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Abstract

Generalization is of particular importance in
resource-constrained settings, where the avail-
able training data may represent only a small
fraction of the distribution of possible texts.
We investigate the ability of morpheme label-
ing models to generalize by evaluating their
performance on unseen genres of text, and we
experiment with strategies for closing the gap
between performance on in-distribution and
out-of-distribution data. Specifically, we use
weight decay optimization, output denoising,
and iterative pseudo-labeling, and achieve a 2%
improvement on a test set containing texts from
unseen genres. All experiments are performed
using texts written in the Mayan language Us-
panteko.

1 Introduction

With over half of the world’s languages endangered
(Seifart et al., 2018), language documentation is
one of several strategies for preservation. Tradi-
tionally, many documentation projects have aimed
to create grammatical descriptions, dictionaries,
and annotated text corpora, in the form of interlin-
ear glossed text (IGT; see section 2.1). The anno-
tated texts can be used in the creation of reference
tools and pedagogical materials, as well as provid-
ing input data for downstream tasks such as ma-
chine translation (Zhou et al., 2019), morphological
paradigm induction (Moeller et al., 2020), depen-
dency parsing (Georgi et al., 2012), and other tasks
(Georgi, 2016), making it particularly valuable for
low-resource languages.

Annotation of large corpora can be time-
consuming and monotonous, so there is a desire for
systems to automatically produce IGT, annotating
plain text with labels describing the part-of-speech,
morphology, and syntax of each word in the corpus
(Ginn et al., 2023). These systems can be used in
conjunction with human annotators to create an-
notated corpora rapidly, ensuring consistency and

reducing the amount of human effort required. Im-
portantly, reducing annotation time also frees up
language experts to work on other types of lan-
guage preservation or revitalization activities.

However, generalization for automated anno-
tation systems remains a critical problem. Pre-
existing corpora of annotated text are often small,
contain transcriptions of spoken language from a
small number of distinct speakers, and focus on
specific types of language such as story-telling and
oration. Thus, systems trained on these corpora
have difficulty generalizing to out-of-distribution
(OOD) language, limiting their utility and robust-
ness.

As acquiring additional annotated data is gen-
erally expensive and difficult, it is preferable to
design models that generalize well to OOD data.
In this work, we design models for one type of
text annotation: labeling each morpheme in a text
with its grammatical function. We envision these
models being used alongside human annotators to
provide suggestions and annotate text more quickly
and consistently than by human labeling alone.

We examine three strategies to improve the ro-
bustness of these morpheme labeling models with
limited data:

1. We optimize weight decay to improve gener-
alization of large models.

2. We apply a separate denoiser model to im-
prove performance on out-of-vocabulary in-
puts.

3. We apply self-supervised learning on unla-
beled texts.

Our experiments evaluate model performance
on texts of different genres than the texts in the
training set, in order to investigate their ability to
generalize to future, out-of-distribution texts. We
find that these strategies achieve small performance
improvements on in- and out-of-distribution texts,
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and may be valuable for building more robust mor-
pheme labeling models. Our code is available on
GitHub.1

2 Background

2.1 Interlinear Glossed Text

In language documentation projects, annotated text
typically uses a standardized format such as In-
terlinear Glossed Text (IGT) (Comrie et al., 2008),
although the exact glossing conventions vary across
projects. An example IGT sentence in Uspanteko
is provided in 1.

(1) Ti-
INC-

j-
E3S-

ya’
give

-tq
-PL

-a’
-ENF

juntiir
everything

They give us everything
(Pixabaj et al., 2007)

The first line of the example is a transcription
in the target language. Words may be transcribed
as-is, or divided into morphemes (meaning-bearing
units of language), as in the example.

The second line of the example gives a gloss
for each morpheme. Glosses typically indicate ei-
ther the translation of a morpheme or its grammat-
ical function. For example, the -tq- morpheme is
glossed as PL (plural). Stem morphemes, such as
ya’, are glossed either with their translation (as
here) or with a gloss indicating the stem type (such
as VT for "transitive verb"). Our systems gloss
stems using the latter approach.

The third line provides a translation of the sen-
tence in a high-resource language, such as English.

Although there exist some large mixed-language
corpora of IGT such as ODIN (Lewis and Xia,
2010) and IMTVault (Nordhoff and Krämer, 2022),
the availability of IGT data is limited. For many
languages, only small IGT corpora are available,
and different corpora may (and do) use various
annotation conventions. Depending on the wishes
of the language community, such corpora may or
may not be available for wider use or distribution.

2.2 Task

In this research, the task our systems address is to
predict the gloss line of IGT given the transcrip-
tion, segmented into morphemes. Each morpheme
should be glossed with its grammatical function; to
keep the output vocabulary small, we gloss stems
with part-of-speech labels instead of translations.

1https://github.com/michaelpginn/igt-glossing

Using the example in item 1, the input to the system
would be the sequence

"Ti j ya’ tq a’ [SEP] juntiir"

and the intended output would be

"INC E3S VT PL ENF [SEP] ADV"

where stems such as "ya’" and "juntiir" are
glossed with the stem type, here VT for transitive
verb and ADV for adverb.

2.3 Related Work
Existing scholarship has used a variety of ap-
proaches for automated gloss prediction, includ-
ing rule-based methods (Bender et al., 2014), ac-
tive learning (Palmer et al., 2010, 2009), con-
ditional random fields (Moeller and Hulden,
2018; McMillan-Major, 2020), and neural mod-
els (Moeller and Hulden, 2018; Zhao et al.,
2020). Ginn and Palmer (2023) experiment with
morphologically-inspired loss functions to improve
low-resource glossing models. However, to our
knowledge, there has been no evaluation or experi-
mentation with generalization of these models.

One of the 2023 SIGMORPHON shared tasks
involved creating models for automated gloss pre-
diction (Ginn et al., 2023), with participant systems
employing strategies such as leveraging the trans-
lation line for stem glossing (Okabe and Yvon,
2023), pretraining on large multilingual corpora
(He et al., 2023), and straight-through gradient es-
timation (Girrbach, 2022).

Although the majority of machine learning re-
search has traditionally evaluated models on in-
distribution data, the ability to generalize to out-of-
distribution data is desirable for natural language
models (Linzen, 2020; Lake et al., 2017). This is
particularly important for low-resource languages
where collecting a wide distribution of data can be
expensive or even infeasible.

3 Data & Methodology

3.1 Data
This work uses a corpus of IGT data for Uspanteko,
a low-resource Mayan language, originally from
the OKMA documentation project (Pixabaj et al.,
2007) and adapted by Palmer et al. (2009). Mor-
phemes are glossed with 68 different labels, plus
a separator label. Each text was produced through
recording speakers, transcribing text, and glossing
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with morpheme tags and translations. The corpus
used includes 17 different speakers.

For this research, we experiment with generaliza-
tion to unseen texts that represent different genres
of text. This consideration is very practical for doc-
umentation projects, where the available training
corpora are often the result of a single data collec-
tion project, and sometimes contain only one or
two genres or registers of speech.

The Uspanteko corpus contains 27 texts in four
different genres: stories, histories, personal anec-
dotes, and advice. We use the story and history
texts as our in-distribution (ID) data, as we hypoth-
esize that stories and histories have similar gram-
mar and vocabulary. We use personal anecdotes
and advice as our out-of-distribution (OOD) data.
One intuitive difference between these sets is that
stories and histories tend to talk about others, while
an anecdote is about the speaker (and thus tends
to use first-person voice) and advice is about the
listener (second-person voice). There is only one
instance where a document created by the same
speaker appears in both the ID and OOD splits.

We randomly divide the ID data into training
and evaluation sets and divide the OOD data into
evaluation and final testing sets. The splits are
listed in Table 1.

Set Genre(s) # Sentences

Training Story, History 5049

Eval (ID) Story, History 2128

Eval (OOD) Personal, Advice 2128

Test (OOD) Personal, Advice 2128

Table 1: Data splits, including in-distribution (ID) and
out-of-distribution (OOD) data

To verify that these splits represent accurate dis-
tributions, we pretrained a masked language model
on the training set (described in subsection 3.2) and
calculated the perplexity for the ID and OOD eval
sets.

Set Perplexity

Eval (ID) 77.78

Eval (OOD) 94.03

Table 2: Perplexity of pretrained language model on
data splits

Of course, genre and register only represent one
form of out-of-distribution data. Data may also
be out-of-distribution due to different speakers, di-
alects of a language, time period, and other factors.

All transcription data is segmented into mor-
phemes. Thus, the task is to predict a gloss label
for each morpheme in a sequence.

3.2 Pretraining
Existing pretrained models are rarely available for
low-resource languages such as Uspanteko. Thus,
we pretrain a new masked language model (MLM)
on the training set before fine-tuning to the task
at hand (on the same data set). We use a smaller
variation of the RoBERTa architecture (Liu et al.,
2019) to prevent over-fitting and reduce resources
used. The model uses 3 hidden layers, hidden lay-
ers of size 100, and 5 attention heads, as in Gessler
and Zeldes (2023), and we found in preliminary
experiments that there is no significant difference
in performance from a full-size RoBERTa model.

The model is pretrained using the parameters
listed in Table 3. We employ a dynamic masking
strategy (Liu et al., 2019) where 15% of tokens are
masked, of which 80% use a MASK token, 10% use
a random token, and 10% use the original token.

Parameter Value

Optimizer AdamW

β1 0.9

β2 0.999

ϵ 1E−8

Weight decay 0

Batch size 64

Gradient accumulation steps 3

Epochs 50

GPU NVIDIA V100

Table 3: Training Hyperparameters
AdamW from Loshchilov and Hutter (2017b)

We refer to this pretrained model as USPMLM.
For each experiment, USPMLM was fine-tuned
on a token classification task. Because the words
in the Uspanteko data are already segmented into
morphemes, we are able to model this as a token
classification task, predicting a gloss for each mor-
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pheme. If segmentation were not available, we
would have to model the problem with a sequence-
to-sequence approach or use some strategy to pre-
dict morpheme segmentation. Still, in the token
classification approach, the surrounding context
for each morpheme is important to making high-
quality predictions, and we cannot predict a gloss
for each morpheme in a vacuum.

3.3 Evaluation

Models are evaluated on both the in-distribution
and out-of-distribution evaluation sets. We follow
the evaluation strategy used in the SIGMORPHON
shared task, calculating the overall accuracy for
every morpheme, ignoring word separators, and
requiring glosses to be correctly aligned to mor-
phemes.

4 Experiments

For a baseline model, we fine-tune USPMLM on
the token classification task. Fine-tuning uses the
same hyperparameters listed in Table 3. We also
compare against a naïve strategy where we always
select the most common gloss for a morpheme
(based on the training data), as well as a strat-
egy that selects a random gloss from the observed
glosses for a morpheme in the training data.

We compare our baselines in Table 4.

Model Acc. (Eval ID) Acc. (Eval OOD)

Random 44.4 40.6

Most frequent 85.0 74.2

Neural 84.5 74.6

Table 4: Evaluation accuracy on in-distribution and out-
of-distribution eval sets for baseline models

All strategies perform worse on the out-of-
distribution data. The goal of the following exper-
iments is to improve generalization of the model
and thereby close the gap in performance for the
ID and OOD evaluation sets. Though the neural
model and the naïve model using the most frequent
gloss perform similarly, we will conduct experi-
ments with the neural model, which can be more
readily manipulated to improve generalization.

4.1 Optimizing Weight Decay

Weight decay is important to avoiding overfitting
and improving generalization (Loshchilov and Hut-

ter, 2017a), helping reduce variance without sac-
rificing the representation power of larger models.
We fine-tune USPMLM using six different values
for weight decay; the results are listed in Table 5.

Weight Decay Acc. (Eval ID) Acc. (Eval OOD)

0 (Baseline) 84.5 74.6

0.01 84.2 73.7

0.1 84.3 74.0

0.5 84.6 74.8

0.75 84.6 75.1

1 84.5 74.4

Table 5: Evaluation accuracy for various weight decay
values

We find that modifying the weight decay does
not significantly affect the accuracy on ID data.
However, for OOD data, the best-performing
weight decay value of 0.75 achieves a 0.5 percent-
age point improvement over the baseline.

Generally, a weight decay of 0 or 0.01 is recom-
mended, so it is interesting that a much larger value
of 0.75 is successful in this case. These results
could indicate that a more aggressive weight de-
cay allows the model to better generalize to unseen
documents, by reducing unnecessary weights and
avoiding overfitting. However, the improvement is
very small, and its possible that other techniques
such as drop out are equally important for mitigat-
ing overfitting.

This result is likely heavily dependent on the
model architecture, and the optimal weight decay
value will vary from model to model. However,
increasing weight decay beyond the typical recom-
mendations seems to be an effective strategy.

4.2 Denoiser
4.2.1 Motivation
Generally, texts from out-of-distribution genres and
registers will have more out-of-vocabulary (OOV)
tokens in the input. This is the case in our data: the
ID eval set has 4.3% unknown tokens and the OOD
eval set has 9.6% unknown tokens.

Using the best-performing model from the pre-
vious section (weight decay of 0.75), we observe
that a large portion of the error on the OOD eval
set is a result of OOV morphemes in the input. The
results of this analysis appear in Table 6.
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Eval (ID) Eval (OOD)

# OOV Tokens 527 1322

# OOV Tokens Incor. 376 854

Total Incor. 1910 3447

Total Tokens 12388 13818

# OOV Incor. / Total Incor. 19.7% 24.8%

# OOV Incor. / Total Tokens 3.0% 6.2%

Table 6: Analysis of the error due to out-of-vocabulary
(OOV) tokens in the in-distribution (ID) and out-of-
distribution (OOD) eval sets

OOV tokens contributed 6.2 percentage points to
the total error for the OOD data, and only 3.0 points
for the ID data. Currently, the best model produces
15.4% error on the ID data and 24.9% error on
the OOD, with a discrepancy of 9.5 percentage
points. Thus, we observe that by reducing the error
on OOV tokens, we can decrease a portion of this
discrepancy.

4.2.2 Method

In many languages, morphological patterns are
highly regular and structured, and some classes
of morphemes (such as agreement morphology)
may co-occur in fairly regular ways. We explore
the potential of exploiting this fact to make bet-
ter predictions on unknown morphemes using the
other, known morphemes in the sentence. We train
a denoiser language model on the gloss sequences
in the training set. Then, we use this language
model to predict gloss labels for OOV tokens, using
the predicted glosses from the token classification
model as the input to the denoiser (Figure 1).

The denoiser model, USPDENOISE, uses the
same MLM architecture and training strategy as
USPMLM. The model is trained with the hyperpa-
rameters in Table 3, except using a weight decay
of 0.01 and 100 epochs.

For inference, we select the examples containing
unknown morpheme tokens, and run USPDENOISE

on the output of the fine-tuned token classification
model. Then, we replace the prediction for each
OOV morpheme with the prediction from the de-
noiser. We also experiment with masking the target
tokens with the MASK token. We compare with
the best-performing model from the previous sec-
tion in Table 7.

wi [SEP] qa seboya [SEP] q iik

wi [SEP] qa [UNK] [SEP] q iik

EXS [SEP] E1P NOM [SEP] E1P S

Token Classifier

Denoiser

S

EXS [SEP] E1P S [SEP] E1P S

Figure 1: The denoising process. The morpheme "se-
boya" is OOV, and the token classifier makes an incor-
rect prediction. However, the denoiser uses observed
label sequences to recover the correct gloss, which is
substituted into the final prediction.

Model Acc. (Eval ID) Acc. (Eval OOD)

No denoiser 84.6 75.1
Denoised
(masked) 84.7 74.9

Denoised
(no mask) 84.7 75.3

Table 7: Evaluation accuracy for denoiser strategies

The model using the denoiser without masking
tokens shows the best performance, although the
improvement is small. In this case, it evidently
is difficult to recover the correct token from the
surrounding contexts. However, this strategy could
still be effective in cases where there are many
OOV morphemes or the language is very regular.

4.3 Self-Supervision

4.3.1 Motivation

Perhaps the most effective way to improve per-
formance on OOD data would simply be to train
on OOD data, but in our example scenario this is
not feasible. However, we can employ iterative
pseudo-labeling, a form of self-supervised learn-
ing, to re-train the model using the labels predicted
by a prior model (Chapelle et al., 2009). Itera-
tive pseudo-labeling has been employed in low-
resource speech recognition, where additional la-
beled data is similarly difficult to obtain (Kahn
et al., 2020).
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In the context of generalization, iterative pseudo-
labeling can help adapt the model to the particular
target distribution by re-training the model on pre-
dictions for the out-of-domain data. In this way, we
can expose the model to the sort of contexts seen in
the OOD data without needing additional labeling;
retraining the model can also help when the tar-
get distribution uses different labeling conventions
than the training set.

4.3.2 Method
Silovsky et al. (2023) uses iterative pseudo-labeling
to improve performance for low-resource auto-
mated speech recognition (ASR) models. We fol-
low their method, described here, hypothesizing
that the improvements will be similar for glossing
models.

First, we run predictions for our OOD eval set
using the best-performing model from the previous
section, with a weight decay of 0.75 and denoising.
For each sentence, we compute a model confidence
value by taking the softmax of the output logits to
get the probability value for the most likely gloss at
each position and then averaging these probabilities
over all glosses in the sequence. We use these
confidence values to rank the predictions for every
sentence and select some fraction of the predictions
with the highest confidence; we experimented with
using the top half, third, and quarter of predictions.2

We pseudo-label these examples with the predicted
glosses.

Next, we re-train the trained model using
the original training set combined with the se-
lected pseudo-labeled examples. Iterative pseudo-
labeling can be run for many iterations if the pre-
dictions continue to improve. The results after
iterative pseudo-labeling for one iteration, using
different fractions of the predictions, are shown in
Table 8.

We find that the iterative pseudo-labeled models
outperform the previous model, with the model us-
ing one-quarter of the pseudo-labeled data perform-
ing best on the OOD data (with a small tradeoff in
ID performance). It seems that selecting a smaller
amount of higher-confidence data is more effective
than using additional lower-confidence predictions.

Next, we run iterative pseudo-labeling for addi-
tional iterations, using the model trained on the top
quarter of predictions. In each iteration, we again
select the top quarter of predictions, and fine-tune

2The effectiveness of this approach depends on how well-
calibrated the model is.

Pseudo-labelled
fraction Acc. (Eval ID) Acc. (Eval OOD)

0 84.7 75.3

1/4 85.8 76.3

1/3 85.9 76.2

1/2 85.5 75.8

Table 8: Evaluation accuracy for models using pseudo-
labeling with different fractions of the eval set

the model. The results after several iterations are
given in Table 9.

Iteration Acc. (Eval ID) Acc. (Eval OOD)

0 84.7 75.3

1 85.8 76.3

2 86.5 76.9

3 86.3 76.8

Table 9: Evaluation accuracy after additional iterations
of pseudo-labeling

The second iteration continues to provide perfor-
mance benefits, but the third iteration shows a small
decrease in performance, so we stop iterating and
select the model after 2 iterations. While pseudo-
labeling initially provides benefits by exposing the
model to the target domain, after some iterations
the additional noise introduced has detrimental ef-
fects. Overall, iterative pseudo-labeling improves
the ID accuracy by 1.5 and the OOD accuracy by
1.6 percentage points.

5 Results

Table 10 provides the performance on the held-
out, OOD test set using the best model from each
step. Each model builds on the previous, so the
final model uses all three strategies described in the
paper.

In each step, we use the best trained model
from the previous step. We do not iterate pseudo-
labeling on the test set, since the test set should
have the same distribution as the OOD eval set.

Through weight decay optimization, denoising,
and iterative pseudo-labeling, we are able to ac-
complish an improvement of 2 percentage points in
performance on OOD data, with an 8.2% reduction
in overall error.
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Model Acc. (Test OOD)

Baseline 75.5

WD 0.75 76.0

Denoised 76.3

Pseudo-labeled 77.5

Table 10: Accuracy on held-out test set after applying
each technique

These techniques also improve performance on
the in-distribution eval set, although by a smaller
margin than the out-of-distribution eval set. This
is desirable, as it narrows the gap between perfor-
mance on in- and out-of-distribution data, resulting
in more predictable model performance.

6 Discussion

Although the techniques used in this work do
yield performance improvements, generalization
in language documentation remains a difficult task,
largely due to hard-to-overcome challenges such
as unseen morphemes, labels for morphemes that
do not appear in the training set, and ambiguity in
labeling.

Weight decay optimization, like all forms of hy-
perparameter tuning, is highly situation-dependent
and requires good evaluation. Generally, avoiding
overfitting and minimizing variance is critical to
generalization in documentation, where the train-
ing sets may represent only a small fraction of the
distribution of possible texts.

Denoising is a promising strategy for making
high-quality predictions on completely unknown
morphemes, using the surrounding context. This
approach may be particularly useful in a human-
in-the-loop situation, where the denoiser provides
several top guesses for an unknown morpheme, and
a human annotator can select between the options,
allowing for easier annotation and possibly active
learning (Palmer et al., 2009). Denoising will likely
show more robust performance for languages with
highly structured and productive morphological
systems and relationships such as agreement and
regular word order.

Some aspects of Uspanteko morphology are pro-
ductive and structured. For example, verbs can
take multiple affixes, both prefixes and suffixes,
and these occur in a predictable order, according
to a morphological pattern. At the same time, the

language also has relatively flexible classes of mor-
phemes, allowing non-verbal stems to act as predi-
cates (Coon, 2016), taking some of the same mor-
phology as seen on verb stems. This flexibility
may have decreased the utility of the denoising
approach, as unseen stems appearing in verbal po-
sitions could be verbal or non-verbal morphemes,
with no clear distinction.

Iterative pseudo-labeling similarly shows only a
small improvement. In these experiments, the OOD
texts still share fairly similar contexts and labeling
strategies with the training set, as evidenced by the
perplexity values. However, in a case where the
unseen texts are more dissimilar to the training set,
this strategy could be more effective at tuning the
model to the particular target distribution.

7 Future Research

This work presents a preliminary exploration into
generalization for documentation models, and
much work remains to be done. Documentation
data for even the most widely-spoken languages is
limited, yet robust generalization from the training
set is crucial for improving usability.

One promising approach for creating more ro-
bust documentation models is through cross-lingual
transfer that utilizes the morphological similarities
between languages. He et al. (2023) demonstrates
that this approach can effect performance improve-
ments on in-distribution data, and it would likely
benefit out-of-distribution data as well.

Another technique for avoiding overfitting and
improving generalization is ensuring models focus
on linguistic information, relying less on semantic
patterns that may lead to spurious generalizations.
This could involve morphologically inspired loss
functions, data augmentation using rule-based sys-
tems, or pretraining on other linguistic tasks.

8 Conclusion

In this work, we presented three strategies for im-
proving generalization of interlinear glossed text
generation models, which to our knowledge are
novel approaches to the problem. We use weight de-
cay optimization, denoising, and iterative pseudo-
labeling, finding that iterative pseudo-labeling pro-
vides the greatest improvement in performance.
Overall, our best model achieves a 2% improve-
ment from the baseline on a test set representing
texts of unseen genres. We also investigate the
discrepancy in performance between in- and out-

95



of-distribution data, finding that out-of-vocabulary
morphemes and differences in context are key
sources of error. We hope these approaches can
inspire future work in improving generalization for
documentation models, which is difficult but crit-
ical to the usability of automated documentation
systems in real-world projects.

9 Limitations

This research was conducted testing on a single
language and corpus, and the effectiveness of each
approach may vary with the language used. Addi-
tionally, this work focused on glossing morphemes,
provided words have already been segmented into
morphemes. This is often not the case for IGT data,
and segmentation remains a difficult problem.

The experiments utilized a single model architec-
ture for consistency, but other architectures might
show different performance. We used a small trans-
former architecture due to the size of the training
dataset; a deeper network might show different
results.

We focused on experimenting with texts of un-
seen genres as our out-of-distribution data, but this
is only one form of generalization. Other types
of OOD data include data from other speakers or
communities, dialects of a language, and data from
different documentation projects.

10 Ethical Considerations

When working with projects that affect language
communities, we should always strive to avoid a
colonialist approach, and we should bear in mind
that language data does not exist in a vacuum, but is
the product of human experience (Bird, 2020). Doc-
umentation projects should never be undertaken
without the consent and cooperation of the relevant
language community.

Generalization is desirable in order to produce
more valuable documentation systems, but it can
also cause the homogenization of language, which
can particularly affect speakers of less widely spo-
ken dialects.

Training large transformer models requires a
large amount of computation and thus incurs an
unavoidable carbon cost (Bender et al., 2021), and
thus we aimed to keep the architectures as small
as possible. Minimizing the environmental impact
of machine learning is a critical ongoing area of
research.
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