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Abstract

Semantic parsing plays a pivotal role in advanc-
ing the accessibility of human-computer inter-
action on a large scale. Spider, a widely recog-
nized dataset for text-to-SQL, contains a wide
range of natural language (NL) questions in En-
glish and corresponding SQL queries. Original
splits of Spider and its adapted to Russian lan-
guage and improved version, PAUQ, assume
independence and identical distribution of train-
ing and testing data (i.i.d split). In this work,
we propose a target length split and multilin-
gual i.i.d split to measure compositionality and
cross-language generalization. We present ex-
perimental results of popular text-to-SQL mod-
els on original, multilingual, and target length
splits. We also construct a context-free gram-
mar for the evaluation of compositionality in
text-to-SQL in an out-of-distribution setting.
We make the splits publicly available on Hug-
gingFace hub via https://huggingface.co/
datasets/composite/pauq.

1 Introduction

In this paper, we focus on a subtask of semantic
parsing called text-to-SQL, which involves map-
ping natural language (NL) questions to Structured
Query Language (SQL). Sequence-to-sequence
(seq-to-seq) models such as RAT-SQL (Wang et al.,
2020), BRIDGE (Lin et al., 2020), and RESDSQL
(Li et al., 2023) have been widely employed for
the text-to-SQL task. However, recent studies have
highlighted the limitations of seq-to-seq models in
out-of-distribution settings (Shaw et al., 2021; Gu
et al., 2021; Chang et al., 2023).

The evaluation process for text-to-SQL mod-
els is currently a topic of active research. Yu
et al. (2018a) determined the difficulty of requests
based on the number of SQL components, result-
ing in four distinct categories: “Easy”, “Medium”,
“Hard”, and “Extra Hard”. Finegan-Dollak et al.
(2018) demonstrated that the division of the popu-
lar text-to-SQL dataset into training and test sets is

Figure 1: SQL is transformed into an SQL template via
masking technique for subsequent compositional evalua-
tion. Token compositions, referred to as compounds, are
extracted via context-free grammar and then compared
against the predicted query.

inadequate for assessing the model’s generalization
abilities. Ribeiro et al. (2020) highlighted that it is
important to access performance on functional test
sets and out-of-distribution examples, as random
train and test splits can overestimate real-world per-
formance and miss important error cases. Chang
et al. (2023) proposed a text-to-SQL specific pertur-
bation benchmark . This benchmark encompasses
17 categories for evaluation on text-to-SQL models
robustness. Shaw et al. (2021) proposed new train
and test splits of non-synthetic datasets for model-
ing out-of-distribution (OOD) setting in order to
measure compositionality in semantic parsing.

In this work, we propose three splits of the ex-
isting PAUQ dataset (Bakshandaeva et al., 2022),
an improved version of Spider (Yu et al., 2018b),
for measuring across-language generalization and
compositional generalization. The first split evalu-
ates how models benefit from training in multiple
languages of the same task. The split is constructed
by joining original splits of Russian and English
versions of PAUQ (MPAUQ). The original i.i.d
splits of Russian and English will be referred to
as RuPAUQ OS and EnPAUQ OS, respectively.
The second two splits, target length, evaluate how
the models perform if the text-to-SQL data is split
by target length characteristic. The first split is
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RuPAUQ OS EnPAUQ OS EnPAUQ TRL EnPAUQ TSL
Train Test Train Test Train Test Train Test

Split size 8800 1076 8800 1076 7890 1975 7900 1975
Avg. template length 21.04 16.79 21.1 16.8 23.74 8.27 15.28 42.06
Avg. question length 8.95 9.05 12.01 12.31 12.57 9.92 11.68 13.46

Table 1: Statistics for PAUQ original split (OS) for both Russian (RuPAUQ), English (EnPAUQ), and target length
splits (TRL and TSL). The length is calculated as the length of sequences in tokens.

when samples in the train set are longer than sam-
ples in the test set named TRL. The second split is
when samples in the test are longer than samples
in the train named TSL. TRL examines the ability
of the model to generalize to simpler SQL without
directly learning to construct them. As stated in
(Hupkes et al., 2020), TRL evaluates model sys-
tematicity, while TSL assesses its productivity.

2 Spider and PAUQ

Spider (Yu et al., 2018b) comprises a substan-
tial collection of 10,181 English questions and
5,693 unique complex SQL queries, spanning 200
databases with multiple tables that encompass 138
distinct domains. Spider was randomly split into
train, dev, and test sets. In the case of PAUQ,
the Russian version of Spider, all three compo-
nents - questions, SQL queries, and database con-
tent, have been modified and localized. PAUQ
improved the original Spider by inserting the miss-
ing values, correcting errors, and adding new sam-
ples of poorly represented types. As the Spider
test set is not publicly available, PAUQ uses the
dev set for testing. PAUQ contains 8,800 and
1,076 NL samples for training and testing, respec-
tively. In PAUQ, the total numbers of different ele-
ments of databases are: (i) Databases: 166 entities
(88.0% – train set, 12.0% – dev set); (ii) Tables:
876 entities (90.8% – train set, 9.2% – dev set);
Columns: 4503 entities (90.2% – train set, 9.8%
– dev set); Values: 531,164 and 533,751 unique
values respectively (88.4% – train set, 11.6% – dev
set). We adopt three components (NL questions,
SQL queries, database) from GitHub via https:
//github.com/ai-spiderweb/pauq, where each
query corresponds to Russian and English texts.

3 Proposed Split

We propose a target length-based split to mimic
full shift (Hupkes et al., 2020) in the text-to-SQL
task for measuring the compositional generaliza-
tion ability of NLP models. We design split in the

following way:

1. Normalize SQL by masking tables, attributes,
textual and numeric values with correspond-
ing mask token (see Figure 1) - this way,
we get an SQL template by which the tar-
get length split will be done. Text-to-SQL
solutions are expected to infer attributes, ta-
bles, and values from a given question and
schema. The ability to handle it correctly
is called substitutivity (Hupkes et al., 2020).
Since our split is purely for compositional gen-
eralization evaluation, we use that template
for splitting instead of the original query. Dur-
ing an evaluation, we also use that masking
technique and true SQL template to estimate
compositional ability of the models.

2. For both splits, we sort SQL templates in as-
cending or descending order based on tem-
plate token size. Then, we iterate by the sorted
template list in order to fill train and test splits.
We require the test size of both splits to be
20% of the original dataset.

3. Since we want to check how the model recom-
bines known tokens to form novel structures,
we clear the test set from such queries where
there is no full token intersection with train
tokens.

We make sure that there is no template intersection
in train/test for both TRL and TSL splits. TSL is
the most complicated split because the model has
to recombine known tokens to form new complex
and long queries. TRL split requires the model to
also recombine new tokens but to generate queries
of shorter length.

For measuring cross-language generalization,
we merge English and Russian train sets and eval-
uate English and Russian test sets separately. Our
motivation for the multilingual split is whether
training in two languages on the same task can
benefit one model. Table 1 shows statistics for OS
and target length English and Russian splits.
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4 Baselines and Experiments

We focus our dataset on two types for generaliza-
tion evaluation - compositional generalization and
generalization across languages (see Appendix B
for the GenBench card (Hupkes et al., 2022)).

We utilized four popular Spider models:

• T5-base (Raffel et al. 2020);

• RESDSQL (Li et al. 2023);

• RAT-SQL (Wang et al. 2020);

• BRIDGE (Lin et al. 2020);

T5-base is a pre-trained encoder-decoder trans-
former with a language modeling head.

RESDSQL decouples schema linking and query
generation tasks into two stages. The first stage
selects the most relevant schema items for the ques-
tion. During the second stage, the model learns
to decode the SQL template of the actual query
concatenated with the original actual query. That
way, the model can condition generating SQL skele-
ton before the full original query. RESDSQL uses
ROBERTA-large (Zhuang et al., 2021) large for the
schema linking and T5-base for query generation.
For RuPAUQ and MPAUQ, we replace T5-base
model with MT0-base (Muennighoff et al., 2022).

RAT-SQL is an encoder-decoder model that uses
a relation-aware transformer within the encoder to
model alignments between database schema and
content and question tokens. The decoder of the
model is tree-structured and generates an abstract
syntax tree in the context-free SQL grammar.

BRIDGE, in turn, utilizes database schema and
content as input to the model. It has an encoder-
decoder architecture with the pointer-generator net-
work using beam-search. The model generates
queries in execution-guided order. Both RAT-SQL
and BRIDGE use the BERT-base (Devlin et al.,
2019) language model as an encoder. The details
on hyperparameters are presented in the Appx. A.

5 Overall results

We evaluate 4 models on our splits - T5-base, RES-
DSQL (with T5-base or MT0-base), RAT-SQL, and
BRIDGE. We trained each model on a split train set
and evaluated it on a test set with 3 random seeds
and averaged predictions. Our evaluation metrics
are Exact Matching and Execution Accuracy. Re-
sults are presented in Tab. 2, 3, 4.

EnPAUQ Exact Match Exec Match
split T5 RESDSQL T5 RESDSQL
OS 0.46 0.69 0.45 0.74

TRL 0.56 0.72 0.55 0.80
TSL 0.10 0.19 0.08 0.30

Table 2: Compositional generalization exact match and
exec match metrics for T5-base and RESDSQL. Each
model is evaluated on a corresponding test split.

Train Test T5-base RESDSQL RAT-SQL BRIDGE
En

En
0.46 0.69 0.66 0.60

M 0.48 0.66 0.66 0.68
Ru

Ru
0.42 0.39 0.51 0.52

M 0.43 0.39 0.57 0.55

Table 3: Exact match metrics for across language gener-
alization. En is EnPAUQ, Ru is RuPAUQ, and M is for
MPAUQ.

Train Test T5-base RESDSQL RAT-SQL BRIDGE
En

En
0.45 0.74 0.63 0.60

M 0.45 0.68 0.65 0.65
Ru

Ru
0.39 0.43 0.49 0.48

M 0.40 0.42 0.53 0.53

Table 4: Execution match metrics for across language
generalization. En is EnPAUQ, Ru is RuPAUQ, and M
is MPAUQ.

Target length split is our evaluation towards com-
positional generalization measurements (Table 5).
We evaluate T5-base and RESDSQL on this split.
The predictions for both models are stable across
different seed runs with standard deviation for less
than 1% for both T5-base and RESDSQL. Since
RESDSQL is a more advanced model with multi-
ple query generation stages, it tends to over-fit less
on TSL and generate novel queries - its execution
match is much higher than its exact match. On TRL
compared to the OS split, the metrics are higher.
It is not surprising because our test set for TRL
consists mostly of PAUQ question pairs from easy
category. Such evaluation shows that the model
is able to generalize from complex queries to sim-
ple ones without overcrowding the training dataset
with simple queries for text-to-SQL. In Tab. 3 and
4, we see that training simultaneously on two lan-
guages with multilingual models can give a slight
boost to some models. In our experiments, we see
an increase in execution match metric for T5-base
(Russian +1%), RAT-SQL (English +2%, Russian
+4%), and BRIDGE (English +5%, Russian +2%).
However, RESDSQL had a drop in English (-6%)
when trained in such a setting.
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EnPAUQ Syntax accuracy Compound accuracy OOD Compound accuracy
Split T5 RESDSQL T5 RESDSQL T5 RESDSQL
OS 0.75 0.81 0.81 0.82 0.54 0.48
TRL 0.75 0.91 0.93 0.94 0.65 0.66
TSL 0.73 0.57 0.71 0.68 0.47 0.42

Table 5: Compositional generalization in-depth evaluation of two models.

6 In-depth compound analysis

We wanted to explore the ability of compositional
generalization for proposed target length splits. We
have developed context-free grammar (CFG) in or-
der to parse queries. In order to analyze, we utilize
the concept of compound. For example, we have
dataset tokens SELECT, COUNT, SUM, Goals, Teams
(Goals and Teams are table attributes). Composi-
tion of these tokens such SELECT COUNT Goals
is called compounds. CFG covers compounds for
REQUEST, JOIN, CONDITION, GROUP, ORDER, LIMIT.
For evaluation, we apply the same masking tech-
nique used for split generation for generated SQL.
Then we parse it with CFG to extract compounds
(see Figure 1). For in-depth compound analysis,
we propose and evaluate three accuracy metrics
derived from our compounds:

• Syntax accuracy - this accuracy met-
ric estimates whether all expected true
SQL compounds are present in predicted
SQL. For example, if the true SQL has
REQUEST compound and CONDITION com-
pounds SELECT count(ATTRIBUTE_1) FROM
TABLE_1 WHERE ATTR_2 = TEXT_VAL_1
OR ATTR_3 = TEXT_VAL_2; and predicted
SQL has only REQUEST compound in SELECT
count(ATTRIBUTE_1) FROM TABLE_1 - the
syntax accuracy for such query will be 0.5;

• Compound accuracy - this accuracy met-
ric estimates the proportion of predicted
compounds to expected ones in the query.
For example, if true query has 1 REQUEST
compound and 2 CONDITION compounds
SELECT count(ATTRIBUTE_1) FROM TABLE_1
WHERE ATTRIBUTE_2 = TEXT_VALUE_1
OR ATTRIBUTE_3 = TEXT_VALUE_2; while
the predicted query has 1 REQUEST compound
and 1 CONDITION compounds in SELECT
count(ATTRIBUTE_1) FROM TABLE_1
WHERE ATTRIBUTE_2 = TEXT_VALUE_1
the compound accuracy will be 0.33.

• OOD Compound accuracy - compound ac-
curacy, which is only calculated on com-
pounds that were not seen during training.

We calculate the proposed metrics independently
for each sample and then average over all test set
predictions. In Tab. 5, we see that a more advanced
RESDSQL overall model increases only syntax ac-
curacy metric compared to the T5-base on OS and
TRL splits, while other two metrics are relatively
close to each other for all splits. OOD Compound
Accuracy is significantly lower then Compound
Accuracy (e.g., 0.66 vs 0.94 for RESDSQL on the
TRL split, respectively). The TRL split compound
metrics show that both models are able to gener-
ate unseen compounds in approximately 1.5 times
better than in the TSL split.

7 Discussion and Conclusion

In this work, we have explored two types of gen-
eralization - compositional generalization (TRL
and TSL splits) and across language generaliza-
tion (MPAUQ). We have evaluated 4 text-to-SQL
models on these splits. For an in-depth analysis
on compositional generalization, we have devel-
oped CFG and proposed two metrics for compound
evaluation. Our results show that TSL split is the
most challenging split for the model. TRL split
shows that the models are able to generalize to un-
seen short SQL. Multilingual split shows that some
models can benefit from learning on the translated
task to gain performance on individual language.

In future work, we plan to perform more experi-
ments to make more compositional generalization
splits (e.g., template or target maximum compound
divergence splits (Shaw et al., 2021)). We also
plan to explore different neural architectures and
training strategies to enhance the model’s ability
to handle complex queries and measure composi-
tional generalization and generalization across lan-
guages. We hope to prepare the PAUQ leaderboard
and encourage further research in this area.

217



Acknowledgments

This research was supported in part through com-
putational resources of HPC facilities at HSE Uni-
versity. The work of E.T. has been supported by the
Russian Science Foundation grant # 23-11-00358.
We would also like to thank the anonymous review-
ers for their comments on this paper.

Limitations and Ethics

We note that large language models such as Codex,
a 175B GPT model further fine-tuned on code, are
out of the scope of this work.

PAUQ and Spider’s limitations First of all, the
data is still ‘artificial’, which means that it was
created by a limited number of people specifically
for training and evaluating text-to-SQL models;
thus, it lacks the diversity and complexity of natu-
ral data formed by questions that people formulate
in order to get the desired information from the
database. For instance, the real-world data contain
NL queries that require common sense knowledge
that cannot be extracted directly from the database,
ambiguous questions allowing various ways of in-
terpretation that are quite frequent, and queries with
window functions that make the process easier and
more convenient, – all of these are not included in
the Spider dataset, as well as in PAUQ.

Train and test tokens Our research explores full
shift by splitting the dataset based on target tem-
plate length. Specifically, we examine the scenario
where test template tokens are present in the train-
ing set and do not explore the more challenging
case of modeling unseen tokens.
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A Experimental Setup

For English OS, TRL, TSL splits we train
T5-base from HF checkpoint provided at

https://huggingface.co/t5-base. We trained
model for 10k iterations with a batch size of 256
and learning rate 10−4 as in Sun et al. 2023. As
optimizer we have used Adafactor.
For training RESDSQL, we used the original
implementation of RESDSQL provided at https:
//github.com/RUCKBReasoning/RESDSQL .
For training RuPAUQ OS, MPAUQ for the
first stage of schema linking in RESD-
SQL we used https://huggingface.co/
DeepPavlov/xlm-roberta-large-en-ru-mnli
and for query generation in both T5-
base and RESDSQL we used https:
//huggingface.co/bigscience/mt0-base
We used Tensor2Struct package (Wang et al., 2021)
to train RAT-SQL. The hyperparameters are taken
from the original implementation of RAT-SQL
provided at https://github.com/berlino/
tensor2struct-public. In monolingual setup,
RAT-SQL models are trained for a maximum of
25k iterations, then the best checkpoint on the
corresponding dev set in terms of exact match was
picked (in all cases it is a checkpoint obtained
after training in the range of 20k to 25k iterations).
In multilingual setup, when training data is
double-sized, the maximum number of iterations is
increased to 40k.
As for BRIDGE, in all cases it was trained
for a maximum of 20k iterations. Then the
best checkpoint according to exact-match top-1
metric on the corresponding dev set was selected.
During training, we used default hyperparameters
from the original implementation of BRIDGE
provided at https://github.com/salesforce/
TabularSemanticParsing.
To develop the context-free grammar,
we use a Yargy library provided at
https://github.com/natasha/yargy.
For training RuPAUQ OS, MPAUQ
RAT-SQL and BRIDGE encoders we
have used https://huggingface.co/
bert-base-multilingual-cased
All models were trained on one Tesla V100 32 GB.
For evaluation we have used original Spider
evaluation script https://github.com/taoyds/
test-suite-sql-eval .
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