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Abstract
Compositional generalisation (CG), in NLP
and in machine learning more generally, has
been assessed mostly using artificial datasets.
It is important to develop benchmarks to assess
CG also in real-world natural language tasks
in order to understand the abilities and limita-
tions of systems deployed in the wild. To this
end, our GenBench Collaborative Benchmark-
ing Task submission utilises the distribution-
based compositionality assessment (DBCA)
framework to split the Europarl translation cor-
pus into a training and a test set in such a
way that the test set requires compositional
generalisation capacity. Specifically, the train-
ing and test sets have divergent distributions
of dependency relations, testing NMT sys-
tems’ capability of translating dependencies
that they have not been trained on. This is
a fully-automated procedure to create natural
language compositionality benchmarks, mak-
ing it simple and inexpensive to apply it fur-
ther to other datasets and languages. The code
and data for the experiments is available at
https://github.com/aalto-speech/dbca.

1 Introduction

An often-used definition, by Partee (1995), of the
concept of compositionality of language is that the
“meaning of a whole is a function of the meanings
of the parts and of the way they are syntactically
combined”. A more stringent definition adds that
the composition of meaning is systematic: each
part’s meaning is the same in all the different se-
quences it appears in, the syntactical rules work the
same way for different parts, and the same function
determines meaning for different wholes (Fodor
and Pylyshyn, 1988; Pavlick, 2022, 2023). Compo-
sitionality enables generalising to new meanings by
combining familiar parts, and to understand each
other language users need to employ common sys-
tematic rules.

A number of benchmarks have been developed
to assess systematic generalisation from different

perspectives and in different NLP tasks. Many of
these consist of artificial data, such as the popular
SCAN (Lake and Baroni, 2018) and COGS (Kim
and Linzen, 2020) benchmarks. These artificial
datasets are typically constructed to be highly sys-
tematic, to include straightforward syntactical rules.
Natural languages, however, have varied irregular-
ities, idiomatic expressions, and other exceptions
to the rules, which make composition of meaning
much more complicated than in the case of the
highly-regular artificial datasets. It’s therefore im-
portant to assess whether NLP systems are able to
generalise systematically also in the case of natural
language, where systematic rules are obscured by
exceptions (Dankers et al., 2022).

Works that aim to assess systematic generalisa-
tion in natural language tasks often still synthesise
some part of the dataset in order to create test exam-
ples where systematic generalisation is needed (for
example Li et al. (2021) and Dankers et al. (2022)).
This enables precise testing of specific systematic
rules, but comprehensive test suites that would as-
sess the use of, for example, numerous syntactical
rules can be arduous to synthesise. To sidestep the
need to synthesise examples, a natural language
dataset can be partitioned into training and test sets
in such a way that the test set includes examples
whose processing requires some systematic gen-
eralisation ability. A framework for partitioning
data in this way was developed by Keysers et al.
(2020), called distribution-based compositionality
assessment, or DBCA for short. The main idea
of DBCA is to control the distributions of atoms
(primitive elements) and compounds (combinations
of the atoms) to get approximately the same atom
distributions but divergent compound distributions
in the training and test sets.

We utilise the DBCA framework in our Gen-
Bench Collaborative Benchmarking Task submis-
sion, which consists of train-test splits of the Eu-
roparl parallel corpus with divergent distributions
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Sentence Atoms Compounds

“Our vigilance is not partisan.” nsubj, poss, our,
vigilance, partisan

(vigilance, poss, our),
(partisan, nsubj, vigilance)

“We shall now hear Mr Wurtz speaking
against this request.”

hear, aux, shall, speak,
nsubj, wurtz, hear, ccomp,
speak

(hear, aux, shall), (speak,
nsubj, wurtz), (hear, ccomp,
speak)

“This seems to me to be a workable so-
lution.”

solution, amod, workable,
seem, xcomp, solution

(solution, amod, workable),
(seem, xcomp, solution)

Table 1: Examples of what we call “atoms” and “compounds”. Atoms are the lemmas and dependency relations,
and compounds the three-element tuples of the head lemma, the relation, and the dependant lemma.

of dependency relations. These data splits can
be used to assess the ability of NMT systems to
translate novel dependency relations. In the ter-
minology of the DBCA framework, we define the
atoms as lemmas and dependency relations, and
the compounds as the three-element tuples of the
head lemma, the dependant lemma, and the re-
lation between them (see Table 1 for examples).
This method to create compositional generalisa-
tion benchmarks does not require manual test suite
construction, making it easy to extend it to other
datasets and other languages.

2 Related work

2.1 Compositional generalisation in machine
translation

Compositional generalisation has been assessed in
machine translation in a few works in recent years.
Raunak et al. (2019) partitioned a dataset into short
training sentences and longer test sentences in or-
der to assess generalisation from short sentences to
longer ones, a subtype of compositional generalisa-
tion sometimes called productivity (Hupkes et al.,
2020). Li et al. (2021) synthesised sentences for
the test set with novel constituents, such as noun
and verb phrases to create the CoGnition bench-
mark. Dankers et al. (2022) assessed three aspects
of compositionality in NMT, which they called sys-
tematicity, the ability to combine familiar parts into
novel combinations; substitutivity, the consistency
of translations when a word is replaced with its
synonym; and over-generalisation, the tendency to
follow a compositional rule even when the case is
actually an exception to the rule.

Perhaps the most similar benchmark to ours is
ReaCT by Zheng and Lapata (2023). In ReaCT,
the IWSLT 2014 German-English corpus is used
as the training set, and a test set is created by se-
lecting sentences that have a high compositionality

degree from the WMT 2014 corpus. The compo-
sitionality degree of a test set sentence is defined
as the number of training set n-grams needed to
create the sentence, divided by the length of the
sentence. The reasoning is that a test set sentence
that includes long n-grams from the training set can
be composed of fewer n-grams, having a low com-
positionality degree, whereas if we need to back
off to shorter n-grams to create a sentence, the com-
positionality degree is high. This train-test data
split has similar general characteristics as our data
splits: it is completely natural data (no synthetic
sentences) partitioned so that the test set has novel
combinations of familiar primitives. In contrast to
our work, the primitives in this scheme can be se-
quences of multiple words, whereas we assess the
ability to translate novel combinations of just two
words and their dependency relation. We also pay
attention to the relative frequency distributions of
the primitives and the combinations, following the
DBCA framework, whereas in ReaCT the compo-
sitionality score is a function of the unique n-gram
types.

In addition to word-based compositionality, mor-
phological compositional generalisation in transla-
tion has been assessed by Meyer and Buys (2023)
and Moisio et al. (2023). In these works, the atoms
are defined as the morphemes (or surface-level
morphs), and compounds as the inflected word
forms that consist of multiple morphemes. The
test set therefore includes novel combinations of
familiar morphemes, assessing NMT systems’ ca-
pacity for morphological generalisation.

2.2 Other related work

Aside from NMT tasks, Shaw et al. (2021) utilised
the DBCA framework to assess compositional gen-
eralisation in a natural language semantic parsing
task. Søgaard et al. (2021) provide a more general
discussion and review of non-random training-test
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Figure 1: The categorisation of our benchmark in the taxonomy by Hupkes et al. (2023).

data splitting.
Besides creating artificial train-test splits, an-

other option to test systematic generalisation in
NLP systems, without the need for manual test
suite design, is to leverage the fact that systematic-
ity can be seen as an inherent symmetry in the data
(Manino et al., 2022), which has also been utilised
to generate new training examples (Akyurek and
Andreas, 2023).

A study not on compositional generalisation, but
in other ways related to our work, is that by McCoy
et al. (2023), who evaluated the degree of novelty of
the text generated by language models, using both
n-grams and dependency relations. They found
that language-model-generated text tends to be less
novel than the baseline of human-generated text
in local structure (small n-grams), but more novel
than the human baseline in more global structure
(large n-grams). This finding provides a good back-
drop for our research question of how NMT models
handle a test set that includes novel local structure,
such as dependency relations.

2.3 The taxonomy

The eval card in Figure 1 shows how our bench-
mark can be categorised in the taxonomy of Hupkes
et al. (2023). The motivation is primarily intrinsic:
it is important to assess if translation models learn
the systematic rules that characterise natural lan-
guage, in order to get some understanding how the
models work. Another motivation is practical; test-
ing compositional generalisation is important for
the practical reason of knowing how robustly the
models generalise to novel dependency relations.
The type of the generalisation is compositional, and

the shift type is covariate, since the input data distri-
bution changes but the task remains otherwise the
same. Shift source is partitioned natural data, since
we do not use any artificial data, but the train-test
split is artificial. Lastly, the shift locus in our exper-
iments is train-test, but the method and benchmark
could also possibly be used as a finetune train-test
benchmark, by finetuning a pretrained model on
the training set.

3 Europarl data splits

3.1 Data partitioning process

We use the Europarl corpus (Koehn, 2005) of tran-
scribed European parliament proceedings, with the
multilingual sentence alignments from the OPUS
corpus (Tiedemann, 2012). We chose the Europarl
corpus because of the good quality of the transla-
tions and because it includes parallel sentences for
multiple languages. For our benchmark submis-
sion, we select English as the source language, and
as the target languages we use four languages that
represent different (branches of) language families:
German, French, Greek, and Finnish.

As pre-processing, duplicate sentences are re-
moved and maximum sentence length is restricted
to 30 words before tokenisation. We take a ran-
dom subsample of 300k sentences from which we
extract the data splits. This relatively small size
was chosen for convenient use as well as to al-
low comparison with previously published similar
benchmarks: CoGnition Li et al. (2021) and ReaCT
Zheng and Lapata (2023), which are similar in size.

The dependency parsing for the English source
corpus is done using the LAL-parser (Mrini et al.,
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2020). To calculate the divergences in data splitting,
we only consider the English side. Therefore, the
benchmark primarily assesses the encoder’s capac-
ity to represent novel syntactic relations. However,
presumably a high compound divergence of the
source side sentences means that the target side sen-
tences also include an increased number of novel
syntactical, or possibly morphological, structures,
assessing at the same time the decoder’s capacity
to generate these. We define the atoms as the lem-
mas and dependency relations and compounds as
the three-element-tuples of the dependant lemma,
the head lemma and their relation. To make the
number of atoms manageable, we exclude from the
distribution calculations lemmas that appear either
very frequently (the 200 most frequent lemmas,
which each appear from 387k times (most frequent
word “the”) to 3576 times (200th most frequent
word “then”)), or fewer than 10 times in total in
the corpus. After this filtering, about 8000 lemmas
remain in the atom set, which includes also the
dependency relation tags.

Following Keysers et al. (2020), we calculate
a weight for each compound so that those sub-
compounds that appear predominantly only in one
super-compound get lower weight than those ap-
pearing in many different super-compounds. In
our case, this means that if a (dependant lemma,
relation type) pair occurs for example 8/10 times
with just one head lemma, this pair gets a score of
1− (8/10) = 0.2. The idea is somewhat similar to
that behind the Kneser-Ney smoothing (Kneser and
Ney, 1995), where the number of different bigrams
a word appears in correlates with the unigram back-
off probability. We filter out compounds that get
a weight less than 0.5, after which there are about
8000 atom types and 400k compound types whose
distributions are controlled in the data splits.

Atom and compound divergences are calculated
similarly to Keysers et al. (2020): divergence D be-
tween distributions P and Q is calculated using the
Chernoff coefficient Cα(P∥Q) =

∑
k p

α
k q

1−α
k ∈

[0, 1] (Chung et al., 1989), with α = 0.5 for the
atom divergence and α = 0.1 for the compound
divergence. Keysers et al. (2020) notes about the α
values that α = 0.5 for atom divergence “reflects
the desire of making the atom distributions in train
and test as similar as possible”, and α = 0.1 for
compound divergence “reflects the intuition that
it is more important whether a certain compound
occurs in P (train) than whether the probabilities

in P (train) and Q (test) match exactly”. The di-
vergence is the complement of the Chernoff co-
efficient, since the Chernoff coefficient measures
similarity between two vectors. The atom and com-
pound divergences for training set V and test set
W are:

DA(V ∥W ) = 1 − C0.5(FA(V ) ∥FA(W ))

DC(V ∥W ) = 1 − C0.1(FC(V ) ∥FC(W )).

where FA is the atom distribution and FC is the
compound distribution of a data set.

Splitting the data is done using a greedy algo-
rithm similar to that by Moisio et al. (2023). This
algorithm places one sentence at each iteration into
either the training or test set, such that the atom
and compound divergences are as close to the re-
spective desired values as possible. Specifically, at
each iteration we try to maximise a score that is
the negated linear combination of the differences
between the desired and actual divergence values:

score(V,W ) = −|c−DC(V ∥W )| − DA(V ∥W ),

where c is the desired compound divergence, and
the desired atom divergence is 0 (minimum).

3.2 Comparison to random splits and
previous benchmarks

Table 2 lists the sizes, and atom and compound di-
vergences (DA and DC) for the Europarl data splits,
as well as for random splits, and for the CoGnition
and ReaCT benchmarks for comparison. All the
divergences are calculated after similar filtering of
the atoms and compounds as described for the Eu-
roparl splits above. From the divergences of the
random train-test splits we can notice that the size
of the test set correlates inversely with both atom
and compound distributions; when the training and
test sets are closer in size, the distributions are also
naturally closer to each other.

From the table, we can also see that CoGnition
includes relatively short sentences and, importantly,
a relatively small number of unique lemmas. Cre-
ating CoGnition, Li et al. (2021) removed some of
the complexity of natural language, such as poly-
semous words, and deliberately kept the vocabu-
lary small and excluded all low-frequency words.
This follows the design choices made by Keysers
et al. (2020) of aiming to have only few meaningful
atoms from which a large number of compounds
can be created, which was motivated by practical
concerns: this way it is easier to have a large range
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# sentences # words # unique lemmas DA DC

train test train test

Europarl random split 3k 200k 3k 3.6M 54k 29k 0.28 0.60
Europarl random split 10k 200k 10k 3.6M 180k 30k 0.18 0.55
Europarl random split 30k 200k 30k 3.6M 540k 31k 0.13 0.52

CoGnition (Li et al., 2021) 196k 10k 1.9M 96k 1.7k 0.13 0.47
ReaCT (Zheng and Lapata, 2023) 160k 3k 3.3M 45k 53k 0.32 0.90

Europarl minDC split #1 203k 37k 3.9M 650k 34k 0.01 0.10
Europarl minDC split #2 194k 36k 3.7M 625k 34k 0.01 0.10
Europarl minDC split #3 195k 35k 3.7M 625k 34k 0.01 0.10
Europarl maxDC split #1 197k 23k 3.8M 390k 34k 0.001 1.0
Europarl maxDC split #2 198k 22k 3.8M 390k 34k 0.002 1.0
Europarl maxDC split #3 198k 22k 3.8M 390k 34k 0.001 1.0

Table 2: Comparison of the Europarl splits to other translation benchmarks that aim at assessing compositional
generalisation. The number of unique lemmas includes both training and test set lemmas.

of compound divergences while keeping the atom
divergences same. However, this contrasts with the
distribution of primitives in natural language, an
issue we discuss more in Section 5. ReaCT, on
the other hand, has similarly sized vocabulary as
natural language data; in fact the vocabulary is sig-
nificantly larger than the Europarl random sample
vocabulary, possibly because the WMT and IWSLT
corpora are lexically more diverse than Europarl.

Table 2 also lists, for reference, the atom and
compound divergences, calculated for the depen-
dency relations as described in Section 3, for CoG-
nition and ReaCT, even though neither of these data
splits are designed to minimise or maximise these
values. In both of these data sets, the test set is
designed to contain novel combinations of familiar
parts, as is our test sets, but in these works the parts
are normally sequences of multiple words. In spite
of this, the ReaCT data split has a relatively high
dependency relation compound divergence.

The last rows of Table 2 show the sizes and diver-
gences of the minimum- and maximum-compound-
divergence Europarl data splits. The atom diver-
gences are significantly lower for these splits than
they are for the random splits. As noted above, the
low atom divergence follows the principles of the
DBCA framework: the compositional generalisa-
tion test set should be difficult not because of novel
primitive elements (in our case mostly lemmas) but
because of novel combinations of the known ele-
ments. The maximum-compound-divergence splits
get a DC of exactly 1, but here we note that, as

described in Section 3, the most frequent and most
infrequent lemmas are left out from the divergence
calculations, which means that only a subset of the
dependency relation compounds are novel in the
test set, even though DC = 1.0.

4 Experiments

4.1 Transformer NMT system results
We train Transformer (Vaswani et al., 2017) models
on the Europarl data splits using the OpenNMT
python library (Klein et al., 2017) and the same
hyperparameters as in the example OpenNMT-py
Transformer configuration1, including the standard
6 transformer layers with 8 heads, a hidden layer
size of 512 and feed-forward layer size of 2048.
The configuration includes around 60M parameters.
We create a BPE (Sennrich et al., 2016) vocabulary
for each language with 10k token types. We didn’t
tune any of the hyperparameters for these datasets,
and didn’t use a validation set. We trained the
models for 6000 training steps, evaluated the test
set translations at intervals of 1000 steps, and report
the best of these 6 results for each model. For
more details on training the models, see the Github
repository linked on the first page.

Figure 2 displays the chrF2++ (Popović, 2017)
scores for the minimum- and maximum-compound-
divergence splits and the four target languages: Ger-
man, French, Greek, and Finnish. We run the data
split algorithm three times using different random

1https://github.com/OpenNMT/OpenNMT-py/blob/
9d617b8b/config/config-transformer-base-1GPU.yml
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Figure 2: The chrF2++ scores for the Transformer NMT systems trained on the minimum and maximum compound
divergence splits. Source language is English and target languages are German, French, Greek, and Finnish. The
middle scores are for the random data splits, which happen to have a compound divergence of about 0.5. Each data
split setup (minDC , maxDC , and random) is run 3 times with different random seeds, creating 9 different data splits
for which NMT models are trained.

seeds. Between the minDC and maxDC split re-
sults are the results for the random splits, of which
there are also 3 random runs (with 200k sentences
in training and 30k sentences in test set). As shown
in Table 2 the random splits with 30k-sentence test
set happen to have a compound divergence of about
0.5.

Figure 2 shows a modest but statistically sig-
nificant and consistent decrease in performance
from the random data split to the maxDC split, for
all four target languages. This is expected, as the
maxDC split includes more novel dependency re-
lations than the random split. However, as shown
in Table 2, the maxDC split has a significantly
lower atom divergence than the random split, as
this is deliberately minimised in the artificial data
splits, which follows the principle of the DBCA
framework of having the same atom distribution in
training and test sets. This means that the maxDC

split should be easier than the random split in this
regard, but it still gets worse results because of the
high compound divergence.

The minDC split, on the other hand, has a similar
atom divergence as the maxDC split, so compari-
son between these two results is in that sense fairer.
There is a larger difference in the results between
these two data splits; depending on the target lan-
guage the chrF2++ drops from about 4% to 8%.
Since we use relatively large test corpora (from
about 20k to 40k sentences), even small differences
in chrF2++ are statistically significant.

4.2 Generalisation score

To assess whether one NMT system is more ca-
pable in (this dependency-relation-related type of)
compositional generalisation than some other sys-

tem, one option is simply to compare their trans-
lation performances on the maxDC split. How-
ever, to get a sense of the generalisation capac-
ity as a part of the system’s translation capac-
ity in general, it may be more meaningful to as-
sess how the performance deteriorates between the
minDC and maxDC splits. To get a generalisa-
tion score, we propose to take the ratio of the re-
sults on these two data splits. This way the gen-
eralisation scores, using the average of the three
chrF2++ scores for each experiment setup listed in
Figure 2, are: 50.12/54.23 = 0.92 for the German-
target Transformer system, 57.13/60.11 = 0.95
for French, 53.77/57.05 = 0.94 for Greek, and
48.30/50.48 = 0.96 for Finnish. Since this a rela-
tive score, the absolute chrF2++ results should be
reported in addition to this generalisation score.

5 Discussion: handling the long tail

The core of each natural language is a set of words
(a lexicon), and a set of grammar rules that de-
fine how to combine the words into meaningful
sequences. The lexicon is divided into content
words, which possess semantic content, and func-
tion words, which denote the grammatical relation-
ships between content words. The function words
belong to closed classes, for example prepositions,
that normally do not accept new words, while con-
tent words belong to open classes; new nouns, for
example, are coined regularly. The long tail of
the Zipfian distribution of word frequencies con-
sists of content words while the grammar-enforcing
function words are mostly in the head of the distri-
bution.

Recent studies suggest that the distinction be-
tween content and function words as well as the
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Zipfian distribution are important for (composi-
tional) generalisation to arise: Steinert-Threlkeld
(2020) provides empirical evidence that function
words enable robust forms of non-trivial composi-
tional communication, and Chan et al. (2022) found
that the Zipfian distribution helps language mod-
els strike a balance between memorisation and (in
context) generalisation. As shown also by Feldman
(2020), memorising some of the long tail is not
in conflict with generalisation; on the contrary, it
enables optimal generalisation.

At the same time, some studies have shown that
neural NLP system have some difficulties with han-
dling the long tail, or at least handling the tail in
a way that we as users of the models would ex-
pect and want. Wei et al. (2021) and Czarnowska
et al. (2019) found that NLP systems’ performance
is heavily influenced by word frequency in train-
ing. LeBrun et al. (2022) compared language-
model-generated text to a reference and found that
the models underestimate the long tail of well-
formed sequences; furthermore, this probability
mass didn’t go to the head of the distribution but
rather the models overestimate the probability of
ill-formed sequences.

As noted in previous sections, the desired dis-
tribution of atoms in the DBCA framework con-
trasts with the Zipfian distribution found in natural
language. As Keysers et al. (2020) explain, they
design their CFQ benchmark “so as to have few
and meaningful atoms” which means there is no
long tail of infrequent primitives. This is related
to having a close-to-zero atom divergence: if the
atom distribution had a long tail, it would not be
easy to have the same relative atom distributions
in training and test sets since at least those atoms
that appear only once would make the distributions
diverge. This harks back to the question of how
compositional generalisation could be assessed in
purely natural tasks, where every rule has an excep-
tion, and where idioms and irregularities muddle
the systematicity (as discussed by Dankers et al.
(2022)).

Our benchmark provides one answer to this ques-
tion. Although we use the principles of the DBCA
framework regarding distribution divergence, we
don’t make the corpus less natural by artificially
shrinking the vocabulary size of the corpus. Instead,
to make the divergence calculations manageable
in practice, we leave some of the vocabulary out
of the calculations. A downside of this choice is

that the test sentences in the maxDC splits don’t
contain exclusively novel dependencies. The ad-
vantage is that the vocabulary is similar to that in
the original real-world natural language dataset,
while the test set includes an increased number of
novel dependencies to test generalisation.

6 Conclusion

Our GenBench Collaborative Benchmarking Task
submission consists of train-test splits of the Eu-
roparl parallel corpus with divergent distributions
of dependency relations. These data splits can be
used to assess the ability of NMT systems to trans-
late novel dependency relations in a purely natural
language translation task. We derive the data parti-
tioning method from the distribution-based compo-
sitionality assessment framework, which provides
generalisable principles of how to assess composi-
tionality. Our application of the DBCA framework
is straightforward to extend further to new datasets
and languages, and to any other NLP task where
the training and test sets consist of sentences, such
as paraphrase detection. The DBCA framework
is useful for real-world natural language tasks too,
even though it was originally designed for a more
artificial data setting. It should be kept in mind,
however, how the principles of the DBCA frame-
work diverge from the reality of natural language
data.

7 Limitations

7.1 Applicability of the method
Nowadays, the state-of-the-art methods in many
NLP tasks are based on pretrained language models.
However, our data partitioning method, as used in
this work, requires controlling the training data, as
well as the test data, to have partitions with specific
atom and compound divergence values. Therefore,
the method is not directly applicable to a pretrain-
finetune training scheme, if the pretraining dataset
is not modifiable. However, there are no limitations,
in principle, on having a fixed training corpus and
compiling only a new test set to have specific diver-
gence values, although the divergence values might
not be so easy to minimise and maximise in this
case.

7.2 Validity of the method
We have not conclusively assessed whether the
benchmark actually tests what we assume it tests,
that is, compositional generalisation ability. To
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rule out the most obvious potential confounding
variable, we checked the sentence lengths to see
if the maxDC test sets for some reason included
longer sentences, making the test set more diffi-
cult this way. We did not find large differences:
in the minDC splits the average sentence lengths
in train/test sets are 19.3/17.6 words, and in the
maxDC splits 19.1/17.3 words. Although there
is a difference (of unknown origin) between train
and test set sentence lengths, there is no significant
difference between minDC and maxDC splits that
could confound the results. From Table 2 we can
also see that the training sets are similar in size.

7.3 Limitations of the experiments

There are multiple levels of compositionality in
language, from morphemes to words to phrases to
clauses. Our experiments focus on just one inter-
mediate level of compositionality, since we define
compounds as dependencies between two words.
This choice was based primarily on convenience:
we could define compounds as constructions of
more than just two words, but the large number of
these constructions would make the data partition-
ing heavier computationally. Focusing on just one
level of compositional constructions means that our
experiments are not exhaustive in this regard, and
we hope to assess other levels of compositionality
in future work.

Our goal was to create a benchmark that tests
generalisation to novel dependency relations in as
comprehensively as possible, not selecting some
specific types of dependency relations and leaving
out other types. However, memory requirements of
the data splitting algorithm do not permit us to use
all of the atoms and compounds in the distribution
divergence calculations, so we opted to leave out
the most frequent and the most infrequent lemmas,
and the dependency relations that include them.
This means that our set of atoms represents a mid-
dle section of the distribution, where the head turns
into a tail. Therefore, the controlled dependency
relations include lemmas both from the head of
the distribution and the tail, although neither of the
extremes. We have not been able to assess how this
particular choice affects the results.
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