first is the addprim_jump split
of Lake and Baroni (2018). In this split, the train-
ing set includes the full range of possible sentences
from SCAN, except for those involving composi-
tional uses of the primitive jump. The test set con-
sists of all compositional sentences containing this
primitive. This split poses the question of whether
a model learns to generalize the use of jump to all
positions in which other simple predicates occur.

Our second split, addtwicethrice_jump, com-
prises a training set that includes all sentences with-
out jump as well as sentences in which jump is

8See Patel et al. (2022) for a related proposal.
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Split Architecture Proportion correct (10 seeds/row)

addprim_jump

LSTM (w/o attn.)

LSTM (w/ attn.)

CNN

Transformer

addtwicethrice_jump

LSTM (w/o attn.)

LSTM (w/ attn.)

CNN

Transformer
      0.00 0.25 0.50 0.75 1.00      

addtwicethrice_jump subset Architecture Proportion correct (10 seeds/row)

jump twice|thrice

LSTM (w/o attn.)

LSTM (w/ attn.)

CNN

Transformer

jump . . . twice|thrice

LSTM (w/o attn.)

LSTM (w/ attn.)

CNN

Transformer
      0.00 0.25 0.50 0.75 1.00      

Table 3: Results of SCAN experiments. Overlapping
points are jittered on the y-axis.

not under the scope of twice or thrice, operators
whose outputs require repeating the sequence of
instructions corresponding to the trajectory to their
left 2 or 3 times. The test set contains all inputs
where jump occurs under the scope of twice or
thrice. This means that, unlike the addprim_-
jump split, jump does occurs in the training set in
the presence of other compositional operators, just
not with twice or thrice. This avoids the poten-
tial problem that a model might learn jump has the
distinctive property of only appearing by itself.

In their appendix D, KC report results from the
addprim_jump split. Because we were unable to
determine all details of their training regimen from
their description, we first repeated their experiment
of the addprim_jump split. For LSTMs and trans-
formers, we use the architectures they reported.
For CNNs, we use models with 5 encoder layers,
1 decoder layer, and a kernel size of 8, the best
performing of their CNN models. We trained 10
random initializations per architecture on each split,
using 1000 batches sampled with replacement for
500 epochs, for a total of 500,000 weight updates.
Batch sizes matched KC’s (LSTMs, CNNs: 16;
transformers: 256). We used the same procedure
for our addtwicethrice_jump split. Accuracy on
the training set was uniformly high: the model with
the lowest performance achieved 98.2% accuracy
on the training set, with most achieving 100%.

Results from these experiments appear in the
upper half of table 3. While we did not replicate
KC’s results on the addprim_jump split exactly, we
similarly find that on this split, only CNNs show
any sort of generalization, though even their per-
formance is quite low. However, the picture is
quite different for the addtwicethrice_jump split,

where all models generalize correctly to most ex-
amples. It seems that showing jump in a range of
compositional contexts helped the models general-
ize to this predicate’s occurrences in other compo-
sitional contexts, compared to when we show the
models jump in only non-compositional contexts.

To investigate this difference further, we
consider performance on two subsets of the
addtwicethrice_jump test set: (1) a subset com-
prising all examples where jump occurs immedi-
ately preceding twice or thrice in the input, and
(2) the complement of set (1).9 On the face of it,
test set (1) seems simpler and might yield better
performance, as its examples involve less depth of
embedding. However, the results (lower half of
table 3) reveal the opposite pattern: performance
tends to be worse on examples where jump occurs
immediately adjacent to twice and thrice.

We hypothesize this is due to models’ depen-
dence on (irrelevant) surface properties of the input
in the training set: in the addtwicethrice_jump
split, the bigrams jump twice and jump thrice
never occur—they have a probability of 0. How-
ever, all other bigrams permitted in SCAN occur in
the training set of this split. So, even though this
training set is sufficient to induce compositional
generalization, the presence of non-occurring bi-
grams yields less accurate performance.10 The
data augmentation reported in Andreas (2020),
which also reduces non-occurring bigrams in test
items, has a similarly salutary impact on general-
ization. While speculative, this could explain the
sharp distinction between the addprim_jump and
addtwicethrice_jump splits, since in the former,
no bigram including jump occurs in the training set,
since it occurs only in isolation. A similar line of
reasoning could be behind the poor compositional
performance we saw in Section 3.2.

4 Related Work in Architectural
Inductive Bias

Here, we briefly discuss work on inductive bias in
neural network models that focuses particularly on
those aspects of inductive bias that are traceable to

9Note that in set (2), jump is still under the scope of twice
or thrice in each example, just not adjacent to either, as in
jump opposite right twice.

10We do not consider bigrams privileged in this regard; this
is just the simplest way of characterizing the divide given our
training datasets. We might expect a more nuanced picture
if we take into account n-grams with n > 2, though local
relationships will need to play a more important role in order
to explain the contrasts reported in the lower part of Table 3.
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network architecture; see Hupkes et al. (2023a,b)
for a more thorough review.

In some cases, inductive biases have been inten-
tionally built in to particular architectures. The pa-
rameter sharing and filter structure of CNNs leads
directly to a bias for translation invariance and fea-
ture locality, which are useful in a variety of tasks
(LeCun and Bengio, 1998; Mitchell, 2017). The
inclusion of gates with multiplicative interactions
in LSTMs (Hochreiter and Schmidhuber, 1997)
explicitly addressed deficiencies of RNNs in mod-
eling the long-distance dependencies found in nat-
ural language (Elman, 1990). Weiss et al. (2018)
discuss the fact that unbounded growth in LSTMs’
hidden state vectors leads to a counting bias.

None of these biases relate explicitly to the ques-
tions of structural or compositional generalization
that we have explored in this paper. Research
on language-related biases has explored structural
generalization. White and Cotterell (2021) train
LSTMs and Transformers on synthetic corpora that
exhibit a range of word order patterns, some at-
tested in natural languages, others not. LSTMs, un-
like Transformers, showed a preference for certain
word order patterns over others, but neither showed
a bias toward attested natural language patterns.
McCoy et al. (2020) study the ability of differ-
ent architectures to generalize structurally-defined
mappings between sentences. LSTMs, RNNs, and
GRUs with different attention mechanisms failed to
generalize structurally, preferring linear generaliza-
tions. Petty and Frank (2021) find an even more ex-
treme failure for Transformer models. McCoy et al.
only find a bias toward structural generalization
in models with explicitly hierarchically-structured
recurrence (Chen et al., 2017).

To detect bias toward compositionality, re-
searchers have explored tasks requiring the map-
ping of a natural language input to an interpretation
of some sort, including SCAN (Lake and Baroni,
2017), PCFG SET (Hupkes et al., 2020), COGS
(Kim and Linzen, 2020b), and SLOG (Li et al.,
2023). Success on these datasets is informative
about the kinds of generalizations that networks
are capable of. Yet their complexity, compared
to the tasks we explored, can make it difficult to
identify reasons for success or failure. Indeed, mod-
ifications to non-crucial properties of a dataset can
yield quite different results (Wu et al., 2023). Of
course, considering complex cases is important, as
we have indeed seen in Section 3.3 above. How-

ever, we see the study of simple tasks as providing
complementary understanding.

Recently, it has been found that experiments aim-
ing to identify inductive biases must also carefully
control for training regimen. For example, training
without early stopping can lead to qualitatively dif-
ferent patterns of generalization through “grokking”
(Csordás et al., 2021; Power et al., 2022). It will be
important to understand the range of applicability
of grokking and the like, as well as the challenge
such results pose for assessing inductive bias.

5 Conclusion

A finite set of data may be consistent with an in-
finite number of possible generalizations (Hume,
1739). It is precisely for this reason that studies
of inductive bias must proceed with great care to
avoid adducing support for the existence of certain
kinds of inductive biases prematurely.

Taking this idea to heart, we found that the KC’s
claim that transformers tout court display hierar-
chical bias to be premature. Instead, we found their
behavior to be most consistent with a counting-
based strategy.

Similarly, we found that considering a more con-
sistent test set when assessing compositionality led
us to find less support for consistent generalization
than KC. Though the pattern of results we found
was consistent with theirs when limiting our fo-
cus to the hypotheses they considered, we found
that expanding the range of possible hypotheses
revealed a more nuanced picture.

Nevertheless, we found there is hope for induc-
ing compositional generalization: when we ensure
that distributional properties of the training set are
more like the those in the test set, compositional
generalization appears easily achieved.

This suggests low performance on a particular
task may be due to irrelevant factors, like surface-
level distributional properties of a training dataset.
It may not be that a particular model cannot achieve
high levels of success on certain tasks due to the in-
herent complexity of whatever pattern of behavior
the task aims to measure, but because it has fixated
on some accidental, irrelevant generalization in its
training data that impedes its recognizing the cor-
rect generalization. Alleviating models’ propensity
toward fixation on such irrelevancies, perhaps by
altering their training data in systematic ways (as
in our SCAN experiments), may prove useful in
improving their performance in various domains.
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Limitations

The small scale of the datasets used here to train
the networks represent both an advantage and lim-
itation. While this scale limits information given
to the model during training, the unusually small
dataset can lead the model to detect and induce
unusual distributional properties as relevant to the
task at hand. Indeed, we have seen an instance
of this problem in experiment 2. Though there
is no magic bullet for avoiding this issue we sus-
pect, it is one that future work that seeks to develop
“model induction organisms" will need to take into
account.

Experiments reported here all made use of the
same procedure for parameter optimization, namely
Adam (Kingma and Ba, 2014), and therefore dif-
ferences observed between the models must be due
to their structure. However, it is possible that dif-
ferent optimization methods may lead to different
inductive biases for the same network architectures.
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