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Message from the Organisers

The ability to generalise well is often mentioned as one of the primary desiderata for models of natural
language processing (NLP). However, how generalisation should be defined and evaluated, or when it is
particularly important, is a far from trivial question. The GenBench workshop on generalisation (ben-
chmarking) in NLP aims to provide a platform to discuss challenging questions related to generalisation
in NLP and establish a shared platform for state-of-the-art generalisation testing. We invited submitters
to contribute work discussing generalisation in NLP and also held a collaborative benchmarking task, for
which we called for submissions of challenging generalisation tests.

The first edition of the workshop was held at EMNLP 2023 in Singapore. For this edition, we accepted
11 archival papers in our main track, 7 archival papers for our collaborative benchmarking track, and 6
extended abstracts. The workshop also provided a platform for the authors of 29 EMNLP findings papers
related to the workshop’s topic to present their work as a poster at the workshop.

The workshop would not have been possible without the dedication of the programme committee, whom
we would like to thank for their contributions. We would also like to thank Amazon for their sponsorship
of 5000 dollars, which we used to fund one of our invited speakers, to grant travel awards to allow
participants that could otherwise not have attended to participate in the workshop, and to grant two
awards, to the best submitted paper and best submitted benchmark. Lastly, we are grateful to our invited
speakers, Adina Williams, Anna Rogers, and Tatsunori Hashimoto, for contributing to our programme.
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Keynote Talk: Invited Talk 1
Anna Rogers

IT University of Copenhagen

2023-12-06 – Time: 555 –

Abstract: One of the frequent points in the mainstream narrative about large language models is that
they have “emergent properties” (sometimes even dangerous enough to be considered existential risk to
mankind). However, there is much disagreement about even the very definition of such properties. If
they are understood as a kind of generalization beyond training data - as something that a model does
without being explicitly trained for it - I argue that we have not in fact established the existence of any
such properties, and at the moment we do not even have the methodology for doing so.

Bio: Dr. Anna Rogers is an assistant professor at IT University of Copenhagen working on analysis,
interpretability, and evaluation of NLP models, their societal impact, and NLP research methodology.

vii



Keynote Talk: Invited Talk 2
Adina Williams

Meta AI

2023-12-06 – Time: 675 –

Bio: Adina is a Research Scientist at Meta on the Fundamental AI Research (FAIR) team in NYC. Her
research spans several topics in NLP and computational linguistics, with a focus on dataset creation and
model evaluation for humanlikeness, fairness, generalization and robustness.
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Keynote Talk: Invited Talk 3
Tatsunori Hashimoto

Stanford University

2023-12-06 – Time: 840 –

Abstract: Instruction following language models have shown a remarkable ability to perform a wide
range of tasks with little to no additional training data. Do these abilities come from a revolution in pre-
training and instruction-following, or are there other more mundane explanations for how these models
work? In this talk, I will discuss our efforts to answer these questions by replicating instruction-following
models that generalize across tasks, studying the consistency of these models across different task for-
mats, and building tests for benchmark contamination in pretraining.

Bio: Tatsunori Hashimoto is an Assistant Professor in the Computer Science Department at Stanford
University. He is a member of the statistical machine learning and natural language processing groups
at Stanford, and his research uses tools from statistics to make machine learning systems more robust
and trustworthy — especially in complex systems such as large language models. He is a Kavli fellow,
a Sony and Amazon research award winner, and his work has been recognized with best paper awards
at ICML and CHI. Before becoming an Assistant Professor, he was a postdoctoral researcher at Stanford
with Percy Liang and John Duchi and received his Ph.D. from MIT under the supervision of Tommi
Jaakkola and David Gifford.
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90% F1 Score in Relational Triple Extraction: Is it Real ?

Pratik Saini and Samiran Pal and Tapas Nayak and Indrajit Bhattacharya
TCS Research, India

{pratik.saini,samiran.pal,nayak.tapas,b.indrajit}@tcs.com

Abstract

Extracting relational triples from text is a cru-
cial task for constructing knowledge bases. Re-
cent advancements in joint entity and relation
extraction models have demonstrated remark-
able F1 scores (≥ 90%) in accurately extracting
relational triples from free text. However, these
models have been evaluated under restrictive
experimental settings and unrealistic datasets.
They overlook sentences with zero triples (zero-
cardinality), thereby simplifying the task. In
this paper, we present a benchmark study of
state-of-the-art joint entity and relation extrac-
tion models under a more realistic setting. We
include sentences that lack any triples in our
experiments, providing a comprehensive eval-
uation. Our findings reveal a significant de-
cline (approximately 10-15% in one dataset
and 6-14% in another dataset) in the models’ F1
scores within this realistic experimental setup.
Furthermore, we propose a two-step modeling
approach that utilizes a simple BERT-based
classifier. This approach leads to overall perfor-
mance improvement in these models within the
realistic experimental setting.

1 Introduction

A crucial aspect of the relation extraction task in-
volves the identification of sentences that lack any
relational triples. This aspect naturally arises in
real-world relation extraction scenarios. For in-
stance, when extracting knowledge graph triples
from online text, the majority of sentences may
not mention any such triples. Although this as-
pect has been explored in other NLP tasks, such
as machine reading comprehension, where mod-
els should correctly identify when a given passage
lacks an answer rather than providing an incorrect
one (Rajpurkar et al., 2018; Kundu and Ng, 2018;
Sulem et al., 2021), it has not received sufficient
attention in recent relation extraction research.

There are two distinct approaches for entity and
relation extraction: Classification approach and

joint approach. In the classification approach (Hoff-
mann et al., 2011; Zeng et al., 2014, 2015; Nayak
and Ng, 2019; Jat et al., 2017), entities are already
given and models focus on classifying the relations
among pairs of entities. This approach includes sen-
tences with zero triples in the experiments, where
the relation among all entity pairs in such sentences
is labeled as a ‘None’ relation. On the other hand,
the joint extraction approach (Zeng et al., 2018;
Takanobu et al., 2019; Nayak and Ng, 2020; Wei
et al., 2020; Wang et al., 2020; Zheng et al., 2021;
Li et al., 2021; Wei et al., 2020; Yan et al., 2021;
Shang et al., 2022) involves models extracting both
entities and relations simultaneously. However, in
this approach, sentences with zero triples are not
considered in the experiments, which makes the
task significantly easier. Consequently, recent joint
extraction models achieve exceptionally high F1
scores on benchmark datasets.

In this study, our objective is to assess the per-
formance of state-of-the-art relational triples ex-
traction models when sentences with zero triples
are included. To achieve this, we conduct compre-
hensive experiments using the widely used New
York Times (NYT) datasets. We evaluate a total of
9 recent state-of-the-art models in an end-to-end
fashion. The results of our experiments reveal a sig-
nificant decline in the performance of these models
under this experimental setting. Across all of the
evaluated models, we observe an approximate drop
of 10-15% in the F1 score in one dataset, and a drop
of around 6-14% in another dataset. These findings
highlight the challenges posed by sentences with-
out triples and emphasize the need for improved
approaches to handle such cases effectively.

Additionally, we have identified that sentences
often contain clue tokens that can be leveraged
to detect the presence of relations, even without
identifying the corresponding entities. We include
such examples in Table 1 for illustrations. Building
upon this observation, we introduce a BERT-based
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Sentence Triples
Paul Allen , a co-founder of Microsoft , paid the bills for aircraft
designer Burt Rutan to develop SpaceShipOne , the craft that
won the $ 10 million Ansari X Prize last year for reaching
suborbital space .

Microsoft ; Paul Allen ; /business/company/founders
Paul Allen ; Microsoft ; /business/person/company

But Schaap seems as comfortable in that role as Joe Buck , the
Fox baseball and football sportscaster who so clearly benefited
from learning beside his father , Jack Buck , the late voice of
the St. Louis Cardinals .

Jack Buck ; Joe Buck ; /people/person/children

Table 1: Examples of relation clue tokens (in Pink) for determining the presence of a relation in the sentences.

zero-cardinality classifier (ZCC) model that effec-
tively filters out sentences with zero triples. We
explore both binary classification and multi-class
multi-label (MCML) classification approaches for
this purpose. To tackle the task at hand, we propose
a two-step modeling approach. In the first step, we
employ the ZCC model to classify the sentences,
determining whether they contain zero triples or
not. In the second step, we utilize the outputs of the
ZCC model to guide the 9 state-of-the-art triples
extraction models, effectively solving the task. No-
tably, our experimental results demonstrate that
this two-step approach outperforms or achieves
competitive performance compared to end-to-end
modeling in this novel setting of the task. Further-
more, it offers advantages in terms of training time
for the models1.

2 End-to-End Modeling of Relation
Extraction with Zero-Cardinality

For our experiments, we select nine state-of-the-art
joint entity and relation extraction models: Ptr-
Net (Nayak and Ng, 2020), TPLinker (Wang et al.,
2020), CasRel (Wei et al., 2020), TDEER (Li et al.,
2021), PRGC (Zheng et al., 2021), PFN (Yan et al.,
2021), GRTE (Ren et al., 2021), OneRel (Shang
et al., 2022), and BiRTE (Ren et al., 2022). All of
these models utilize BERT (Devlin et al., 2019) as
an encoder. For our experiments with the NYT24*
dataset, where sentences are cased, we utilize the
BERT_base_cased model. On the other hand, for
the NYT29* dataset, where sentences are uncased,
we use the BERT_base_uncased model.

PtrNet (Nayak and Ng, 2020) adopts a sequence-
to-sequence (seq2seq) approach, extracting triples
uniformly regardless of the relations involved.
The remaining models employ relation-specific se-
quence or matrix labeling methods to extract triples.

1Any code or data related to this paper will be
made available at https://github.com/pratiksaini4/
ZeroCardinalityImpactOnRE.

Originally, these models are trained solely on sen-
tences containing one or more triples, excluding
sentences with zero triples from their training and
test datasets. However, we adapt these models
to handle sentences with zero triples as well. In
the case of sequence labeling or matrix labeling
approaches, all tokens in the zero-cardinality sen-
tences are labeled with the ’O’ tag (representing the
"other" tag). For sequence generation approaches
(such as seq2seq), the decoder generates the "end
of sequence" (EOS) tag as the first token, indicating
the absence of any relational triple in the sentence.

Below is a brief description of each of these
models. We employ the same hyper-parameters as
specified in their respective papers.

2.1 PtrNet (Nayak and Ng, 2020)

This model utilizes a seq2seq framework with
pointer network-based decoding for joint entity and
relation extraction. Each triple is represented by
the start and end indices of the subject and object
entities in the sentence, along with the correspond-
ing relation class label. To generate the complete
triple, their decoding framework extracts four in-
dexes at each time step, capturing the subject and
object entities as well as the relation between them.
This enables the model to incrementally construct
the entire triple. For a fair comparison with other
state-of-the-art (SOTA) models, the original BiL-
STM encoder is replaced with BERT, a powerful
language representation model. This integration
of BERT into the model ensures compatibility and
consistency with the advancements in the field, al-
lowing for more accurate and robust results.

2.2 CasRel (Wei et al., 2020)

CasRel employs a two-stage extraction process for
relation extraction. In the first stage, it utilizes a
0/1 tagging scheme to identify all subject entities
present in the text. This initial stage focuses on
accurately identifying and labeling the subject en-
tities involved in the relations. In the subsequent
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stage, for each subject entity and for each rela-
tion, CasRel applies another round of 0/1 tagging
to identify the corresponding object entities. This
object tagging process is iterative and carried out
sequentially for each subject entity. By perform-
ing this iterative tagging approach, CasRel ensures
comprehensive identification of the object entities
associated with each subject entity, enabling a more
precise extraction of relational triples.

2.3 TPLinker (Wang et al., 2020)
TPLinker also adopts a sequence labeling approach
for the relation extraction task. However, to effec-
tively address the challenges posed by overlapping
triples, it employs a separate sequence labeling pro-
cess for each relation. To link the tokens within the
sentence, TPLinker utilizes a handshaking tagging
scheme. It constructs a matrix representing the to-
kens in the sentence, where the rows and columns
correspond to the tokens. The handshaking tags
are employed to establish connections between to-
kens. Initially, TPLinker identifies all entities in
the sentence using the ‘EH-ET’ (entity head to en-
tity tail) tag. In the matrix, a cell with a value of 1
indicates that the token in the corresponding row
represents the start of an entity, while the token in
the column represents the end of the entity. Addi-
tionally, TPLinker employs two other handshaking
tags, namely SH-OH’ (subject head to object head)
and ST-OT’ (subject tail to object tail). These tags
are used to link the subject and object entities for
each specific relation. Separate matrices are tagged
for each relation using these handshaking tags. By
applying this approach, TPLinker effectively links
the subject and object entities for each relation, en-
abling accurate extraction of relational triples. The
initial set of entities obtained from the ‘EH-ET’
tagging stage serves to filter out unwanted triples
extracted during the relation-specific tagging stage.

2.4 TDEER (Li et al., 2021)
This task employs a multi-stage sequence labeling
approach. In the initial stage, a 0/1 tagging scheme
is utilized to extract subject and object entities. Ad-
ditionally, a multi-label classification technique is
employed to identify all possible relations present
in the sentence. In the subsequent stage, for each
subject entity and relation pair, the start position of
the corresponding object entity is identified. If this
start position aligns with any of the object entities
extracted in the first stage, the triple is considered
valid and retained. Conversely, if no match is found,

the triple is deemed invalid and discarded. This rig-
orous validation process ensures the accuracy and
reliability of the extracted triples.

2.5 PRGC (Zheng et al., 2021)
In this model, the first step involves identifying a
set of potential relations within the sentence, as
well as establishing a global correspondence ma-
trix between the subject and object entities. In the
subsequent stage, relation-specific sequence tag-
gers are employed to label the subject and object
entities accordingly. These taggers provide fine-
grained annotations, enabling precise identification
of the entities involved. Finally, the global cor-
respondence matrix is utilized to make informed
decisions regarding which triples to accept or dis-
card. By considering the interplay between the
subject and object entities and their respective rela-
tions, the model ensures the selection of valid and
meaningful triples while discarding any irrelevant
or incorrect ones.

2.6 GRTE (Ren et al., 2021)
This approach utilizes a table filling method where
separate tables are maintained for each relation.
Each cell in the table represents whether a token
pair is associated with the corresponding relation or
not. These tables are populated using local features
or the historical information of a limited number
of token pairs. GRTE enhances the table-filling
by incorporating two types of global features. The
first type pertains to the global association of entity
pairs, while the second type focuses on relations.
GRTE initially generates a table feature for each
relation. Subsequently, these table features for all
relations are combined, resulting in the creation
of a subject-related global feature and an object-
related global feature. These global features are
then utilized iteratively to refine the individual table
features. By employing this refined table-filling
approach, all triples can be extracted based on the
information stored in the populated tables. This
method enables the accurate and comprehensive
extraction of relational triples.

2.7 PFN (Yan et al., 2021)
The model consists of two main modules: the
Named Entity Recognition (NER) module and the
Relation Extraction (RE) module. In the NER mod-
ule, all named entities in the sentences are extracted,
capturing their complete spans. This module fo-
cuses on identifying and delineating entities present
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in the text. The RE module operates separately
for each relation. It employs matrix labeling tech-
niques to identify the starting tokens of subject and
object entity pairs. The full span of these entities is
obtained from the entities previously identified by
the NER module. By leveraging the information
provided by the NER module, the RE module can
accurately determine the boundaries and positions
of the subject and object entities for each relation.

2.8 OneRel (Shang et al., 2022)

The approach utilized in this task is a relation-
specific horns-tagging method. For each relation
in the set of relations, a matrix is maintained, con-
sisting of four types of tags: ‘HB-TB’, ‘HB-TE’,
‘HE-TE’, and ‘O’. Here, ‘H/T’ represents the head
or tail entity, while ‘B/E’ denotes the beginning and
ending of an entity. The rows of this matrix corre-
spond to the head entity tokens, while the columns
correspond to the tail entity tokens derived from
the source text. Following the tagging of these
matrices, a scoring-based classifier is employed
to iterate through all possible combinations and
discard triples with low confidence scores. This
process enables the identification and retention of
high-quality triples based on their associated confi-
dence scores.

2.9 BiRTE (Ren et al., 2022)

This model employs a multi-stage bidirectional
tagging-based mechanism. In the initial stage, the
model focuses on identifying subject and object en-
tities. Subsequently, in the second stage, it further
refines the identification of object entities based on
the previously identified subject entities, and vice
versa. Finally, in the last stage, subject-object pairs
are classified based on their respective relations.
All these stages are trained together as a single
model, ensuring a comprehensive and integrated
approach to relation extraction.

3 Two-step Modeling of Relation
Extraction with Zero-Cardinality

We have observed that most relational triples in
sentences are associated with specific clue tokens.
While this may not always hold true due to the dis-
tant supervision used in creating the NYT datasets,
it is applicable to many cases. We have included
relevant examples in Table 1. Based on this ob-
servation, we aim to investigate whether a BERT-
based classification model can learn to identify the

Figure 1: Architecture of our zero-cardinality classifier.
c is the number of relations.

presence of relational triples in these sentences us-
ing the clue tokens, without requiring knowledge
of the specific entities involved in the triples.

To accomplish this, we feed the sentences with a
‘CLS’ prefix token (CLS w1 w2 ..... wn) into a pre-
trained BERT_base model with a hidden dimension
of h. We utilize the vector representation of the
‘CLS’ token to determine whether the sentence con-
tains any relational triples or not. We refer to this
classifier as the zero-cardinality classifier (ZCC).

We explore two distinct approaches for this clas-
sifier:

(i) The first approach involves binary classifica-
tion to determine whether a sentence contains any
triples or not. However, in this approach, we do not
explicitly utilize the set of relations.

(ii) The second approach employs a multi-class
multi-label (MCML) classification, which focuses
on identifying the specific relations within the rela-
tion set. Sentences without any triples are assigned
no positive labels.

To begin, we train the classifier on the ‘WZ’
training dataset, while training the joint extraction
models on the ‘NZ’ training set. During the in-
ference phase, if the classifier model indicates the
presence of triples in a test instance, we subse-
quently pass it to the joint extraction models to
extract the exact triples. This two-step process en-
ables us to effectively filter out sentences that do
not contain any triples.

We include the architecture of our proposed zero-
cardinality classifier in Fig 1. We use binary cross-
entropy loss and AdamW (Loshchilov and Hutter,
2019) optimizer to update the model parameters.
We use mini-batch size of 16 and an early stop
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NYT24* NYT29*
Train Validation Test Train Validation Test

#sentences with >=1 triples 56,196 5,000 5,000 63,306 7,033 4,006
#triples in above sentences 88,366 8,489 8,120 78,973 8,766 5,859
#sentences with zero triples 145,767 4,969 4,969 177,861 4,940 4,601

Table 2: The statistics of the NYT24* and NYT29* datasets.

criterion during training. Our experiments have
demonstrated that this two-step approach signifi-
cantly enhances the overall performance of the joint
models on the test set, encompassing sentences
both with and without triples.

4 Datasets Preparation & Evaluation
Metric

The New York Times (NYT) dataset holds signifi-
cant importance as a benchmark for relation extrac-
tion. Several studies (Zeng et al., 2018; Takanobu
et al., 2019; Nayak and Ng, 2020) utilize the de-
rived NYT29 and NYT24 datasets, which originate
from the original NYT10 (Riedel et al., 2010) and
NYT11 (Hoffmann et al., 2011) training corpus,
respectively. Zeng et al. (2018); Takanobu et al.
(2019); Nayak and Ng (2020) exclude sentences
without triples and partition the dataset into train-
ing, validation, and test sets. Subsequent research
papers (Wei et al., 2020; Wang et al., 2020; Zheng
et al., 2021; Li et al., 2021; Wei et al., 2020; Yan
et al., 2021; Shang et al., 2022) build upon this
modified version of the datasets, which is compar-
atively easier, and achieve exceptionally high F1
scores on these datasets. This trend reflects the
prevalence of simplified datasets in recent works,
potentially overestimating the performance of re-
lation extraction models when faced with more
realistic scenarios.

In order to enhance the realism of the joint ex-
traction task, we augment the NYT29 and NYT24
datasets by incorporating sentences with zero
triples from the original NYT10 and NYT11 train-
ing corpus, respectively. These augmented datasets
are referred to as NYT29* and NYT24* hereafter.
The specifics regarding the training, validation, and
test splits of the NYT24* and NYT29* datasets can
be found in Table 2.

To evaluate the state-of-the-art (SOTA) models,
we conduct experiments using two distinct training
and test settings. These settings are as follows:

(i) NoZero (NZ): In this setting, only sentences
containing one or more triples are included for
training and testing purposes.

(ii) WithZero (WZ): This setting encompasses
the sentences from the NZ set, along with addi-
tional sentences with zero triples from the corre-
sponding original NYT datasets.

By employing these two different experimental
designs, we aim to gain insights into the robustness
of the joint extraction models and their ability to
handle different scenarios.

4.1 Evaluation Metric

For evaluating the performance of the state-of-the-
art (SOTA) models, we employ triple-level preci-
sion, recall, and F1 score as the evaluation met-
rics. In order to determine the correctness of an
extracted triple, we compare it with the ground
truth triple. A triple is considered correct if both
the corresponding entities and the relation match
accurately. In the case of an ’Exact’ match, we re-
quire the full span of the entities to match precisely,
as specified in the respective papers. However, in
the case of a ’Partial’ match, we only compare the
first or last token of the entities with the ground
truth.

5 Results & Discussion

To begin our analysis, we assess the performance of
state-of-the-art (SOTA) end-to-end models under
the new experiment settings, which now include
sentences with zero cardinality. The results of these
experiments are presented in Table 3. Initially, we
train these models solely on the ‘NZ’ sentences
and evaluate their performance on both the ‘NZ’
and ‘WZ’ sentences. Upon evaluation, we observe
a significant decline in the F1 score on the WZ’
sentences compared to the NZ’ sentences. Across
the NYT24* and NYT29* datasets, the F1 score
experiences a decrease of approximately 14-24%.
Furthermore, the precision score for all these mod-
els exhibits a sharp drop, as they extract triples
from sentences that do not contain any triples. This
outcome is expected since the models have not been
exposed to any examples featuring zero triples dur-
ing the training phase.

Next, we proceed to train these models using the
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Test setting → NZ WZ
Training
setting ↓ Model Prec. Rec. F1 Prec. Rec. F1 % point ↓

OneRel 0.926 0.918 0.922 0.678 0.918 0.780 14.2
BiRTE 0.914 0.920 0.917 0.628 0.920 0.747 17.0
TDEER 0.922 0.908 0.915 0.644 0.908 0.754 16.1
PRGC 0.918 0.884 0.901 0.670 0.884 0.762 13.9
GRTE 0.929 0.924 0.926 0.645 0.924 0.760 16.6
PtrNet 0.898 0.894 0.896 0.538 0.894 0.671 22.5
CasRel 0.894 0.890 0.892 0.612 0.890 0.725 16.7
TPLinker 0.913 0.917 0.915 0.643 0.917 0.756 15.9

NZ

PFN* 0.892 0.919 0.905 0.557 0.919 0.694 21.1
OneRel 0.926 0.773 0.843 0.828 0.773 0.800 4.3 12.2
BiRTE 0.898 0.858 0.878 0.786 0.858 0.820 5.8 9.7
TDEER 0.914 0.905 0.909 0.637 0.905 0.748 16.1 16.7
PRGC 0.905 0.777 0.836 0.791 0.777 0.784 5.2 11.7
GRTE 0.920 0.769 0.838 0.824 0.769 0.796 4.2 13.0
PtrNet 0.932 0.697 0.798 0.838 0.697 0.761 3.7 13.5
CasRel 0.915 0.878 0.896 0.643 0.878 0.742 15.4 15.0
TPLinker 0.923 0.808 0.861 0.823 0.807 0.815 4.6 10.0

NYT24*

WZ

PFN* 0.910 0.732 0.812 0.804 0.732 0.766 4.6 13.9
OneRel 0.805 0.726 0.763 0.528 0.726 0.611 15.2
BiRTE 0.794 0.724 0.757 0.484 0.724 0.580 17.7
TDEER 0.813 0.707 0.756 0.530 0.707 0.606 15.0
PRGC 0.807 0.701 0.750 0.509 0.701 0.590 16.0
GRTE 0.804 0.726 0.763 0.492 0.726 0.587 17.6
PtrNet 0.790 0.710 0.748 0.394 0.710 0.507 24.1
CasRel 0.795 0.712 0.751 0.488 0.712 0.579 17.2
TPLinker 0.805 0.718 0.759 0.456 0.718 0.558 20.1

NZ

PFN* 0.777 0.720 0.748 0.474 0.720 0.572 17.6
OneRel 0.841 0.657 0.738 0.755 0.657 0.703 3.5 6.0
BiRTE 0.833 0.663 0.738 0.698 0.663 0.680 5.8 7.7
TDEER 0.788 0.708 0.746 0.536 0.708 0.611 13.5 14.5
PRGC 0.842 0.639 0.727 0.755 0.639 0.692 3.5 5.8
GRTE 0.840 0.624 0.716 0.759 0.623 0.684 3.2 7.9
PtrNet 0.876 0.620 0.726 0.720 0.620 0.666 6.0 8.2
CasRel 0.807 0.708 0.754 0.541 0.708 0.613 14.1 13.8
TPLinker 0.775 0.636 0.698 0.686 0.636 0.660 3.8 9.9

NYT29*

WZ

PFN* 0.833 0.600 0.697 0.748 0.600 0.666 3.1 8.2

Table 3: Performance of the joint extraction models in the end-to-end approach on the NYT24* and NYT29*
datasets with different train/test settings. * marked models are evaluated using partial entity matching as per their
paper. F1 score in green color are the results obtained without zero-cardinality sentences. F1 score in red color are
the results obtained with zero-cardinality sentences. The % point ↓ numbers in bold are the difference between the
F1 scores in green and red.

‘WZ’ sentences. Upon analysis, we note that their
performance on the ‘NZ’ sentences experiences a
decline of 4-8%, with the exception of the TDEER
and CasRel models. Interestingly, the TDEER and
CasRel models exhibit comparable performance
on the ‘NZ’ test set, regardless of whether they
were trained on ‘NZ’ or ‘WZ’ training data. How-
ever, the introduction of sentences with zero triples
during the training process tends to confuse these
models, leading to a negative impact on their recall.
Consequently, the models struggle to accurately
extract valid triples due to the presence of such
adversarial examples. Furthermore, in this training
setting, we observe an improvement of 2-8% in the
models’ performance on ‘WZ’ sentences. Never-
theless, the best F1 score reported on the stringent

‘NZ’ test set for NYT24* is 0.926 (achieved by
the GRTE model). In contrast, the best F1 score
attained on the ‘WZ’ test set for NYT24* is 0.82
(achieved by the BiRTE model). This signifies a
10% drop in the best F1 score when transitioning
to the experiment’s more diverse setting. Similarly,
we observe a 6% decrease in the best achieved F1
scores on the ‘WZ’ test set for NYT29* compared
to the ‘NZ’ test set.

Next, we delve into the analysis of the impact
of our proposed two-step approach for this task.
The first step involves utilizing the zero-cardinality
classifier to predict sentences with zero cardinality,
i.e., sentences that either contain triples or do not.
The performance of the classification model using
both binary and multi-class multi-label (MCML)
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NYT24* NYT29*
Prec. Rec. F1 Prec. Rec. F1

ZCCbinary 0.887 0.867 0.877 0.801 0.888 0.842
ZCCMCML 0.881 0.884 0.883 0.823 0.824 0.823

Table 4: Performance of the zero cardinality classifier (ZCC) model on NYT24* and NYT29* datasets in the binary
classification and multi-class multi-label classification (MCML) settings.

NYT24* NYT29*
multi-class multi-label binary

Model Prec. Rec. F1 % ↑ Prec. Rec. F1 % ↑
OneRel 0.832 0.836 0.834 3.43 0.740 0.664 0.700 -0.27
BiRTE 0.819 0.839 0.829 0.85 0.679 0.663 0.671 -0.95
TDEER 0.830 0.830 0.830 8.23 0.749 0.649 0.696 8.52
PRGC 0.822 0.811 0.816 3.26 0.744 0.645 0.691 -0.14
GRTE 0.835 0.842 0.839 4.30 0.740 0.661 0.699 1.41
PtrNet 0.806 0.815 0.811 4.95 0.677 0.650 0.663 -0.33
CasRel 0.807 0.812 0.810 6.73 0.676 0.653 0.665 5.13
TPLinker 0.816 0.839 0.828 1.23 0.681 0.656 0.668 0.81
PFN* 0.805 0.833 0.818 5.20 0.726 0.658 0.690 2.42

Table 5: Performance of the SOTA models in the two-step modeling on the relational triple extraction task with
zero-cardinalty sentences. At the first-step, we use multi-class multi-label classification for NYT24* dataset and
binary classification for NYT29* dataset.

classification is provided in Table 4. The classifica-
tion model was trained on ‘WZ’ sentences for both
the NYT24* and NYT29* datasets. Both binary
classification and multi-class multi-label classifi-
cation demonstrate competitive performance on
both datasets. Multi-class multi-label classifica-
tion exhibits slightly higher performance on the
NYT24* dataset, while binary classification yields
marginally better results on the NYT29* dataset.

In the second step of our two-step approach, only
the sentences predicted by the classification model
to have existing triples are passed on to the triple
extraction model. For this step, we train the state-
of-the-art (SOTA) models exclusively on the ‘NZ’
sentences to facilitate triple extraction. In Table 5,
we present the comprehensive performance evalu-
ation of the state-of-the-art (SOTA) model using
the two-step approach for the triple extraction task.
For the NYT24* dataset, we utilize the multi-class
multi-label classifier, while for the NYT29* dataset,
we employ the binary classification approach for
zero-cardinality prediction.

Our observations reveal an improvement of ap-
proximately ∼ 8% in the ‘WZ’ sentences for both
the NYT24* and NYT29* datasets when employ-
ing the two-step approach compared to the end-to-
end approach. Specifically, for the NYT24* dataset,

all SOTA models exhibit enhanced performance
with the two-step approach over the end-to-end
approach. However, for the NYT29* dataset, the
performance is not consistently improved. In the
case of four models (OneRel, BiRTE, PRGC, and
PtrNet), we observed a minor drop of up to ∼ 1%
with the two-step approach.

Overall, we conclude that the two-step approach
either improves the performance of these models or
achieves competitive performance when compared
to the end-to-end approach in this new experimen-
tal setting for relation extraction.

5.1 Training Time of the Models

Table 6 presents the training time of various mod-
els used in our experiments. All training was con-
ducted on an NVIDIA A100 GPU with 20 GB GPU
memory. Our two-step approach for the relation
extraction task in this new setting offers advantages
over the end-to-end approach.

The training time for the SOTA models solely
using ‘NZ’ data is considerable, primarily due to
their utilization of BERT as the sentence encoder.
However, when we incorporate sentences with zero
triples in the training process (which account for
almost three times the number of sentences with
triples, as shown in Table 2), the training time sig-
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NYT24* NYT29*
NZ WZ NZ WZ

Onrel 18.33 68.35 21.05 83.06
BiRTE 6.67 25.49 6.24 32.74
TDEER 43.51 50.85 45.11 63.68
PRGC 20.25 56.70 18.96 62.87
GRTE 20.70 65.08 21.87 80.51
PtrNet 17.17 41.03 12.24 24.30
CasRel 18.23 65.20 20.54 75.95
TPLinker 26.19 122.65 43.40 168.91
PFN* 22.40 317.18 188.68 393.35
ZCCbinary - 14.67 - 25.55
ZCCMCML - 14.49 - 25.65

Table 6: Training time of the models. First 9 rows are
avg. training epoch time (in minutes) of five SOTA mod-
els on the ‘NZ’ and ‘WZ’ training data. Last two rows
are avg. training time of the zero cardinality classifica-
tion (ZCC) models with WZ training data.

nificantly increases for all models (refer to Table
6).

On the contrary, the zero-cardinality classifier
only needs to be trained once for all models, re-
sulting in substantial time savings. Additionally,
training the zero-cardinality classifier itself is rela-
tively quick due to its simple architecture.

6 Related Work

Extracting relational triples from text is a crucial
task for constructing new knowledge bases or en-
hancing existing ones. In their efforts to address
this task, Mintz et al. (2009); Riedel et al. (2010);
Hoffmann et al. (2011) employed feature-based
classification models. More recently, Zeng et al.
(2014, 2015) utilized CNN models, which auto-
matically extract features, for this purpose. Shen
and Huang (2016); Jat et al. (2017); Nayak and
Ng (2019) incorporated attention mechanisms into
their models to enhance performance. Approaches
such as Surdeanu et al. (2012); Lin et al. (2016);
Vashishth et al. (2018) adopted a multi-instance re-
lation extraction setting, where multiple sentences
are used to capture features associated with a pair
of entities. These approaches assume that entities
have already been identified and focus solely on
classifying relations between entity pairs.

Katiyar and Cardie (2016); Miwa and Bansal
(2016); Bekoulis et al. (2018); Nguyen and Ver-
spoor (2019); Nayak and Ng (2020) tried to bring
the named entity recognition task and relation clas-
sification task together. Zheng et al. (2017) used a
sequence tagging scheme to jointly extract the en-
tities and relations. Zeng et al. (2018); Nayak and
Ng (2020) proposed an encoder-decoder model to

extract relational triples with overlapping entities.
Takanobu et al. (2019) proposed a joint extraction
model based on hierarchical reinforcement learning
(HRL).

With the introduction of pre-trained models such
as BERT (Devlin et al., 2019), many models used
such models as sentence encoder to improve their
performance. Models such as TPLinker (Wang
et al., 2020), CasRel (Wei et al., 2020), TDEER
(Li et al., 2021), PRGC (Zheng et al., 2021), PFN
(Yan et al., 2021), GRTE (Ren et al., 2021), OneRel
(Shang et al., 2022), and BiRTE (Ren et al., 2022)
use BERT_base (Devlin et al., 2019) as an encoder
and proposed table-filling method or relation spe-
cific tagging mechanism for joint entity and rela-
tion extraction. These models show remarkable
performance on the NYT datasets in the restric-
tive experimental setting without considering the
zero-cardinal sentences.

7 Conclusion

In this work, we present an innovative and chal-
lenging experiment design for relation extrac-
tion, which incorporates sentences containing zero
triples (referred to as zero-cardinal sentences) in
the dataset. We conduct comprehensive experi-
ments involving 9 state-of-the-art (SOTA) models
using the widely-used New York Times datasets.
To tackle this task, we devise both an end-to-end
modeling approach and a two-step modeling ap-
proach.

During our investigations, we make a significant
observation in the end-to-end modeling, where we
notice a drop in the F1 score by approximately 10-
15% and 6-14% in two versions of the NYT dataset.
To address this issue, we propose the integration
of a BERT-based classifier as an additional step
for this task. Remarkably, this approach either
achieves performance comparable to the end-to-
end approach or even surpasses it.

We believe that our benchmark, focusing on re-
lational triple extraction with zero-cardinality, will
prove immensely valuable for future research in
this domain. By introducing this unique experiment
design, we aim to stimulate further advancements
and foster progress in this field.

8 Limitations

One limitation of this work is that we benchmark
this task using 9 SOTA joint models. There are
many other SOTA models published in this area but
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it is difficult to benchmark all of them. We chose
the 9 models in such as way that different kind
of design choices in these models are represented
in our study. We chose Seq2Seq model (Nayak
and Ng, 2020), horn tagging-based models (Wang
et al., 2020; Shang et al., 2022), 0/1 tagging-based
models (Wei et al., 2020; Li et al., 2021), table-
filling models (Ren et al., 2021) for rigorous study
of this area.

9 Ethics Statements

Our work does not have any ethical concerns.

References
Giannis Bekoulis, Johannes Deleu, Thomas Demeester,

and Chris Develder. 2018. Joint entity recognition
and relation extraction as a multi-head selection prob-
lem. Expert Systems with Applications.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extraction of
overlapping relations. In ACL.

Sharmistha Jat, Siddhesh Khandelwal, and Partha Taluk-
dar. 2017. Improving distantly supervised relation
extraction using word and entity based attention. In
AKBC.

Arzoo Katiyar and Claire Cardie. 2016. Investigating
LSTMs for joint extraction of opinion entities and
relations. In ACL.

Souvik Kundu and Hwee Tou Ng. 2018. A nil-aware
answer extraction framework for question answering.
In EMNLP.

Xianming Li, Xiaotian Luo, Cheng Jie Dong, Daichuan
Yang, Beidi Luan, and Zhen He. 2021. TDEER:
An efficient translating decoding schema for joint
extraction of entities and relations. In EMNLP.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan,
and Maosong Sun. 2016. Neural relation extraction
with selective attention over instances. In ACL.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extraction
without labeled data. In ACL.

Makoto Miwa and Mohit Bansal. 2016. End-to-end
relation extraction using LSTMs on sequences and
tree structures. In ACL.

Tapas Nayak and Hwee Tou Ng. 2019. Effective at-
tention modeling for neural relation extraction. In
CoNLL.

Tapas Nayak and Hwee Tou Ng. 2020. Effective mod-
eling of encoder-decoder architecture for joint entity
and relation extraction. In AAAI.

Dat Quoc Nguyen and Karin Verspoor. 2019. End-
to-end neural relation extraction using deep biaffine
attention. In ECIR.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for SQuAD. In ACL.

Feiliang Ren, Longhui Zhang, Shujuan Yin, Xiaofeng
Zhao, Shilei Liu, Bochao Li, and Yaduo Liu. 2021.
A novel global feature-oriented relational triple ex-
traction model based on table filling. In EMNLP.

Feiliang Ren, Longhui Zhang, Xiaofeng Zhao, Shujuan
Yin, Shilei Liu, and Bochao Li. 2022. A simple
but effective bidirectional framework for relational
triple extraction. Proceedings of the Fifteenth ACM
International Conference on Web Search and Data
Mining.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions without
labeled text. In ECML and KDD.

Y. Shang, Heyan Huang, and Xian-Ling Mao. 2022.
OneRel: Joint entity and relation extraction with one
module in one step. In AAAI.

Yatian Shen and Xuanjing Huang. 2016. Attention-
based convolutional neural network for semantic re-
lation extraction. In COLING.

Elior Sulem, Jamaal Hay, and Dan Roth. 2021. Do we
know what we don’t know? studying unanswerable
questions beyond SQuAD 2.0. In EMNLP.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D. Manning. 2012. Multi-instance
multi-label learning for relation extraction. In
EMNLP and CoNLL.

Ryuichi Takanobu, Tianyang Zhang, Jiexi Liu, and Min-
lie Huang. 2019. A hierarchical framework for rela-
tion extraction with reinforcement learning. In AAAI.

Shikhar Vashishth, Rishabh Joshi, Sai Suman Prayaga,
Chiranjib Bhattacharyya, and Partha Talukdar. 2018.
Reside: Improving distantly-supervised neural rela-
tion extraction using side information. In EMNLP.

Yucheng Wang, Bowen Yu, Yueyang Zhang, Tingwen
Liu, Hongsong Zhu, and Limin Sun. 2020. TPLinker:
Single-stage joint extraction of entities and relations
through token pair linking. In COLING.

Zhepei Wei, Jianlin Su, Yue Wang, Yuan Tian, and
Yi Chang. 2020. A novel cascade binary tagging
framework for relational triple extraction. In ACL.

9



Zhiheng Yan, Chong Zhang, Jinlan Fu, Qi Zhang, and
Zhongyu Wei. 2021. A partition filter network for
joint entity and relation extraction. In EMNLP.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction
via piecewise convolutional neural networks. In
EMNLP.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In COLING.

Xiangrong Zeng, Daojian Zeng, Shizhu He, Kang Liu,
and Jun Zhao. 2018. Extracting relational facts by an
end-to-end neural model with copy mechanism. In
ACL.

Heng Zheng, Rui Wen, Xi Chen, Yifan Yang, Yunyan
Zhang, Ziheng Zhang, Ningyu Zhang, Bin Qin, Ming
Xu, and Yefeng Zheng. 2021. PRGC: Potential rela-
tion and global correspondence based joint relational
triple extraction. In ACL.

Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing
Hao, Peng Zhou, and Bo Xu. 2017. Joint extraction
of entities and relations based on a novel tagging
scheme. In ACL.

A Appendix

A.1 GenBench Evaluation Cards

10



Motivation
Practical Cognitive Intrinsic Fairness
◦

Generalisation type
Compositional Structural Cross Task Cross Language Cross Domain Robustness

◦

Shift type
Covariate Label Full Assumed

◦
Shift source

Naturally occuring Partitioned natural Generated shift Fully generated
◦

Shift locus
Train–test Finetune train–test Pretrain–train Pretrain–test
◦

Table 7: We characterise all our experiments of Section 5 (◦) in this datacard.
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Abstract

Language models can serve as a valuable tool
for software developers to increase productiv-
ity. Large generative models can be used for
code generation and code completion, while
smaller encoder-only models are capable of
performing code search tasks using natural lan-
guage queries. These capabilities are heavily
influenced by the quality and diversity of the
available training data. Source code datasets
used for training usually focus on the most pop-
ular languages and testing is mostly conducted
on the same distributions, often overlooking
low-resource programming languages. Mo-
tivated by the NLP generalization taxonomy
proposed by Hupkes et. al., we propose a new
benchmark dataset called GenCodeSearchNet
(GeCS) which builds upon existing natural lan-
guage code search datasets to systemically eval-
uate the programming language understanding
generalization capabilities of language models.
As part of the full dataset, we introduce a new,
manually curated subset StatCodeSearch that
focuses on R, a popular but so far underrep-
resented programming language that is often
used by researchers outside the field of com-
puter science. For evaluation and comparison,
we collect several baseline results using fine-
tuned BERT-style models and GPT-style large
language models in a zero-shot setting.

1 Introduction

Language models have found their use in various
tasks dealing with source code, ranging from code
search to code summarization, code completion,
and code translation (Lu et al., 2021). With the
release of Codex (Chen et al., 2021) and Chat-
GPT (Ouyang et al., 2022) large language models
(LLMs) became popular and widely used for AI-
assisted coding. Still, as of August 2023, code com-
pletion and code-related question answering with
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Figure 1: Overview of the benchmark composition w.r.t.
the generalization taxonomy of Hupkes et al. (2023)

LLMs is far from reliable (Kabir et al., 2023). An
alternative to using general purpose LLMs for code
completion is code search (i.e., finding relevant
source code based on a natural language query) in
curated datasets (Cambronero et al., 2019; Husain
et al., 2019) which provides a more transparent aid
for AI-assisted coding. However, so far it is unclear
how well code search models generalize across dif-
ferent programming languages, different domains,
and how robust they are against distribution shifts.

Although both natural language queries and
source code are represented as text, one can-
not safely assume to have an overlap in the
words/characters used, since function and variable
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names do not necessarily consist of words. Still,
classical string-based matching between a query
and documents (Manning, 2009) is used in many
information retrieval systems and practical applica-
tions (Lin et al., 2022). When documents consist
of code, natural language queries will have little to
no matching words, resulting in a lexical gap. Due
to this lexical gap, the task of finding code snippets
based on natural language queries is difficult and
requires specific bimodal language models capable
of processing both natural and programming lan-
guages (Feng et al., 2020; Guo et al., 2020; Wang
et al., 2021, 2023).

However, this bimodal training approach is likely
limited to the programming languages on which the
models were trained. It is unknown how such mod-
els would generalize to programming languages
that were not part of the training data or have
only little representation in the dataset, i. e., a low-
resource programming language. Evaluating the
models on programming languages that were not
part of the training data (i. e., a distribution shift
occurs) would shed new light on the generalization
capabilities of hybrid models for code and text –
which is the aim of this work.

Moreover, there are low-resource programming
languages such as R that in terms of quantity are un-
derrepresented on popular code-sharing platforms
like GitHub. However, it is the de facto program-
ming language in many research fields relying on
statistical analysis, such as economics, statistics,
social sciences, and psychology. Thus, the cod-
ing conventions and style in these fields also dif-
fer from the code corpora used in existing bench-
mark datasets (Husain et al., 2019; Lu et al., 2021).
This produces a blind spot on the current methods
for code search as they are usually only tested on
datasets of well-curated source code in the most
popular programming languages.

We propose a new benchmark dataset called Gen-
CodeSearchNet (GeCS) which combines a new,
manually curated dataset StatCodeSearch with ex-
isting code search datasets. StatCodeSearch con-
sists of code-comment pairs extracted from R
scripts written for statistical analysis. We further
propose an evaluation protocol for the benchmark
that allows future researchers to systemically test
the language models’ generalization capabilities for
programming language understanding. The evalua-
tion setup for our dataset is illustrated in Figure 1
and consists of three generalization tests for robust-

ness, cross-lingual, and domain generalization. We
provide a detailed description of this benchmark
in Section 3. In summary, the contributions of this
work are three-fold:

• We create a benchmark for programming lan-
guage understanding named GenCodeSearch-
Net that tests text-code matching and rank-
ing, organized along different types of out-of-
distribution generalization. The composition
of the benchmark is described in Section 3
and its evaluation protocol in Section 4.

• To facilitate the new benchmark, we intro-
duce a new, manually-curated dataset named
StatCodeSearch, consisting of 1,070 text-code
pairs from statistical research code written in
R, which is described in Section 3.2.

• Initial baselines for this new benchmark are
introduced in Section 5. We provide results for
RoBERTA, CodeBERT, CodeT5+, and GPT-
based LLMs in Section 5.2.

2 Related Work

Code Search Code search is an established re-
search field with various tools and solutions avail-
able. Below, we briefly summarize existing clas-
sical works on source code search, followed by
works on semantic code search based on neural net-
works, particularly pre-trained language models.

An established classical tool for source code
search is Oracle OpenGrok1 based on the popu-
lar full-text index Lucene. As a result, OpenGrok
enables textual searching of code for strings based
on Google-like search queries. Similar systems
for textual searching on code are searchcode2 and
Sourcegraph3. The ANNE (Vinayakarao et al.,
2017) system extends the purely textual search to
source code by mapping natural language queries
to syntactic keywords of programming languages.
Search engines supporting structured queries in-
clude Aroma (Luan et al., 2019), which takes an
incomplete code fragment as a query (called a snip-
pet) and suggests concise code snippets from the
code database. A similar approach is also taken by
Mukherjee et al. (Mukherjee et al., 2020).

Neural networks have also been successfully ap-
plied for code search allowing semantics-based nat-
ural language code search. Just as in most fields

1https://github.com/oracle/opengrok
2https://searchcode.com/
3https://about.sourcegraph.com/
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of NLP, the best-performing models for semantic
code search are transformer-based language mod-
els. These models are pretrained on both natu-
ral language and programming language corpora
and often use a contrastive loss to better align text
and code representations (Li et al., 2022b; Wang
et al., 2023; Neelakantan et al., 2022). Promi-
nent examples of encoder-only bimodal language
models include CodeBERT (Feng et al., 2020),
GraphCodeBERT (Guo et al., 2020), and CodeRe-
triever (Li et al., 2022a). Encoder-decoder models
designed to handle a wide range of programming
language tasks such as CodeT5 (Wang et al., 2021)
and CodeT5+ (Wang et al., 2023) also perform
strongly on the task of semantic code search. Lastly,
decoder-only models (Brown et al., 2020) can be
also employed for code search, albeit they either
require careful prompting (Ouyang et al., 2022) or
extensive fine-tuning (Neelakantan et al., 2022).

Generalization in Programming Language Un-
derstanding Generalization, or the ability of a
model to perform well on data not seen during
training, is sought after in all domains of machine
learning (Goodfellow et al., 2016). However, gen-
eralization can refer to a wide range of different
scenarios in NLP. To tackle this lack of agreement
and systematic testing, Hupkes et al. (2023) pro-
posed a taxonomy for characterizing generalization
research in NLP. Their taxonomy consists of five
axes to classify the motivation, generalization type,
data shift type, source, and locus of the shift.

Even though neural networks capable of han-
dling both natural and programming languages are
usually called bimodal models (Allamanis et al.,
2015; Feng et al., 2020; Wang et al., 2023), the
representations of these two input modalities share
a lot of commonalities, including predictable sta-
tistical properties (Hindle et al., 2012). Therefore,
we argue that the NLP generalization taxonomy
proposed by Hupkes et al. (2023) also offers valu-
able insights for research in programming language
understanding.

Generalization research on code-related tasks is
still in short supply. The HumanEval dataset (Chen
et al., 2021) used for benchmarking generative
models only contains Python source code, while
CodeXGLUE (Lu et al., 2021), the comprehen-
sive programming language understanding bench-
mark suite is designed to evaluate on in-distribution
test data. CodeS (Hu et al., 2023) offers an exten-
sive dataset for evaluating against different types

of out-of-distribution samples, but only uses two
languages (Python and Java) with the singular
downstream task of code classification. To the
best of our knowledge, the only large-scale bench-
marks for evaluating generalization of code-related
tasks are CrossCodeBench (Niu et al., 2023) and
XLCoST (Zhu et al., 2022). While XLCoST fo-
cuses solely on cross-lingual generalization, Cross-
CodeBench only includes tasks that are formulated
in a text-to-text form, leaving out retrieval tasks,
such as code search. In contrast to the aforemen-
tioned works, our proposed benchmark focuses on
the task of natural language code search and offers
evaluations against multiple types of distribution
shifts.

3 Composition of GenCodeSearchNet

In this section, we describe the datasets used in
our benchmark suite. The datasets are chosen and
created based on the criterion to evaluate different
types of generalization in programming language
processing to foster further research in the field.

The GeCS dataset includes one fine-tuning set
and eight test sets. It contains three previously
proposed datasets, namely CodeSearchNet (Husain
et al., 2019), CodeSearchNet AdvTest (Lu et al.,
2021), and CoSQA (Huang et al., 2021). We add
a novel set that focuses on statistical tests in the
programming language R, named StatCodeSearch.
Each dataset contains a natural language descrip-
tion (either a code comment or a search engine
query) and a source code snippet. The test suite is
designed to study generalization from a practical
perspective, i. e., to assess programming language
understanding in various evaluation scenarios. The
source of datashifts between the different test sets is
considered to be naturally occurring, with the locus
of the shift appearing between the pretraining/fine-
tuning data and test data. The types of generaliza-
tion covered by the test suite include robustness to
covariate shifts and generalization across program-
ming languages and programming domains.

A detailed breakdown of the experimental design
in the generalization framework proposed by Hup-
kes et al. (2023) can be seen in Figure 1. The main
characteristics of the different subsets can be found
in Table 1. The average number of tokens have
been calculated using the pretrained RoBERTa to-
kenizer sourced from HuggingFace (Wolf et al.,
2019). Furthermore, we also measure the covariate
shift in texts and codes using the total variation dis-
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Table 1: Statistics of the different subsets used in the GenCodeSearchNet test suite. The numbers shown include
only the positive (matching) examples

Subset # text-code avg # text avg # code total variation total variation
pairs tokens tokens distance text distance code

Fine-tuning set
CodeSearchNet AdvTest train 251 820 15.97 166.94 0.0 0.0
Test sets
CodeSearchNet AdvTest test 19 210 16.08 177.64 0.1268 0.5372
CodeSearchNet Go 14 291 27.46 159.08 0.3281 0.6110
CodeSearchNet Java 26 909 29.07 179.63 0.3126 0.5972
CodeSearchNet JavaScript 6 483 21.93 240.21 0.2892 0.5479
CodeSearchNet Ruby 2 279 23.88 138.09 0.2962 0.5610
CodeSearchNet PHP 29 391 14.73 189.00 0.2858 0.5819
CoSQA 10 293 10.42 55.93 0.5322 0.4453
StatCodeSearch 1 070 24.55 134.02 0.5386 0.8032
Combined Test set 109 926 21.01 159.20 0.3386 0.5855

tance (Goldenberg and Webb, 2019). We calculate
the total variation distance to the CodeSearchNet
Adv train set (used for fine-tuning) on the tokenized
samples.

3.1 Existing Datasets

The CodeSearchNet dataset (Husain et al., 2019)
was introduced as a semantic code search evalu-
ation tool. Since then it has been a staple bench-
mark dataset for studying the code search capabil-
ities of machine learning models. It encompasses
code-comment pairs from six different program-
ming languages: Python, Go, Java, JavaScript,
Ruby, and PHP. The full corpus includes 6 mil-
lion functions scraped from GitHub, with 2 million
of those including associated function documen-
tation. Functions less than three lines and docu-
mentation shorter than three tokens were removed
from the scraped corpus. Duplicate or near dupli-
cate functions were also discarded to control for
auto-generated code snippets and copy & paste
between GitHub users. For the GeCS test suite,
we collected the test sets from the HuggingFace
Hub (Lhoest et al., 2021) and discarded the Python
subset (since it is included later in the CodeSearch-
Net AdvTest dataset). We employed no further
preprocessing and formatted the data into JSONL
files. For each sample, we defined three fields: the
input field contains the code comment and code
snippet separated by a ’[CODESPLIT]’ token, the
target field contains the index of the binary labels
(’no_match’,’match’), which are found in the tar-
get_options field. This dataset is used to measure
cross-lingual generalization.

The CodeSearchNet AdvTest dataset was devel-
oped for the CodeXGLUE benchmark dataset (Lu
et al., 2021) by applying further preprocessing steps

on the Python subset of the CodeSearchNet dataset.
First, all code snippets that could not be parsed
into an abstract syntax tree were removed, then
documentations with more than 256 tokens were
removed alongside samples that contained special
tokens such as "http://" or "<img... >". Finally, the
functions and variables in the code snippets of the
test set have been normalized by renaming them
to func and argi, respectively. This normalization
of the test set makes it a good fit to test robustness
against a covariate shift in the source code. For the
inclusion in the GeCS test suite, we sourced both
the train and test set from the official CodeXGLUE
repository4. We employed no further preprocess-
ing and applied the same formatting as described
above.

The Code Search And Question Answer-
ing (CoSQA) corpus (Huang et al., 2021) uses the
Python subset of the CodeSearchNet dataset and
matches the code snippets with real-world search
queries from the Microsoft Bing search engine.
The search logs were carefully filtered to only in-
clude queries that incorporate the keyword python
and have none of the predefined keywords that re-
late to search intents other than code search (e. g.,
debugging, conceptual queries, tool usage). After
this initial rule-based filtering, a fine-tuned Code-
BERT encoder (Feng et al., 2020) was used to mea-
sure cosine similarity between candidate queries
and code snippets. Each code snippet was then
matched with the query of the highest similarity.
Pairs with a similarity value of less than 0.5 were
discarded. Finally, a number of human annota-
tors were instructed to label each code-query pair
whether the code snippet answers the query or not.
For the GeCS dataset, we use the training set re-

4https://github.com/microsoft/CodeXGLUE
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trieved from the official CodeXGLUE repository
and discard query-code pairs that are labeled as
non-matching (we create our own negative samples
as described in Section 4). We apply no further
preprocessing and use the same formatting as de-
scribed before.

3.2 New Dataset: StatCodeSearch

The StatCodeSearch dataset is a benchmark test set
consisting of code comment pairs extracted from R
programming language scripts authored mostly by
researchers. The dataset is sourced from the Open
Science Framework (OSF)5. It includes text and
code samples from R projects that pertain to the
fields of social science and psychology with a focus
on the statistical analysis of research data. These
projects are often linked with research articles pub-
lished in journals such as Political Communica-
tion, Behavior Research Methods, and Cognitive
Science. R scripts in these domains seldom use
branching or explicit looping constructs, as most
logic is handled by higher-order functions and R’s
implicit vectorization. Furthermore, they heavily
rely on functions of loaded libraries (Sihler, 2023).

The initial scraping of the OSF website resulted
in 11,775 R projects. After discarding projects
that did not have any specific permissive software
license, the dataset was narrowed down to 2,832
projects, from which the code-comment pairs of
the final dataset were extracted. The creation of
code-comment pairs involved a three-step proce-
dure. First, we implemented a rule-based extrac-
tion, which included the following steps. We re-
moved empty lines and leading spaces from each
line. We discarded lines identified as library load-
ing. We detected lines commencing with "#" that
include more than one word. If multiple subsequent
comment lines were found, we concatenated them
into one text item. We categorized lines without
the leading "#" symbol as associated code blocks
to the preceding text item.

After the extraction of code-comment pairs
through these rules, an additional post-processing
step was applied where we discarded common com-
ment trailing symbols from the text items such
as "#", "-", and "=". This first step resulted
in 40,041 pairs of code and comments. In or-
der to filter out irrelevant comments, in the sec-
ond step we employed GPT 3.5 Turbo to classify
the comments into four predefined classes (the

5https://osf.io/

prompts used for this subtask can be found in Ap-
pendix A.3.2). These classes were defined as statis-
tical tests, statistical modeling, visualization, and
data variables. On a small subset of 400 pairs, we
experimented with three prompting methods for
this task: zero-shot, one-shot, and few-shot. Our
pre-experiments showed zero-shot to be the most
suitable approach for this filtering, as it produced
fewer false-negatives than the other two approaches.
This automated filtering resulted in a total of 10,137
code comment pairs. The third step involved the
review and evaluation of the remaining selection
by the authors. We manually filtered the remaining
10,137 code pairs and removed those with irrele-
vant comments, or code blocks that did not corre-
spond to the comment. This step served as a critical
quality control measure and yielded a total of 1,070
pairs of code and comments. We applied the same
formatting as described in Section 3.1.

4 Evaluation Protocol

4.1 Fine-tuning

Fine-tuning is an optional step for evaluating
smaller models that did not have a text-code match-
ing objective during their pretraining phase. For a
fair comparison, we suggest only using the training
set of the CodeSearchNet AdvTest dataset for fine-
tuning, which is based on Python, a widely-used
general-purpose programming language.

4.2 Measures

We apply two measures for assessing the perfor-
mance of the models.

Matching We test whether a given text-code pair
is a matching pair (positive) or not (negative). We
evaluate the accuracy on balanced test sets with an
equal number of positive and negative examples.
The non-matching examples are sampled uniformly
within the respective dataset.

Ranking To evaluate the ranking in the code
search task, we employ Mean Reciprocal
Rank (MRR). For each query, we consider 99
distractors sampled uniformly at random. For
each query, the reciprocal of the best-ranked cor-
rect answer is considered. Formally, for a set of
queries Q, the reciprocal of the best-ranked correct
answer at rank ri is aggregated and averaged as
MRR = 1

|Q|
∑

i=1,...,|Q|
1
ri

.
The rationale for the choice of MRR over alter-

native ranking metrics, such as mean average preci-
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sion (MAP) or normalized discounted cumulative
gain (nDCG) (Manning, 2009; Lin et al., 2022), is
that we have only a single relevant code snippet for
each query and the ratings are binary. When there is
only a single relevant document, as in CodeSearch-
Net, MRR and MAP coincide to the same formula.
Furthermore, nDCG can reflect different degrees
of relevance, but in our case, since we only have
a binary assessment of the code-comment pairs,
there is no benefit of using this metric.

4.3 Evaluation by Generalization Type

Our proposed benchmark groups the evaluations
by the generalization types proposed by Hupkes
et al. (2023). For this, we take the unweighted
average of the classification and ranking scores
across different datasets (see Figure 1). To eval-
uate robustness, we aggregate scores on test sets
that exhibit a covariate shift in either text or code.
For this, we employ CoSQA and CodeSearchNet
AdvTest (as described in Section 3.1). For cross-
lingual generalization (cross-lingual referring to
“across programming languages”), we average the
scores across datasets CodeSearchNet and Stat-
CodeSearch. In this generalization type, the locus
of the covariate shift is mainly in the code snippets
due to the differing syntax. For domain general-
ization, the sole test set is StatCodeSearch from the
domain of statistical analysis, which entails a dif-
ferent coding/commenting style (cf. Section 3.2).

5 Baselines

5.1 Baseline Methods

We provide the results for three main types of base-
line models using two evaluation strategies. We
employ the encoder-only models RoBERTa and
CodeBERT, the encoder-decoder model CodeT5+,
and GPT-based models GPT 3.5 Turbo and Text-
embedding-ada-002. For RoBERTa and Code-
BERT we employ an additional fine-tuning step
on the CodeSearchNet AdvTest train set. The GPT-
based models are evaluated in a zero-shot setup,
while CodeT5+ is tested both in the fine-tuning and
zero-shot setup.

For fine-tuning, we follow the same sampling
procedure that is also in the evaluation of the match-
ing task, i. e., single negative example for matching.
To tackle the matching task, we concatenate the
query and code to a singular input and train an
output layer on binary classification. To tackle the
ranking task with fine-tuned models, we concate-

nate the query with each of the 100 candidate code
snippets. Then, we rank all 100 candidate pairs ac-
cording to the matching score emitted by the model.
In the zero-shot ranking setups we create the rank-
ing based on the cosine similarity between text and
code inputs. The choice of hyperparameters for
fine-tuning can be found in Appendix A.1. Below
we briefly describe the existing models that we use
as initial baselines for the proposed benchmark.

RoBERTa is an encoder-only transformer model
that builds upon the foundations of the BERT
model (Devlin et al., 2019). RoBERTa is designed
to improve upon some limitations of BERT by op-
timizing the pretraining process. These improve-
ments include dynamic masking in masked lan-
guage modeling, larger batch sizes, increased train-
ing data size, and a more thorough hyperparame-
ter optimization (Liu et al., 2019). RoBERTa is a
commonly used baseline model for numerous NLP
tasks, including semantic code search (Feng et al.,
2020). Our experiments are based on the pretrained
HuggingFace implementation of the RoBERTa-
base model (Wolf et al., 2019).

CodeBERT is a pretrained transformer model
designed for both natural language and program-
ming language tasks (Feng et al., 2020). It uses
the RoBERTa-base architecture with a masked lan-
guage modeling objective for bimodal (natural lan-
guage and programming language input pairs) train-
ing data and replaced token detection for unimodal
(only programming language input) training data.
Similarly to other BERT-based models, CodeBERT
performs best with task-specific fine-tuning, and
is a common baseline in programming language
understanding tasks such as semantic code search,
code summarization, and code-clone detection (Lu
et al., 2021). We use the pre-trained CodeBERT
model from HuggingFace (Wolf et al., 2019) and
follow the original paper’s fine-tuning procedure.

CodeT5+ is an encoder-decoder transformer
model suited to solve a wide range of code
tasks (Wang et al., 2023). This is made possi-
ble by employing a mixture of pretraining objec-
tives, including span denoising, contrastive learn-
ing, text-code matching, and causal language mod-
eling on both unimodal and bimodal training data.
The CodeT5+ model can be be successfully de-
ployed in multiple settings (zero-shot, fine-tuning,
and instruction-tuning) and performs very well on
over 20 code-related benchmark tasks. We run our
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experiments with the codet5p-110m-embedding
model variant sourced from HuggingFace. This
version, denoted as CodeT5+ (encoder only) in our
experiments, includes only the encoder layers of
the bimodal model. This makes it suitable to create
high quality embeddings with lower computational
costs. For the matching evaluation, we extend this
model with a binary classifier head (similar to the
RoBERTa and CodeBERT setups) and apply fine-
tuning. In the ranking evaluation, we use both the
fine-tuned version and the base model in a zero-
shot setup.

GPT-3.5 Turbo developed by OpenAI as a mem-
ber of the GPT family (Brown et al., 2020) is specif-
ically designed to understand and generate both
natural language and code. GPT-3.5 Turbo is opti-
mized primarily for chat applications but also ex-
cels in traditional understanding and completion
tasks. The model is also a successor to the Open-
AI Codex model (Chen et al., 2021) and has ex-
hibited significant enhancements in code genera-
tion, error detection, debugging, and analysis. Like
other LLMs, it is built on the transformer archi-
tecture, is pre-trained on vast amounts of text and
code, and is heavily fine-tuned through human feed-
back (Ouyang et al., 2022). We employ GPT-3.5 for
the binary classification evaluation in a zero shot
setup (prompts can be found in Appendix A.3.2).

Text-embedding-ada-002 denoted as Ada 2 in
our experiments, is an embedding model released
by OpenAI in late 2022. Embedding models are
designed to generate vectors of floating point num-
bers that capture the semantic meaning of the in-
put (Neelakantan et al., 2022). The second genera-
tion of the OpenAI Ada model has been created by
merging the functionalities of five distinct embed-
ding models related to text search, text similarity,
and code search into one unified interface. We
employ Text-embedding-ada-002 to calculate the
cosine similarity between the embeddings of the
input pairs in the ranking evaluation setup.

5.2 Baseline Results

The evaluation results for the GeCS dataset are
shown in Table 2. The aggregated results for each
generalization type (as described in Section 4.3)
are displayed in Table 3. A breakdown of results
by programming language within CodeSearchNet
can be found in Appendix A.2.

Matching The fine-tuned models achieve on
average around 90% accuracy on the matching
task, with RoBERTa producing both the lowest
(84.41% on CodeSearchNet AdvTest) and high-
est (99.18% on CodeSearchNet Go) results. The
matching results of GPT 3.5 Turbo range from
32.82% (CoSQA) to 62.71% (StatCodeSearch).
The highest results across the fine-tuned models
were achieved on the CoSQA and CodeSearchNet
Go datasets, while the lowest values were seen in
the PHP subset of CodeSearchNet. Aggregating by
generalization type, we find that CodeT5+ yields
the highest scores on Robustness, while CodeBERT
yields the highest scores on Cross-Lingual and Do-
main.

Ranking In the ranking evaluation, the highest
MRR ratings are achieved by the Ada 2 model,
which consistently places the correct code snip-
pet in the first two ranks on average. The zero-
shot CodeT5+ models also attain similarly strong
performance. Compared to the zero-shot models,
fine-tuned models performed poorly on ranking,
achieving the highest MRR scores on the robust-
ness tests (CodeSearchNet AdvTest and CoSQA),
while scoring below 0.1 on the cross-lingual and
domain tests. The highest results across all mod-
els were obtained on the CodeSearchNet Ruby
datasets, while the lowest values are seen in the
StatCodeSearch dataset. Aggregating by general-
ization type, we find that all models yield higher
scores for Robustness than for Cross-Lingual and
Domain.

6 Discussion

Our newly introduced benchmark dataset provides
several new insights on the generalization capabil-
ities of pre-trained language models. Compared
to existing benchmarks, such as CodeSearchNet
and CodexGLUE, it focuses on evaluating different
types of out-of-distribution generalization, leading
to new insights about existing models.

First, we observe that encoder-only models com-
pletely fail at ranking when tested out of distribu-
tion (on datasets for which they were not specifi-
cally fine-tuned). In general, we find that ranking
performance suffers substantially from fine-tuning,
suggesting that the models are overfitting to the
fine-tuning set, resulting in limited generalization
capabilities in all three investigated generalization
types.
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Table 2: Baseline Results on GenCodeSearchNet

Model CodeSearchNet Avg CodeSearchNet AdvTest CoSQA StatCodeSearch
Acc MRR Acc MRR Acc MRR Acc MRR

Fine-tuned Models
RoBERTa 0.9263 0.1054 0.8441 0.3853 0.9596 0.0441 0.8958 0.0557
CodeBERT 0.9056 0.0907 0.8862 0.4191 0.9758 0.1087 0.9607 0.0251
CodeT5+ (encoder only) 0.8734 0.0616 0.9002 0.2767 0.9773 0.0482 0.9056 0.0582
Zero-shot Models
CodeT5+ (encoder only) - 0.8198 - 0.8547 - 0.7972 - 0.6311
GPT 3.5 Turbo 0.5882 - 0.5687 - 0.3282 - 0.6271 -
Ada 2 - 0.8852 - 0.8264 - 0.9439 - 0.7945

Table 3: Aggregated Performance for Each Generalization Type

Model Robustness Cross-Lingual Domain Combined
Acc MRR Acc MRR Acc MRR Acc MRR

RoBERTa 0.9018 0.2147 0.9110 0.0322 0.8958 0.0557 0.9028 0.1008
CodeBERT 0.9310 0.2639 0.9170 0.0579 0.9607 0.0251 0.9362 0.1236
CodeT5+ (encoder only) FT 0.9387 0.1156 0.8895 0.0599 0.9056 0.0582 0.9112 0.0779
CodeT5+ (encoder only) ZS - 0.8259 - 0.7254 - 0.6311 - 0.7274
GPT 3.5 Turbo 0.4485 - 0.6076 - 0.6271 - 0.5610 -
Ada 2 - 0.8851 - 0.8398 0.7945 - 0.8398

On the other hand, large-scale pre-trained mod-
els, especially Ada 2, excel at ranking on all
datasets. The dataset on which such zero-shot mod-
els yield the lowest performance is the newly in-
troduced StatCodeSearch. A possible explanation
is that the other datasets originate from GitHub
and likely suffer from contamination, i.e., their test
data could be part of the training data of the large
language models (Golchin and Surdeanu, 2023).

The low performance (hardly better than chance)
of GPT-3.5 Turbo in zero-shot matching is surpris-
ing. We cannot exclude that the performance could
be increased by providing a few examples in the
prompt. We opted for testing its zero-shot capa-
bilities for a fair comparison with the other LLMs,
leaving room for future work with more refined
prompting strategies.

Reflecting Hupkes et al. (2023)’s generalization
framework for code-related tasks has allowed us to
better understand how the generalization type af-
fects language model performance on tasks involv-
ing both natural and programming language under-
standing: Overall our results suggest that fine-tuned
encoder-only models are strong at matching even
in out-of-distribution test sets, while large-scale
embedding models are strong at zero-shot rank-
ing. Bimodal language models have been shown to
achieve high performances on in-distribution natu-
ral language code search (Feng et al., 2020; Wang
et al., 2023). Their results on our benchmark indi-
cate shortcomings of existing models when tested
against out-of-distribution data. We hope our newly

introduced benchmark can facilitate the develop-
ment of bimodal language models that generalize
well beyond the training or fine-tuning distribution.

7 Conclusion

We have introduced a new benchmark called Gen-
CodeSearchNet (GeCS) for testing the generaliza-
tion capabilities of language models. The bench-
mark specifically aims at scrutinizing different
types of generalization (robustness, cross-lingual,
and domain), and evaluates matching and ranking
for each type. To test generalization with covariate
shifts in both textual descriptions and code snippets,
we provide a new, manually curated dataset Stat-
CodeSearch with R code comment pairs harvested
from OSF. As initial baselines, we have evaluated
RoBERTa, CodeBERT, CodeT5+, GPT 3.5 Turbo,
and Ada 2. The baseline results of our benchmark
reveal that models that are good at matching are not
necessarily good at ranking and vice-versa. Hence,
we hope that the new benchmark spurs the devel-
opment of programming language-agnostic models
that are good at both ranking and matching. Mov-
ing forward, one could extend GeCS with other
low-resource programming languages to further
facilitate the systematic evaluation of pre-trained
language models against different aspects of gener-
alization. We make our experiments and baseline
models available on GitHub6. The final dataset is
available on Zenodo7.

6https://github.com/drndr/gencodesearchnet
7https://doi.org/10.5281/zenodo.8310891
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Limitations

As with most benchmark collections, there is a risk
that part of the test data has been present in the
pre-training data of a large language model. As the
new dataset StatCodeSeach is not based on code
harvested from GitHub but from OSF, we assume
that current language models did not have access
to it in their pre-training data. However, due to
the intransparency of the training set of corporate
language models, we cannot fully exclude it.

We did not apply Ada 2 to the matching task. Al-
though such embedding models can be also adapted
for matching tasks, doing so in a zero-shot fashion
is not straightforward as it would require determin-
ing a threshold on the (cosine) similarity. We also
did not apply GPT-3.5 Turbo to the ranking task
because of context size limitations and incurred
costs for, e.g., running pair-wise ranking.

Our newly created dataset StatCodeSearch con-
sists only of a single programming language, which
is R. There are other tools and programming lan-
guages that are used by researchers for statistical
analysis. For a more extensive dataset in the do-
main of statistical research code, StatCodeSearch
could be extended with code snippets from SPSS,
STATA, SAS, and Python.

Finally, it may seem counterintuitive that we
have consulted GPT-3.5 Turbo for filtering, given
its performance as a baseline for the matching is
subpar. However, in the filtering step, the assess-
ment of the pre-experiments showed that it was
useful for discarding comments that were not suit-
able for the dataset, i.e., producing low numbers
of false negatives. After this semi-automated pre-
filtering, we manually filtered out the remaining
code-comment pairs that were not suited for the
dataset.

Ethical Considerations

Large language models come with ethical concerns
regarding ethical bias, fairness, and transparency.

The purpose of the paper is to introduce a bench-
mark that aims at increasing our understanding of
large language models’ capabilities in the applica-
tion of code search. Therefore, we do not see any
new risks introduced by our paper.

Our dataset is derived solely from source code
files released under public licenses enabling re-
distribution. As described in Husain et al. (2019)
the CodeSearchNet dataset was filtered to include
GitHub projects only with licenses explicitly per-
mitting re-distribution. The CoSQA and Code-
SearchNet AdvTest sets are released under the
Computational Use of Data Agreement (C-UDA)
on the official CodeXGLUE repository8. The
newly created dataset StatCodeSearch consists
of public content scraped from the Open Sci-
ence Framework (OSF). All OSF content marked
"Public" is available for commercial and non-
commercial use according to the terms of use9.
Additionally we filtered out projects that did not
include public licenses explicitly permitting modi-
fication and re-distribution. The source code files
in the StatCodeSearch dataset include the public
licenses Apache License, MIT License, CC-By At-
tribution 4.0, BSD 3-Clause, CC0 1.0 Universal,
GNU General Public License, GNU Lesser Gen-
eral Public License, and Mozilla Public License.

8https://github.com/microsoft/
Computational-Use-of-Data-Agreement

9https://github.com/CenterForOpenScience/cos.
io/blob/master/TERMS_OF_USE.md
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A Appendix

A.1 Hyperparameter choice
For RoBERTa, we adopt best practices with a learn-
ing rate of 2 × 10−5, 5 epochs, batch size of 32,
weight decay of 0.01, and sequence length of 512.
For CodeBERT, we follow the original paper’s pa-
rameters, while adjusting the sequence length to
512 tokens for consistent comparisons. This in-
volves a learning rate of 1× 10−5, a batch size of
32, and 8 epochs. Similarly, CodeT5+ adheres to
its original parameters, but with a sequence length
of 512 tokens and a batch size of 32 to ensure fair-
ness.

Table 4: Hyperparameter settings for our language mod-
els

Hyperparameter RoBERTa CodeBERT CodeT5+

Learning rate 2 ×10−5 1 ×10−5 2 ×10−5

Epochs 5 8 10
Batch size 32 32 32
Weight decay 0.01 0.01 0.01
Sequence length 512 512 512

A.2 Breakdown of CodeSearchNet Results
Table 5 shows the breakdown of the CodeSearch-
Net by programming language. The numbers for
in-distribution fine-tuning (fine-tuning for each in-
dividual language before testing) were taken from
the original CodeBERT paper (Feng et al., 2020),
where for each sample 999 distractors were cho-
sen. Although this makes the comparison to our
numbers (with only 99 distractors) unfair, we can
still observe a substantial decrease in performance
when a model is fine-tuned on out-of-distribution
data.

A.3 GPT 3.5 Turbo Prompts
In the below sections, we report the prompts used
for categorization and matching tasks for each of
the test sets. GPT-3.5 was employed with default
parameters, except for limit of 10 output tokens.
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Table 5: Breakdown of the CodeSearchNet Results by Programming Language

Model Ruby Go PHP Java JavaScript
Acc MRR Acc MRR Acc MRR Acc MRR Acc MRR

Fine-tuned Models iid
RoBERTa (Feng et al., 2020) - 0.6245 - 0.6809 - 0.6576 - 0.6659 - 0.6060
CodeBERT (Feng et al., 2020) - 0.6926 - 0.8400 - 0.7062 - 0.7484 - 0.7059
Fine-tuned Models ood
RoBERTa 92.71 0.1551 99.18 0.0469 89.73 0.0917 90.69 0.1228 90.85 0.1109
CodeBERT 89.71 0.1451 94.55 0.0668 87.21 0.0742 91.24 0.0822 90.10 0.0850
CodeT5+ (encoder only) 87.47 0.1003 91.86 0.0158 85.03 0.0568 86.04 0.0594 86.30 0.0756
Zero-shot Models
CodeT5+ (encoder only) - 0.8398 - 0.8467 - 0.8000 - 0.7939 - 0.8185
GPT 3.5 Turbo 58.70 - 59.50 - 56.41 - 61.30 - 58.19 -
Ada 2 - 0.8942 - 0.9093 - 0.8684 - 0.8761 - 0.8782

A.3.1 Zero-shot code comment categorization

Task: Classify the code comment {Input} based
on the categories provided below. If the comment
doesn’t fit into any of these categories, label it as
‘No Relevant Class’. Categories: [Statistical Test],
[Statistical Modeling], [Data Variable], [Visualiza-
tion]

A.3.2 Matching
StatCodeSearch, CodeSearchNet and
CodeSearchNet AdvTest

Given a code comment and a {Add the program-
ming language name} programming language code
snippet, determine if the comment accurately rep-
resents the code’s function. Respond with ’True’
if the code matches the comment and ’False’ if it
does not. The input format is defined as “comment”
“[CODESPLIT]” “code”. {Input}

CoSQA

Given a search query and a Python programming
language code snippet, determine if the query accu-
rately represents the code’s function. Respond with
’True’ if the code matches the query and ’False’ if
it does not. The input format is defined as “query”
“[CODESPLIT]” “code”. {Input}

A.4 GenBench Evaluation Card
In Table 6, we provide the evaluation card proposed
by (Hupkes et al., 2023) for our experimental setups
showcasing the different aspects of generalization
our dataset studies.
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Motivation
Practical Cognitive Intrinsic Fairness
□△⃝

Generalisation type
Compositional Structural Cross Task Cross Language Cross Domain Robustness

□ △ △ ⃝

Shift type
Covariate Label Full Assumed
□△⃝

Shift source
Naturally occuring Partitioned natural Generated shift Fully generated

□△⃝
Shift locus

Train–test Finetune train–test Pretrain–train Pretrain–test
□△⃝ □△⃝

Table 6: GenBench Evaluation Card:
□CodeSearchNet
△StatCodeSearch
⃝CodeSearchNet Adv & CoSQA
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Abstract

Cross-domain and cross-compositional gen-
eralization of Text-to-SQL semantic parsing
is a challenging task. Existing Large Lan-
guage Model (LLM) based solutions rely on
inference-time retrieval of few-shot exemplars
from the training set to synthesize a run-time
prompt for each Natural Language (NL) test
query. In contrast, we devise an algorithm
which performs offline sampling of a minimal
set-of few-shots from the training data, with
complete coverage of SQL clauses, operators
and functions, and maximal domain coverage
within the allowed token length. This allows for
synthesis of a fixed Generic Prompt (GP), with
a diverse set-of exemplars common across NL
test queries, avoiding expensive test time exem-
plar retrieval. We further auto-adapt the GP to
the target database domain (DA-GP), to better
handle cross-domain generalization; followed
by a decomposed Least-To-Most-Prompting
(LTMP-DA-GP) to handle cross-compositional
generalization. The synthesis of LTMP-DA-
GP is an offline task, to be performed one-time
per new database with minimal human inter-
vention. Our approach demonstrates superior
performance on the KaggleDBQA dataset, de-
signed to evaluate generalizability for the Text-
to-SQL task. We further showcase consistent
performance improvement of LTMP-DA-GP
over GP, across LLMs and databases of Kag-
gleDBQA, highlighting the efficacy and model
agnostic benefits of our prompt based adapt and
decompose approach.

1 Introduction

Recently, Large Language Models (LLMs) such
as GPT3(Brown et al., 2020a), Codex(Chen et al.,
2021b), PaLM(Chowdhery et al., 2022), pretrained
with massive volumes of data have shown improved
performance for multiple reasoning tasks using in-
context learning (Brown et al., 2020b; Huang and
Chang, 2022), including program synthesis (Austin
et al., 2021; Jain et al., 2021; Nijkamp et al., 2022)

and semantic parsing (Shin and Durme, 2021; Droz-
dov et al., 2022; Shin and Durme, 2021; Shin et al.,
2021). There are a few recent approaches where
LLMs are specifically used for Text-to-SQL seman-
tic parsing in a (i) zero-shot setting (Rajkumar et al.,
2022a; Chang and Fosler-Lussier, 2023; Nan et al.,
2023) where only the test Natural Language (NL)
query constitutes the prompt, (ii) few-shot setting
where exemplars similar to the test query in the tar-
get domain are retrieved from the available training
data and appended to the test NL query to constitute
the prompt (Poesia et al., 2022a; Chang and Fosler-
Lussier, 2023; Nan et al., 2023; An et al., 2023).
For this setting the available NL-SQL pairs would
belong to domains that are different from the target
database domain (iii) few-shot setting where exem-
plars are sampled NL-SQL queries available for
the target-domain with maximum coverage of com-
positions (Rajkumar et al., 2022a; Qiu et al., 2022;
Hosseini et al., 2022; Yang et al., 2022; Chang and
Fosler-Lussier, 2023). In this paper, we are mainly
interested in (ii) i.e. cross-domain generalization
along with the scenario where the test queries may
not have the set-of compositions covered in the
training data (cross-composition generalizability).
Moreover, considering a purely cross-domain set-
ting, as opposed to (iii) above, we assume NO
availability of exemplars belonging to the target
databases. One solution to this setting is manual
synthesis of few-shots for every new target database
from scratch. However, this process is very tedious,
time-consuming and also does not ensure diversity
in the few-shots, with good coverage of SQL opera-
tors. Thus, there is a need for an efficient approach
which can exploit available NL-SQL pairs from
distinct domains, to intelligently sample few-shots
and design prompts.

Synchromesh (Poesia et al., 2022a) and (Nan
et al., 2023; An et al., 2023) have a similar set-
ting, except they retrieve exemplars during run-
time (during inference) by selecting NL queries as
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exemplars with similarity based on (a) NL query
semantics (Nan et al., 2023) or (b) target SQLs (Tar-
get Similarity Tuning) (Poesia et al., 2022a) or (c)
LLM generated ‘skill’ based NL representation, fo-
cusing on program compositions and ignoring the
surface NL forms (An et al., 2023). This reliance on
inference-time retrieval of similar few-shots from
the available data to build a run-time prompt and
generate SQL for a test NL query, results in a less
efficient solution. As opposed to this, we devise
an algorithm which samples a minimal set-of few-
shots from the training data ensuring complete cov-
erage of SQL clauses, operators and functions and
maximum coverage of database domains, which
fits into the token length restriction. We append
these few-shots with the out-of-distribution test NL
query to define what we term as a Generic Prompt
(GP), which is further used to generate the corre-
sponding SQL. The GP is generated offline and is
common across distinct test queries, resulting in
a more time-efficient solution obviating the need
for real time retrieval. We further auto-adapt the
GP to (a) the target database domain, and refer to
it as domain adapted GP (DA-GP), to better han-
dle cross-domain generalization, (b) decompose it
into a Least-To-Most-Prompting approach (Zhou
et al., 2022) (LTMP-GP) to better handle cross-
compositional generalization, and (c) combine the
approaches (a) and (b) to exploit their complemen-
tary benefits (LTMP-DA-GP). In line with our mo-
tivation, formation of LTMP-DA-GP is an efficient
solution, as it is an offline task to be performed one-
time per new database and is mostly programmatic
with minimal human intervention (only needed for
validation of prompts). We further demonstrate
a consistent performance improvement of (a) and
(b) over the base GP and (c) over (a) and (b) on
the databases of Kaggle-DBQA dataset (Lee et al.,
2021a), designed to evaluate the generalizability of
the Text-to-SQL task using distinct LLMs. More-
over, our approach not only yields an efficient solu-
tion, but also yields best performance for the used
LLMs on KaggleDBQA. Following are our main
contributions:

• To the best of our knowledge, apart from (Nan
et al., 2023) ours is the only approach to imple-
ment offline programmatic prompt generation
ensuring diversity of samples for NL-to-SQL
task. Moreover, as opposed to (Nan et al.,
2023), our GP based sampling technique guar-
antees complete coverage of SQL operators

and maximum converge of database domains.

• Ours is the first approach of programmatic
domain-adaptation of prompt, consistently
showcasing performance improvement across
multiple Kaggle-DBQA databases validating
NL-to-SQL domain generalization capability.

• Ours is the first approach applying Least-to-
Most-Prompting (Zhou et al., 2022) for com-
positional generalization of complex NL-to-
SQL task, showcasing consistent performance
improvement across LLMs.

• As compared to existing similarity based ex-
emplar sampling approaches (Poesia et al.,
2022b; Chang and Fosler-Lussier, 2023; An
et al., 2023), our approach of offline prompts
synthesis proves to be more efficient.

• Our pipeline yields the best performance on
the KaggleDBQA dataset, reported in the liter-
ature for the used LLMs.

2 Datasets

Spider (Gan et al., 2022): Is a large-scale, complex,
and cross-domain Text-to-SQL benchmark dataset
with a total of 200 databases (140, 20, 40 in the
training, development and test splits with 7000,
1034, and 2147 Text-to-SQL pairs). We use state-
of-the-art models trained on Spider to benchmark
performance of our approach against supervised
approaches. We also use the training split of Spider
to sample the exemplars, which serve as few-shots
in our prompt (Section 4).

Spider-CG (Gan et al., 2022): This dataset is de-
signed for evaluating Text-to-SQL compositional
generalization performance. To synthesize this
dataset, Text-to-SQL pairs from Spider-Train are
transformed to corresponding sub-sentences and
NatSQL pairs to form Spider-SS dataset. The sub-
sentences are obtained using a sentence-split algo-
rithm and the corresponding NatSQL, which is an
intermediate representation of SQL, is manually
annotated. We use the Spider-SS for the Least-To-
Most-Prompting (LTMP) experiment, by retriev-
ing the NL query decompositions in terms of sub-
sentences and the corresponding intermediate Nat-
SQL representations for few-shots sampled from
Spider-Train, to synthesize prompts for each stage
of LTMP (Section 4.4).

Kaggle-DBQA (Lee et al., 2021b): This is a
cross-domain Text-to-SQL evaluation dataset with
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Domain Adapted Exemplar 1:
NL: Find the latitudes of nuclear power plants with capacity more than 50.
Decompositions: Find the latitudes of nuclear power plants; with capacity more than 50.
Intermediate Representations (NAT-SQL): select distinct nuclear_power_plants.Latitude; 
select where nuclear_power_plants.Capacity > 50
SQL: SELECT DISTINCT Latitude FROM nuclear_power_plants WHERE Capacity > 50;

Domain Adapted Exemplar n: 
NL: return the smallest capacity for each nuclear power plant.
Decompositions: return the smallest capacity; for each nuclear power plant.
Intermediate Representations (NAT-SQLs): select min(nuclear_power_plants.Capacity),
nuclear_power_plants.Id group by nuclear_power_plants.Id
SQL: SELECT MIN(Capacity), Id FROM nuclear_power_plants GROUP BY Id

Few-shot Test Query specific Tree Edit Distance
based Similarity Prompting (QP-TE)

Exemplar 1:
Schema:CREATE TABLE Assets (asset_id PK,
maintenance_contract_id, supplier_company_id, asset_model )
NL: What are all the distinct asset models?
SQL: SELECT DISTINCT asset_model FROM Assets

.......

Exemplar n:
Schema: CREATE TABLE film ( Film_ID, Rank_in_series,
Number_in_season, Title, Directed_by, Original_air_date,
Production_code, PK (Film_ID) )
NL: Show the title and director for all films.
SQL: SELECT title ,  directed_by FROM film

Test schema:
CREATE TABLE nuclear_power_plants(Id, Name,Country,  Capacity)
Test NL: Which country has the most capacities of nuclear power plants?
SQL:

Exemplar 1: 
Schema: CREATE TABLE Person ( name PK, age, city, gender, job )
CREATE TABLE PersonFriend ( name, friend, year, FK (name)
REFERENCES Person(name), FK (friend) REFERENCES
Person(name) )
NL: Find Alice's friends of friends.
SQL: SELECT DISTINCT T4.name FROM PersonFriend AS T1 JOIN
Person AS T2 ON T1.name  =  T2.name JOIN PersonFriend AS T3 ON
T1.friend  =  T3.name JOIN PersonFriend AS T4 ON T3.friend  = 
T4.name WHERE T2.name  =  'Alice' AND T4.name != 'Alice'
....................
Exemplar n:
Schema: CREATE TABLE Movie( mID PK, title, year, director )
NL:What are the names of all movies directed by Steven Spielberg?
SQL: SELECT title FROM Movie WHERE director = 'Steven Spielberg'

Exemplar 1:
Schema: CREATE TABLE classroom (building, room_number, capacity,
PK (building, room_number))
NL: Find the buildings which have rooms with capacity more than 50.
SQL: SELECT DISTINCT building FROM classroom WHERE capacity >
50

Test schema (Common for all exemplars and test query: 
CREATE TABLE nuclear_power_plants(Id, Name, Country, Latitude, Capacity)
Domain Information terms of column values and their descriptions:
Id: 572, 560, 258, 433.                      Name: Ågesta, Turkey Point-4, Oskarshamn-2, Ningde-4.
Latitude: 55.084000, 55.604000, 41.188000, 45.800000. Description: latitude in decimal format

......

Test Schema:
CREATE TABLE
nuclear_power_plants(Id,
Name, Country, Capacity)
Test NL: Which country
has the most capacities of
nuclear power plants?
SQL:

Exemplar n:
Schema: CREATE TABLE departments (department_id,
department_name, mgr_id,, pk (department_id))
NL: return the smallest salary for every departments.
SQL: SELECT MIN(salary), department_id FROM employees GROUP BY
department_id

Domain Adapted Exemplar 1:
NL: Find the latitudes of nuclear power plants with capacity more than 50.
SQL: SELECT DISTINCT Latitude FROM nuclear_power_plants WHERE Capacity > 50;

Domain Adapted Exemplar n:
NL: return the smallest capacity for each nuclear power plant.
SQL: SELECT MIN(Capacity), Id FROM nuclear_power_plants GROUP BY Id

There is Database schema A and a SQL query A on database
schema A. Generate SQL query B on database schema B such
that it follows the query composition of SQL query A.
Database schema A ( Exemplar 1):
CREATE TABLE classroom (building varchar(15),
room_number varchar(7), capacity numeric(4,0), primary key
(building, room_number) )
SQL query A: SELECT DISTINCT building FROM classroom
WHERE capacity > 50;
Database schema B (Test Schema):
CREATE TABLE nuclear_power_plants(Id, Name, Country,
Latitude, Capacity)
SQL query B:

There is Database Schema A, SQL Query A and its NL description A. On the similar
lines, generate NL Description B for SQL query B posed on database schema B:
Database schema A ( Exemplar 1):
CREATE TABLE classroom (building varchar(15), room_number varchar(7), capacity
numeric(4,0), primary key (building, room_number) )
SQL query A: SELECT DISTINCT building FROM classroom WHERE capacity > 50;
NL Description A: Find the buildings which have rooms with capacity more than 50.

Database schema B (Test Schema):
CREATE TABLE nuclear_power_plants(Id, Name, Country, Latitude, Capacity)
SQL Query B: SELECT DISTINCT Name FROM nuclear_power_plants WHERE
Capacity > 50;
NL Description B:

Zero-Shot
Prompting 

(Inference Time Retrieval for each each test-NL question)

Few-shot Test Query specific NL based  semantic
Similarity Prompting (QP-TX)

(Inference Time Retrieval for each each test-NL question)

Test schema:
CREATE TABLE nuclear_power_plants(Id, Name, Country, Capacity)
Test NL: Which country has the most capacities of nuclear power plants?
SQL:

(A) Few-shot Generic Prompting (GP)  - (Ours)
(Consistent Prompt Across All Test Samples)

Test schema:
CREATE TABLE nuclear_power_plants(Id, Name, Country, Capacity)
Test NL: Which country has the most capacities of nuclear power plants?
SQL:

Few-shot Domain Adapted (Final Stage 3)
 Generic Prompting (DA-GP) 

(Consistent Prompt Across All Test Samples)

Domain Adaptation Stage 1 
Generation of Compostionally Similar SQLs

(Executed for Every Exemplar in the GP)

Domain Adaptation Stage 2 
Generation of NL Queries for SQLs
(Executed for Every Exemplar in the GP)

Test NL: Which country has the most capacities of nuclear power plants?
SQL:

......

Test schema (Common for all exemplars and test query: 
CREATE TABLE nuclear_power_plants(Id, Name, Country, Latitude, Capacity)
Domain Information terms of column values and their descriptions:
Id: 572, 560, 258, 433.                      Name: Ågesta, Turkey Point-4, Oskarshamn-2, Ningde-4.
Latitude: 55.084000, 55.604000, 41.188000, 45.800000. Description: latitude in decimal format

Few-shot Least-To-Most-Prompting (Final Stage 3)
 Generic Prompting (LTMP-DA-GP) 

(Consistent Prompt Across All Test Samples)

Least-To-Most-Prompting Stage 1 
Decomposition of NL Query

(Consistent Prompt Across All Test Samples)

Least-To-Most-Prompting Stage 2 
Generation of NATSQLs for Decompositions

(Consistent Prompt Across All Test Samples)

......

Test schema (Common for all exemplars and test query: 
CREATE TABLE nuclear_power_plants(Id, Name, Capacity)
Domain Information terms of column values and their
descriptions: Id: 572, 560, 258, 433.,   
Name: Ågesta, Turkey Point-4, Oskarshamn-2, Ningde-4.
Latitude: 55.084000, 55.604000, 41.188000, 45.800000.
Description: latitude in decimal format

Test NL: Which country has the most capacities of nuclear power plants?
Decompositions: Which country; has smallest capacities of nuclear power plants
Intermediate Representations (NAT-SQLs): select nuclear_power_plants.country;
select where max(nuclear_power_plants.capacity)
SQL:

Domain Adapted Exemplar 1:
NL: Find the latitudes of nuclear power plants with capacity more than 50.
Decompositions:Find the latitudes of nuclear power plants; with capacity more than
50.
Intermediate Representations (NAT-SQL): select distinct
nuclear_power_plants.latitude
select where nuclear_power_plants.Capacity > 50

Domain Adapted Exemplar n: 
NL: return the smallest capacity for each nuclear power plant.
Decompositions: return the smallest capacity; for each nuclear power plant.
Intermediate Representations (NAT-SQLs): select min(
nuclear_power_plants.Capacity , nuclear_power_plants.Id group by
nuclear_power_plants.Id

Test schema (Common for all exemplars and test query: 
CREATE TABLE nuclear_power_plants(Id, Name, Country, Latitude, Capacity)
Domain Information terms of column values and their descriptions: Id: 572, 560,
258, 433.  Name: Ågesta, Turkey Point-4, Oskarshamn-2, Ningde-4.  Latitude:
55.084000, 55.604000, 41.188000, 45.800000. Description: latitude in decimal format

......

Test NL: Which country has the most capacities of nuclear power plants?
Decompositions: Which country; has smallest capacities of nuclear power plants
Intermediate Representations (NAT-SQLs): 

Domain Adapted Exemplar 1:
NL: Find the latitudes of nuclear power plants with capacity
more than 50.
Decompositions:Find the latitudes of nuclear power plants;
with capacity more than 50.

Domain Adapted Exemplar n: 
NL: return the smallest capacity for each nuclear power plant.
Decompositions: return the smallest capacity; for each nuclear
power plant.

......

Test NL: Which country has the most capacities of nuclear
power plants?
Decompositions: 

(B) Adapt (Ours)

(C) Decompose (Ours)

Figure 1: Comparison of our Approach (A) GP (B) DA-GP (Stage 1, 2, 3) and (C) LTMP-DA-GP (Stage
1, 2, 3) with Prior Zero-shot, Query-Similarity based Few-shot Approaches

real world databases (DB). It covers a total of 8
DBs, viz. (i) Nuclear (10,22), (ii) Crime (9,18),
(iii) Pesticide (16, 34), (iv) MathScore (9,19), (v)
Baseball (12,27), (vi) Fires (12, 25), (vii) WhatCD
(13,28), and (viii) Soccer (6,12), indicating fine-
tuning and test examples, respectively. As we as-
sume a purely cross-domain setting with no avail-
ability of in-domain few-shots, we do not use the
fine-tuning samples but use only the test samples
to evaluate our proposed LLM based pipelines. We
prefer Kaggle-DBQA over other cross-domain and
composition evaluation datasets such as spider-CG
(Gan et al., 2022), because it is a real-web dataset
and contains fewer test queries allowing us to show-
case the efficacy of our approach using commercial
LLMs with low cost overheads.

3 Large Language Models (LLMs)

The literature has demonstrated state-of-the-art few-
shot performance for NL-to-SQL (Rajkumar et al.,

2022a; Nan et al., 2023; Chang and Fosler-Lussier,
2023) tasks, with Codex (Chen et al., 2021a) (Code-
da-Vincci) (Chen et al., 2021b) and GPT41 from
OpenAI. However, Codex is discontinued by Ope-
nAI 2 and the cost of GPT4 is very high. Instead,
we use two LLMs to demonstrate the efficacy of
the proposed pipeline, viz. OpenAI‘s GPT-3.5-
Turbo (ChatGPT), which is 60x cheaper than GPT4
and Text-da-Vinci-003, which is 6x cheaper than
GPT4, both with 175B parameters and 4096 to-
ken length restriction 3. We have not used other
open-source models pretrained on code, such as
CodeT5+ (Wang et al., 2023) (768 token length)
or Codegen (2048 token length) (Nijkamp et al.,
2022) for our study as they do not offer the token
length required for our prompt (4K).

1https://platform.openai.com/docs/models/gpt-4
2Starting 23rd March, 2023.
3https://platform.openai.com/docs/models/gpt-3-5
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4 Approach

4.1 Database Schema Format
As the part of the prompt design, an important
choice we make is the format of the schema of
the Databases(DBs) to which the sampled few-shot
exemplars and the test query belong. Each of our
experiment, we keep the format of the DBs for the
few-shots and the test (target) DB to be consistent.
Existing approaches, yield state-of-the-art zero and
few-shot results on Spider-Dev dataset and its vari-
ants using CREATE TABLE schema format with (i)
TEN selected rows (Rajkumar et al., 2022b), (ii)
THREE column values (Chang and Fosler-Lussier,
2023) or (iii) semantic augmentation with blocked
column descriptions (Nan et al., 2023). These ap-
proaches can afford to use these elaborate schema
formats because of the use of Codex and GPT4
LLMs with allowable > 8K token lengths. As
opposed to this, we use models with smaller al-
lowable token length of maximum 4K (Section
Section 3). To allow the the inclusion of few-shot
exemplars in the Generic Prompt sampled by our
algorithm (Section 4.2) along with the reasoning
Least-to-Most-Prompting (LTMP) stages (LTMP-
GP: Section 4.4), we compromise on the elaborate
schema format to fit the prompt in the allowable
token length. For the GP and LTMP-GP based
pipelines we use the CREATE TABLE database
schema format with Primary-Key and Foreign-Key
constraints, but without the mention of column
data-types and inclusion of row/column values and
descriptions (Figure 1). With domain adaptation
of the GP to the target database (Section 4.3), we
require inclusion of only one (target) schema in
the prompt allowing us to use an elaborate schema
format. Thus, for the domain adaptation DA-GP
and it’s further enhancement with LTMP (LTMP-
DA-GP: Section 4.5), we include the domain infor-
mation to the CREATE TABLE format (Figure 1)
in the form of (i) column data-types, (ii) randomly
sampled FOUR values for categorical and date-
time columns, (iii) range of values for numerical
columns and (iv) additional column descriptions,
wherever necessary.

4.2 Generic Prompt (GP) Design Algorithm
We have defined Algorithm 1 to sample the few-
shots to form Generic Prompt (GP). The algo-
rithm is designed to select exemplars from a
dataset with available text-SQL annotations, to en-
sure complete coverage of SQL clauses, operators

and functions and maximum coverage of domains
(databases) which can fit into the allowable token
length. We assume to have an annotated dataset
D = {dbj , {tij , sij , aij}Nj

i=1}Mj=1, where t and s
are the annotated text-SQL query pairs posed on
databases db and a are the answers of the SQL
queries after execution, Nj are the query pairs of
database dbj , M are total number of databases. We
have a test dataset T = {dbl, {tkl, skl, akl}Kl

k=1}Ll=1

of
∑L

l=1Kl query pairs and L databases, such that
{dbj}Mj=1 ∩ {dbl}Ll=1 = ϕ. Thus, as we consider
completely cross-domain setting, we do not have
any overlap between the training and test databases.
We manually collect SQL operators, clauses and
functions covered by queries sij ∈ D to form a
set-of primitive operations O, including (i) SQL
Clauses (‘FROM’, ‘HAVING’, ‘WHERE’, ‘OR-
DER BY’, etc), (ii) SQL Operators such as arith-
metic (+, -, *, /, %), comparison (=, !=, <, >, etc)
and logical (ALL, AND, ANY, LIKE, etc) and (iii)
SQL Functions (AVG, COUNT, MAX, MIN, etc).

To sample the few-shot exemplars E for the GP,
we sort the databases dbj ∈ D based on the opera-
tor coverage by the SQL queries sij . We perform
query-pair (sample) traversal of this ordered list of
databases. A sample {dbj , tij , sij} becomes part of
E, if sij covers at the least one uncovered primitive
operation in O. If sij covers a super-set of primitive
operations of any query sx in an existing exemplar
{dbx, tx, sx} ∈ E then this exemplar is replaced by
{dbi, tij , sij}. The algorithm terminates when all
the possible primitive operations in O are covered
by exemplars in E. This algorithm allows us to
sample a minimal set of query-pairs as exemplars
covering the complete set of primitive operations.
This brings in diversity in the compositions of the
SQL queries chosen as exemplars. The database
ordering as per the primitive operator coverage, en-
sures minimal set of DB schema to be added in the
GP, exhausting less number of tokens. However,
selection of multiple DBs achieves diversity in the
domains covered. We append the sampled few-shot
exemplars with a NL test query, which is a sam-
ple {dbl, tlk} ∈ T , retaining the consistency in the
schema representation, forming the GP (Figure 1).

4.3 Domain Adaptation of GP (DA-GP)
As ours is a completely cross-domain setting, the
GP consists of domains defined by database for
which the few-shots are sampled from the train-
dataset, which are distinct from the target database.
We auto-adapt these few-shots to the domain of the
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Algorithm 1: Generic Prompt Creation

Input : D = {dbj , {tij , sij , aij}Nj

i=1}Mj=1

// Dataset with databases, text, SQL
queries and answer tuples

1 T = {dbl, {tkl, skl, akl}Kl
k=1}Ll=1 // Test Set

2 O = {Operators, Clauses, Functions} // Set
of SQL Primitive Operators

Output :GP // Generic Prompt
Initial Stage :
E ← Φ // Set of Exemplars

3 D ←Sort(Extract_Operators(dbjinD)) // Sort
databases in D on operator coverage

4 for sij ∈ D do
5 Oe ← Extract_Operators(sij) // Extract

operators from training SQL
6 if (o ∈ Oe) ∈ O then
7 // an operator is not covered
8 for sx ∈ E do
9 if Extract_Operators(sx) ⊆ Oe then

10 E ← E − {dbx, tx, sx}
// Remove existing
exemplar with operators
to be subset of current
exemplar operators

11 end if
12 end for
13 E ← E + {dbj , tij , sij} // Add the

tuple as an Exemplar
14 O ← O −Oe // Remove covered

operators
15 end if
16 end for
17 GP ← E + {dbl, tkl} ∈ T

target database, keeping the query compositions
consistent. The hypothesis is that the adaptation
should facilitate the LLMs to achieve better perfor-
mance on the queries of the target domain. This
task is performed in three stages.

Stage1: Generating Compositionally similar
SQLs in the target domain: For each few-shot
SQL query in the GP we feed the serialized source
schema and SQL (without NL) along with the seri-
alized target schema and prompt the LLM to gen-
erate SQL on the target schema which is composi-
tionally similar to the source query, by explaining
what is compositional similarity. We sample SQL
queries from the beam, until we find an executable
SQL query on the target DB, whose skeleton has
the tree edit distance to be within a threshold to that
of the skeleton of the original few-shot SQL query.
This ensures compositional similarity (Figure 1).

Stage2: Generating text queries for the SQL
queries: We feed each compositionally similar
SQL, generated for each few-shot exemplar in the
GP, to the LLM along with the target schema and
prompts it to generate the NL question which de-
scribes the SQL query in text form. This step al-

lows us to have a NL-SQL pair in the target domain
(database) for each few-shot exemplar in the GP.

Stage 3: Using Domain Adapted GP to gen-
erate SQLs for the test NL queries: We form
Domain Adapted Generic Prompt(DA-GP) using
the target schema with the available domain in-
formation (Section 4.1) and the domain specific
NL-SQL few-shot pairs. Note that DA-GP has one
database schema consistent across the few-shots as
well as the test query. We append the test NL query
to DA-GP and feed it to the LLM to generate SQL.

4.4 Least-to-Most-Prompting with GP
(LTMP-GP)

The GP covers all the primitive SQL Operations,
Clauses and Functions. However, few-shots cover
only a few compositions of these primitive opera-
tions. We perform LTMP to help the LLMs achieve
generalizability on compositions unseen in the few-
shots as well as in the pre-training data. To achieve
this, we decompose the NL-to-SQL task into the
following three sub-tasks and semi-auto-adapt each
of the few-shot exemplars in the GP for each of
the following sub-tasks (Figure 1). The hypothesis
is that the decomposition of few-shots, helps ex-
posing the underlying NL-SQL mappings at more
primitive level, through the NAT-SQL based inter-
mediate representations, which can be reused by
the LLMs to synthesize SQLs for unseen composi-
tions.

Stage 1: NL Query Decomposition: The few-
shot NL queries in GP sampled from Spider-Train,
along with their decompositions fetched from the
Spider-SS (Section 2) forms the prompt for the first
stage of LTMP. We append it with the test NL query
to generate the decomposition for the same. For
exploiting the reasoning capabilities of LLMs, for
each few-shot, we manually include the Chain-Of-
Thoughts (COT) behind the decomposition of the
NL queries, in terms of explaining the choice of
split point (semantic segmentation) of the NL.

Stage 2: Mapping of NatSQL to NL decom-
position: The few-shot NL queries in GP sampled
from Spider-Train, along with their decompositions
and NAT-SQLs, which is an intermediate represen-
tations of ground truth SQLs, fetched from Spider-
SS (Section 2) forms the prompt for the second
stage of LTMP. For each few-shot, we explain the
COT behind the mapping of each decomposed NL
query to the NatSQL, in terms of selection of the
SQL clause for the NatSQL (part of the skeleton of
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Model Approach
Database-wise Execution Accuracy (%Ex) Total

Geo
Nuclear

Greater
Manchester

Pesticide
Student

Maths Score
The History
of Baseball

US
Wildfires

What CD
Hiphop

World
Soccer

% Ex

GPT-Turbo-3.5
(Benchmark)

Zero-Shot 27.27 33.33 19.35 10.93 11.11 32.00 7.69 41.67 21.11
QP-TX † 31.82 44.44 29.03 15.79 11.11 28.00 34.62 8.33 26.11
QP-TE † 27.27 27.78 22.58 15.79 25.93 44.00 26.82 33.33 27.78
DIN-SQL † - - - - - - - - 27.00

Text-da-Vinci-003
(Benchmark)

Zero-Shot 27.27 22.22 29.03 15.79 18.52 20.00 7.69 8.33 19.44
QP-TX † 27.27 33.33 19.35 10.93 11.11 32.00 7.69 41.67 21.11
QP-TE † 27.27 33.33 19.35 10.93 11.11 32.00 7.69 41.67 21.11
DIN-SQL † 45.45 33.33 20.59 21.05 18.52 50.00 21.43 25.00 29.18
QP-SK - - - - - - - - 36.80

GPT-Turbo-3.5
(Ours)

GP 31.82 27.78 29.03 5.26 14.81 36.00 23.08 25.00 24.44
DA-GP 40.91 33.33 35.48 10.53 22.22 20.00 15.38 25.00 25.56
LTMP-GP 27.27 50.00 29.03 10.53 14.81 52.00 30.77 33.33 30.56
LTMP-DA-GP 50.00 22.22 32.26 15.79 22.22 60.00 30.77 33.33 33.89

Text-da-Vinci-003
(Ours)

GP 31.82 22.22 35.48 10.53 11.11 20.00 15.38 16.67 21.11
DA-GP 40.91 27.78 45.16 21.05 18.52 44.00 15.38 25.00 30.56
LTMP-GP 59.09 44.44 41.18 21.05 22.22 52.00 21.43 25.00 36.41
LTMP-DA-GP 63.64 44.44 41.18 26.32 22.22 56.00 21.43 25.00 38.04

Table 1: Kaggle DBQA - Results. Comparison with zero and few-shot approaches, QP-TX: Query specific
TeXt-based Similarity(Poesia et al., 2022b), QP-TE:Query specific Tree-Edit-distance-based Similarity
(Poesia et al., 2022b), QP-SK: Query specific Skill based Similarity (An et al., 2023), DIN-SQL (Pourreza
and Rafiei, 2023), †Few-shots: 16, Result: Overall Best,Best for the LLM

Model Approach %EX
RATSQL (Gan et al., 2022)

Supervised
Trained with
Spider-Train
(Gan et al., 2022)

13.56
T53B (Lan et al., 2023) 26.80
SmBOP (Rubin and Berant, 2020) 27.20
RASAT (Qi et al., 2022) 27.60
Picard (Scholak et al., 2021) 29.80
REDSQL (Li et al., 2023) 31.90
UL-20B (Lan et al., 2023) 34.90
RASAT (Rubin and Berant, 2020) Supervised

Trained on UNITE
(Lan et al., 2023)

26.80
T53B (Lan et al., 2023) 33.80
Picard (Scholak et al., 2021) 36.80

GPT-Turbo-3.5 (Ours) LTMP-DA-GP 33.89
Text-da-Vinci-003 (Ours) LTMP-DA-GP 38.04

Table 2: Kaggle DBQA - Exec. Acc. Best, Second
Best. Supervised Approaches Comparision

NatSQL) and schema linking including specific ta-
ble(s) and Column(s) selected for the NL decompo-
sition to form the NatSQL. We append the prompt
with the test NL query followed by its decomposi-
tions generated in the prior stage, to generate the
NatSQL for each decomposition.

Stage 3: Generating SQL from NatSQL: We
auto-generate the third stage prompt of LTMP-GP
to include the few-shot NL queries in the GP with
their decompositions, corresponding NatSQLs and
the ground truth SQLs. We append this with the test
NL query, its decompositions and corresponding
NatSQLs generated in the prior stages to generate
the SQL for the test NL.

4.5 LTMP with DA-GP (LTMP-DA-GP)

To exploit the complementary advantages of do-
main adaptation (domain generalization) and least-
to-most prompting (compositional generalization),
we perform LTMP over DA-GP with executing all

the three stages explained in the Section 4.4 to
construct the LTMP-DA-GP . For this the domain
adapted NL query decompositions and NAT-SQLs
are manually created. We append the test NL query
to the prompt of the first stage and the outputs of
the prior stages to the subsequent stages recursively,
as explained in Section 4.4, to finally generate the
SQL as the result of the last stage.

5 Results and Discussion

5.1 Benchmarks
State-of-the-art supervised approaches: Include
models (Table 2 trained with Spider-Train and
UNITE (Lan et al., 2023) datasets and yielding
SOTA results on Spider-Dev and its variants.

Zero-shot approaches: (Rajkumar et al., 2022b;
Chang and Fosler-Lussier, 2023; Nan et al., 2023),
yield SOTA results on Spider-Dev and its variants
with Codex and GPT4 as LLMs. For fair compar-
ison, we compute zero-shot KaggleDBQA results
with our schema format and LLMs.

Existing few-shot approaches: Few-shots are
sampled using Top-K samples from the train set
using following sampling strategies found in the
literature. For fair comparison, we choose the num-
ber few-shots (K) to be the same as the number
of exemplars in the GP. (i) Test Query specific
TeXt-based Similarity sampling (QP-TX) (Poesia
et al., 2022b): having maximum semantic similar-
ity (Reimers and Gurevych, 2019) with the test NL
query, (ii) Test Query specific Tree-Edit-distance-
based Similarity sampling (QP-TE) (Poesia et al.,
2022b): having maximum target program based
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GP DA LTMP
-DA

No. Category Illustrative Samples %

C
as

e
1

✗ ✓ ✓

1 Rectifying
values

NL: Show all fires caused by campfires in Texas.
GT: SELECT * FROM Fires WHERE STAT_CAUSE_DESCR = "Campfire" AND State = "TX"
GP: SELECT * FROM Fires WHERE STAT_CAUSE_DESCR = ’Campfire’ AND STATE = ’Texas’
DA:SELECT * FROM Fires WHERE STAT_CAUSE_DESCR = ’Campfire’ AND STATE = ’TX’
LTMP-DA:SELECT * FROM Fires WHERE STAT_CAUSE_DESCR = "Campfire" AND STATE = "TX"

5.38

2 Rectifying
columns

NL: How many number of units are there in sample 9628?
GT: SELECT quantity FROM sampledata15 WHERE sample_pk = 9628
GP: SELECT conunit FROM resultsdata15 WHERE sample_pk = 9628
DA-GP:SELECT quantity FROM sampledata15 WHERE sample_pk = 9628
LTMP-DA:SELECT quantity FROM sampledata15 WHERE sample_pk = 9628

4.61

C
as

e
2

✗ ✗ ✓

1 Extra
SELECT
+ Oper-
ation on
Column

NL: Which country lead the total capacity of the power plants it held?
GT: SELECT Country FROM nuclear_power_plants GROUP BY Country ORDER BY sum(Capacity) DESC LIMIT 1
GP: SELECT Country, SUM(Capacity) AS TotalCapacity FROM nuclear_power_plants GROUP BY Country ORDER BY TotalCapacity DESC LIMIT 1
DA: SELECT Country, SUM(Capacity) AS TotalCapacity FROM nuclear_power_plants GROUP BY Country ORDER BY TotalCapacity DESC LIMIT 1
LTMP-DA: SELECT Country FROM nuclear_power_plants GROUP BY Country ORDER BY SUM(Capacity) DESC LIMIT 1

5.51

2 Correcting
Opera-
tions

NL: Which country has the least capacities of nuclear power plants?
GT: SELECT Country FROM nuclear_power_plants GROUP BY Country ORDER BY sum(Capacity) LIMIT 1
GP: SELECT Country, MIN(Capacity) FROM nuclear_power_plants GROUP BY Country ORDER BY Capacity ASC LIMIT 1
DA: SELECT Country, MIN(Capacity) FROM nuclear_power_plants GROUP BY Country ORDER BY Capacity ASC LIMIT 1
LTMP-DA:SELECT Country FROM nuclear_power_plants GROUP BY Country ORDER BY SUM(Capacity) ASC LIMIT 1

0.69

3 Rectifying
Val-
ues;Extra
Condi-
tion

NL: In 2014, how many wildfires were the result of mismanaged campfires?
GT: SELECT count(*) FROM Fires WHERE STAT_CAUSE_DESCR LIKE "%Campfire%" AND FIRE_YEAR = 2014
GP:SELECT COUNT(*) FROM Fires WHERE STAT_CAUSE_DESCR = ’Miscellaneous’ AND STAT_CAUSE_CODE = 13 AND FIRE_YEAR = 2014
DA:SELECT count(*) FROM Fires WHERE FIRE_YEAR = 2014 AND STAT_CAUSE_DESCR = ’Mismanaged Campfire’
LTMP-DA: SELECT COUNT(*) FROM Fires WHERE FIRE_YEAR = 2014 AND STAT_CAUSE_DESCR = "Campfire"

3.45

C
as

e
3

✗ ✗ ✗

1 Additional
column

NL: What’s the most common type of crime?
GT: SELECT Type FROM GreaterManchesterCrime GROUP BY Type ORDER BY count(*) DESC LIMIT 1;
GP: SELECT Type, COUNT(*) AS Frequency FROM GreaterManchesterCrime GROUP BY Type ORDER BY Frequency DESC LIMIT 1
DA: SELECT Type, COUNT(*) FROM GreaterManchesterCrime GROUP BY Type ORDER BY COUNT(*) DESC LIMIT 1
LTMP-DA: SELECT Type, COUNT(*) FROM GreaterManchesterCrime GROUP BY Type ORDER BY COUNT(*) DESC LIMIT 1

42.26

2 Logically
incorrect

NL: How many matches in Spain in 2010?
GT: SELECT count(*) FROM football_data WHERE Season LIKE "%2010%" AND Country = "Spain";
GP: SELECT COUNT(*) FROM betfront WHERE country = ’Spain’ AND YEAR = 2010
DA: SELECT COUNT(*) FROM football_data WHERE Country = ’Spain’ AND YEAR(Datetime) = 2010
LTMP-DA: SELECT COUNT(*) FROM football_data WHERE Country = ’Spain’ AND YEAR = ’2010’

11.22

3 Miscell-
aneous

NL: What are the downloaded numbers and their release types?
GT: SELECT sum(totalSnatched), releaseType FROM torrents GROUP BY releaseType;
GP: SELECT totalSnatched, releaseType FROM torrents
DA: SELECT totalSnatched, releaseType FROM torrents
LTMP-DA: SELECT totalSnatched, releaseType FROM torrents

22.06

C
as

e
4

✓ ✗ ✗

1 Semantics
Misinter-
pretation

NL: State with highest average math score
GT: SELECT state FROM NDECoreExcel_Math_Grade8 ORDER BY average_scale_score DESC LIMIT 1
GP:SELECT state FROM NDECoreExcel_Math_Grade8 ORDER BY average_scale_score DESC LIMIT 1
DA:SELECT state, MAX(average_scale_score) FROM NDECoreExcel_Math_Grade8 GROUP BY state
LTMP-DA:SELECT state, MAX(average_scale_score) FROM NDECoreExcel_Math_Grade8 GROUP BY state ORDER BY MAX(average_scale_score)
DESC LIMIT 1

1.37

C
as

e
5

✓ ✓ ✗

1 Fail to
Under-
stand
Question;
Incorrect
Value

NL:What is the result in case 6B:E2:54:C6:58:D2?
GT:SELECT Outcome FROM GreaterManchesterCrime WHERE CrimeID = "6B:E2:54:C6:58:D2"
GP:SELECT Outcome FROM GreaterManchesterCrime WHERE CrimeID = ’6B:E2:54:C6:58:D2’
DA:SELECT Outcome FROM GreaterManchesterCrime WHERE CrimeID = ’6B:E2:54:C6:58:D2’
LTMP-DA:SELECT * FROM Table

2.76

2 Syntax Er-
ror

NL: What’s the code for confirmation for the latest sample?
GT: SELECT confmethod FROM resultsdata15 as T2 JOIN sampledata15 as T1 ON T1.sample_pk = T2.sample_pk ORDER BY year, month, day DESC
LIMIT 1
GP: SELECT confmethod FROM resultsdata15 ORDER BY sample_pk DESC LIMIT 1
DA: SELECT confmethod FROM resultsdata15 ORDER BY sample_pk DESC LIMIT 1
LTMP-DA: SELECT confmethod FROM resultsdata15 WHERE sample_pk = (SELECT sample_pk FROM sampledata15 ORDER BY year DESC, month
DESC, day DESC LIMIT 1)

0.69

Table 3: Qualitative analysis. NL:Natural Language, GT: Ground Truth ✓: Correct SQL and ✗: Incorrect
SQL. % of Erroneous Test Queries

similarity with the test NL query. Following Syn-
chromesh (Poesia et al., 2022b), we train Sentence
BERT (Reimers and Gurevych, 2019)) as a scoring
function to compute the tree-edit distance between
the corresponding SQLs of the input NL queries
(Target Semantic Tuning (TST)), (iii) Test Query
specific Skill based similarity sampling (QP-SK):
maximum skill based similarity (An et al., 2023).
Here LLMs are used to retrieve skill based repre-
sentations of the queries, by eliminating unimpor-
tant surface features. (iv) Diversity based sampling:
(Nan et al., 2023) performs diversity sampling by
picking up the exemplars near the centroids of the
training sample clusters, formed using a combina-
tion of continuous NL embedding and discrete em-
bedding with binary features representing syntactic
elements of the SQL counterpart, including key-
words, operators, and identifiers. Our GP based ap-

proach not only selects diverse samples, but also en-
sures SQL operator coverage. We have not bench-
marked against this approach due to unavailability
of the prompts or the code.

Chain-of-Thoughts (COT) approaches: DIN-
SQL (Pourreza and Rafiei, 2023) performs the NL-
to-SQL task by dividing it into stages, viz. schema
linking, NL query classification based on difficulty,
distinct well-curated COTs prompting for distinct
difficulty levels, along with few-shots with COT
explanations and self-refinement at the end. We
use the prompts in the paper for computing results.

Note that for fair comparison, we have not bench-
marked KaggleDBQA results against the of LLMs
not used the experimentation (An et al., 2023;
Chang and Fosler-Lussier, 2023; Nan et al., 2023) .
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5.2 Experimentation and Results

We use the Spider-train set as the training set to
fetch few-shots for our GP and Kaggle-DBQA test
set to evaluate the performance. Our algorithm
yields 16 exemplars as few-shots covering a total of
4 databases. The selected queries cover a total of 32
SQL operators and clauses. For more deterministic
results, we set the LLM parameters temperature to
be 0.

The results are illustrated in the Table 1. Our ba-
sic GP performs better than (i) some state-of-the-art
supervised models, (ii) zero-shot and (iii) QP-TX.
This is possible due to generalization capabilities
of LLMs along with programmatically sampled
diverse few-shots in GP. Our final adapted and
decomposed LTMP-DA-GP consistently performs
better than (i) All state-of-the-art supervised bench-
marks and (ii) All few-shot benchmarks. This is
due to the combined effect of diversity based sam-
pling in GP (Nan et al., 2023; An et al., 2023) and
effect of domain adaptation and LTMP. Except US
Wildfires database DA-GP, consistently performs
better than GP showcasing the effect of domain
adaptation for domain generalizability. LTMP-GP
consistently performs better than GP, showcasing
the effect of LTMP for compositional generalizabil-
ity. Except Greater Manchester and Pesticide DBs
LTMP-DA-GP consistently improves over LTMP-
GP and DA-GP, demonstrating complementary
benefits of DA and LTMP for certain queries and
thus proves the efficacy of our adapt and decom-
pose pipeline. We find for Greater Manchester
DB the GPT-Turbo-3.5 performance drops with
LTMP-DA-GP as with additional DA information
the model tries to reason better generating long
COTs, leading unavailability of tokens left to gen-
erate the desired output.

5.3 Qualitative Analysis

We manually analyze the test-queries (Table 3).
Case 1 Category (1) and (2) demonstrates samples
where inclusion of domain knowledge in terms of
table values and column descriptions rectifies the
SQLs. Case 2 demonstrates LTMP rectifying sam-
ples due to better resolution of decomposed queries
(e.g. ’Which country’ and ’lead the total capacity
of the power plants it held?’) as opposed to the
need of resolving complete query at once, with the
prior approaches. Case 3 are erroneous samples,
where (1) LTMP can not fix additional aggrega-
tion operation appearing in the SELECT clause,

especially where the NLs can not be decomposed
or generation of logically incorrect queries due to
insufficient domain information such as: (2) query
specific values (eg. 2010) not being present in the
sampled values of the schema column descriptions
(eg. season) in the prompt (wrong column ‘Year’
gets picked up due to its specified range as 2009-
2013) and (3) absence of understanding of domain
specific numerical formula ‘downloaded numbers
= sum(total snatched)’ for songs for CD Hiphop
DB. There are very few samples for Case 4 (1)
where additional aggregation operation is added as
a part of SELECT clause due to mis-interpretation
of the NL query semantics. Eg. ‘state with’ is been
interpreted as providing some additional informa-
tion along with ‘state’ by LLM with DA as well
as LTMP. Case 5 (1) LTMP fails to decompose the
question due to complex value further propagat-
ing error in the following stages (2) Queries come
out correct for GP and DA due to samples being
arranged in order of time, however with decompos-
tions LTMP tried to come up with a right query but
fails due to adding extra DESC condition to each
column as following a few-shot decomposition.

6 Conclusion

In this paper, we leverage LLMs for the cross-
domain and cross-composition generalization of
Text-to-SQL. As opposed to prior approaches,
which rely on inference-time retrieval of exem-
plars similar to the test query; we devise an al-
gorithm which samples diverse set-of exemplars
with complete coverage of SQL operators, clauses
and functions and maximal coverage of databases
to form the Generic Prompt (GP), which is com-
mon across every test sample obviating the need
for dynamic exemplar retrieval and thus leading
to an efficient approach. We further perform pro-
grammatic domain-adaptation of this prompt DA-
GP, which consistently showcases performance im-
provement across multiple databases and LLMs
better achieving domain generalization. We further
decompose the exemplars of DA-GP, to execute a
novel pipeline of Least-to-Most-Prompting (LTMP-
DA-GP) for compositional generalization of the
complex NL-to-SQL task. This pipeline showcases
consistent improvement over GP across multiple
databases and LLMs demonstrating complemen-
tary benefits of the adapt and decompose steps and
thus proving the efficacy of our approach. Our
pipeline, being offline with minimal human inter-
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vention, is not only efficient; but also yields the
best performance reported in the literature with the
experimented LLMs, on KaggleDBQA dataset de-
signed to test generalizability of NL-to-SQL task.

7 Limitations

In the current solution, we design the GP such that
the extended version LTMP-GP, after appending
each few-shot with the corresponding query de-
composition, their mapping to NAT-SQL followed
by SQL, fits into the maximum token length of
4k tokens by Text-da-Vinci-003 and GPT-Turbo-
3.5. However, for LLMs such as Bloom (Scao
et al., 2022) and Falcon (Penedo et al., 2023), etc,
which maintain a maximum context length of 2k
tokens, the current solution would only be appli-
cable after some truncation of GP, by removing
some few-shots, to fit within the specified context
length. This can impact the performance of the
resulting GP. Due to the same reason, we were un-
able to incorporate column descriptions and values
of the target schema within the LTMP-GP prompt,
as doing so would exceed the 4k token limit. We
might be able to alleviate these problem with the ap-
proaches such as (Ding et al., 2023; Bulatov et al.,
2023), that aim at scaling sequence length issues
in LLMs. Another limitation involves the necessity
of human intervention in crafting the LTMP-DA-
GP prompt based on the DA-GP prompt for each
unique test schema leading to a semi-automated
solution. However, this human-intervention is only
one-time for a new database schema.
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A Supplementary Material

A.1 Existing Work on LLM based NL-to-SQL
(Rajkumar et al., 2022a; Chang and Fosler-Lussier,
2023; Nan et al., 2023) has attempted to use LLMs
for Text-to-SQL semantic parsing task in zero-shot
as well as few-shot settings. For zero-shot set-
ting, they experiment with various formats of the
database schema, such as the APIDocs or SQL
‘CREATE TABLE’ commands, with and without
randomly selected data rows or columns from the
database table (elaborated in Section 4.1). For the
few-shot setting, (Rajkumar et al., 2022a; Qiu et al.,
2022; Hosseini et al., 2022; Yang et al., 2022) focus
on cross-composition generalization and provide
the queries which are posed on the target database
itself as exemplars (cross-domain setting is not con-
sidered). Thus, the assumption is that few queries
are available for a new database. They work with
datasets such as GeoQuery ((Tang and Mooney,
2001; Zelle and Mooney, 1996)) with data in US
geography domain, Scholar ((Iyer et al., 2017))
with data in academic publications or a dataset de-
signed for queries in E-commerce domain ((Yang
et al., 2022)). In our approach, we assume no avail-
ability of annotated data in terms of SQL programs
for the test database and thus, completely a cross-
domain setting.

On the similar lines of our work, Synchromesh
(Poesia et al., 2022a) and (Nan et al., 2023; An
et al., 2023) assumes cross-domain setting. These
approaches select few-shot exemplars from the
training set based on (a) the semantic similarity
with the NL test query (Nan et al., 2023) or (b)
using Target Similarity Tuning (TST) where the
NL queries with similar target programs are se-
lected as exemplars (Poesia et al., 2022a) or (c) se-
lecting similar NL queries as exemplars with their
LLM generated ‘skill’ representation, which fo-
cuses on program compositions and ignores the
surface NL forms (An et al., 2023). In addition to
TST, Synchromesh (Poesia et al., 2022a) performs
constrained semantic decoding (CSD), which re-
duces the implementation errors in the generated
SQLs by ensuring that the generated tokens lead to
correct programs following a pre-specified gram-
mar. As constraint decoding is not the focus our
approach, we compare our performance using Tar-
get Semantic Tuning (TST), without Constraint Se-
mantic Decoding (CSD). All the above similarity
based approaches have a reliance on inference-time
retrieval of similar few-shot samples from the avail-
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able data to build a run-time prompt and generate
SQL for a test NL query leading to a less efficient
solution. As opposed to this, we devise an algo-
rithm to generate a prompt with diverse exemplars
generic across test queries in offline fashion, result-
ing in a more time-efficient solution obviating the
need for real time retrieval. Moreover, with further
adaptation of this offline prompt with the adapt
and decompose techniques, our approach yields
better performance than existing similarity based
sampling techniques (Poesia et al., 2022b; Chang
and Fosler-Lussier, 2023; An et al., 2023).

(Nan et al., 2023) defines a ‘diversity’ based
sampling method for few-shot exemplar selection,
where the samples in the training set are clustered
using a combination of continuous representation
of the NL queries and discrete representation of
SQL counterparts, to pickup the near-centroid sam-
ples are few-shots. They showcase that this di-
versity based sampling method performs better
than similarity based sampling, which is further
enhanced by similarity-diversity sampling. Our
GP based sampling technique ensures diversity in
the samples, by guaranteeing complete coverage of
SQL operators and maximum converge of database
domains.

A.2 Addressing LLM Memorization Concerns

(Rajkumar et al., 2022a) have addressed the con-
cerns around possible memorization of existing
datasets such as Spider(Yu et al., 2018) by large lan-
guage models, which are trained on code data. The
possibility of memorization arises as the the Spider
Dev split file (dev.sql) resides on Github4. How-
ever, prompting LLMs with verbatim fragments of
this file leads to generations which do not match
with the file contents. For example, given a ques-
tion in the format specified in the file, the table
aliasing strategy followed in the generated SQLs
does not match with the gold SQLs provided in
the file. On the similar lines of (Rajkumar et al.,
2022a), our prompting format of text queries (Ex-
plained in Section 4.1) is completely different than
the format in which NL-SQL pairs are stored in the
Spider Dev split file. Moreover, to avoid the con-
cerns of memorization, we assess the performance
of our pipelines using Kaggle DBQA (Lee et al.,
2021b) dataset, for which the evaluation files are
not residing on Github5. We also showcase with

4https://github.com/taoyds/spider/tree/master/evaluation_examples
5https://github.com/chiahsuan156/KaggleDBQA

performance improvements with our approach over
zero-shot setting on this dataset for distinct LLMs.

A.3 Prompts
In this section we provide the prompts generated
by our pipeline including the (i) GP which is com-
mon across all the KaggleDBQA dataset (ii) DA-GP
for GeoNeuclear database. The same prompt tem-
plate can be used to recreate the prompts for other
databases. (iii) LTMP-GP which is common across
all the KaggleDBQA dataset (iv) LTMP-DA-GP
for GeoNeuclear database. The same prompt tem-
plate can be used to recreate the prompts for other
databases.The Yellow part indicates the few-shot
schemas, Blue part the test schema and queries
and orange the domain information.
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A.3.1 Generic Prompt (GP)
Note: PK and FK denote Primarky Key and Foreign Key, respectively, in all the below following schemas.
### SQLite SQL tables, with their properties:
# CREATE TABLE classroom (building, room_number, capacity, PK (building, room_number))
# CREATE TABLE department (dept_name, building, budget, PK (dept_name))
# CREATE TABLE course (course_id, title, dept_name, credits, PK (course_id), FK (dept_name) REFERENCES
department (dept_name))
# CREATE TABLE instructor (ID, name, dept_name, salary, PK (ID), FK (dept_name) references department
(dept_name))
# CREATE TABLE section (course_id, sec_id, semester), year, building, room_number, time_slot_id, PK
(course_id, sec_id, semester, year), FK (course_id) references course (course_id), FK (building, room_number)
references classroom (building, room_number))
# CREATE TABLE teaches (ID, course_id, sec_id, semester, year, PK (ID, course_id, sec_id, semester, year),
FK (course_id, sec_id, semester, year) references section (course_id, sec_id, semester, year), FK (ID) references
instructor (ID))
# CREATE TABLE student (ID, name, dept_name, tot_cred, PK (ID), FK (dept_name) references department
(dept_name))
# CREATE TABLE takes (ID, course_id, sec_id, semester, year, grade, PK (ID, course_id, sec_id, semester, year),
FK (course_id,sec_id, semester, year) references section (course_id, sec_id, semester, year), FK (ID) references
student (ID))
# CREATE TABLE advisor (s_ID, i_ID, PK (s_ID), FK (i_ID) references instructor (ID), FK (s_ID) references
student (ID))
# CREATE TABLE time_slot (time_slot_id, day, start_hr, start_min, end_hr, end_min, PK (time_slot_id, day,
start_hr, start_min))
# CREATE TABLE prereq (course_id, prereq_id, PK (course_id, prereq_id), FK (course_id) references course
(course_id), FK (prereq_id) references course (course_id))
#
### Find the buildings which have rooms with capacity more than 50.
SELECT DISTINCT building FROM classroom WHERE capacity > 50
#
### Find the name and building of the department with the highest budget.
SELECT dept_name, building FROM department ORDER BY budget DESC LIMIT 1
#
### Find the title of courses that have two prerequisites?
SELECT T1.title FROM course AS T1 JOIN prereq AS T2 ON T1.course_id = T2.course_id GROUP BY
T2.course_id HAVING count(*) = 2
#
### How many courses that do not have prerequisite?
SELECT count(*) FROM course WHERE course_id NOT IN (SELECT course_id FROM prereq)
#
### Find the total budgets of the Marketing or Finance department.
SELECT sum(budget) FROM department WHERE dept_name = ’Marketing’ OR dept_name = ’Finance’
#
### Find the department name of the instructor whose name contains ’Soisalon’.
SELECT dept_name FROM instructor WHERE name LIKE ’#
### Find the title of course that is provided by both Statistics and Psychology departments.
SELECT title FROM course WHERE dept_name = ’Statistics’ INTERSECT SELECT title FROM course WHERE
dept_name = ’Psychology’
#
### Find the title of course that is provided by Statistics but not Psychology departments.
SELECT title FROM course WHERE dept_name = ’Statistics’ EXCEPT SELECT title FROM course WHERE
dept_name = ’Psychology’
#
### Find courses that ran in Fall 2009 or in Spring 2010.
SELECT course_id FROM SECTION WHERE semester = ’Fall’ AND YEAR = 2009 UNION SELECT course_id
FROM SECTION WHERE semester = ’Spring’ AND YEAR = 2010
#
### Find the names and average salaries of all departments whose average salary is greater than 42000.
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SELECT dept_name, AVG(salary) FROM instructor GROUP BY dept_name HAVING AVG (salary) > 42000
#
### SQLite SQL tables, with their properties:
# CREATE TABLE regions (REGION_ID, REGION_NAME, PK (REGION_ID))
# CREATE TABLE countries (COUNTRY_ID, COUNTRY_NAME, REGION_ID, PK (COUNTRY_ID), FK
(REGION_ID) REFERENCES regions (REGION_ID))
# CREATE TABLE departments (DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, LOCA-
TION_ID, PK (DEPARTMENT_ID))
# CREATE TABLE jobs (JOB_ID, JOB_TITLE, MIN_SALARY, MAX_SALARY, PK (JOB_ID))
# CREATE TABLE employees (EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE_NUMBER,
HIRE_DATE, JOB_ID, SALARY, COMMISSION_PCT, MANAGER_ID, DEPARTMENT_ID, PK (EM-
PLOYEE_ID), FK (DEPARTMENT_ID) REFERENCES departments(DEPARTMENT_ID), FK (JOB_ID)
REFERENCES jobs(JOB_ID))
# CREATE TABLE job_history (EMPLOYEE_ID, START_DATE, END_DATE, JOB_ID, DEPARTMENT_ID,
PK (EMPLOYEE_ID,START_DATE), FK (EMPLOYEE_ID) REFERENCES employees(EMPLOYEE_ID),
FK (DEPARTMENT_ID) REFERENCES departments(DEPARTMENT_ID), FK (JOB_ID) REFERENCES
jobs(JOB_ID))
# CREATE TABLE locations (LOCATION_ID, STREET_ADDRESS, POSTAL_CODE, CITY,
STATE_PROVINCE, COUNTRY_ID, PK (LOCATION_ID), FK (COUNTRY_ID) REFERENCES coun-
tries(COUNTRY_ID))
#
### display job Title, the difference between minimum and maximum salaries for those jobs which max salary
within the range 12000 to 18000.
SELECT job_title, max_salary - min_salary FROM jobs WHERE max_salary BETWEEN 12000 AND 18000
#
### display the employee ID for each employee and the date on which he ended his previous job.
SELECT employee_id, MAX(end_date) FROM job_history GROUP BY employee_id
#
### return the smallest salary for every departments.
SELECT MIN(salary), department_id FROM employees GROUP BY department_id
#
### display the department id and the total salary for those departments which contains at least two employees.
SELECT department_id, SUM(salary) FROM employees GROUP BY department_id HAVING count(*) >= 2
#
### SQLite SQL tables, with their properties:
# CREATE TABLE Rooms (RoomId PK, roomName, beds, bedType, maxOccupancy, basePrice, decor)
# CREATE TABLE Reservations (Code PK, Room, CheckIn, CheckOut, Rate REAL, LastName, FirstName,
Adults, Kids, FK (Room) REFERENCES Rooms(RoomId))
#
### List how many times the number of people in the room reached the maximum occupancy of the room. The
number of people include adults and kids.
SELECT count(*) FROM Reservations AS T1 JOIN Rooms AS T2 ON T1.Room = T2.RoomId WHERE
T2.maxOccupancy = T1.Adults + T1.Kids;
#
### SQLite SQL tables, with their properties:
# CREATE TABLE Attribute_Definitions (attribute_id PK, attribute_name, attribute_data_type)
# CREATE TABLE Catalogs (catalog_id PK, catalog_name, catalog_publisher, date_of_publication,
date_of_latest_revision)
# CREATE TABLE Catalog_Structure (catalog_level_number PK, catalog_id, catalog_level_name, FK
(catalog_id) REFERENCES Catalogs(catalog_id))
# CREATE TABLE Catalog_Contents (catalog_entry_id PK, catalog_level_number, parent_entry_id, previ-
ous_entry_id, next_entry_id, catalog_entry_name, product_stock_number, price_in_dollars, price_in_euros,
price_in_pounds, capacity, length, height, width, FK (catalog_level_number) REFERENCES Cata-
log_Structure(catalog_level_number))
# CREATE TABLE Catalog_Contents_Additional_Attributes (catalog_entry_id, catalog_level_number,
attribute_id, attribute_value, FK (catalog_entry_id) REFERENCES Catalog_Contents(catalog_entry_id), FK
(catalog_level_number) REFERENCES Catalog_Structure(catalog_level_number))
#
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### Find the names of the products with length smaller than 3 or height greater than 5.
SELECT catalog_entry_name FROM catalog_contents WHERE LENGTH < 3 OR width > 5
#
### SQLite SQL tables, with their properties:

# CREATE TABLE nuclear_power_plants (Id, Name, Latitude, Longitude, Country, Status, ReactorType,

ReactorModel, ConstructionStartAt, OperationalFrom, OperationalTo, Capacity, LastUpdatedAt, Source)

#
### Which country has the most capacities of nuclear power plants?

SELECT

A.3.2 Domain Adapted - Generic Prompt (DA-GP) (Stage-3)
### SQLite SQL tables, with their properties:
#
# CREATE TABLE nuclear_power_plants (Id, Name, Latitude, Longitude, Country, Status, ReactorType,
ReactorModel, ConstructionStartAt, OperationalFrom, OperationalTo, Capacity, LastUpdatedAt, Source)
Columns in nuclear_power_plants with examples in each column and descriptions wherever required:
Id: 572, 560, 258, 433.
Name: Ågesta, Turkey Point4, Oskarshamn2, Ningde4.
Latitude: 55.084000, 55.604000, 41.188000, 45.800000. Description: latitude in decimal format
Longitude: 77.311000, 66.790000, 9.393000, 0.845000. Description: longitude in decimal format
Country: Canada, Germany, Taiwan, Province of China, Italy.
Status: Planned, Cancelled Construction, Under Construction, Suspended Construction.
ReactorType: HWGCR, GCR, LWGR, HTGR.
ReactorModel: Konvoi, VVER V-320, WH 2LP (DRYAMB), PHWR KWU.
ConstructionStartAt: 1977-02-01, 1968-05-18, 1965-04-12, 1972-11-01. Description: date when nuclear power
plant construction was started
OperationalFrom: 2015-06-05, 1977-03-13, 1986-04-10, 1989-09-30. Description: date when nuclear power plant
became operational (also known as commercial operation date)
OperationalTo: 2011-05-19, 2004-06-29, 1992-05-27, 2015-04-30. Description: date when nuclear power plant was
shutdown (also known as permanent shutdown date)
Capacity: 1092, 125, 535, 1307. Description: nuclear power plant capacity (design net capacity in MWe)
LastUpdatedAt: 2015-05-24T04:50:59+03:00, 2015-05-24T04:51:11+03:00, 2017-02-10T23:58:48+02:00,
2018-03-10T13:41:49+02:00. Description: date and time when information was last updated
Source: WNA/wikipedia/IAEA, wikipedia, WNA, WNA/IAEA/GEO. Description: source of the information
#
### Find the latitudes of nuclear power plants with capacity more than 50.
SELECT DISTINCT Latitude FROM nuclear_power_plants WHERE Capacity > 50;
#
### Find the country and status of the nuclear power plant with the highest capacity.
SELECT Country, Status FROM nuclear_power_plants ORDER BY Capacity DESC LIMIT 1;
#
### Find the name of nuclear power plants that have two entries in the database?
SELECT T1.Name FROM nuclear_power_plants AS T1 JOIN nuclear_power_plants AS T2 ON T1.Id = T2.Id
GROUP BY T2.Id HAVING count(*) = 2;
#
### How many nuclear power plants do not have a prerequisite?
SELECT COUNT(*) FROM nuclear_power_plants WHERE Id NOT IN (SELECT Id FROM prereq)
#
### Find the total capacity of the nuclear power plants named Marketing or Finance.
SELECT sum(Capacity) FROM nuclear_power_plants WHERE Name = ’Marketing’ OR Name = ’Finance’
#
### Find the country associated with the nuclear power plant whose name contains ’Soisalon’.
SELECT Country FROM nuclear_power_plants WHERE Name LIKE ’%Soisalon%’
#
### Find the name of nuclear power plants that are located in both Statistics and Psychology countries.
SELECT Name FROM nuclear_power_plants WHERE Country = ’Statistics’ INTERSECT SELECT Name FROM
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nuclear_power_plants WHERE Country = ’Psychology’
#
### Find the name of nuclear power plants that are located in Statistics but not Psychology countries.
SELECT Name FROM nuclear_power_plants WHERE Country = ’Statistics’ EXCEPT SELECT Name FROM
nuclear_power_plants WHERE Country = ’Psychology’
#
### Find the Ids of nuclear power plants that were constructed in Fall 2009 or in Spring 2010.
SELECT Id FROM nuclear_power_plants WHERE ConstructionStartAt = ’Fall’ AND LastUpdatedAt = 2009
UNION SELECT Id FROM nuclear_power_plants WHERE ConstructionStartAt = ’Spring’ AND LastUpdatedAt =
2010
#
### Find the countries and average capacities of all nuclear power plants whose average capacity is greater than
42000.
SELECT Country, AVG (Capacity) FROM nuclear_power_plants GROUP BY Country HAVING AVG (Capacity) >
42000
#
### display the Name of the nuclear power plant and the difference between its capacity and the year it was
constructed for those plants which capacity is within the range 12000 to 18000.
SELECT Name, Capacity - ConstructionStartAt FROM nuclear_power_plants WHERE Capacity BETWEEN
12000 AND 18000
#
### display the ID for each nuclear power plant and the date on which it stopped operating.
SELECT Id, MAX(OperationalTo) FROM nuclear_power_plants GROUP BY Id
#
### return the smallest capacity for each nuclear power plant.
SELECT MIN(Capacity), Id FROM nuclear_power_plants GROUP BY Id
#
### display the id and the total capacity for those nuclear power plants which have at least two reactors.
SELECT Id, SUM(Capacity) FROM nuclear_power_plants GROUP BY Id HAVING count(*) >= 2
#
### Count how many times the capacity of a nuclear power plant is equal to the sum of its status and reactor type.
SELECT COUNT(*) FROM nuclear_power_plants AS T1 JOIN nuclear_power_plants AS T2 ON T1.Id = T2.Id
WHERE T2.Capacity = T1.Status + T1.ReactorType;
#
### Find the names of the nuclear power plants with capacity smaller than 3 or capacity greater than 5.
SELECT Name FROM nuclear_power_plants WHERE Capacity < 3 OR Capacity > 5
#
### Which country has the most capacities of nuclear power plants?

SELECT

A.3.3 Least-to-Most Prompting - Generic Prompt (LTMP-GP)
Note: PK and FK denote Primary Key and Foreign Key, respectively, in all the below following schemas.
### SQLite SQL tables, with their properties:
#CREATE TABLE classroom (building, room_number, capacity, PK (building, room_number))
#CREATE TABLE department (dept_name, building, budget, PK (dept_name))
#CREATE TABLE course (course_id, title, dept_name, credits, PK (course_id), FK (dept_name) REFERENCES

department (dept_name))
#CREATE TABLE instructor (ID, name, dept_name, salary, PK (ID), FK (dept_name) references department

(dept_name))
#CREATE TABLE section (course_id, sec_id, semester), year, building, room_number, time_slot_id, PK

(course_id, sec_id, semester, year), FK (course_id) references course (course_id), FK (building, room_number)
references classroom (building, room_number))
#CREATE TABLE teaches (ID, course_id, sec_id, semester, year, PK (ID, course_id, sec_id, semester, year),

FK (course_id, sec_id, semester, year) references section (course_id, sec_id, semester, year), FK (ID) references
instructor (ID))
#CREATE TABLE student (ID, name, dept_name, tot_cred, PK (ID), FK (dept_name) references department
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(dept_name))
#CREATE TABLE takes (ID, course_id, sec_id, semester, year, grade, PK (ID, course_id, sec_id, semester, year),

FK (course_id,sec_id, semester, year) references section (course_id, sec_id, semester, year), FK (ID) references
student (ID))
#CREATE TABLE advisor (s_ID, i_ID, PK (s_ID), FK (i_ID) references instructor (ID), FK (s_ID) references

student (ID))
#CREATE TABLE time_slot (time_slot_id, day, start_hr, start_min, end_hr, end_min, PK (time_slot_id, day,

start_hr, start_min))
#CREATE TABLE prereq (course_id, prereq_id, PK (course_id, prereq_id), FK (course_id) references course

(course_id), FK (prereq_id) references course (course_id))
#
Q: Find the buildings which have rooms with capacity more than 50.
sub-questions:[Find the buildings, which have rooms with capacity more than 50.]
Intermediate representation: [’select distinct classroom.building’, ’select where classroom.capacity > 50’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: SELECT DISTINCT building FROM classroom WHERE capacity > 50

#
Q: Find the name and building of the department with the highest budget.
sub-questions:[Find the name and building of the department, with the highest budget.]
Intermediate representation: [’select department.dept_name, department.building’, ’select order by depart-
ment.budge desc limit 1’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: SELECT dept_name, building FROM department ORDER BY budget DESC LIMIT 1

#
Q: Find the title of courses that have two prerequisites?
sub-questions:[Find the title of courses, that have two prerequisites?]
Intermediate representation: [’select course.title’, ’select where count(prereq.*)=2 group by prereq.course_id’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: SELECT T1.title FROM course AS T1 JOIN prereq AS T2 ON T1.course_id = T2.course_id GROUP BY

T2.course_id HAVING count(*) = 2
#
Q: How many courses that do not have prerequisite?
sub-questions:[How many courses, that do not have prerequisite?]
Intermediate representation: [’select count(Courses.*)’, ’select where @.@ not in prereq.course_id’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: SELECT count(*) FROM course WHERE course_id NOT IN (SELECT course_id FROM prereq)

#
Q: Find the total budgets of the Marketing or Finance Department.
sub-questions:[Find the total budgets of the Marketing or Finance Department.]
Intermediate representation: [’select sum(department.budget) where department.dept_name = "Marketing" or
department.dept_name="Finance"’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: SELECT sum(budget) FROM department WHERE dept_name = ’Marketing’ OR dept_name = ’Finance’

#
Q: Find the department name of the instructor whose name contains ’Soisalon’.
sub-questions:[Find the department name of the instructor, whose name contains ’Soisalon’.]
Intermediate representation: [’select instructor.dept_name’, ’select where instructor.name like "%Soisalon%"’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: SELECT dept_name FROM instructor WHERE name LIKE ’%Soisalon%’

#
Q: Find the title of course that is provided by both Statistics and Psychology departments.
sub-questions:[Find the title of course, that is provided by both Statistics and Psychology departments.]
Intermediate representation: [’select course.title’, ’select where course.dept_name="Statistics" and
course.dept_name="Psychology"’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: SELECT title FROM course WHERE dept_name = ’Statistics’ INTERSECT SELECT title FROM course

WHERE dept_name = ’Psychology’
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#
Q: Find the title of course that is provided by Statistics but not Psychology departments.
sub-questions:[Find the title of course, that is provided by Statistics, but not Psychology departments.]
Intermediate representation: [’select course.title’, ’select where course.dept_name="Statistics"’, ’select where
course.dept_name!="Psychology"’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: SELECT title FROM course WHERE dept_name = ’Statistics’ EXCEPT SELECT title FROM course

WHERE dept_name = ’Psychology’
#
Q: Find courses that ran in Fall 2009 or in Spring 2010.
sub-questions:[Find courses, that ran in Fall 2009 or, in Spring 2010.]
Intermediate representation: [’select section.course_id’, ’select where section.semester="Fall" and sec-
tion.year=2009’, ’select where section.semester="Spring" and section.year=2010’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: SELECT course_id FROM SECTION WHERE semester = ’Fall’ AND YEAR = 2009 UNION SELECT

course_id FROM SECTION WHERE semester = ’Spring’ AND YEAR = 2010
#
Q: Find the names and average salaries of all departments whose average salary is greater than 42000.
sub-questions:[Find the names and average salaries of all departments, whose average salary is greater than 42000.]
Intermediate representation: [’select instructor.dept_name, avg(isntructor.slary) group by instructor.dept_name’,
’select where avg(instructor.salary) > 42000’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: SELECT dept_name, AVG(salary) FROM instructor GROUP BY dept_name HAVING AVG (salary) >

42000
#
### SQLite SQL tables, with their properties:
#CREATE TABLE regions (REGION_ID, REGION_NAME, PK (REGION_ID))
#CREATE TABLE countries (COUNTRY_ID, COUNTRY_NAME, REGION_ID, PK (COUNTRY_ID), FK

(REGION_ID) REFERENCES regions (REGION_ID))
#CREATE TABLE departments (DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, LOCA-

TION_ID, PK (DEPARTMENT_ID))
#CREATE TABLE jobs (JOB_ID, JOB_TITLE, MIN_SALARY, MAX_SALARY, PK (JOB_ID))
#CREATE TABLE employees (EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE_NUMBER,

HIRE_DATE, JOB_ID, SALARY, COMMISSION_PCT, MANAGER_ID, DEPARTMENT_ID, PK (EM-
PLOYEE_ID), FK (DEPARTMENT_ID) REFERENCES departments(DEPARTMENT_ID), FK (JOB_ID)
REFERENCES jobs(JOB_ID))
#CREATE TABLE job_history (EMPLOYEE_ID, START_DATE, END_DATE, JOB_ID, DEPARTMENT_ID,

PK (EMPLOYEE_ID,START_DATE), FK (EMPLOYEE_ID) REFERENCES employees(EMPLOYEE_ID),
FK (DEPARTMENT_ID) REFERENCES departments(DEPARTMENT_ID), FK (JOB_ID) REFERENCES
jobs(JOB_ID))
#CREATE TABLE locations (LOCATION_ID, STREET_ADDRESS, POSTAL_CODE, CITY,

STATE_PROVINCE, COUNTRY_ID, PK (LOCATION_ID), FK (COUNTRY_ID) REFERENCES coun-
tries(COUNTRY_ID))
#
Q: display job Title, the diffrence between minimum and maximum salaries for those jobs which max salary within
the range 12000 to 18000.
sub-questions:[display job Title, the diffrence between minimum and maximum salaries for those jobs, which max
salary within the range 12000 to 18000.]
Intermediate representation: [’select jobs.JOB_TITLE, jobs.MAX_SALARY - jobs.MIN_SALARY’, ’select where
jobs.MAX_SALARY between 12000 and 18000’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: SELECT job_title, max_salary - min_salary FROM jobs WHERE max_salary BETWEEN 12000 AND

18000
#
Q: display the employee ID for each employee and the date on which he ended his previous job.
sub-questions:[display the employee ID for each employee and the date, on which he ended his previous job.]
Intermediate representation: [’select job_history.EMPLOYEE_ID, max(job_history.END_DATE) group by
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job_history.EMPLOYEE_ID’, ’select extra max (job_history.END_DATE)’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: SELECT employee_id, MAX(end_date) FROM job_history GROUP BY employee_id

#
Q: return the smallest salary for every departments.
sub-questions:[return the smallest salary for every departments.]
Intermediate representation: [’select min(employees.SALARY), employees.DEPARTMENT_ID group by
employees.DEPARTMENT_ID’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: SELECT MIN(salary), department_id FROM employees GROUP BY department_id

#
Q: display the department id and the total salary for those department which contains at least two employees.
sub-questions:[display the department id and the total salary for those department, which contains at least two
employees.]
Intermediate representation: [’select employees.DEPARTEMENT_ID, sum(employees.SALARY)’, ’select where
count (employees.*)>=2 group by employees.DEPARTMENT_ID’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: SELECT department_id, SUM(salary) FROM employees GROUP BY department_id HAVING count(*) >=

2
#
### SQLite SQL tables, with their properties:
#CREATE TABLE Rooms (RoomId PK, roomName, beds, bedType, maxOccupancy, basePrice, decor)
#CREATE TABLE Reservations (Code PK, Room, CheckIn, CheckOut, Rate REAL, LastName, FirstName,

Adults, Kids, FK (Room) REFERENCES Rooms(RoomId))
#
Q: List how many times the number of people in the room reached the maximum occupancy of the room. The
number of people include adults and kids.
sub-questions:[List how many times the number of people in the room, the maximum occupancy of the room., The
number of people include adults and kids.]
Intermediate representation: [’select count(Resrevations.*)’, ’select where
Rooms.maxOccupancy=Reservations.Adults’,’select extra Reservations.Adults’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: SELECT count(*) FROM Reservations AS T1 JOIN Rooms AS T2 ON T1.Room = T2.RoomId WHERE

T2.maxOccupancy = T1.Adults + T1.Kids;
#
### SQLite SQL tables, with their properties:
#CREATE TABLE Attribute_Definitions (attribute_id PK, attribute_name, attribute_data_type)
#CREATE TABLE Catalogs (catalog_id PK, catalog_name, catalog_publisher, date_of_publication,

date_of_latest_revision)
#CREATE TABLE Catalog_Structure (catalog_level_number PK, catalog_id, catalog_level_name, FK (cata-

log_id) REFERENCES Catalogs(catalog_id))
#CREATE TABLE Catalog_Contents (catalog_entry_id PK, catalog_level_number, parent_entry_id, previ-

ous_entry_id, next_entry_id, catalog_entry_name, product_stock_number, price_in_dollars, price_in_euros,
price_in_pounds, capacity, length, height, width, FK (catalog_level_number) REFERENCES Cata-
log_Structure(catalog_level_number))
#CREATE TABLE Catalog_Contents_Additional_Attributes (catalog_entry_id, catalog_level_number, at-

tribute_id, attribute_value, FK (catalog_entry_id) REFERENCES Catalog_Contents(catalog_entry_id), FK
(catalog_level_number) REFERENCES Catalog_Structure(catalog_level_number))
#
Q: Find the names of the products with length smaller than 3 or height greater than 5.
sub-questions:[Find the names of the products, with length smaller than 3 or, height greater than 5.]
Intermediate representation: [’select Catalog_Contents.catalog_entry_name, ’select where Catalog_Contents.length
< 3’,’select where Catalog_Contents.width > 5’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: SELECT catalog_entry_name FROM catalog_contents WHERE LENGTH < 3 OR width > 5

#
### SQLite SQL tables, with their properties:

43



# CREATE TABLE nuclear_power_plants (Id, Name, Latitude, Longitude, Country, Status, ReactorType,

ReactorModel, ConstructionStartAt, OperationalFrom, OperationalTo, Capacity, LastUpdatedAt, Source)

#
Q: Which country has the most capacities of nuclear power plants?

A:

A.4 Least-to-Most Prompting - Domain Adapted - Generic Prompt (LTMP-DA-GP)
### SQLite SQL tables, with their properties:
#
# CREATE TABLE nuclear_power_plants (Id, Name, Latitude, Longitude, Country, Status, ReactorType,

ReactorModel, ConstructionStartAt, OperationalFrom, OperationalTo, Capacity, LastUpdatedAt, Source)
Columns in nuclear_power_plants with examples in each column and descriptions wherever required:
Id: 572, 560, 258, 433.
Name: Ågesta, Turkey Point-4, Oskarshamn-2, Ningde-4.
Latitude: 55.084000, 55.604000, 41.188000, 45.800000. Description: latitude in decimal format
Longitude: -77.311000, 66.790000, 9.393000, 0.845000. Description: longitude in decimal format
Country: Canada, Germany, Taiwan, Province of China, Italy.
Status: Planned, Cancelled Construction, Under Construction, Suspended Construction.
ReactorType: HWGCR, GCR, LWGR, HTGR.
ReactorModel: Konvoi, VVER V-320, WH 2LP (DRYAMB), PHWR KWU.
ConstructionStartAt: 1977-02-01, 1968-05-18, 1965-04-12, 1972-11-01. Description: date when nuclear power
plant construction was started
OperationalFrom: 2015-06-05, 1977-03-13, 1986-04-10, 1989-09-30. Description: date when nuclear power plant
became operational (also known as commercial operation date)
OperationalTo: 2011-05-19, 2004-06-29, 1992-05-27, 2015-04-30. Description: date when nuclear power plant was
shutdown (also known as permanent shutdown date)
Capacity: 1092, 125, 535, 1307. Description: nuclear power plant capacity (design net capacity in MWe)
LastUpdatedAt: 2015-05-24T04:50:59+03:00, 2015-05-24T04:51:11+03:00, 2017-02-10T23:58:48+02:00,
2018-03-10T13:41:49+02:00. Description: date and time when information was last updated
Source: WNA/wikipedia/IAEA, wikipedia, WNA, WNA/IAEA/GEO. Description: source of the information
#
Q: Find the latitudes of nuclear power plants with capacity more than 50.
sub-questions:[’Find the latitudes of nuclear power plants’, ’with capacity more than 50.’]
Intermediate representation: [’select distinct nuclear_power_plants.Latitude’, ’select where nu-
clear_power_plants.Capacity > 50’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: [ SELECT DISTINCT Latitude FROM nuclear_power_plants WHERE Capacity > 50 ]

#
Q: Find the country and status of the nuclear power plant with the highest capacity.
sub-questions:[’Find the country and status of the nuclear power plant’, ’with the highest capacity.’]
Intermediate representation: [’select nuclear_power_plants.Country, nuclear_power_plants.Status’, ’select order by
nuclear_power_plants.Capacity desc limit 1’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: [ SELECT Country, Status FROM nuclear_power_plants ORDER BY Capacity DESC LIMIT 1 ]

#
Q: Find the name of nuclear power plants that have two entries in the database?
sub-questions:[’Find the name of nuclear power plants’, ’that have two entries in the database?’]
Intermediate representation: [’select nuclear_power_plants.Name’, ’select where count(nuclear_power_plants.*)=2
group by nuclear_power_plants.Id’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: [ SELECT T1.Name FROM nuclear_power_plants AS T1 JOIN nuclear_power_plants AS T2 ON T1.Id =

T2.Id GROUP BY T2.Id HAVING count(*) = 2 ]
#
Q: How many nuclear power plants do not have a prerequisite?
sub-questions:[’How many nuclear power plants’, ’do not have a prerequisite?’]
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Intermediate representation: [’select count(nuclear_power_plants.*)’, ’select where @.@ not in prereq.Id’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: [ SELECT COUNT(*) FROM nuclear_power_plants WHERE Id NOT IN (SELECT Id FROM prereq) ]

#
Q: Find the total capacity of the nuclear power plants named Marketing or Finance.
sub-questions:[’Find the total capacity of the nuclear power plants named Marketing or Finance.’]
Intermediate representation: [’select sum(nuclear_power_plants.Capacity) where nuclear_power_plants.Name =
"Marketing" or nuclear_power_plants.Name="Finance"’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: [ SELECT sum(Capacity) FROM nuclear_power_plants WHERE Name = ’Marketing’ OR Name =

’Finance’ ]
#
Q: Find the country associated with the nuclear power plant whose name contains ’Soisalon’.
sub-questions:[’Find the country associated with the nuclear power plant’, ’whose name contains "Soisalon"’.]
Intermediate representation: [’select nuclear_power_plants.Country’, ’select where nuclear_power_plants.name like
"%Soisalon%"’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: [ SELECT Country FROM nuclear_power_plants WHERE Name LIKE ’%Soisalon%’ ]

#
Q: Find the name of nuclear power plants that are located in both Statistics and Psychology countries.
sub-questions:[’Find the name of nuclear power plants’, ’that are located in both Statistics and Psychology
countries.’]
Intermediate representation: [’select nuclear_power_plants.Name’, ’select where nu-
clear_power_plants.Country="Statistics" and nuclear_power_plants.Country="Psychology"’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: [ SELECT Name FROM nuclear_power_plants WHERE Country = ’Statistics’ INTERSECT SELECT

Name FROM nuclear_power_plants WHERE Country = ’Psychology’ ]
#
Q: Find the name of nuclear power plants that are located in Statistics but not Psychology countries.
sub-questions:[’Find the name of nuclear power plants’, ’that are located in Statistics but not Psychology countries.’]
Intermediate representation: [’select nuclear_power_plants.Name’, ’select where nu-
clear_power_plants.Country="Statistics"’, ’select where nuclear_power_plants.Country!="Psychology"’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: [ SELECT Name FROM nuclear_power_plants WHERE Country = ’Statistics’ EXCEPT SELECT Name

FROM nuclear_power_plants WHERE Country = ’Psychology’ ]
#
Q: Find the Ids of nuclear power plants that were constructed in Fall 2009 or in Spring 2010.
sub-questions:[’Find the Ids of nuclear power plants’, ’that were constructed in Fall 2009 or, in Spring 2010.’]
Intermediate representation: [’select nuclear_power_plants.Id’, ’select where nu-
clear_power_plants.ConstructionStartAt="Fall" and nuclear_power_plants.LastUpdatedAt=2009’, ’select
where nuclear_power_plants.ConstructionStartAt="Spring" and nuclear_power_plants.LastUpdatedAt=2010’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: [ SELECT Id FROM nuclear_power_plants WHERE ConstructionStartAt = ’Fall’ AND LastUpdatedAt

= 2009 UNION SELECT Id FROM nuclear_power_plants WHERE ConstructionStartAt = ’Spring’ AND
LastUpdatedAt = 2010" ]
#
Q: Find the countries and average capacities of all nuclear power plants whose average capacity is greater than
42000.
sub-questions:[’Find the countries and average capacities of all nuclear power plants, whose average capacity is
greater than 42000.’]
Intermediate representation: [’select nuclear_power_plants.Country, avg(isntructor.Capacity) group by nu-
clear_power_plants.Country’, ’select where avg(nuclear_power_plants.Capacity) > 42000’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: [ SELECT Country, AVG (Capacity) FROM nuclear_power_plants GROUP BY Country HAVING AVG

(Capacity) > 42000 ]
#
Q: display the Name of the nuclear power plant and the difference between its capacity and the year it was
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constructed for those plants which capacity is within the range 12000 to 18000.
sub-questions:[’display the Name of the nuclear power plant and the difference between its capacity and the year it
was constructed for those plants’, ’which capacity is within the range 12000 to 18000.’]
Intermediate representation: [’select nuclear_power_plants.Name, nuclear_power_plants.Capacity - nu-
clear_power_plants.ConstructionStartAt’, ’select where nuclear_power_plants.Capacity between 12000 and 18000’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: [ SELECT Name, Capacity - ConstructionStartAt FROM nuclear_power_plants WHERE Capacity

BETWEEN 12000 AND 18000 ]
#
Q: display the ID for each nuclear power plant and the date on which it stopped operating.
sub-questions:[’display the ID for each nuclear power plant and the date’, ’on which it stopped operating.’]
Intermediate representation: [’select nuclear_power_plants.Id, max(nuclear_power_plants.OperationalTo) group by
nuclear_power_plants.Id’, ’select extra max (nuclear_power_plants.OperationalTo)’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: [ SELECT Id, MAX(OperationalTo) FROM nuclear_power_plants GROUP BY Id ]

#
Q: return the smallest capacity for each nuclear power plant.
sub-questions:[’return the smallest capacity for each nuclear power plant.’]
Intermediate representation: [’select min(nuclear_power_plants.Capacity), nuclear_power_plants.Id group by
nuclear_power_plants.Id’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: [ SELECT MIN(Capacity), Id FROM nuclear_power_plants GROUP BY Id ]

#
Q: display the id and the total capacity for those nuclear power plants which have at least two reactors.
sub-questions:[’display the id and the total capacity for those nuclear power plants’, ’which have at least two
reactors.’]
Intermediate representation: [’select nuclear_power_plants.Id, sum(nuclear_power_plants.Capacity)’, ’select where
count (nuclear_power_plants.*)>=2 group by nuclear_power_plants.Id’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: [ SELECT Id, SUM(Capacity) FROM nuclear_power_plants GROUP BY Id HAVING count(*) >= 2 ]

#
Q: Count how many times the capacity of a nuclear power plant is equal to the sum of its status and reactor type.
sub-questions:[’Count how many times the capacity of a nuclear power plant’, ’is equal to the sum of its status’,
’and reactor type.’]
Intermediate representation: [’select count(nuclear_power_plants.*)’, ’select where nu-
clear_power_plants.Capacity=nuclear_power_plants.Status + nuclear_power_plants.ReactorType’,’select
extra nuclear_power_plants.Capacity’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: [ SELECT COUNT(*) FROM nuclear_power_plants AS T1 JOIN nuclear_power_plants AS T2 ON T1.Id =

T2.Id WHERE T2.Capacity = T1.Status + T1.ReactorType ]
#
Q: Find the names of the nuclear power plants with capacity smaller than 3 or capacity greater than 5.
sub-questions:[’Find the names of the nuclear power plants with capacity’, ’smaller than 3 or’, ’capacity greater
than 5.’]
Intermediate representation: [’select nuclear_power_plants.Name, ’select where nuclear_power_plants.Capacity <
3’,’select where nuclear_power_plants.Capacity > 5’]
A: Lets think step by step. To get the SQL using the intermediate representations, we combine them to form:
SQL: [ SELECT Name FROM nuclear_power_plants WHERE Capacity < 3 OR Capacity > 5 ]

#
Q: Which country has the most capacities of nuclear power plants?

sub-questions:[’Which country has the most capacities of nuclear power plants?’]

Intermediate representation: [’select nuclear_power_plants.Country, sum(nuclear_power_plants.Capacity) group

by nuclear_power_plants.Country’, ’select order by sum(nuclear_power_plants.Capacity) desc limit 1’]

A:
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Abstract

The success of neural language models (LMs)
on many technological tasks has brought about
their potential relevance as scientific theories
of language despite some clear differences be-
tween LM training and child language acqui-
sition. In this paper we argue that some of
the most prominent benchmarks for evaluat-
ing the syntactic capacities of LMs may not be
sufficiently rigorous. In particular, we show
that the template-based benchmarks lack the
structural diversity commonly found in the the-
oretical and psychological studies of language.
When trained on small-scale data modeling
child language acquisition, the LMs can be
readily matched by simple baseline models. We
advocate for the use of the readily available,
carefully curated datasets that have been eval-
uated for gradient acceptability by large pools
of native speakers and are designed to probe
the structural basis of grammar specifically. On
one such dataset, the LI-Adger dataset, LMs
evaluate sentences in a way inconsistent with
human language users. We conclude with sug-
gestions for better connecting LMs with the
empirical study of child language acquisition.

1 Introduction

The growth of neural language models (LMs) for
NLP over the past decade has been followed by a
growth in research on the potential of these mod-
els to provide insights into the cognitive aspects of
human language acquisition, representation, and
processing (Linzen and Baroni, 2021). Good, even
human-like, performance on NLP tasks does not
necessarily imply that LMs solve these in human-
like ways, so computational linguists have designed
a wide variety of experimental paradigms to probe
specific properties of the models’ linguistic knowl-
edge (Linzen et al., 2016a; Chowdhury and Zam-
parelli, 2018; Gulordava et al., 2018; Wilcox et al.,
2018; McCoy et al., 2020; Hu et al., 2020; Warstadt
et al., 2020; Papadimitriou et al., 2021; Huebner

Figure 1: LM performance on the LI-Adger dataset.
Human performance is marked by the vertical line.
Baby=BabyBERTa, CHI=AO-CHILDES, News=AO-
NEWSELA, Wiki=Wikipedia-1.

et al., 2021) These range from ways of classify-
ing or extracting structures from internal represen-
tations (e.g., Hewitt and Manning, 2019; Tenney
et al., 2019; Tucker et al., 2021; Papadimitriou
et al., 2021), to building tasks inspired by psy-
cholinguistic processing studies and classic accept-
ability rating task that theoretical linguists use to
infer grammatical knowledge (e.g., Linzen et al.,
2016a; Warstadt et al., 2020; Huebner et al., 2021;
Sinclair et al., 2022).

Of these approaches, acceptability rating may
be the most popular. Large acceptability rating
data sets focusing on syntax, semantics, and mor-
phology, such as BLiMP (Warstadt et al., 2020),
SyntaxGym (Gauthier et al., 2020), and CoLA
(Warstadt et al., 2019) lend themselves to bench-
marking, and these sit alongside myriad smaller
scale studies focused on specific lingusitic phenom-
ena (e.g., Linzen et al., 2016b; Marvin and Linzen,
2018; Wilcox et al., 2018). Results have been im-
pressive for the most part. It appears, from the
logic of these studies, that many state-of-the-art
neural models are capable of inducing human-like
grammatical knowledge on unannotated data – like
children during language acquisition.

48



1.1 Implications for Language Acquisition?

Neural model training differs from human language
acquisition in key ways, perhaps most obviously,
in that most models are trained on orders of magni-
tude more input (in plain text form) than humans
receive (in spoken or signed form)– BERT was
trained on about 3.3B forms, and Chinchilla on
1.4T, while an English-learning child only receives
about 10M word per year, for a total vocabulary
measured in the hundreds at age three (Fenson et al.,
1994; Bornstein et al., 2004).

Recent studies have begun to address this. Can
we build models that learn from input on the scale
of language acquisition? Would these models then
inform our understanding of human language acqui-
sition? Warstadt and Bowman (2022) favor this per-
spective. They argue that a computational model
that performs well on behavioral probing bench-
marks when trained on ablated input, that is at least
as limited as a human learner’s input, is evidence
that the model is a good proxy for human linguistic
knowledge. Huebner et al. (2021) showed that a
specially tuned model trained on only 5M tokens
of child-directed speech (CDS) performs well on a
purpose-designed data set. And in 2023, an aptly-
named shared task, the CoNLL/CMCL BabyLM
Challenge,1 is asking participants to train on only
100M words (about the input of an adolescent) be-
fore testing on acceptability benchmarks.

1.2 Goals of the Paper

A push towards extracting performance on smaller
training data is a welcome change for the field. In
addition to its possible cognitive implications, the
drive will also benefit efficient NLP and NLP for
low-resource languages. However, while we look
forward to the impending engineering advances, we
also urge caution in the approaches used to draw
scientific conclusions about the nature of neural
models’ linguistic knowledge. In particular, we
take issue with Warstadt and Bowman (2022)’s
assertion that “positive results from model learners
are more meaningful than negative results.”

Their reasoning follows that of an existence
proof. If a model that strictly lacks any advan-
tages over humans nevertheless succeeds at a task
that requires human-like linguistic knowledge, then
it is proof that there exists at least one model with
human-like linguistic knowledge. A failure only
tells us that this model failed for some reason that

1https://babylm.github.io/

may or may not be relevant to the question at hand.
However, this line of reasoning requires faith

in the evaluation. If there are any potentially un-
recognized non-human-like ways to succeed at the
task, or if the task does not truly reflect acquisition,
or the task does not actually test a relevant struc-
tural property of language, then a positive result
becomes inconclusive at best. Unexpected short-
cuts emerging from unforeseen biases in evaluation
abound across NLP (Chao et al., 2018; McCoy
et al., 2019; Wang et al., 2022), so this is a realistic
concern. Even the underlying reasoning that “if a
(neural) model X behaves like cognitive system Y,
then it is equivalent to Y” may be fraught (Guest
and Martin, 2023).

In this paper,2 we evaluate LMs as models of lan-
guage acquisition on two benchmarking data sets:
the widely used Benchmark of Linguistic Minimal
Pairs (BLiMP; Warstadt et al., 2020), which also
forms part of the evaluation for the BabyLM Chal-
lenge, and Zorro (Huebner et al., 2021), a data set
inspired by BLiMP with restricted vocabulary for
acquisition-inspired models trained only on CDS.

Section 2 reviews the nature of linguistic knowl-
edge and child language acquisition. In Section 3,
we introduce the BLiMP and Zorro benchmarks
and subject them to baseline tests by simple non-
human-like models. These establish several weak-
nesses in the organization and content of both
benchmarks. In Section 4, we evaluate neural mod-
els on a more challenging data set derived directly
from theoretical linguistics papers. We find that
LMs are not necessarily human-like in terms of
within- and across-model variability. Finally, Sec-
tion 5 concludes with a discussion of the logical
problem of behavioral probing. We argue for (a)
benchmarks that better probe the structural knowl-
edge of syntax, (b) tests that reflect the develop-
mental findings of language acquisition, and (c)
more baseline models.

2 Knowledge of Language and its
Acquisition

One of the goals of linguistic theory is to charac-
terize the properties that distinguish grammatical
from ungrammatical sentences in a language. The
empirical study of grammaticality, however, mainly
relies on native speakers’ acceptability judgments,
which interact with other cognitive and perceptual

2Our evaluation code and data are available at https://
github.com/hjvm/benchmarking_acquisition.git
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systems and generally produce gradient results. For
example, longer and more complex sentences, even
when fully grammatical, are rated as less accept-
able than shorter and simpler sentences. Neverthe-
less, large-scale investigations have established the
structural basis of a categorical grammar (Sprouse
and Hornstein, 2013). For example, syntactic con-
straints that prohibit certain transformational pro-
cesses are shown to have a “super-additive” effect
that go beyond acceptability rating due to sentence
length and other non-structural factors. Further-
more, acceptability judgments collected at scale
are highly consistent with the data reported in the
theoretical literature typically gathered informally
with few consultants (Sprouse and Almeida, 2012;
Sprouse et al., 2013; Sprouse and Almeida, 2017).

The structural basis of language and its unifor-
mity across the linguistic community can be better
appreciated from the perspective of child language
acquisition. Recent years have seen renewed inter-
est in individual differences across child learners
(Kidd et al., 2018), especially with respect to vocab-
ulary acquisition (Frank et al., 2021). It is at least
possible that children differ in their cognitive abili-
ties for language and learning, but it is empirically
obvious that they differ in their experience with
language. Longitudinal records of child language
development have made it possible to track both
children’s vocabulary growth, and the development
of the structural aspects of their grammar. In the
Providence Corpus (Demuth et al., 2006), for exam-
ple, six children were recorded at regular intervals
from age 1 to 3. On average, fewer than 20% of the
first 100 words are shared between any two chil-
dren. The overlap merely rises to about 40% for the
first 1,000, which is the upper limit of a three-year
old’s vocabulary size (Hart and Risley, 1995; Born-
stein et al., 2004). Yet these children’s grammars
are highly uniform even at this stage. Major syntac-
tic categories, word order and argument structure,
and the core morphological rules are firmly estab-
lished before age three (Brown, 1973) on the basis
of at most around 10M words per year (Hart and
Risley, 1995) and a vocabulary size of only a few
hundred types (Fenson et al., 1994), and all chil-
dren produce similar grammatical errors during this
time. Recent decades have also seen a convergence
between the psychological and formal study of lan-
guage development and the quantitative study of
language variation in early childhood. The sociolin-
guist, Bill Labov, remarks that “The end result is

a high degree of uniformity in both the categorical
and variable aspects of language production, where
individual variation is reduced below the level of
linguistic significance” (2012).

The acquisition of vocabulary and grammar
provide clues for investigating the capacities of
LMs. Vocabulary learning is a matter of rote learn-
ing. This includes not just the arbitrary pairing of
sounds and meanings, but also morphological pro-
cesses (e.g., irregularity) and syntactic structures
(e.g., sub-categorization, collocations, etc.). There
is no escape from experience: more data results in
better learning. But, the structural aspects of the
grammar are different. They require form general-
izations over the vocabularies.

The distinction between rote learning and struc-
tural learning (words vs. rules) is not well reflected
by existing LM benchmarks including those dis-
cussed in this paper. In practice, these benchmarks
are a mixture of tests for both vocabulary learning
and grammar learning. Moreover, they are stochas-
tically generated by templates: as such, a large
number of test sentences are immediately available,
but they lack the structural diversity that has proven
revealing in the theoretical study of grammar.

Furthermore, the sentences are sometimes highly
unnatural and semantically/pragmatically uncon-
trolled, which is precisely the confounding factor
that linguists seek to neutralize when attempting to
uncover the structural basis of language. Warstadt
et al. (2020) are aware that their templates generate
unnatural sentences, presenting the BLiMP sen-
tence ‘Sam ran around some glaciers.’ as an
example. We found similar issues in Zorro, such as
‘the lie on the foot is flat .,’ the first sen-
tence in Zorro’s across_prepositional_phrase
paradigm (lie is a noun). The BLiMP authors state
that this is not a problem because it affects both sen-
tences in a pair, but how can we rule out unintended
interactions between the grammatical phenomenon
under evaluation and the semantic implausibility?
Sprouse et al. (2018) find that this semantic im-
plausibility may affect judgments of sentence well-
formedness, even in the Forced Choice (FC) task
used to collect the human baselines in BLiMP.

Indeed, there are already a large amount of care-
fully curated linguistic materials that are not only
structurally diverse but also have minimized lexi-
cal and semantic confounds. Furthermore, these
datasets (e.g., the Adger/LI dataset; Section 4) have
been evaluated for acceptability at an individual
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level by a large pool of native speaker subjects and
show very high convergence rates across individu-
als. They will be especially informative if we are
to explore the structural knowledge of LMs.

3 Re-examining the Benchmarks

BLiMP (Warstadt et al., 2020)

Warstadt et al. (2020) introduce the Benchmark
of Linguistic Minimal Pairs (BLiMP)3 as a means
of evaluating the linguistic knowledge of neural
language models. BLiMP extends the reasoning
of earlier studies (e.g., Linzen et al., 2016b; Mar-
vin and Linzen, 2018; Wilcox et al., 2018) which
use a minimal pair paradigm to approximate ac-
ceptability judgments. Instead of prompting for a
acceptability judgments on individual sentences, as
is most commonly done for human subjects, they
present an LM with two sentences that only differ
in one structural or lexical property. For a given
minimal pair mi consisting of an acceptable sen-
tence si,1 and an unacceptable sentence si,2, if an
LM evaluates P (si,1) > P (si,2), then the model
has succeeded on mi. An LM is scored according
to the percentage of all the minimal pairs for which
it identified the acceptable sentence. The minimal
pair approach allows for the direct evaluation of
LMs without training a binary classifier on top of
them as was necessary for previous acceptability
benchmarks (e.g., CoLA; Warstadt et al., 2019).

Minimal pairs need to be carefully constructed to
control for length and lexical frequencies. BLiMP
aims to accomplish this with automatic genera-
tion from templates, but as we discuss, it often
yields sentences with low structural diversity and
implausible semantics. The benchmark corpus
includes data sets for 12 linguistic phenomena,
including ANAPHOR AGREEMENT, ARGUMENT

STRUCTURE, BINDING, CONTROL/RAISING, and
others listed in the Appendix. These are further
divided into 67 paradigms, each containing 1000
sentences pairs, which are meant to test variants
of the phenomena, for example the phenomenon
DETERMINER-NOUN AGR. contains 6 paradigms
for adjacent agreement, agreement with irregular
nouns, and agreement with adjectives intervening.
BLiMP has become a standard NLP benchmark for
this task and will be used as part of the test data for
the upcoming BabyLM Challenge.

3https://github.com/alexwarstadt/blimp

Zorro (Huebner et al., 2021)

Huebner et al. (2021) explicitly aim to evalu-
ate the relationship between LMs and the ac-
quisition of grammar. They introduce Baby-
BERTa_AO-CHILDES “an acquisition-friendly ver-
sion of RoBERTa,” trained on English child-
directed/produced speech (CDS) approximating
the total input of a typical English-learning six-
year-old. They train variants on only CDS
from AO-CHILDES (Huebner and Willits, 2021),
a pre-processed version of English CHILDES
(MacWhinney, 1991), as well as variants on larger
datasets from other sources.

Because BabyBERTa_AO-CHILDES (henceforth
BabyBERTa) was trained on much less text than
typical large transformer models are, its vocabulary
is much smaller. To mitigate the impact of out-of-
vocabulary (OOV) items on their tests, the authors
introduce a new grammaticality test suite, Zorro,4

in the style of BLiMP. Sentence pairs are gener-
ated for one paradigm each for 11 of BLiMP’s 12
phenomena, along with two additional phenomena.
However, we show that the Zorro sentences are not
only lexically simpler as intended, but their tem-
plates are also far less complex and even less var-
ied than the sentences in the corresponding BLiMP
phenomena. Full lists of paradigms for each data
set can be found in the Appendix, and the full data
sets themselves are made available by the bench-
marks’ original authors.

3.1 Linear Baselines

As noted earlier, BLiMP and Zorro tests are
stochastically generated with category-based tem-
plates. This way, a large number of examples can
be generated and tested, but the drawback is that all
examples are essentially the same structure. More-
over, many of the structures are simple, falling
considerably below the coverage of modern syn-
tactic analyses. In fact, many examples appear
solvable by strictly linear methods. The observa-
tion that such template-generated examples can be
solved this way is not new to to field. For exam-
ple, Kam et al. (2008) demonstrated that a bigram
model will predict the grammatical sentence from
template-produced pairs featuring auxiliary inver-
sion (a structural phenomenon) as well as neural
models of the time.

To take an example from BLiMP, within its
SUBJECT-VERB AGR phenomenon, four of six

4https://github.com/phueb/Zorro/
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paradigms evaluate string-adjacent subject verb
agreement that could be captured by a bigram
model. The remaining two include intervening
distractor nouns, but in both these and the string-
adjacent paradigms, the target noun is consistently
the first/leftmost noun. A single linear rule, al-
beit a long-distance one, is sufficient to succeed on
this phenomenon. In ANAPHORA AGREEMENT,
none of the sentences has any distractors at all: the
test is solely about whether the anaphor (e.g., him-
self /herself ) agrees with the first, and only, noun in
the sentence preceding it. Success on such simple
tests tells us little about the genuine grammatical
capacity of LMs and distorts or dilutes summary
metrics calculated over the benchmark.

We evaluate this problem quantitatively with two
studies of linear rules that do not incorporate struc-
tural knowledge. We find that many, but certainly
not all, paradigms are solvable with non-human-
like linear approaches. These paradigms therefore
do not contribute to the overall goal of evaluat-
ing whether an LM possesses linguistic knowledge.
Additionally, we find that the paradigms of Zorro
tend to be structurally even simpler and less inter-
nally varied than the parallel paradigms of BLiMP.
It is a weaker benchmark even when accounting for
the intended lexical simplicity.

3.1.1 N-Gram Models
The original BLiMP paper reports the accuracy of a
5-gram model trained on the 3.1B token Gigaword
Corpus (Graff et al., 2003) in addition to three neu-
ral LMs and human performance. They find that
the 5-gram model scores above chance (50%) on all
but two phenomena but is outclassed by most of the
neural LMs on most paradigms. Performance for
all LMs can vary widely across paradigms within
one phenomenon. In some cases, there is a clear
split between the 5-gram and neural models, sug-
gesting that the latter capture some structural prop-
erty of the paradigm that the 5-gram model does
not, but in other cases, the 5-gram model performs
well, demonstrating that linear rules can be suffi-
cient for completing those tasks.

Revisiting SUBJECT-VERB AGR. as an illus-
trative example, the Gigaword 5-gram model per-
forms only slightly behind the neural models on
each string-adjacent paradigm but far below chance
in the distractor paradigms. However, the neural
models also perform up to 20.5 points better in the
adjacent paradigms than the distractor paradigms.
The two distractor paradigms demonstrate that the

neural models have learned a long-distance pattern
(whether that be structural or “agree with the left-
most noun”), but the adjacent paradigms cannot
show this. They, and about half of the BLiMP
paradigms, are uninformative in this way.

We extend this approach to the language acqui-
sition setting by training a 5-gram model only on
AO-CHILDES and evaluating on both BLiMP and
Zorro. We compare these results to BabyBERTa on
these data sets.5 To further manage lexical effects
while adding minimal complexity to the model, we
evaluate both a 5-gram word model (5-word), and
a 5-gram model trained only on POS tags (5-tag).
AO-CHILDES was tagged using GPoSTTL, a rule-
based POS tagger with tokenizer and lemmatizer
based on the Brill Tagger (Brill, 1992). This was
used to train sklearn’s CRF POS-tagger, which was
then used to label the benchmark corpora. This
approach was taken to avoid bringing additional
knowledge from a tagger trained on larger corpora
into the benchmark corpora. The downside is that
the tagger is not particularly accurate on the un-
grammatical benchmark sentences, which may hurt
performance for the 5-tag model. In addition to the
5-word and 5-tag models, we evaluate an oracle
which marks a correct prediction if either 5-word
or 5-tag makes a correct prediction. Our use of
POS is motivated from a developmental perspec-
tive. Syntactic categories can be formed purely
distributionally as early as infancy (Mintz, 2003;
Shi and Melançon, 2010; Reeder et al., 2013) and
children almost never make mistakes in their use of
syntactic categories (Valian, 1986). It is thus plau-
sible to assume that the acquisition of grammatical
knowledge builds on a developmentally prior stage
of syntactic category learning.

The results of the 5-gram experiments are sum-
marized in Table 1 and laid out in detail in the
Appendix. We draw three conclusions from these.
First, the 5-gram models perform surprisingly
well relative to the BabyBERTa transformer de-
spite its extremely non-human-like simplicity when
trained on the same AO-CHILDES data. Either 5-
word or 5-tag, trained on the same data as Baby-
BERTa, outperformed BabyBERTa on 11 of 23
Zorro paradigms and 21 of 67 BLiMP paradigms.
BabyBERTa’s performance appears less impres-
sive when presented alongside even this very weak

5Refer to Appendix for full details. We downloaded the
publicly available model checkpoints from the BabyBERTa
GitHub repository and replicated the BLiMP and Zorro results
hosted on the Zorro GitHub repository
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Zorro BabyBERTa 5-Word 5-Tag Either Oracle
# Best – 8/23 8/23 11/23 14/23

Avg Acc 78.91% 63.44% 57.59% – 83.43%
BLiMP BabyBERTa 5-Word 5-Tag Either Oracle
# Best – 18/67 10/67 23/67 48/67

Avg Acc 60.72% 50.72% 37.93% – 68.32%

Table 1: Performance summaries for 5-grams rela-
tive to BabyBERTa on Zorro and BLiMP. Number of
paradigms in which a 5-gram model outperforms Baby-
BERTa and overall average accuracy across paradigms
are reported. Either = either 5-word or 5-tag outpe-
formed BabyBERTa on the entire paradigm. Oracle =
sentence pairs were marked correct if either 5-word or
5-tag made the correct prediction.

baseline. The AO-CHILDES 5-gram models per-
form more poorly on BLiMP than the Gigaword
5-gram model, but it still achieves high accuracy on
several paradigms scattered across the phenomena.

Second, 5-gram oracle outperforms 5-word, 5-
tag, and BabyBERTa. The 5-gram oracle is not
a fair direct comparison but provides a summary
metric for correlation between 5-word and 5-tag. A
high oracle score relative to the two 5-gram models
indicates that they do not make the same errors.
That is, errors are not necessarily attributable to the
string-local limitations of 5-grams per se but rather
to 5-gram sparsity or errors in tagging. The high
oracle score is another sign that the paradigms of-
ten capture surface properties rather than structural
properties that would stump 5-gram models.

Third, the 5-gram models outperform Baby-
BERTa on proportionately more Zorro paradigms
than BLiMP paradigms. Additionally, the AO-
CHILDES 5-word model achieved 78.91% perfor-
mance on Zorro, while the Gigaword 5-gram model
only reached 60.5% on BLiMP. If Zorro were
merely accounting for the smaller vocabulary in
the AO-CHILDES training data, we should expect
much more similar performance on both of these
measures. Taken together, these suggest that Zorro
is a substantially weaker benchmark that BLiMP,
and it more greatly overestimates the apparent posi-
tive results of the acquisition-inspired BabyBERTa.

3.1.2 Hand-Written Simple Rules
In addition to reporting results on 5-gram mod-
els, we created simple hand-written rules which
demonstrate that the probes are solvable in princi-
ple without reference to linguistic structure. While
we do not claim that such rules are akin to the state
of knowledge in LMs, it is also difficult to com-
pletely rule out this possibility. On the one hand,
it is still unclear how to interpret the representa-

tion of linguistic knowledge in LMs. On the other,
the vast majority of training data, at least child-
directed for language acquisition, is structurally
simple and can in fact be handled by rule-like pat-
tern matchers. In English CDS, the distribution of
anaphora is exceedingly straightforward: almost all
instances of himself are preceded in the sentence by
the subject pronoun he and a (male) noun phrase
with no co-referential competitors. For comparison,
Zorro adjunct_island can be solved perfectly by
always selecting the sentence where the third-last
word is the, and many of the paradigms can be
solved by tracking the index of a specific word.
Others can be solved by checking for the presence
of a certain word. For example, the superlative
paradigm can be solved by accepting the sentence
that contains either more or fewer. For both Zorro
and BLiMP, more than one paradigm can often be
solved with the exact same rule. We write simple
linear rules for each Zorro and BLiMP paradigm.
See the Appendix for a full list of rules.

In summary, these rules yielded 93.97%
accuracy on Zorro and solved 14 of 23 Zorro
paradigms with 100% accuracy. Each agreement_
paradigm is solved with at least 96% accuracy,
with the remainder due to two irregular nouns, feet
and children, which do not end in the -s referenced
by these rules. The lowest performance is 52.75%
on anaphor_agreement-pronoun_gender, a
paradigm that requires an LM to ‘know’ the
canonical gender of English names in order to
choose himself or herself. The test sentence
pairs were not quite balanced, so always guessing
himself earns more than 50%.

BLiMP proved more challenging. The rules only
yielded 84.35% accuracy on average and achieved
perfect scores on 14 of 67 rules. The overall high
score of the hand-written simple linear rules sug-
gests that BLiMP suffers from the same issues re-
garding lack of sentence variety that Zorro does,
but the lower accuracy indicates that the problem
is not quite as severe. In principle, we could have
composed more complex rules which achieved per-
fect accuracy on all paradigms, however, these
simpler rules better illustrate our points. The suc-
cess of non-human-like simple linear rules on most
paradigms on both benchmarks further emphasizes
that success on the template-based behavioral task
does not necessarily imply that an LM possesses
linguistic knowledge.

53



Sentence ID Sentence ME Z-score
32.3.Culicover.7a.g.01 John tried to win. 1.453262
32.3.Culicover.7b.*.01 John tried himself to win. -0.86729
33.2.bowers.7b.g.07 Sarah counted the change accurately. 1.230412
33.2.bowers.7b.*.07 Sarah accurately counted the change. 1.20698
ch8.150.*.01 Melissa seems that is happy. -1.14131
ch8.151.g.01 It seems that Melissa is happy. 1.000644
ch8.152.g.01 Melissa seems to be happy. 1.196088

Table 2: Top: Two pairwise phenomena from the Linguistic Inquiry (LI) dataset. Bottom: One multi-condition
phenomenon from the Adger dataset. The ME Z-score is the averaged Z-score transformation of the human
Magnitude Estimation judgments for each of the sentences across all the experimental participants.

4 An Alternative: The LI-Adger Dataset

The LI-Adger dataset is a comprehensive collection
of 519 sentence types, 300 collected by Sprouse
et al. (2013) from Linguistic Inquiry (LI) 2001-
2010,6 a major theoretical journal in linguistics,
and 219 collected by Sprouse and Almeida (2012)
from Adger’s (2003) Core Syntax textbook.7 Each
sentence type includes eight hand-constructed, se-
mantically plausible sentences, assembled into 150
pairwise (LI) and 105 multi-condition (Adger)
phenomena where each minimal pair is lexically
matched. We provide an example of each in Table
2.

The LI-Adger dataset improves upon the prior
two datasets in three key ways. Firstly, unlike
BLiMP and Zorro, the LI-Adger sentences are con-
trolled for semantic implausibility, which has been
shown to be a strong confounding factor when elic-
iting human judgments (Sprouse et al., 2018). Sec-
ond, the 255 total pairwise and multi-condition
phenomena achieve much more diverse coverage
of syntactic phenomena than the 67 paradigms in
BLiMP, and the 23 paradigms in Zorro. Third, the
human judgments were collected using the Magni-
tude Estimation (ME) task (and Likert Scale (LS) in
the case of the LI sentences) in addition to Forced-
Choice (FC) as in the BLiMP human baselines. We
believe this to be a crucial advantage because the
FC task treats sentence acceptability as functionally
categorical: A sentence is only acceptable or not
relative to its minimal pair counterpart, whereas
tasks such as ME allow us to make comparisons
within and across minimal pairs, thereby treating
sentence acceptability as a gradient measure.

With this dataset, we conduct the following two
tests. First, in line with Vázquez Martínez (2021),

6https://www.jonsprouse.com/data/Lingua2013/
SSA.data.zip

7https://www.jonsprouse.com/data/JoL2012/
SA2012.data.zip

we sort the LI-Adger dataset into 2391 unique min-
imal pairs. We then collect pseudo log-likelihood
scores for each sentence from several models evalu-
ated by Huebner et al. (2021), and score them using
the same criteria as BLiMP and Zorro. As a base-
line for the models, we include Log-Likelihood
and Syntactic Log-Odds Ratio (SLOR; Pauls and
Klein, 2012; Lau et al., 2017) scores by a tri-
gram model trained on the British National Corpus
(BNC; 100M words) by Sprouse et al. (2018).

We include the results of this test in Figure 1. We
observe that all models are further from the human
baseline as compared to those in BLiMP (no hu-
man baselines were reported for Zorro). But more
importantly, we observe that the trigram model
scored using SLOR performs on par with the Baby-
BERTa models and approaches the performance of
RoBERTa (Liu et al., 2019) trained on 10M words.
If we were to adopt the “positive results from model
learners are more meaningful than negative results”
argument, then the trigram model is as suitable a
model of language acquisition as BabyBERTa is.

Raw accuracy notwithstanding, we proceed to
conduct a novel test of judgment variability on our
collection of LMs. We take advantage of the struc-
ture of the LI-Adger dataset in the following way:
There are 519 sentence types, and for each type
there are eight sentences that retain the same syn-
tactic structure but vary lexical items at the locus
of the syntactic structure tested (e.g., the head of
a verb phrase from which extraction takes place).
These datasets thus allow us to contrast the consis-
tency of human judgment across and within con-
struction types against that of the LMs.

We z-score the LM judgments to make them
comparable to the human judgments. Then, for
each set of eight sentences, we take the mean and
standard deviation of all the judgments for humans
and each LM. We find that the models are much
more variable in their judgments: The human judg-
ments, on average, vary by 0.288 standard devia-
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Figure 2: Correlation matrices of human judgments and LM output means (top) and standard deviations (bottom)
on each sentence type on the LI-Adger dataset. Baby=BabyBERTa, CHI=AO-CHILDES, News=AO-NEWSELA,
Wiki=Wikipedia-1.

tion (std. dev.) units within a given set of sentences.
On the other hand, the LM that least varies is Baby-
BERTa Wiki, varying by 0.451 std. dev. units
on average. The rest of the models nearly dou-
ble the variability of the human judgments, rang-
ing from 0.518 for RoBERTa-10M-1 to 0.554 for
BERT-large-cased. Variability appears to increase
rather than decrease as training size and perfor-
mance increase. Surprisingly, the trigram model,
when scored using log probabilities, is the closest
in variability to the human judgments at 0.331 std.
dev. units, but also the furthest when scored using
SLOR with a variability of 0.599. Once again we
find that a positive result on one test or another is
not enough to draw positive conclusions.

For further illustration, we correlate the means
and standard deviations of 512 sentence types
across each LM and humans and plot the results
in Figure 2. Both in terms of mean and standard
deviations, we observe generally high correlations
between the various neural LMs, but much lower
correlations between the LMs and humans. This
suggests that whatever the LMs are doing, good or
bad, does not appear to be human. Interestingly, the
BabyBERTa LMs show very high correlations with
the naive trigram log-likelihood scores and very
low with trigram SLOR scores, raising further sus-
picions that these small acquisition-inspired LMs
behave like a very non-human-like model.

5 Discussion

It is widely recognized that children acquire lan-
guage in ways that appear quite different from LM

training. There is a growing realization that the
cognitive relevance of LMs can only be established
in a comparable setting. Bringing down training
size requirements stands not to not only improve
the applicability of such models to the study of
language acquisition but also to efficient NLP on
low-resource languages.

However, in this paper, we observed several
weaknesses in BLiMP and Zorro, two minimal pair
benchmarks for evaluating the linguistic knowledge
of neural language models. We believe that it is
worth critically revisiting the underlying assump-
tion that positive results on such benchmarks are
a demonstration of human-like representations or
human-like language acquisition, especially if an
evaluation can be solved in unintended ways, or
if it does not reflect an adequately broad range of
linguistic structures. It is unlikely that a behav-
ioral probe, such as these large binarized bench-
marks, can fully capture the complexity of linguis-
tic knowledge. To this end, we made a case for also
evaluating with curated benchmarking datasets: the
gradient acceptability judgments from human sub-
jects makes these effective probes for the structural
basis of grammar. Together with a range of tests,
from carefully constructed tests of grammaticality
to probes correlating the internal state of LMs with
their predictions need to complement theoretical,
psycholinguistic, and neurolinguistic studies before
a meaningful cognitive claim about the nature of
neural language models can be made.

We end with some broader discussion about lan-
guage acquisition and the cognitive interpretation
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of computational models. While it is now widely
recognized that children learn language with only
a fraction of the data needed for large LM training,
merely reducing the amount of training data alone –
such as the 100M word threshold in the BabyLM
Challenge – still falls short of the requirement for
an adequate model of language acquisition. While
it is true that a native speaker’s knowledge of lan-
guage can be established on the basis of approxi-
mately 100 million words, child language research
makes clear that not all aspects of linguistic knowl-
edge are learned at the same time. Some, such as
inflectional morphology, case marking, word or-
der, and major transformations are acquired very
early in all languages studied so far (e.g., Brown,
1973; Slobin, 2022) at an order of magnitude fewer
words of input, while others are learned rather late:
These include derivational morphology (Jarmulow-
icz, 2002), passivization (Pinker et al., 1987), con-
trol and cleft structures (Chomsky, 1969) and the
dative constructions (Gropen et al., 1989) in the
case of English, but these may emerge much earlier
in other languages. This suggests that success-
ful learning in the limit (e.g., 100M word) is not
sufficient. For example, while a neural model of
English past tense (Kirov and Cotterell, 2018) even-
tually learns the "add -ed" rule, it does so with over
3,000 verb lemmas. By contrast, children learn
that rule before or around 3 (Kuczaj, 1977), when
their vocabulary only contains around 300 or so
verbs (Marcus et al., 1992). To serve as cognitive
models of language, it is thus important to com-
pare the training trajectory of LMs as a function of
the training data volume against the developmen-
tal benchmarks of specific linguistic phenomena
which have been amply documented in the empiri-
cal literature on child language.

Limitations

Our study is about the limitations of evaluation, so
it is to be expected that our study has its limits as
well. Most obviously, ours and any study would
benefit from testing and reporting on a wider range
of neural models and a wider range of baselines.
And like most work in this area, our evaluations
were only performed on English. We recommend
the use of the LI-Adger data set. Like any behav-
ioral probe, including the ones which we criticize,
it can be subject to ambiguous interpretation. It has
some substantial advantages, as we discuss in this
paper, but also a couple of additional drawbacks.

It is smaller than BLiMP or Zorro, and it has not
been annotated by phenomenon. Nevertheless, it
provides additional insights that those benchmarks
do not. As in the paper, we recommend its use in
conjunction with a wide range of other evaluation
methods.
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Appendix

Phenomenon Paradigm BabyBERTa 5-Gram Simple
AO-CHILDES Word Tag Oracle Rule

agreement_subject_verb across_rel_clause 64.85 50.95 46.35 68.95 96.20
in_simple_question 92.35 61.15 90.9 93.9 98.30
in_question_with_aux 90.85 59 80.15 90.9 98.05
across_prep_phrase 72.85 50 50 62.6 98.40

agreement_determiner_noun between_neighbors 91.3 83.05 49.85 88.6 98.60
across_1_adjective 89.85 50.45 50.05 75.05 97.20

filler-gap wh_question_object 98.75 42.8 100 100 100
wh_question_subject 75.7 88.3 76.55 97.1 100

island-effects coord_struct_constr 97.05 43.35 55.6 83.85 100
adjunct_island 56.15 66.1 58.8 83.85 100

quantifiers existential_there 92.9 80.25 38.4 89.55 100
superlative 64.55 45.1 82 96.05 100

npi_licensing only_npi_licensor 74.1 79.4 3.7 79.4 100
matrix_question 65.25 47.5 28.65 58 100

argument_structure swapped_arguments 91 92.15 81.7 98.85 100
transitive 60.05 64.15 32.65 78.6 58.05
dropped_argument 79.9 85.05 83.6 95.75 100

irregular verb 69.65 62.9 93.6 96.35 88.40
anaphor_agreement pronoun_gender 51.75 49.15 1.95 50.95 52.75
ellipsis n_bar 55.3 66.6 63.6 89.9 100
binding principle_a 89.4 45.9 3.6 47.75 100
case subjective_pronoun 94.7 99.55 97.95 100 100
local_attractor in_question_with_aux 96.65 55.65 95 99.05 100
AVERAGE 78.91% 63.44% 57.59% 83.43% 93.97%
Fraction ≥ BabyBERTa – 8/23 8/23 14/23 22/23

Table 3: Word and tag-level 5-gram models trained on AO-CHILDES plus 5-Gram Oracle and Simple Linear Rule
Oracle for Zorro. 5-Gram and Simple Rule scores that are greater than BabyBERTa_AO-CHILDES are bolded
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Phenomenon Paradigm Rule
agreement_subject_verb across_rel_clause 2nd word ends in s iff 3rd last is in {are, were, do}

in_simple_question Word 2 right of {are, were} ends in s.
Word 2 right of {is, are} does not

in_question_with_aux 4th word ends in s iff 2nd is in {are, were, do}
across_prep_phrase 2nd word ends in s iff 3rd last is in {are, were, do}

agreement_determiner_noun between_neighbors If {these, those} in sentence, next word ends in s.
If {this, that} in sentence, next word does not

across_1_adjective If {these, those} in sentence, word 2 right ends in s.
If {this, that} in sentence, word 2 right does not

filler-gap wh_question_object 2nd word is the
wh_question_subject who does not immediately precede the

island-effects coord_struct_constr 4th word is and
adjunct_island 3rd last word is the

quantifiers existential_there Contains one of {many, some, no, few, a, an}
superlative Contains one of {more, fewer}

npi_licensing only_npi_licensor 1st word is only
matrix_question Contains one of {does, will, should, could, did, wouldo}

argument_structure swapped_arguments 1st word is the
transitive 2nd last word does not end in e
dropped_argument 1st word is the

irregular verb word following had ends in n or no word ends in n
anaphor_agreement pronoun_gender Sentence contains himself
ellipsis n_bar *Sentence where and appears farther right
binding principle_a 4th last word ends with ing
case subjective_pronoun 1st word is the
local_attractor in_question_with_aux 4th word does not end with ’s

Table 4: Simple Linear Rule descriptions for Zorro. Rules that require sentences to be compared are marked with an
asterisk.
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Phenomenon Paradigm BabyBERTa 5-Gram Simple
AO-CHILDES Word Tag Oracle Rule

anaphor_agreement anaphor_gender_agreement 65.6 26.3 8 33.9 73.9
anaphor_number_agreement 73.7 52.9 5.7 55.5 80.1

argument_structure causative 58.5 55.2 30.7 68.8 85.6
drop_argument 63.2 50.9 52.9 80.8 77.1
inchoative 50.7 56 37.1 73.8 57.1
intransitive 52.1 48.2 49.6 76.3 73.55
passive_1 50.2 52.1 12.9 56.4 59.5
passive_2 54 48.4 18.1 56.8 59.6
transitive 55.3 51.6 36.1 67.6 57.85

binding principle_A_case_1 43.6 100 7.1 100 100
principle_A_case_2 99.9 41.5 13 48.3 99.2
principle_A_c_command 58.7 35.7 4.2 38.1 71.35
principle_A_domain_1 96.5 38.4 3.1 40.7 100
principle_A_domain_2 51.4 61.7 2.7 62.8 58.3
principle_A_domain_3 46.8 44.5 29.7 61.1 50.4
principle_A_reconstruction 40.9 32.1 53.9 68 74.1

control_raising existential_there_object_raising 59.1 30.5 23.4 46.5 67.95
existential_there_subject_raising 51 43.4 17 53.6 77
expletive_it_object_raising 63.3 61.2 48.3 79.6 69.5
tough_vs_raising_1 72.2 59.1 49.6 83.2 87.1
tough_vs_raising_2 34.4 41.3 18.4 54.1 92.5

determiner_noun_ a_irregular_1 66.6 48.8 37.4 61.3 68.45
agreement = a a_irregular_2 87.4 74.3 12.3 77.1 73.7

a_with_adjective_1 76.3 48.2 49.7 63.8 95.95
a_with_adj_irregular_1 82.9 49 49.7 56.3 74.45
a_with_adj_irregular_2 67 49.5 18.3 58.2 71.8
a_with_adj_2 80.4 49.8 19.9 59.7 95.6
a_1 72.2 64.1 48.1 74.5 95.55
a_2 87.4 65.2 11 68.1 96.75

ellipsis ellipsis_n_bar_1 58.7 64.1 63.5 86.4 85.65
ellipsis_n_bar_2 42.8 39.9 70.5 80.9 99.95

filler_gap_dependency wh_questions_object_gap 73 37 82.4 89.2 99.95
wh_questions_subject_gap 79.9 49 81.4 89.4 99.9
wh_vs_that_no_gap 90.9 77.2 83.8 94.9 99.95
wh_vs_that_no_gap_long_distance 92.1 74.9 87 95.8 99.7
wh_vs_that_with_gap 29.1 22.7 15 33 100
wh_vs_that_with_gap_long_distance 14.9 25.8 12.8 32.8 99.9

irregular_forms irregular_past_participle_adjectives 59.8 99.4 12.2 99.4 100
irregular_past_participle_verbs 59.8 99.4 12.2 99.4 100

island_effects adjunct_island 63.8 58.4 55.5 82.5 94.5
(coordinate_structure_ y_complex_left_branch 36.2 11.8 19.6 26.9 97.05
constraint = y) y_object_extraction 56.5 41.9 37.1 63.7 86.35

left_branch_island_echo_question 52.4 16.3 30.1 38.7 100
left_branch_island_simple_question 66.6 24.5 30.3 43.8 97.9
sentential_subject_island 46.1 37.3 42.8 62.9 82.65
wh_island 47.1 69 93.4 97.3 100

npi_licensing matrix_question_npi_licensor_present 56.4 41.1 39.5 65.7 97.4
npi_present_1 27 56 26.7 69.6 100
npi_present_2 20.3 56.4 25.8 70.5 100
only_npi_licensor_present 71.6 98.4 2.4 98.5 100
only_npi_scope 72.1 80.4 79.4 97.2 100
sentential_negation_npi_licensor_present 73.8 100 0 100 100
sentential_negation_npi_scope 81.9 40 65.3 79.6 100

quantifiers existential_there_quantifiers_1 93.7 79.1 26.4 87.4 97.3
existential_there_quantifiers_2 35.7 19.6 36 50.6 96.85
superlative_quantifiers_1 49.5 73 89.8 96.4 100
superlative_quantifiers_2 61.2 51.9 0.1 52 100

s-selection animate_subject_passive 45.5 48.4 24 58.4 65.25
animate_subject_trans 59.7 50 57.1 78.2 84.65

subject_verb_agreement distractor_agreement_relational_noun 29 26.2 21.4 42.1 50.25
distractor_agreement_relative_clause 35.6 28.3 30.4 49.8 55.85
irregular_plural_subject_verb_agreement_1 67.9 33.4 51.7 62.5 53.2
irregular_plural_subject_verb_agreement_2 66.2 51 51.9 70.7 59.3
regular_plural_subject_verb_agreement_1 68.8 39.9 51.1 72 64.35
regular_plural_subject_verb_agreement_2 60.1 51 55.6 76.9 73.15

AVERAGE 60.72% 50.72% 37.93% 68.32% 84.35%
Fraction ≥ BabyBERTa – 18/67 10/67 48/67 62/67

Table 5: Word and tag-level 5-gram models trained on AO-CHILDES plus 5-Gram Oracle and Simple Linear Rule
Oracle for BLiMP. 5-Gram and Simple Rule scores that are greater than BabyBERTa_AO-CHILDES are bolded
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Phenomenon Paradigm Rule
anaphor_agreement anaphor_gender_agreement Does not contain itself

anaphor_number_agreement Number of words that end in s is even
argument_structure causative Does not contain one of {appear, vanish, exist,

transitive sigh, rust, cheer, clash, fall, fell, waste}
drop_argument Last word is not one of {to,
inchoative with, about, from,
intransitive at, through, by, like}
passive_1 None of {communicat, suffer, compet, shout, laugh,
passive_2 scream, complain, compromis, grin, chat} in sentence

binding principle_A_case_1 *Is the shorter of the two sentences
principle_A_case_2 *Is the longer of the two sentences
principle_A_ (Last word ends in s and (1st word is any of pl_det
c_command or the 2nd word is lot)) or 2nd to last word ends in s)
principle_A_domain_1 *Is the shorter of the two sentences
principle_A_domain_2 *Is the shorter of the two sentences
principle_A_domain_3 Does not contain that
principle_A_reconstruction 4th word does not end in ed nor ’t

control_raising a_obj_raising Does not contain one of verb_set
a_subj Contains one of subj_words or {appear, sure,

(existential_ subj_raising threaten, look}
there = a) expletive_it_object_raising Does not contain one of verb_set

tough_vs_raising_1 Does not contain one of subj_words, nor apt
tough_vs_raising_2 Contains one of subj_words, or apt

determiner_noun_ a_irregular_1 Does not end in that followed by (one of
agreement = b b_irregular_2 {people, women, men, children} or a word ending

b_with_adj_irregular_1 in ses) nor in {those, these} followed by (a word
b_with_adj_irregular_2 ending in is or not with s at all)
b_with_adjective_1 Does not end in that followed by a word ending in
b_with_adj_2 a letter other than i followed by s nor in
b_1 {those, these} followed by (a word ending in
b_2 is or not with s at all)

ellipsis ellipsis_n_bar_1 Last word in num_quant
ellipsis_n_bar_2 Last word has already occurred in sentence

filler_gap_ wh_questions_object_gap Does not contain wh
dependency wh_questions_subject_gap Does not contain wh

wh_vs_that_no_gap = c Does not contain wh
c_long_distance Does not contain wh
wh_vs_that_with_gap = d Contains wh
d_long_distance Contains wh

irregular_forms irregular_past_ If 1st word is the, then 2nd word ends in n,
part_adj otherwise 2nd word must not end in n
irregular_past_part_verbs *Is the shorter of the two sentences

island_effects adjunct_island Last word is not about and does not end in ing
e_complex_left_branch 2nd word is not in mod_aux

(coordinate_structure_ e_object_extraction 2nd to last word is not and
constraint = e) f_echo_question Does not start with Wh
(left_branch_ f_simple_question 2nd word is not in mod_aux
island = f) sentential_subject_island Ends in ing or ed or with

wh_island wh, capitalized or not, occurs twice in sentence
npi_licensing matrix_question_g 1st word in mod_aux

npi_present_1 Does not contain the word ever
(npi_licensor_ npi_present_2 Does not contain the word ever
present = g) only_g 1st word is only
(npi_scope = h) only_h 1st word is only

sentential_negation_g Does not contain the word ever
sentential_negation_h Does not contain the word ever

quantifiers a_quantifiers_1 Does not contain {each, most, all, every} while
a_quantifiers_2 also containing {one-ten}
superlative_quantifiers_1 *Is the longer of the two sentences
superlative_quantifiers_2 1st word is not no

s-selection animate_subject_passive Contains one of people_groups
animate_subject_trans *Is the shorter of the two sentences

subject_verb_agreement i_relational_noun *Is the longer of the two sentences
i_relative_clause The number of words that ends in s is odd

(distractor_ irregular_j_1 Contains no word ending in a letter other than i and
agreement = i) followed by s that is followed by a word ending in s
(plural_subject_ irregular_j_2 None of {people, women, men, children} is
verb_agreement = j) followed by a word ending in s

regular_j_1 *Is the shorter of the two sentences
regular_j_2 The number of words that ends in s is odd

Table 6: Linear Rule descriptions for BLiMP. Rules that require sentences to be compared are marked with an
asterisk. Rules sometimes span across multiple rows. If one paradigm name is split across these rows, then the rule
only corresponds to that paradigm. Otherwise the rule corresponds to all the paradigms listed in these rows. All
variables (e.g. verb_set, subj_words) are defined in table 7.
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Name Content
verb_set {ask, press, entic, prod, obligat, convinc, badger, compel, sway, order}
subj_words {certain, soon, likely, unlikely, bound, about}
num_quant {one-ten, many, few, several, more, some, lot, fewer}
mod_aux {had, should, is, was, can, has, will, would, could, do, does, might, were, did}
people_groups {men, woman, children, teacher, lad, offspring, student, customer, girl, boy}

Table 7: The sets of words represented by the variables used in table 6
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Abstract

This paper delves into the intricacies of code
summarization using advanced transformer-
based language models. Through empirical
studies, we evaluate the efficacy of code sum-
marization by altering function and variable
names to explore whether models truly under-
stand code semantics or merely rely on textual
cues. We have also introduced adversaries like
dead code and commented code across three
programming languages (Python, Javascript,
and Java) to further scrutinize the model’s un-
derstanding. Ultimately, our research aims to
offer valuable insights into the inner workings
of transformer-based LMs, enhancing their abil-
ity to understand code and contributing to more
efficient software development practices and
maintenance workflows.

1 Introduction

Code summarization is a task that involves generat-
ing coherent and semantically relevant summaries
that effectively describe the intended function of
the software. In the dynamic realm of software de-
velopment and maintenance, an adept grasp of pro-
gram functionalities is of paramount importance.
In this context, the integration of natural language
summaries derived from source code emerges as a
potent instrument, streamlining developers’ efforts
and augmenting program comprehension.

While current state-of-the-art code summariza-
tion models are developed and evaluated on clean
and curated datasets, the real-world coding envi-
ronment is far from standardized. Developers often
deviate from standard coding practices, leading to
inconsistent naming conventions. Additionally, ac-
tual codebases often feature commented sections,
serving as legacy code or reserved for future use
cases. Our research aims to simulate these real-
world scenarios and assess whether models truly

*Equal contribution.

comprehend the inherent code semantics, rather
than merely relying on textual cues.

The prevailing approaches to code summariza-
tion typically employ an encoder-decoder frame-
work, encompassing the conversion of code into
a hidden space and its subsequent transformation
into natural language. For instance, CodeT5 (Wang
et al., 2021), a unified pretrained encoder-decoder
Transformer model, leverages the semantics en-
coded in identifiers. In this research, we investgate
the effectiveness of these models by tweaking the
function and variable names in the existing code
summarization datasets. Furthermore, we intro-
duce additional challenges, such as commented
code and dead code, to elevate the complexity of
data samples and scrutinize the models’ summa-
rization processes. Dead code refers to unreach-
able code segments, devoid of functional impor-
tance, which language interpreters (e.g., Python
and Javascript) ignore. We seek to evaluate whether
models effectively disregard such code segments.
All our experiments are reproducible and we will
release our code and data upon publication.

The driving motivation behind this research lies
in enhancing code comprehension and reducing
the efforts entailed in software development and
maintenance. By unraveling how Language Mod-
els comprehend code, we aim to contribute insights
that pave the way for more effective software de-
velopment practices. Our study, through experi-
mentation and analysis, strives to provide valuable
directions for improving the capabilities of Lan-
guage Models in understanding and summarizing
code, despite the challenges posed by real-world
coding scenarios.*

2 Related Work

Automated code summarization is a useful tool
for software developers and has been an active re-

*Our code is publicly available at: Github
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serach field for quite some time. Recently large
language models have shown significant improve-
ments in natural language tasks. Inspired by this,
several pretrained language models have been de-
veloped for the programming language tasks. The
encoder-decoder models have been found to be
more successful in Programming Language (PL)
tasks, whereas fully decoder models perform sig-
nificantly better in Natural Language (NL) domain.

Models like CodeBERT (Feng et al., 2020),
PLBART (Ahmad et al., 2021), GraphCodeBERT
(Guo et al., 2021), CodeT5 (Wang et al., 2021),
CoTexT (Phan et al., 2021) have shown impressive
performances in the CodeXGLUE (Lu et al., 2021)
benchmark. Unlike natural language, it’s neces-
sary to capture the rich code semantics in the pro-
gramming language. Most Programming Language
Models (PLMs) in this domain are pretrained on a
large corpus of NL-PL pair in several programming
languages with a masked token prediction objective.
To capture the code semantics, various models have
used different approaches. For example, CodeT5
uses an additional masked identifier prediction and
GraphCodeBERT incorporates the data flow ex-
tracted from the code. These PLMs have shown
impressive results in downstream tasks like code
summarization. Ahmed and Devanbu (2022a) ex-
plored the code summarization in project-specific
domain. Sun et al. (2022) used an extractive and
abstractive framework from source code summa-
rization. Ahmed and Devanbu (2022b) showed that
multilingual training can amply performance for
low resource languages in different downstream
tasks including code summarization. (Chen et al.,
2022) provided further insights for low resource
languages like Ruby.

As indicated by Guo et al. (2021) in GraphCode-
BERT, indicators play a key role in code summa-
rization. However, it’s more desirable that our
model relies more on code semantics and syntax
rather than method names and identifiers. Devel-
opers follow their own naming conventions which
can affect the model performance. In a closely re-
lated work, Sontakke et al. (2022) have shown that
Semantic Preserving Transformations like remov-
ing code comments, replacing function names and
local variable names to generic names significantly
affects the BLEU score of the models like PLBART.
We want to extend this exploration to other mod-
els like CodeT5, CodeBERT etc. We also aim to
increase the scope of semantic preserving transfor-

mations by including dead code and commented
code to check the model’s understanding of the
code.

3 Dataset

There are several different code summarization
datasets available. But we prefered CodeXGLUE
(Lu et al., 2021) over others for these reasons -

• CodeXGLUE has been meticulously de-
duplicated, as demonstrated in (Shi et al.,
2022). This ensures that any duplication
within the dataset does not artificially inflate
performance metrics.

• CodeXGLUE offers a wide range of six lan-
guages. This allowed us to conduct exper-
iments and compare results across different
programming languages.

We can categorize the six languages available in
CodeXGLUE into three groups based on the size
of their combined datasets (including train, valida-
tion, and test sets). Please note that the following
information pertains to the combined dataset size:

• In the High Resource category, both Python
and PHP have approximately 300,000 code-
summary pairs each.

• In the Mid Resource category, Java and Go
consist of around 180,000 code-summary
pairs.

• In the Low Resource category, Javascript com-
prises 65,000 pairs, while Ruby only has
27,000 code-summary pairs.

To analyze the impact of data transformation across
resource categories, we selected one language from
each category. Therefore, for our experiments, we
utilized the languages Python, Java, and Javascript.
The detailed statistics about train, validation and
test splits is presented in Table 1.

3.1 Data Transformation
We will focus on code transformations that will pre-
serve the code functionality. In the programming
paradigm, this is known as obfuscation. In this
study, we focused on 3 kinds of transformations.
These are visually explained in Figure 1:

• Renaming Identifiers: Although the soft-
ware development industry emphasizes the im-
portance of meaningful and descriptive names
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for functions and variables, developers often
use random function and variable names. To
replicate such scenario, we replaced function
and variable names with generic but unique
names. However while doing so, we had to
keep in mind that the control flow of the over-
all program should not be affected. We lever-
aged the Abstract Syntax Tree (AST) of the
source code to identify and edit identifiers.
Implementation details and interesting corner
cases vary across programming languages and
will be discussed subsequently.

• Commented Code: It is very common in
software engineering to encounter commented
codes inside a function. These may be legacy
codes which are not used anymore, or code
snippets that might be used in future. To sim-
ulate such situation, we added commented
codes. For each source code, we randomly
sampled a function within the same data split,
created commented version of it and added it
after a function definition. Finding a suitable
place to add comments is tricky and some-
times it can potentially change the program
functionality. For our experiments, we add
the comments starting from the next line after
function definition.

• Dead Code: Adding code after return state-
ments is another transformation that we ex-
plored in our experiments. Python and
Javascript interpreters ignore anything added
after return statements, and we wanted to
check if the models have developed the ability
to do so. Since Java compiler throws error
if we add anything after return, we excluded
Java from this study.

Code transformation implementation details
about specific programming languages have been
presented in A.2.

4 Models and Evaluation

4.1 Models

In this study we ran our experiments on 2 models:

• CodeT5: Upon examining the leaderboard of
CodeXGLUE2, and comparing metrics from
various research papers, we discovered that

2https://microsoft.github.io/CodeXGLUE/

Languages Transformation Train Data Validation Data Test Data

Python

Original 251820 13914 14918
Renamed Identifiers 251820 13914 14918
Commented Code 251820 13914 14918
Dead Code 251820 13914 14918

Javascript

Original 58025 3885 3291
Renamed Identifiers 38254 2730 2157
Commented Code 38254 2730 2157
Dead Code 21897 1548 1213

Java Original 164923 5183 10955
Renamed Identifiers 164888 5182 10953
Commented Code 164923 5183 10955

Table 1: Dataset Size Information for different splits.

CodeT5 (Wang et al., 2021) achieves state-
of-the-art results for the code summarization
task on this benchmark. Due to limitations in
the size of our available GPUs, we opted to
utilize the CodeT5 small3 (60M parameters)
and base4 (223M parameters) models, while
excluding the CodeT5 Large model (770M
parameters) from our analysis. It is worth
noting that CodeT5 incorporates an identifier
aware denoising objective during its pretrain-
ing, making it more inclined to utilize textual
cues from identifiers. We wanted to evaluate
its robustness in our experiments.

• CodeBERT: For comparison across differ-
ent architectures, we chose the CodeBERT
(Feng et al., 2020) (173M parameters) model.
Unlike CodeT5, CodeBERT is an encoder
only model which is pretrained on the Code-
SearchNet (Husain et al., 2020) dataset. For
sequence-to-sequence generation problems
like code summarization, the authors pro-
vide an Encoder-Decoder framework where
they initialize the encoder with the pretrained
CodeBERT, but they randomly initialize the
decoder with a transformer model. Note that
the decoder weights are not trained during the
pretraining phase. For our experiments we use
the CodeBERT Base5 model.

The finetuning code utilized for our project
was obtained from the public GitHub repository
of CodeT5.6 The CodeT5 authors also included
the finetuning code for CodeBERT. We reused
the finetuned checkpoint of CodeT5 base that

3https://huggingface.co/Salesforce/
codet5-small

4https://huggingface.co/Salesforce/
codet5-base

5https://huggingface.co/microsoft/
codebert-base

6https://github.com/salesforce/CodeT5
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Figure 1: Examples of different kind of transformations discussed in Section 3.1.

was available. As for CodeT5 small and Code-
BERT, we performed the finetuning process on
clean CodeXGLUE data, using the hyperparam-
eters specified in the repository. The finetuned
checkpoints on clean data for every model and ev-
ery language serve as our baseline. Note that, the
BLEU scores (Papineni et al., 2002) of our fine-
tuned checkpoints on the clean CodeXGLUE test
data has slight discrepancies with the BLEU scores
reported in the original papers. However, the dif-
ference was not more than one decimal point. This
may be attributed to the difference between GPU
architectures. We report the scores mentioned in
the original papers as the train clean - test clean
scores.

5 Experiments

For all our experiments, we use the NVIDIA Tesla
M40 GPUs. While finetuning for all types of data
(Clean, Corrupted and Combined), we used the
clean data finetuning hyperparameters that were
available in the CodeT5 repository. However, for
CodeT5 Base model, we had to reduce the batch
size from 48 to 16 to fit in our GPU. All other
hyperparameters remain the same. With this setup,

we perform the following experiments.

• Identifier Corruption: We conducted indi-
vidual finetuning of the models using clean,
corrupted, and combined train data (clean +
corrupted). Subsequently, we evaluated these
three types of models on both clean and cor-
rupted test data. We used CodeBERT, CodeT5
Small and CodeT5 Base models for this ex-
periment.

• Commented Code Corruption: For this cor-
ruption type, we performed separate finetun-
ing of the model using clean data and com-
mented code corrupted data. Finally, we eval-
uated these two types of models on both clean
data and commented code corrupted data. We
only evaluated the CodeT5 Small and CodeT5
base models in this particular setup.

• Dead Code Corruption: Similar to the pre-
vious corruption type, we carried out separate
finetuning of the model using clean data and
dead code corrupted data. Subsequently, we
evaluated these two types of models on both
clean data and dead code corrupted data. Once
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again, we only evaluated the CodeT5 Small
and CodeT5 base models in this setup.

5.1 Evaluation

Evaluation metrics are crucial for assessing the
effectiveness of a code summarization model. In
our study, we utilized both automatic and human
evaluations.

1. BLEU (Papineni et al., 2002): It is a
precision-based metric that measures the over-
lap between the words (and/or n-grams) in
the machine-generated summaries and the
human reference summaries. We calcu-
lated smoothed BLEU-4 (considering upto
4-grams) scores for each of the generated sum-
maries and then averaged across all the sum-
maries. We used the same evaluation script as
CodeT5 which in turn reused the original eval-
uation script provided in the CodeXGLUE (Lu
et al., 2021) benchmark. The BLEU scores ob-
tained from different experiments for Python,
Java, and JavaScript are presented in Table 2,
3, and 4.

2. Human Evaluation: Additionally, we per-
formed a manual evaluation by annotating
200 random samples for both Python and
JavaScript. Further details of the human eval-
uation process are discussed in the Section
7.

6 Discussion

Our experiments try to answer the following essen-
tial questions on models’ understandability.

6.1 Research Question 1: Does a model
trained on clean data perform well on the
identifier corrupted data?

For all languages and models, the performance of
a model trained on clean data tends to diminish
when faced with corrupted test data, as compared
to its performance on clean test data. The drop
in performance for all models and languages is at
least 4 points in terms of BLEU score. This phe-
nomenon may be attributed to the model’s reliance
on textual hints found within function and variable
names during training, rather than grasping the true
essence of the code’s functionality and achieving
generalization. The comparison is visually shown
in Figure 2.

Figure 2: Comparing performance on clean and cor-
rupted test data for models trained on clean data.

6.2 Research Question 2: Does the model
trained on identifier corrupted data perform
well on clean data?

A surprising observation arises when examining the
performance of the model trained only on corrupted
data. It demonstrates a commendable level of pro-
ficiency not only on corrupted test data (which is
expected) but also on clean test data. This is visu-
ally explained in Figure 3. For all languages and
models, the performance on clean test data between
the model trained on clean data and corrupted data
is less than 1 point in terms of BLEU score, except
for CodeBERT in javascript. We hypothesize that
when we train on the corrupted data, the model
is forced to understand the code functionality in a
generalized manner, thereby enabling it to perform
well even in the clean dataset.

Figure 3: Comparing performance on clean test data
and for models trained on clean data and corrupted data.
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Train Data Test Data Python Javascript Java

CodeT5 Small CodeBERT CodeT5 Base CodeT5 Small CodeBERT CodeT5 Base CodeT5 Small CodeBERT CodeT5 Base

Clean Clean 19.96 19.06 20.01 15.32 14.90 16.16 20.02 17.65 20.31
Corrupted 12.92 13.03 12.81 9.51 7.34 9.04 15.06 13.42 14.05

Corrupted Clean 19.28 17.75 19.64 14.55 11.30 15.41 19.05 17.16 19.50
Corrupted 16.21 15.52 16.50 12.68 10.76 13.13 17.27 16.20 17.36

Combined Clean 19.73 18.93 20.05 15.27 13.01 15.83 19.82 18.01 19.70
Corrupted 16.17 15.76 16.51 12.46 11.29 12.86 17.14 16.19 17.44

Table 2: Smooth BLEU-4 scores for different train-test combinations for clean and identifier corrupted data.
When models are trained using clean data, their performance deteriorates when tested on identifier corrupted data.
However, when models are trained on a combination of both clean and corrupted data, they demonstrate satisfactory
performance on both types of test data - clean and corrupted.

Train Data Test Data Python Javascript

CodeT5 Small CodeT5 Base CodeT5 Small CodeT5 Base

Clean Clean 19.96 20.01 15.32 16.16
Dead Code 18.55 19.83 15.20 15.52

Dead Code Clean 19.74 18.66 14.69 15.32
Dead Code 18.92 19.19 15.62 16.70

Table 3: Smooth BLEU-4 scores for different language
and train-test combinations for dead code corruption.

6.3 Research Question 3: How is the
performance of the model trained on the
combined data?

Our combined dataset contained both clean data
and identifier corrupted data. The model trained
on a combined dataset exhibits impressive perfor-
mance not only on clean data but also on identifier
corrupted data. Its performance on the clean test
data is very similar to and sometimes even sur-
passes the performance of the model only trained
on the clean data. Similar observations are seen for
the corrupted test data. Notably, this pattern is con-
sistent across all the models and languages. This
shows that if we curate our dataset correctly, the
model can generalize across clean and corrupted
datasets. The BLEU score performance compar-
isons are visually explained in Figures 4 and 5.

6.4 Research Question 4: What is the effect of
commented code perturbations on the
model’s capabilities?

We observe that the model trained on a dataset con-
sisting of commented code showcases comparable
and impressive performance on both clean code
data and commented code data. However, a model
trained exclusively on clean data displays satisfac-
tory performance on the clean test set, albeit experi-
encing a notable decline in performance when eval-
uated on the commented code test set (presented
in Figure 6). A potential explanation is that the ab-
sence of comments in the clean code training data

Figure 4: Comparing performance on clean test data for
models trained on clean data and combined data.

Figure 5: Comparing performance on corrupted test
data for models trained on corrupted data and combined
data.

prevents the model from learning the syntax associ-
ated with comments. However, when the model is
trained on code that includes comments, it captures
the code syntax information despite the comments
not directly influencing the code’s functionality.
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Train Data Test Data Python Javascript Java

CodeT5 Small CodeT5 Base CodeT5 Small CodeT5 Base CodeT5 Small CodeT5 Base

Clean Clean 19.96 20.01 15.32 16.16 20.02 20.31
Commented 16.15 16.26 14.61 14.21 15.06 18.83

Commented Clean 19.07 17.90 15.00 15.07 19.77 20.23
Commented 18.32 18.75 15.90 15.73 19.57 20.17

Table 4: Smooth BLEU-4 scores for different language and train-test combinations for commented code corruption.

Figure 6: Comparing performance on clean and com-
mented test data for models trained on clean data.

6.5 Research Question 5: What is the effect of
dead code perturbations on the model’s
capabilities?

Upon analysis, we determine that a model trained
on a dataset that includes non-functional dead code
demonstrates impressive and similar performance
when applied to both clean code and the aforemen-
tioned dead code. We make the same observation
for a model trained on clean data and evaluated on
both clean and non-functional code test datasets.
We thus conclude that the addition of dead code
doesn’t have any significant impact on the gener-
ated summaries.

7 Human Evaluation

In order to gain deeper insights into specific errors,
a manual evaluation was conducted on a randomly
selected subset of 200 examples from the identi-
fier corrupted dataset. The evaluation compared
the performance of two CodeT5 Base models: the
model trained on the combined dataset (including
identifier corrupted codes) and the baseline model
trained on clean data. The evaluation involved ana-
lyzing code, gold truth, baseline model summaries,
and combined data trained model summaries. We

prepare one such set for both Python and Javascript
(Refer Table 5). To avoid human bias, the annota-
tors were given the summaries in a random order
without any access to the information about which
model generated them.

Language Clean Data Model Combined Data Model Ties Total

Python 21 143 36 200
Javascript 15 148 37 200

Table 5: Statistics of the aggregated manual evaluation
data determining which model’s summary was better.

The evaluation process included two individuals
independently annotating the same set of data and
marking the annotations as Prediction 1, Prediction
2, or Tie (both models). The chosen option implies
that the selected annotation is more closely aligned
with the gold truth and code. The inter-annotator
agreement can be observed in the Table 6.

In cases where there was a disagreement between
the annotators, Ties were resolved using the follow-
ing strategies:

• If one annotation was marked as a Tie and
the other was marked as Prediction 1 or Pre-
diction 2, we considered the Prediction 1 or
Prediction 2 annotation as the final annotation
in the aggregated dataset.

• If one annotation was marked as Prediction
1 and the other as Prediction 2, the two an-
notators engaged in a discussion to reach a
consensus for the final annotation for the sum-
maries.

The observations revealed that the summaries
generated by the model trained on the combined
data were more relevant to the code and closer
to the desired outcome (gold truth) compared to
the baseline model. There were several notable is-
sues with the summaries generated by the baseline
model, which are discussed in the Figure 7.

The computed BLEU scores for the two models,
where one was trained on clean data and the other
on combined data, are as follows: For Python, the
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bleu scores on the identifier corrupted dataset are
12.92 and 16.17, while for Javascript, the scores
are 9.04 and 12.86, respectively. These scores align
with the manual evaluation results, indicating that
the model trained on combined data outperforms
the model trained solely on clean data in code sum-
marization.

8 Conclusion

By studying advanced code summarization mod-
els, we discover how making changes that preserve
the meaning of the code affects the quality of the
summaries they generate. Additionally, we pro-
vide evidence that if we train the large language
models like CodeT5 properly, making changes that
disrupt the meaning of function and variable names
have little impact on the resulting summaries. Our
observations remain consistent across three dis-
tinct programming languages: Java, Python, and
JavaScript. These findings raise important concerns
about how well these models truly understand code,
highlighting the need for better training methods
and carefully curated datasets that improve their
understanding. We propose using different types
of code transformations, such as introducing re-
named identifiers, adding comments, or dead code,
as ways to enhance the training of these models.
Furthermore, there is an exciting opportunity to
apply these findings to different programming lan-
guages, so that we can learn more about their gen-
eral applicability.

Limitations

While this study presents valuable insights into
code summarization using CodeBERT and CodeT5,
certain limitations merit consideration.

Firstly, the experimentation focused exclusively
on CodeBERT and CodeT5 due to practical GPU
restrictions. While Large Language Model (LLMs)
based approaches hold immense potential, their ex-
clusion from the evaluation due to GPU limitations
might restrict the generalizability of findings.

Secondly, the reliance on BLEU evaluation met-
rics, although widely used, introduces its own limi-
tations(Roy et al., 2021). BLEU captures the word-
level overlap between generated and reference sum-
maries, but it may not holistically reflect the quality
of the summary in all cases. The intricate seman-
tics and contextual intricacies present in code may
not be fully captured by BLEU scores alone.

Moreover, while human evaluation was con-
ducted on a subset of 200 samples, the compre-
hensiveness of this assessment could have been
further extended. A more expansive human eval-
uation, covering a broader array of code samples,
could provide a richer understanding of the models’
actual performance.

In future studies, overcoming these limitations
could involve wider experimentation across a spec-
trum of Language Models, a more robust human
evaluation, and exploring alternative evaluation
metrics that better align with the complex nature of
code summarization.
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A Appendix

A.1 Additional information on human
annotation

Language Raw Agreement Cohen’s Kappa

Python 74.5% 0.62
Javascript 82.0% 0.73

Table 6: Inter-annotator Agreement Statistics.

A.2 Data Transformation Procedure

A.2.1 Python
• Renaming Identifiers: We use Python’s ast

package to parse the code and create AST.
Then we transform the ast using NodeTrans-
former7 class. Finally the modified ast is un-
parsed and saved to the output file.

• Commented Code: Commented code is
added after the function definition by ran-
domly selecting a function code snippet from
the same data split and adding comment sym-
bols (#) before each line of the selected code
snippet.

• Dead Code: The code in this section adds
extra code snippets after return statements in
Python source code. The extra code snippet is
taken from the function body of a randomly
selected function in the same data split. It uses
the libcst8 library to identify the location of
the return statement.

A.2.2 Javascript
• Renaming Identifiers: To achieve this, the

esprima9 library was employed to obtain the
AST structure. Some codes are excluded from
our dataset because the library fails to obtain
the AST for those specific codes. The AST
was traversed using Depth-First Search (DFS)
to extract node details of Identifiers related
to variables and functions. Subsequently, the
estraverse10 library was utilized to traverse

7https://docs.python.org/3/library/ast.html#
ast.NodeTransformer

8https://libcst.readthedocs.io/en/latest/
9https://www.npmjs.com/package/esprima

10https://www.npmjs.com/package/@types/
estraverse
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Figure 7: Examples of different summaries generated by the models in manual evaluation.

the AST and rename each identified node ac-
cordingly. Finally, the modified code was gen-
erated using escodegen11 and saved as the out-
put.

• Commented Code: The commented code

11https://www.npmjs.com/package/escodegen

is inserted following the function signature.
This is performed after getting the AST and
using the AST to identify the end of function
signature. The code used for commenting is
chosen randomly from a collection of code
snippets found in another JSON object, with
comment symbols (//) added to each line.
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• Dead Code: Similar to commented code ex-
ample, a function body code is randomly se-
lected from a collection of code snippets in the
same data split. This code is then appended to
the original code after the return statement.

A.2.3 Java
• Renaming Identifiers: To modify the func-

tion names, and variable names, AST was
generated for each code input samples us-
ing JavaParser12 package. The AST was
traversed to extract the function and variable
name nodes, which was then modified to gen-
eralized names. It is taken care of to replace
the occurrence of same variable and function
names with the modified name throughout the
code sample using a hash map.

• Commented Code: For adding commented
code, we searched for the first opening curly
braces "{" and the commented code was in-
serted within /* ... */ and added after the
aforementioned curly braces. The commented
code snippets were randomly sampled from
the same data split of Java code samples.

• Dead Code: Addition of codes after return
statement in Java throws compile error, there-
fore dead code was not added to Java code
samples.

12https://javaparser.org/
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Abstract
Misinformation detection models degrade in
performance over time, but the precise causes
of this remain under-researched, in particular
for multimodal models. We present experi-
ments investigating the impact of temporal shift
on performance of multimodal automatic mis-
information detection classifiers. Working with
the r/Fakeddit dataset, we found that evaluating
models on temporally out-of-domain data (i.e.
data from time stretches unseen in training) re-
sults in a non-linear, 7-8% drop in macro F1
as compared to traditional evaluation strategies
(which do not control for the effect of content
change over time). Focusing on two factors
that make temporal generalizability in misin-
formation detection difficult, content shift and
class distribution shift, we found that content
shift has a stronger effect on recall. Within the
context of coarse-grained vs. fine-grained mis-
information detection with r/Fakeddit, we find
that certain misinformation classes seem to be
more stable with respect to content shift (e.g.
Manipulated and Misleading Content). Our re-
sults indicate that future research efforts need
to explicitly account for the temporal nature
of misinformation to ensure that experiments
reflect expected real-world performance.

1 Introduction

Misinformation proliferation in sectors from pub-
lic health to politics has shaped public attitudes,
undermining trust in reputable organizations and
science as a whole. The threat of misinformation is
so severe that Lin (2019) qualifies “cyber-enabled
information warfare” as an existential risk that can
undermine the structure of public discourse, with
its potential harm to civilization on par with climate
change and nuclear warfare. Although misinfor-
mation is not a novel phenomenon, its impact on
society has been exacerbated by the advent of so-
cial media, which has increased the rate and ease
of misinformation spread (Murayama, 2021). As
such, automated misinformation detection models

are vital in mitigating misinformation’s destabiliz-
ing effects on society.

In the case of multimodal data, such as an image
with a text caption, we must also consider the in-
teraction between modalities (e.g. does the caption
contradict the image?), which makes multimodal
misinformation detection a harder task (Abdali,
2022). Nevertheless, accounting for multimodal-
ity is vital for real-world applications, since a large
portion of information shared online is multimodal.

While some Machine Learning (ML) methods
can be comparable to human annotators in labelling
fake news (Pérez-Rosas et al., 2017), building a
multimodal model that is generalizable, explain-
able and scalable remains a challenge. In the cur-
rent work, we explore model performance on fu-
ture, unseen data (temporal generalizability). Un-
doubtedly, the topics most subject to misinforma-
tion change rapidly with time, as does the misinfor-
mation itself. As such, a real-world model trained
for optimal performance at a specific time point
will likely continue to degrade in performance over
time. However, most surveyed literature did not
directly account for this expected drop in perfor-
mance, testing models on data collected from the
same time period as training data. This practice
inflates expected model performance for future ap-
plications, referred to by Murayama (2021) as an
issue with the model’s “velocity”.

Thus, we undertook experiments to quantify tem-
poral generalizability of multimodal misinforma-
tion detection models. Our goals are twofold:

GOAL 1: Quantify the expected drop in perfor-
mance when a multimodal classifier trained
on the r/Fakeddit dataset is tested on out-of-
temporal-domain content.

GOAL 2: Isolate the effect of content shift on
the expected performance drop, specifically
disentangling trends with reference to the
r/Fakeddit misinformation classes.
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2 Literature Review

2.1 Detecting Misinformation

Works such as Murayama (2021) and Wardle et al.
(2018) provide an overview of different definitions
of “fake news” and related concepts (misinforma-
tion, rumor, satire, propaganda, etc.). But the ques-
tion of how to define “misinformation” is still an
on-going area of research. For example, Abdali
(2022) listed binary ground truth (true vs. false)
and lack of granularity in labels in existing datasets
as a data-related challenge in the field. To avoid the
issue of coarse labeling, some researchers formu-
late the misinformation detection task as a regres-
sion problem. For our purposes, we use “misinfor-
mation” interchangeably with “fake news” to refer
to content that contains some element of untruth,
regardless of intention.

Fake news classification research is closely re-
lated to tasks such as fact verification, fact check-
ing, rumor/stance detection, and sentiment extrac-
tion (Oshikawa et al., 2020). A classic ML fake
news detection model represents input content (e.g.
text and/or image) with manually selected features
and feeds these into a classification or regression
model (Zhou and Zafarani, 2020). The advent of
powerful deep learning models like BERT (Devlin
et al., 2019) for text or ResNet (He et al., 2016) for
images made it possible to step away from manu-
ally crafted features toward learned representations
extracted from hidden layers.

For multimodal information, the main question
lies in whether to process each individual modal-
ity and then combine the predictions (ensemble
methods), or whether to extract cross-modal fea-
tures that account for inter-modal interactions (Ab-
dali, 2022). In ensemble methods, one can fuse
the modalities at the raw input level – “early fu-
sion”, after extracting modality-specific features
(e.g. through vector concatenation) – “interme-
diate fusion”, or instead fuse predictions of each
modality-specific model – “late fusion” (Boulahia
et al., 2021). Examples of cross-modal features
used include measures of similarity between the
input text and images (Giachanou et al., 2020). An-
other explored avenue for extracting cross-modal
interactions consists of using attention mechanisms.
However, attention-based models are not as easily
explainable, with regions to attend to often discov-
ered through trial and error (Abdali, 2022).

2.2 Evaluation and Temporal Generalizability

The problem of model generalizability to unseen
data is a known challenge in ML, often addressed
through methods such as domain adaptation and
transfer learning (e.g. see Kouw and Loog (2018)).
Works such as Suprem et al. (2019) and Žliobaitė
(2010) have used continuous/incremental learning
to train models to respond to “concept drift”. In
the context of misinformation detection, what is
defined as "in-domain" and "out-of-domain" can
vary. Experiments posed by Nan et al. (2021) and
Min et al. (2022) define "domain" as "subject/topic
of data", e.g., training models on political sources
and testing on social content. In this paper, we treat
different time periods as different "domains", since
content even within the same subject/topic changes
so rapidly. We refer to a model’s ability to perform
on data from a time period not seen in training as
its “temporal generalizability".

Bozarth and Budak (2020) explored such “tem-
poral generalizability" of misinformation detection
models by comparing evaluation strategies: clas-
sic (common N-fold cross-validation across the
entire dataset), forecast (evaluating on future data
from a time period past the end of training), bydo-
main (evaluation against content not seen in train-
ing). They found that “classic” evaluation (which
was most often encountered in surveyed literature)
yielded higher performance than “forecast” eval-
uation (which closely mimics what happens with
production models). Horne et al. (2019) similarly
found that performance of fake news classifiers
worsens over time, although they note that cer-
tain features (e.g. content-based features like style
of writing) are more robust to temporal changes.
Alkhalifa et al. (2023) observed a more pronounced
model deterioration with time for “open-domain”
content (e.g. social media) as opposed to “closed-
domains” (e.g. book reviews).

Improving temporal generalizability has been ex-
plored on text-only models: Zhu et al. (2022) used
an “entity debiasing framework”, Suprem and Pu
(2022) proposed a new method based on K-Means
clustering, while Murayama et al. (2021) showed
that using masking during text-based model train-
ing resulted in a better generalization accuracy. The
generalizability of multimodal models has not been
explored to the same extent as for unimodal (specif-
ically text-only) models. Moreover, to the best of
our knowledge, no prior temporal generalizability
study has used the r/Fakeddit dataset.
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3 Methods

3.1 Data: r/Fakeddit

We used the r/Fakeddit dataset, introduced by Naka-
mura et al. (2020) as a “multimodal benchmark
dataset for fine-grained fake news detection”. Com-
pared to other multimodal datasets, it is one of the
largest publicly available,1 and contains both binary
and fine-grained labels. Data was sampled from
22 subreddits (refer to Table 8 in the Appendix
for specifics). Of its 1 million samples, roughly
650K are multimodal, containing text (title of Red-
dit post) and an associated image. These span June
1, 2008 to November 15, 2019 and are the focus of
our investigations. Labels consist of three levels of
granularity: 2-, 3- or 6-way (see Figure 1).

Figure 1: Example r/Fakeddit data for all possible 2-,
3-, and 6-way classes with relative class sizes.

r/Fakeddit is imbalanced, with the imbalance
getting more pronounced as the classification gets
more fine-grained. In the 2-way labels, 255,913
(38.81%) of posts are labelled as True and 403,451
(61.19%) False. The 3-way labeling is roughly
the same as for 2-way labeling, just a portion of
the Fake samples is listed as Half Fake (2.49% of
data). The most fine-grained 6-way labeling, with
5 sub-classes for fake content, contains the most
imbalances. In this report, we focus only on 2-
way and 6-way classification, as our 3-way models

1Refer to https://github.com/entitize/Fakeddit

behaved extremely similarly to the 2-way models,
likely due to the relatively small size of the Half
Fake class.

Preprocessing We keep the pre-processed text
of Nakamura et al. (2020). Images were pre-
processed following the practices of He et al.
(2016), Krizhevsky et al. (2012), and Simonyan
and Zisserman (2015): we resized and randomly
cropped images to force image dimensions to
224x224, then normalized each pixel value using
the mean and standard deviation of RGB values in
the ImageNet dataset (default in Pytorch).2

3.2 Train-Validation-Test Data Splits

We prepared three train-val-test splits, changing the
temporal range of information available to models.

Original (OG) Data Split: A random partition-
ing of the dataset into train, val, and test sets pro-
vided by the r/Fakeddit authors. All three spanned
the entire decade of available data (see Table 1).

Split Time Covered # Posts % Data
Train 06.2008-11.2019 544,288 82.56%
Val 07.2008-10.2019 57,551 8.72%
Test 06.2008-10.2019 57,525 8.72%

Table 1: Original train-val-test split statistics.

Temporal Data Split: All three splits cover a
separate time period. We sorted all available data
by creation timestamp and separated it into three
consecutive chunks corresponding in size to the
OG train, val, and test splits (to control for dataset
size). Splitting the data this way ensured that mod-
els would be both validated and evaluated on tem-
porally out-of-domain data.

Split Time Covered % Data Months
Train 06.2008-04.2019 82.56% 131
Val 04.2019-07.2019 8.72% 3
Test 07.2019-11.2019 8.72% 4

Table 2: Temporal train-val-test split statistics.

Multiple Test Splits Over Time: Has 5 consec-
utive test splits, designed to quantify the change
in performance as the test set gets further removed
from the training data. Although the raw count of
data points in our train and validation sets had to

2https://pytorch.org/vision/stable/transforms.html#scriptable-
transforms
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decrease, we controlled for the relative proportion
(82% to 9%) of samples in them (see Table 3). We
made the test splits roughly equal to that of the vali-
dation set. We controlled for the temporal coverage
(not size) of the test sets because in a hypothetical
real-life scenario it would be preferable to know
how soon after deployment (not after how many
runs) a model should be retrained.

Split Time Covered % of Data Days
Train 06.2008-05.2017 54.05% 3,287
Val 06.2017-11.2017 5.71% 155

Test 1 11.2017-04.2018 5.97% 153
Test 2 05.2018-09.2018 7.57% 155
Test 3 09.2018-02.2019 2.48% 155
Test 4 02.2019-07.2019 14.02% 152
Test 5 07.2019-11.2019 10.19% 128

Table 3: Data split stats for multiple test splits.

3.3 Model Architecture and Training
Our multimodal models followed one version of the
“ensemble method” described by Abdali (2022):

1. Text and image were processed individually
to extract modality-specific features

2. Feature vectors were concatenated (“interme-
diate fusion”, see Boulahia et al. (2021))

3. The resulting concatenated vector was fed into
a neural network classifier

To process cleaned submission titles, we used
a variant of the popular transformer-based pre-
trained language model BERT (Devlin et al.,
2019). BERT has successfully been used to em-
bed input for misinformation detection models (see
Nakamura et al. (2020) and Segura-Bedmar and
Alonso-Bartolome (2022)). We used a pre-trained
RoBERTa model (variant all-distilroberta-v1)3 to
obtain 768-dim embeddings for sample text.

We used a pre-trained network called ResNet-50
to extract image features (He et al., 2016). The
ResNet architecture won the ILSVRC 2015 image
classification task and has since remained a popu-
lar backbone for computer vision models. It has
also made its way into misinformation classifiers,
demonstrating potential for transfer learning. For
example, Nakamura et al. (2020) found that us-
ing ResNet-50 for classification with r/Fakeddit

3https://huggingface.co/sentence-transformers/all-
distilroberta-v1

Figure 2: Ensemble multimodal model for 2-way and
6-way classification. The best-performing hidden layer
size, n, was found through hyperparameter tuning.

resulted in a better performance than using VGG16
(Simonyan and Zisserman, 2015) or EfficientNet
(Tan and Le, 2019), both alternative deep convolu-
tional neural networks (CNNs) commonly used for
computer vision. We similarly used ResNet-50’s
penultimate layer weights to represent each input
image with 2048-dim vectors.

Text and image features were combined through
simple concatenation. This concatenated vector
was fed through a one-hidden-layer feed-forward
neural network for classification (see Figure 2).

To train our models, we first loosely followed
both Nakamura et al. (2020) and Segura-Bedmar
and Alonso-Bartolome (2022) to choose hyper-
parameters. We used cross-entropy loss and the
Adam optimizer. Each model was selected af-
ter conducting extensive hyperparameter tuning
over hidden layer size (n) and learning rate (lr).
We tested all possible pairs of the following:
n = 2i, i ∈ {5, 6, 7, 8, 9, 10, 11, 12, 14}, and lr ∈
{0.01, 0.001, 0.0001, 0.00001}. We used batches
of size 256 and trained for a max of 20 epochs,
with early stopping where validation accuracy did
not improve over 4 consecutive epochs. Each fi-
nal model was selected by choosing the hyperpa-
rameter setting that maximized accuracy on the
validation set (see Appendix for specifics).

3.4 Evaluation

In an imbalanced class setting, a micro F1 score can
be inflated by high performance on high frequency
classes, whereas macro F1 is a better reflection of
model performance across all classes, regardless of
size. We use both metrics to evaluate our models
for Experiment 1. For Experiment 2, we report
micro F1 change over time, as that is representative
of real-world performance after deployment.
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4 Experiment 1: OG vs. Temporal

Our first experiment quantified the drop in per-
formance when evaluating on temporally "out-of-
domain" data (GOAL 1). We built multimodal mod-
els using the original vs. temporal splits for 2-way
and 6-way classification. For each type of predic-
tion and data split, we evaluated a Baseline model
that randomly classified test samples proportionally
to their rate of occurrence in the training set.

4.1 Results: 2-Way Classification

We report micro and macro F1 (see Table 4) and
confusion matrices (see Figure 3) both for the
model trained on the original train-val-test split
and the temporal split. Our confusion matrices are
normalized over the True/Actual labels (all rows
sum to 1.0), so entries along the main diagonal
represent recall per class.

Trained Baseline
OG Temp. OG Temp.

Micro F1 0.85 0.81 0.52 0.56
Macro F1 0.85 0.78 0.50 0.50

Table 4: Exp. 1 evaluation metrics for 2-way models.

When the train-val-test split was changed to be
temporal, we saw a 4% decrease in Micro F1 and
7% decrease in Macro F1. Both OG and Temporal
models outperformed their respective Baselines.

Figure 3: Confusion matrices: OG vs. temporal 2-way.

Looking at the confusion matrices, per-class re-
call dropped 13% for the Fake class and increased
4% for the True class. The Temporal model was
generally predicting more samples into the True
class (values in column 2 for both rows are greater
than column 1). Detection of Fake samples wors-
ened more than that of True samples.

4.2 Results: 6-Way Classification

We report micro and macro F1 scores in Table 5
and confusion matrices (normalized over the True
labels) for 6-way models, both for the original (see
Figure 4) and temporal (see Figure 5) splits.

Trained Baseline
OG Temp. OG Temp.

Micro F1 0.76 0.72 0.29 0.28
Macro F1 0.60 0.52 0.17 0.17

Table 5: Exp. 1 evaluation metrics for 6-way models.

When the train-val-test split was changed to tem-
poral, the 6-way model drop in performance was
similar to the 2-way models. Micro F1 dropped by
4% and macro F1 by 8%. Both OG and Temporal
models, nevertheless, performed substantially bet-
ter than their respective Baselines. The Temporal
model performed worse on lower frequency classes,
hence macro F1 was affected more than micro F1.

Figure 4: Confusion matrix for original 6-way model.

The OG 6-way model achieved the best per-class
recall on True and Manipulated Content classes, po-
tentially since they comprise the majority of train-
ing data (39% and 31%, respectively). Perhaps
more surprising was the model’s ability to achieve
66% recall on Misleading Content, which com-
prises only 4% of the training set (21K samples).
The worst per-class recall performance was on Im-
poster Content (13%). 44% of True samples was
predicted to Imposter Content, making it the most
evasive misinformation class (followed by Satire
at 28% misclassification to True). Perhaps this
type of data is hard to detect, or there were simply
not enough samples for the model to learn (11K
samples for Imposter Content and 32K for Satire).

The temporal split decreased per-class recall on
almost all classes but Satire (7% increase) and Im-
poster Content (2% increase). We also observed a
general trend of predicting most samples into the
True class, regardless of the actual label (see the
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Figure 5: Confusion matrix for temporal 6-way model.

increase across the entire first column) – likely be-
cause the True class comprised 69% of the testing
set as opposed to 33% of training. The best re-
call performance was again achieved by the True
and Manipulated Content classes. This suggests
that unlike the other types of Fake samples, Ma-
nipulated images are easiest to detect over time.
This makes intuitive sense, as while the subject
of photoshopped images might change over time,
photoshopping techniques remain relatively stable.

5 Experiment 2: Multiple Test Splits

Our second experiment delved even further into
GOAL 1. We quantified the rate of decay in model
performance by increasing the number of test splits
to five. We probed at the reasons for change in
performance (GOAL 2) by comparing our result-
ing model (Exp. 2 Normal) against two variations.
There are two reasons performance could change:

1. Content shift; e.g. the subject of posts from
Apr. 2018 is different than Feb. 2019

2. Class distribution shift; e.g. the distribution
of True vs. Fake posts changes over time

To isolate the effects of content shift, we eval-
uated on subsampled sets of the 5 test splits, en-
forcing the same class distribution and controlling
for its effect (Exp. 2 Balanced). To isolate the
effects of class distribution, we created a Dummy
classifier that predicted proportionally to class dis-
tributions observed in training. Since the dummy
classifier did not use content features for prediction,
any observed effects over the 5 test splits reflected
the class distribution’s effect on performance.

5.1 Results: 2-way Classification

We present micro F1 for all three compared models
across the 5 test splits for 2-way classification in
Table 6. We follow by a per-class, per-test-split,
per-model breakdown of F1, precision, and accu-
racy scores in Figure 6, isolating the effects of
content vs. class distribution shift on each metric.

Model + Evaluation
Exp. 2

Normal
Exp. 2

Balanced Dummy

Test 1 0.82 0.60 0.76
Test 2 0.79 0.59 0.70
Test 3 0.48 0.46 0.48
Test 4 0.48 0.45 0.50
Test 5 0.40 0.42 0.47

Table 6: 2-way accuracy (micro F1). Exp. 2 Normal
represents “real-life" performance, Exp. 2 Balanced iso-
lates content shift effects, and Dummy isolates class
distribution shift effects.

In Exp. 2 Normal, accuracy decreased with time,
dropping dramatically after Test Split 2. Start-
ing from Test Split 3, it performed worse than a
Dummy model. The falling performance of both
Exp. 2 Balanced and Dummy models suggest that
the drop is due to both content shift and a change in
class distributions. Since Test Split 3 starts ∼450
days from the end of training (∼300 days from val),
in a real-life scenario our models would likely need
to be retrained about once a year.

Looking at Figure 6, we can observe the effects
of content shift in column 2 (Exp. 2 Balanced). Re-
call was unaffected for both True and False classes
(compare bottom tiles in columns 1 vs. 2), while
precision and F1 fell for both. We turn to column 3
for the effects of class distribution shift (Dummy
performance). The relative percentage of the False
class in the test sets decreased substantially across
the test splits: 76% for Test Split 1, to 73%, 41%,
37%, and finally 31% for Test Split 5. Recall was
unaffected by class distribution, whereas precision
decreased as the Fake class got smaller.

Overall, the trends in precision of Exp. 2 Normal
were most similar to that of the Dummy model, sug-
gesting that class distribution shift has a stronger
impact on precision than recall. The trends in re-
call of Exp. 2 Normal were most similar to that
of Exp. 2 Balanced, suggesting that content distri-
bution shift has a stronger effect on recall rather
than precision. These two effects combine to give
a cumulative negative effect on F1 – worsening
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Figure 6: Precision, recall and F1 for 2-way and 6-way models over 5 temporal tests splits. “Normal” model
evaluation reports the results as they would be observed in a real-life scenario, whereas “Balanced” model evaluation
isolates the effects of content shift and Dummy isolates the effects of class distribution shift.

precision due to class distribution shift and wors-
ening recall due to content shift. Interestingly, the
observed per-class and per-metric trends in Exp. 2
Normal can be roughly seen as a sum of the trends
in Exp. 2 Balanced and the Dummy model.

5.2 Results: 6-way Classification
We present 6-way micro F1 for all three compared
models in Table 7. A breakdown of F1, precision
and accuracy scores is again in Figure 6.

Model + Evaluation
Exp. 2

Normal
Exp. 2

Balanced Dummy

Test 1 0.54 0.20 0.68
Test 2 0.51 0.19 0.62
Test 3 0.38 0.24 0.38
Test 4 0.40 0.24 0.40
Test 5 0.36 0.25 0.37

Table 7: 6-way accuracy (same as micro F1).

The 6-way pattern of accuracy change in Exp. 2
Normal and Dummy was very similar as for 2-way
models. Performance fell the most between Test
Splits 2 and 3 (to an approximately at-chance per-
formance – see Exp. 1 Baselines). Unlike 2-way
classification, the Dummy model outperformed the
trained Exp. 2 Normal model from Test Split 1,

suggesting that finer-grained misinformation clas-
sification may be more temporally unstable than
coarser-grained. After the Test Split 3, performance
remained relatively stable. However, the Exp. 2
Balanced model performed abysmally through all
test splits, starting from the first one, and there was
not much change throughout the test splits. This
suggests that the drop in performance in the Normal
model can be mostly attributed to class distribution
shift and not content shift.

Looking at Figure 6, the Exp. 2 Normal model
was more similar to Exp. 2 Balanced than the
Dummy model with respect to Recall, again sug-
gesting that content shift affects recall. The change
in precision for the Dummy model went hand-
in-hand with how the relative class distributions
changed (the True class got relatively larger with
each successive test split, the False Connection
class peaked at Test Split 1 and then fell along with
the rest, just like the precision values changed).

With Exp. 2 Balanced, True and False Connec-
tion classes fell systematically across all splits.
However, Manipulated and Misleading content
classes performed relatively stably. This either
suggests that, potentially, the features our mod-
els learned to identify these misinformation classes
persist more stably over time than others.
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6 Discussion

6.1 Our Contributions
In the r/Fakeddit dataset, a temporal data split re-
sulted in a 4% drop in macro F1 and 7-8% drop
in micro F1 for 2-way and 6-way multimodal
models (compare GOAL 1).

For GOAL 2, to isolate the effect of content
shift on the performance drop, we found that con-
tent shift seems to affect recall more than preci-
sion. Additionally, finer-grained misinformation
classes do not behave in the same way with re-
gards to temporal generalizability. Notably, Ma-
nipulated and Misleading content classes seemed
to be more stable.

Our results for Experiment 1 underline the im-
portance of considering the performance drop in
misinformation classification models on a new tem-
poral domain. Our results for Experiment 2 further
isolate a period of time where performance drops
substantially, suggesting that models may suffer
from a sudden and dramatic decrease in perfor-
mance (as opposed to a gradual worsening of clas-
sification accuracy). Specifically in reference to the
r/Fakeddit dataset, it seems like there was a quali-
tative change in content posted between September
2018 and February 2019, where we see the sudden
drop in performance (to Baseline levels). Inves-
tigating whether this change is due to a specific
singular event or has to do with general content
shift over time is out of the scope of this paper.
In the real-world, guidance from social scientists
and/or political scientists who are aware of current
online discourse would help identify periods of
time when content is expected to change, affecting
the performance of deployed models.

Our findings in Experiment 2 with respect to
disentangling the effects of content vs. class distri-
bution shift underline the importance of accounting
not only for how content might change over time,
but also how models will perform in varying class
distribution settings. Throughout the experimen-
tation process, we found that when we split the
r/Fakeddit dataset temporally, the variation in rel-
ative class distribution varied widely across the
temporal splits. It is unclear whether this has to do
with the way the authors of r/Fakeddit collected the
data, or with the underlying distribution of content
on Reddit in general. Regardless, in the real world
it is very possible that the data collected at time
point X will vary widely from the data collected at
time point Y. As such, researchers have to explic-

itly prepare for how their models will perform in
different class distributions settings.

It makes theoretical sense why recall is not af-
fected by class distribution shift and therefore is
a useful metric for isolating the effects of content
shift. Recall is equal to TP

TP+FN , where TP = true
positives and FN = false negatives for a certain
class. Assuming the content distribution stays the
same, an α increase in total data points of a class
will correspond to an analogous α increase in both
TP and FN , and the scaling factor will cancel
out in the recall calculation. The same does not
apply to Precision, which is TP

TP+FP , with FP =
false positives. Whereas TP and FN came from
the same class, FP are by definition from a dif-
ferent one, therefore any scaling effects of the two
different classes will compound rather than cancel.

6.2 Implications for Research and Industry

As our experiments showed, deployed models can
expect a sudden and significant drop in perfor-
mance, indicating that future research efforts need
to explicitly account for the temporal nature of
misinformation to ensure that experiments reflect
expected real-world performance. Although there
is existing research in this space (e.g. Chen and
Hasan (2021) look at the temporal generalizability
of COVID-19 misinformation detection models),
many studies do not account for content change
over time. A deeper analysis of why model perfor-
mance was not always generalizable was hindered
by a lack of understanding of what our models were
learning. To that end, further research should also
look at how models learn what is fake, and whether
it is possible to make the decision-making process
less dependent on temporal context.

Approaches to misinformation detection can be
separated into categories based on how they learn.
Zhou et al. (2020) and Shiao and Papalexakis
(2021) discuss four: content-based, propagation-
based, knowledge-based and source-based mod-
els. Our models were implicitly operating off of a
content-based approach, relying on latent text and
image features to embed samples into a semantic
space representing truth-value. Perhaps knowledge-
based models are more generalizable, but only if
the knowledge base is iteratively updated with the
passage of time. Further research would benefit
from considering what types of updating (e.g. fea-
ture extraction or knowledge base) would be most
feasible from an industry perspective.
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7 Limitations

Our multimodal models perform worse than re-
lated works on r/Fakeddit (Nakamura et al., 2020;
Segura-Bedmar and Alonso-Bartolome, 2022). We
tried exactly recreating the architecture of Naka-
mura et al. (2020), but model performance was still
lower. Noting that our investigation would benefit
from being comparable to related studies, we at-
tempted to locate the source of the discrepancy in
performance but were unsuccessful. We think that
our difficulty with reproducing existing results is
not uncommon, and future research would benefit
greatly from studies that explicitly outline guide-
lines on how to exactly reproduce their architecture
(as in Zaeem et al. (2020), Shu et al. (2019)).

Due to computational limitations, we did not
fine-tune the feature extraction process on our
dataset, instead relying on pretrained RoBERTa
and ResNet-50. Building models that are specif-
ically tailored to misinformation datasets for fea-
ture extraction might increase performance, though
it is unclear if this would change the impact of
a temporal data split. Future research could ex-
plore whether temporal generalizability is largely
dependent on the dataset being used, and whether
the obtained results would be different if another
dataset was analyzed instead.

Additionally, we did not extensively investigate
what validation strategy would work the best for
temporal generalizability. Instead, we naively sep-
arated the training and validation set temporally
from each other, and used that for hyperparameter
tuning. Further work could look into training meth-
ods specifically designed for maximal temporal
generalizability in misinformation detection.

We study the temporal generalizability of mul-
timodal misinformation detection models in one
specific language, for one specific platform. Al-
though the experiments presented in this paper are
inspired by real-world applications (e.g. deploying
a misinformation detection model on a social me-
dia platform), it is worth noting that the r/Fakeddit
dataset contains some particularities that make it
difficult to generalize to broader misinformation
detection in other languages and settings. Some
of the samples labeled as “Fake” are harmless (e.g.
certain memes), although technically they are “un-
true” or “manipulated”. This raises the question of
whether the results presented here are generalizable
to datasets that focus on more “serious” topics of
information (e.g. COVID-19 or certain political

topics). For example, some photoshopped images
are evidently meant to entertain, and, although tech-
nically they constitute “misinformation”, it seems
unintuitive to seriously treat them as such. This
raises the research question of how to effectively
define “misinformation” that both makes sense se-
mantically and also is maximally useful for auto-
mated models deployed in the real world, dealing
with topics of substantial weight.

8 Ethical considerations

We use the existing r/Fakeddit dataset. Since this
was released as a benchmarking dataset for misin-
formation detection models, our use of this dataset
is consistent with the use cases it was intended for.
The dataset may contain personal data or offensive
content so we ensure that the examples reported in
this paper do not make any individuals identifiable
or include offensive content. We were not able to
find information on the licence associated with this
dataset but since it was released for the purpose
of benchmarking we assume that our use of this
dataset is acceptable.

We study when misinformation detection sys-
tems fail to perform well. A malicious actor could
potentially exploit this knowledge to decide what
kind of misinformation to spread, however, we be-
lieve that our results will be far more useful to those
who are hoping to improve the temporal generaliz-
ability of their systems.
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A Appendix

This appendix first provides additional implemen-
tation details, specifically optimal found hyperpa-
rameter settings. We follow with details on the
subreddits in the dataset and the performance of
the 6-way models broken down by subreddit.

As described in section 3.3, we con-
ducted hyperparameter tuning over hidden
layer size (n) and learning rate (lr), test-
ing all possible pairs of the following:
n = 2i, i ∈ {5, 6, 7, 8, 9, 10, 11, 12, 14}, and
lr ∈ {0.01, 0.001, 0.0001, 0.00001}. Each final
model was selected by choosing the hyperpa-
rameter setting that maximized accuracy on the
validation set, with optimal learning rate being
0.0001 across the board, n = 16384 for OG
2-way and n = 8192 for OG 6-way, n = 8192
for Temporal 2-way and n = 1024 for Temporal
6-way.

The final choice of subreddit and associated truth
values went through a rigorous multi-step quality
assurance process to justify the use of subreddit-
level labels (as opposed to labeling each sample
individually), see Nakamura et al. (2020) for a de-
tailed overview of this process and Table 8 for the
labels assigned to each subreddit.

Additionally, since all samples from a specific
subreddit received the same label (a type of domain-
level ground truth, where the domain a sample
comes from determines its truth value), refer to
Table 9 for a per-subreddit breakdown of 6-way
classification accuracy for the original vs. temporal
models.
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Label
subreddit 2-way 3-way 6-way

mildlyinteresting True True True
photoshopbattles True True True

nottheonion True True True
upliftingnews True True True
neutralnews True True True

usanews True True True
pic True True True

usnews True True True
fakealbumcovers Fake Fake Satire

theonion Fake Fake Satire
satire Fake Fake Satire

waterfordwhispersnews Fake Fake Satire
propagandaposters Fake Half Fake Misleading Content

fakefacts Fake Fake Misleading Content
savedyouaclick Fake Fake Misleading Content

psbattle_artwork Fake Fake Manipulated Content
pareidolia Fake Fake False Connection

fakehistoryporn Fake Fake False Connection
misleadingthumbnails Fake Fake False Connection
confusing_perspective Fake Fake False Connection

subredditsimulator Fake Fake Imposter Content
subsimulatorgpt2 Fake Fake Imposter Content

Table 8: 2-way, 3-way, and 6-way subreddit-level labels for r/Fakeddit (every sample from a specific subreddit is
labeled the same way).

Per-Subreddit Accuracy
subreddit 6-way Label Original Temporal

mildlyinteresting True 88.00 80.29
photoshopbattles True 80.54 83.13

nottheonion True 89.68 91.26
upliftingnews True 93.85 94.28

usanews True 90.29 94.30
pic True 64.66 71.64

usnews True 91.16 91.18
neutralnews True 89.88 NA

fakealbumcovers Satire 55.56 57.06
theonion Satire 45.83 35.51

satire Satire 25.57 19.78
waterfordwhispersnews Satire 25.00 20.00

pareidolia False Connection 60.81 60.59
fakehistoryporn False Connection 74.62 66.18

misleadingthumbnails False Connection 46.40 54.85
confusing_perspective False Connection 31.10 33.16

propagandaposters Misleading Content 75.66 79.72
savedyouaclick Misleading Content 47.04 46.53

fakefacts Misleading Content NA 0.00
subredditsimulator Imposter Content 29.48 36.51
subsimulatorgpt2 Imposter Content 15.38 7.22
psbattle_artwork Manipulated Content 87.24 86.52

Table 9: Percent of correctly classified samples per subreddit for original vs. temporal BERT 6-way models.

87



Motivation
Practical Cognitive Intrinsic Fairness
□△

Generalisation type
Compositional Structural Cross Task Cross Language Cross Domain Robustness

□△
Shift type

Covariate Label Full Assumed
□△

Shift source
Naturally occuring Partitioned natural Generated shift Fully generated

□△
Shift locus

Train–test Finetune train–test Pretrain–train Pretrain–test
□△

Table 10: GenBench evaluation card for Exp. 1 (□) and Exp. 2 (△).
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Abstract

Generalization is of particular importance in
resource-constrained settings, where the avail-
able training data may represent only a small
fraction of the distribution of possible texts.
We investigate the ability of morpheme label-
ing models to generalize by evaluating their
performance on unseen genres of text, and we
experiment with strategies for closing the gap
between performance on in-distribution and
out-of-distribution data. Specifically, we use
weight decay optimization, output denoising,
and iterative pseudo-labeling, and achieve a 2%
improvement on a test set containing texts from
unseen genres. All experiments are performed
using texts written in the Mayan language Us-
panteko.

1 Introduction

With over half of the world’s languages endangered
(Seifart et al., 2018), language documentation is
one of several strategies for preservation. Tradi-
tionally, many documentation projects have aimed
to create grammatical descriptions, dictionaries,
and annotated text corpora, in the form of interlin-
ear glossed text (IGT; see section 2.1). The anno-
tated texts can be used in the creation of reference
tools and pedagogical materials, as well as provid-
ing input data for downstream tasks such as ma-
chine translation (Zhou et al., 2019), morphological
paradigm induction (Moeller et al., 2020), depen-
dency parsing (Georgi et al., 2012), and other tasks
(Georgi, 2016), making it particularly valuable for
low-resource languages.

Annotation of large corpora can be time-
consuming and monotonous, so there is a desire for
systems to automatically produce IGT, annotating
plain text with labels describing the part-of-speech,
morphology, and syntax of each word in the corpus
(Ginn et al., 2023). These systems can be used in
conjunction with human annotators to create an-
notated corpora rapidly, ensuring consistency and

reducing the amount of human effort required. Im-
portantly, reducing annotation time also frees up
language experts to work on other types of lan-
guage preservation or revitalization activities.

However, generalization for automated anno-
tation systems remains a critical problem. Pre-
existing corpora of annotated text are often small,
contain transcriptions of spoken language from a
small number of distinct speakers, and focus on
specific types of language such as story-telling and
oration. Thus, systems trained on these corpora
have difficulty generalizing to out-of-distribution
(OOD) language, limiting their utility and robust-
ness.

As acquiring additional annotated data is gen-
erally expensive and difficult, it is preferable to
design models that generalize well to OOD data.
In this work, we design models for one type of
text annotation: labeling each morpheme in a text
with its grammatical function. We envision these
models being used alongside human annotators to
provide suggestions and annotate text more quickly
and consistently than by human labeling alone.

We examine three strategies to improve the ro-
bustness of these morpheme labeling models with
limited data:

1. We optimize weight decay to improve gener-
alization of large models.

2. We apply a separate denoiser model to im-
prove performance on out-of-vocabulary in-
puts.

3. We apply self-supervised learning on unla-
beled texts.

Our experiments evaluate model performance
on texts of different genres than the texts in the
training set, in order to investigate their ability to
generalize to future, out-of-distribution texts. We
find that these strategies achieve small performance
improvements on in- and out-of-distribution texts,
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and may be valuable for building more robust mor-
pheme labeling models. Our code is available on
GitHub.1

2 Background

2.1 Interlinear Glossed Text

In language documentation projects, annotated text
typically uses a standardized format such as In-
terlinear Glossed Text (IGT) (Comrie et al., 2008),
although the exact glossing conventions vary across
projects. An example IGT sentence in Uspanteko
is provided in 1.

(1) Ti-
INC-

j-
E3S-

ya’
give

-tq
-PL

-a’
-ENF

juntiir
everything

They give us everything
(Pixabaj et al., 2007)

The first line of the example is a transcription
in the target language. Words may be transcribed
as-is, or divided into morphemes (meaning-bearing
units of language), as in the example.

The second line of the example gives a gloss
for each morpheme. Glosses typically indicate ei-
ther the translation of a morpheme or its grammat-
ical function. For example, the -tq- morpheme is
glossed as PL (plural). Stem morphemes, such as
ya’, are glossed either with their translation (as
here) or with a gloss indicating the stem type (such
as VT for "transitive verb"). Our systems gloss
stems using the latter approach.

The third line provides a translation of the sen-
tence in a high-resource language, such as English.

Although there exist some large mixed-language
corpora of IGT such as ODIN (Lewis and Xia,
2010) and IMTVault (Nordhoff and Krämer, 2022),
the availability of IGT data is limited. For many
languages, only small IGT corpora are available,
and different corpora may (and do) use various
annotation conventions. Depending on the wishes
of the language community, such corpora may or
may not be available for wider use or distribution.

2.2 Task

In this research, the task our systems address is to
predict the gloss line of IGT given the transcrip-
tion, segmented into morphemes. Each morpheme
should be glossed with its grammatical function; to
keep the output vocabulary small, we gloss stems
with part-of-speech labels instead of translations.

1https://github.com/michaelpginn/igt-glossing

Using the example in item 1, the input to the system
would be the sequence

"Ti j ya’ tq a’ [SEP] juntiir"

and the intended output would be

"INC E3S VT PL ENF [SEP] ADV"

where stems such as "ya’" and "juntiir" are
glossed with the stem type, here VT for transitive
verb and ADV for adverb.

2.3 Related Work
Existing scholarship has used a variety of ap-
proaches for automated gloss prediction, includ-
ing rule-based methods (Bender et al., 2014), ac-
tive learning (Palmer et al., 2010, 2009), con-
ditional random fields (Moeller and Hulden,
2018; McMillan-Major, 2020), and neural mod-
els (Moeller and Hulden, 2018; Zhao et al.,
2020). Ginn and Palmer (2023) experiment with
morphologically-inspired loss functions to improve
low-resource glossing models. However, to our
knowledge, there has been no evaluation or experi-
mentation with generalization of these models.

One of the 2023 SIGMORPHON shared tasks
involved creating models for automated gloss pre-
diction (Ginn et al., 2023), with participant systems
employing strategies such as leveraging the trans-
lation line for stem glossing (Okabe and Yvon,
2023), pretraining on large multilingual corpora
(He et al., 2023), and straight-through gradient es-
timation (Girrbach, 2022).

Although the majority of machine learning re-
search has traditionally evaluated models on in-
distribution data, the ability to generalize to out-of-
distribution data is desirable for natural language
models (Linzen, 2020; Lake et al., 2017). This is
particularly important for low-resource languages
where collecting a wide distribution of data can be
expensive or even infeasible.

3 Data & Methodology

3.1 Data
This work uses a corpus of IGT data for Uspanteko,
a low-resource Mayan language, originally from
the OKMA documentation project (Pixabaj et al.,
2007) and adapted by Palmer et al. (2009). Mor-
phemes are glossed with 68 different labels, plus
a separator label. Each text was produced through
recording speakers, transcribing text, and glossing
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with morpheme tags and translations. The corpus
used includes 17 different speakers.

For this research, we experiment with generaliza-
tion to unseen texts that represent different genres
of text. This consideration is very practical for doc-
umentation projects, where the available training
corpora are often the result of a single data collec-
tion project, and sometimes contain only one or
two genres or registers of speech.

The Uspanteko corpus contains 27 texts in four
different genres: stories, histories, personal anec-
dotes, and advice. We use the story and history
texts as our in-distribution (ID) data, as we hypoth-
esize that stories and histories have similar gram-
mar and vocabulary. We use personal anecdotes
and advice as our out-of-distribution (OOD) data.
One intuitive difference between these sets is that
stories and histories tend to talk about others, while
an anecdote is about the speaker (and thus tends
to use first-person voice) and advice is about the
listener (second-person voice). There is only one
instance where a document created by the same
speaker appears in both the ID and OOD splits.

We randomly divide the ID data into training
and evaluation sets and divide the OOD data into
evaluation and final testing sets. The splits are
listed in Table 1.

Set Genre(s) # Sentences

Training Story, History 5049

Eval (ID) Story, History 2128

Eval (OOD) Personal, Advice 2128

Test (OOD) Personal, Advice 2128

Table 1: Data splits, including in-distribution (ID) and
out-of-distribution (OOD) data

To verify that these splits represent accurate dis-
tributions, we pretrained a masked language model
on the training set (described in subsection 3.2) and
calculated the perplexity for the ID and OOD eval
sets.

Set Perplexity

Eval (ID) 77.78

Eval (OOD) 94.03

Table 2: Perplexity of pretrained language model on
data splits

Of course, genre and register only represent one
form of out-of-distribution data. Data may also
be out-of-distribution due to different speakers, di-
alects of a language, time period, and other factors.

All transcription data is segmented into mor-
phemes. Thus, the task is to predict a gloss label
for each morpheme in a sequence.

3.2 Pretraining
Existing pretrained models are rarely available for
low-resource languages such as Uspanteko. Thus,
we pretrain a new masked language model (MLM)
on the training set before fine-tuning to the task
at hand (on the same data set). We use a smaller
variation of the RoBERTa architecture (Liu et al.,
2019) to prevent over-fitting and reduce resources
used. The model uses 3 hidden layers, hidden lay-
ers of size 100, and 5 attention heads, as in Gessler
and Zeldes (2023), and we found in preliminary
experiments that there is no significant difference
in performance from a full-size RoBERTa model.

The model is pretrained using the parameters
listed in Table 3. We employ a dynamic masking
strategy (Liu et al., 2019) where 15% of tokens are
masked, of which 80% use a MASK token, 10% use
a random token, and 10% use the original token.

Parameter Value

Optimizer AdamW

β1 0.9

β2 0.999

ϵ 1E−8

Weight decay 0

Batch size 64

Gradient accumulation steps 3

Epochs 50

GPU NVIDIA V100

Table 3: Training Hyperparameters
AdamW from Loshchilov and Hutter (2017b)

We refer to this pretrained model as USPMLM.
For each experiment, USPMLM was fine-tuned
on a token classification task. Because the words
in the Uspanteko data are already segmented into
morphemes, we are able to model this as a token
classification task, predicting a gloss for each mor-
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pheme. If segmentation were not available, we
would have to model the problem with a sequence-
to-sequence approach or use some strategy to pre-
dict morpheme segmentation. Still, in the token
classification approach, the surrounding context
for each morpheme is important to making high-
quality predictions, and we cannot predict a gloss
for each morpheme in a vacuum.

3.3 Evaluation

Models are evaluated on both the in-distribution
and out-of-distribution evaluation sets. We follow
the evaluation strategy used in the SIGMORPHON
shared task, calculating the overall accuracy for
every morpheme, ignoring word separators, and
requiring glosses to be correctly aligned to mor-
phemes.

4 Experiments

For a baseline model, we fine-tune USPMLM on
the token classification task. Fine-tuning uses the
same hyperparameters listed in Table 3. We also
compare against a naïve strategy where we always
select the most common gloss for a morpheme
(based on the training data), as well as a strat-
egy that selects a random gloss from the observed
glosses for a morpheme in the training data.

We compare our baselines in Table 4.

Model Acc. (Eval ID) Acc. (Eval OOD)

Random 44.4 40.6

Most frequent 85.0 74.2

Neural 84.5 74.6

Table 4: Evaluation accuracy on in-distribution and out-
of-distribution eval sets for baseline models

All strategies perform worse on the out-of-
distribution data. The goal of the following exper-
iments is to improve generalization of the model
and thereby close the gap in performance for the
ID and OOD evaluation sets. Though the neural
model and the naïve model using the most frequent
gloss perform similarly, we will conduct experi-
ments with the neural model, which can be more
readily manipulated to improve generalization.

4.1 Optimizing Weight Decay

Weight decay is important to avoiding overfitting
and improving generalization (Loshchilov and Hut-

ter, 2017a), helping reduce variance without sac-
rificing the representation power of larger models.
We fine-tune USPMLM using six different values
for weight decay; the results are listed in Table 5.

Weight Decay Acc. (Eval ID) Acc. (Eval OOD)

0 (Baseline) 84.5 74.6

0.01 84.2 73.7

0.1 84.3 74.0

0.5 84.6 74.8

0.75 84.6 75.1

1 84.5 74.4

Table 5: Evaluation accuracy for various weight decay
values

We find that modifying the weight decay does
not significantly affect the accuracy on ID data.
However, for OOD data, the best-performing
weight decay value of 0.75 achieves a 0.5 percent-
age point improvement over the baseline.

Generally, a weight decay of 0 or 0.01 is recom-
mended, so it is interesting that a much larger value
of 0.75 is successful in this case. These results
could indicate that a more aggressive weight de-
cay allows the model to better generalize to unseen
documents, by reducing unnecessary weights and
avoiding overfitting. However, the improvement is
very small, and its possible that other techniques
such as drop out are equally important for mitigat-
ing overfitting.

This result is likely heavily dependent on the
model architecture, and the optimal weight decay
value will vary from model to model. However,
increasing weight decay beyond the typical recom-
mendations seems to be an effective strategy.

4.2 Denoiser
4.2.1 Motivation
Generally, texts from out-of-distribution genres and
registers will have more out-of-vocabulary (OOV)
tokens in the input. This is the case in our data: the
ID eval set has 4.3% unknown tokens and the OOD
eval set has 9.6% unknown tokens.

Using the best-performing model from the pre-
vious section (weight decay of 0.75), we observe
that a large portion of the error on the OOD eval
set is a result of OOV morphemes in the input. The
results of this analysis appear in Table 6.
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Eval (ID) Eval (OOD)

# OOV Tokens 527 1322

# OOV Tokens Incor. 376 854

Total Incor. 1910 3447

Total Tokens 12388 13818

# OOV Incor. / Total Incor. 19.7% 24.8%

# OOV Incor. / Total Tokens 3.0% 6.2%

Table 6: Analysis of the error due to out-of-vocabulary
(OOV) tokens in the in-distribution (ID) and out-of-
distribution (OOD) eval sets

OOV tokens contributed 6.2 percentage points to
the total error for the OOD data, and only 3.0 points
for the ID data. Currently, the best model produces
15.4% error on the ID data and 24.9% error on
the OOD, with a discrepancy of 9.5 percentage
points. Thus, we observe that by reducing the error
on OOV tokens, we can decrease a portion of this
discrepancy.

4.2.2 Method

In many languages, morphological patterns are
highly regular and structured, and some classes
of morphemes (such as agreement morphology)
may co-occur in fairly regular ways. We explore
the potential of exploiting this fact to make bet-
ter predictions on unknown morphemes using the
other, known morphemes in the sentence. We train
a denoiser language model on the gloss sequences
in the training set. Then, we use this language
model to predict gloss labels for OOV tokens, using
the predicted glosses from the token classification
model as the input to the denoiser (Figure 1).

The denoiser model, USPDENOISE, uses the
same MLM architecture and training strategy as
USPMLM. The model is trained with the hyperpa-
rameters in Table 3, except using a weight decay
of 0.01 and 100 epochs.

For inference, we select the examples containing
unknown morpheme tokens, and run USPDENOISE

on the output of the fine-tuned token classification
model. Then, we replace the prediction for each
OOV morpheme with the prediction from the de-
noiser. We also experiment with masking the target
tokens with the MASK token. We compare with
the best-performing model from the previous sec-
tion in Table 7.

wi [SEP] qa seboya [SEP] q iik

wi [SEP] qa [UNK] [SEP] q iik

EXS [SEP] E1P NOM [SEP] E1P S

Token Classifier

Denoiser

S

EXS [SEP] E1P S [SEP] E1P S

Figure 1: The denoising process. The morpheme "se-
boya" is OOV, and the token classifier makes an incor-
rect prediction. However, the denoiser uses observed
label sequences to recover the correct gloss, which is
substituted into the final prediction.

Model Acc. (Eval ID) Acc. (Eval OOD)

No denoiser 84.6 75.1
Denoised
(masked) 84.7 74.9

Denoised
(no mask) 84.7 75.3

Table 7: Evaluation accuracy for denoiser strategies

The model using the denoiser without masking
tokens shows the best performance, although the
improvement is small. In this case, it evidently
is difficult to recover the correct token from the
surrounding contexts. However, this strategy could
still be effective in cases where there are many
OOV morphemes or the language is very regular.

4.3 Self-Supervision

4.3.1 Motivation

Perhaps the most effective way to improve per-
formance on OOD data would simply be to train
on OOD data, but in our example scenario this is
not feasible. However, we can employ iterative
pseudo-labeling, a form of self-supervised learn-
ing, to re-train the model using the labels predicted
by a prior model (Chapelle et al., 2009). Itera-
tive pseudo-labeling has been employed in low-
resource speech recognition, where additional la-
beled data is similarly difficult to obtain (Kahn
et al., 2020).
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In the context of generalization, iterative pseudo-
labeling can help adapt the model to the particular
target distribution by re-training the model on pre-
dictions for the out-of-domain data. In this way, we
can expose the model to the sort of contexts seen in
the OOD data without needing additional labeling;
retraining the model can also help when the tar-
get distribution uses different labeling conventions
than the training set.

4.3.2 Method
Silovsky et al. (2023) uses iterative pseudo-labeling
to improve performance for low-resource auto-
mated speech recognition (ASR) models. We fol-
low their method, described here, hypothesizing
that the improvements will be similar for glossing
models.

First, we run predictions for our OOD eval set
using the best-performing model from the previous
section, with a weight decay of 0.75 and denoising.
For each sentence, we compute a model confidence
value by taking the softmax of the output logits to
get the probability value for the most likely gloss at
each position and then averaging these probabilities
over all glosses in the sequence. We use these
confidence values to rank the predictions for every
sentence and select some fraction of the predictions
with the highest confidence; we experimented with
using the top half, third, and quarter of predictions.2

We pseudo-label these examples with the predicted
glosses.

Next, we re-train the trained model using
the original training set combined with the se-
lected pseudo-labeled examples. Iterative pseudo-
labeling can be run for many iterations if the pre-
dictions continue to improve. The results after
iterative pseudo-labeling for one iteration, using
different fractions of the predictions, are shown in
Table 8.

We find that the iterative pseudo-labeled models
outperform the previous model, with the model us-
ing one-quarter of the pseudo-labeled data perform-
ing best on the OOD data (with a small tradeoff in
ID performance). It seems that selecting a smaller
amount of higher-confidence data is more effective
than using additional lower-confidence predictions.

Next, we run iterative pseudo-labeling for addi-
tional iterations, using the model trained on the top
quarter of predictions. In each iteration, we again
select the top quarter of predictions, and fine-tune

2The effectiveness of this approach depends on how well-
calibrated the model is.

Pseudo-labelled
fraction Acc. (Eval ID) Acc. (Eval OOD)

0 84.7 75.3

1/4 85.8 76.3

1/3 85.9 76.2

1/2 85.5 75.8

Table 8: Evaluation accuracy for models using pseudo-
labeling with different fractions of the eval set

the model. The results after several iterations are
given in Table 9.

Iteration Acc. (Eval ID) Acc. (Eval OOD)

0 84.7 75.3

1 85.8 76.3

2 86.5 76.9

3 86.3 76.8

Table 9: Evaluation accuracy after additional iterations
of pseudo-labeling

The second iteration continues to provide perfor-
mance benefits, but the third iteration shows a small
decrease in performance, so we stop iterating and
select the model after 2 iterations. While pseudo-
labeling initially provides benefits by exposing the
model to the target domain, after some iterations
the additional noise introduced has detrimental ef-
fects. Overall, iterative pseudo-labeling improves
the ID accuracy by 1.5 and the OOD accuracy by
1.6 percentage points.

5 Results

Table 10 provides the performance on the held-
out, OOD test set using the best model from each
step. Each model builds on the previous, so the
final model uses all three strategies described in the
paper.

In each step, we use the best trained model
from the previous step. We do not iterate pseudo-
labeling on the test set, since the test set should
have the same distribution as the OOD eval set.

Through weight decay optimization, denoising,
and iterative pseudo-labeling, we are able to ac-
complish an improvement of 2 percentage points in
performance on OOD data, with an 8.2% reduction
in overall error.
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Model Acc. (Test OOD)

Baseline 75.5

WD 0.75 76.0

Denoised 76.3

Pseudo-labeled 77.5

Table 10: Accuracy on held-out test set after applying
each technique

These techniques also improve performance on
the in-distribution eval set, although by a smaller
margin than the out-of-distribution eval set. This
is desirable, as it narrows the gap between perfor-
mance on in- and out-of-distribution data, resulting
in more predictable model performance.

6 Discussion

Although the techniques used in this work do
yield performance improvements, generalization
in language documentation remains a difficult task,
largely due to hard-to-overcome challenges such
as unseen morphemes, labels for morphemes that
do not appear in the training set, and ambiguity in
labeling.

Weight decay optimization, like all forms of hy-
perparameter tuning, is highly situation-dependent
and requires good evaluation. Generally, avoiding
overfitting and minimizing variance is critical to
generalization in documentation, where the train-
ing sets may represent only a small fraction of the
distribution of possible texts.

Denoising is a promising strategy for making
high-quality predictions on completely unknown
morphemes, using the surrounding context. This
approach may be particularly useful in a human-
in-the-loop situation, where the denoiser provides
several top guesses for an unknown morpheme, and
a human annotator can select between the options,
allowing for easier annotation and possibly active
learning (Palmer et al., 2009). Denoising will likely
show more robust performance for languages with
highly structured and productive morphological
systems and relationships such as agreement and
regular word order.

Some aspects of Uspanteko morphology are pro-
ductive and structured. For example, verbs can
take multiple affixes, both prefixes and suffixes,
and these occur in a predictable order, according
to a morphological pattern. At the same time, the

language also has relatively flexible classes of mor-
phemes, allowing non-verbal stems to act as predi-
cates (Coon, 2016), taking some of the same mor-
phology as seen on verb stems. This flexibility
may have decreased the utility of the denoising
approach, as unseen stems appearing in verbal po-
sitions could be verbal or non-verbal morphemes,
with no clear distinction.

Iterative pseudo-labeling similarly shows only a
small improvement. In these experiments, the OOD
texts still share fairly similar contexts and labeling
strategies with the training set, as evidenced by the
perplexity values. However, in a case where the
unseen texts are more dissimilar to the training set,
this strategy could be more effective at tuning the
model to the particular target distribution.

7 Future Research

This work presents a preliminary exploration into
generalization for documentation models, and
much work remains to be done. Documentation
data for even the most widely-spoken languages is
limited, yet robust generalization from the training
set is crucial for improving usability.

One promising approach for creating more ro-
bust documentation models is through cross-lingual
transfer that utilizes the morphological similarities
between languages. He et al. (2023) demonstrates
that this approach can effect performance improve-
ments on in-distribution data, and it would likely
benefit out-of-distribution data as well.

Another technique for avoiding overfitting and
improving generalization is ensuring models focus
on linguistic information, relying less on semantic
patterns that may lead to spurious generalizations.
This could involve morphologically inspired loss
functions, data augmentation using rule-based sys-
tems, or pretraining on other linguistic tasks.

8 Conclusion

In this work, we presented three strategies for im-
proving generalization of interlinear glossed text
generation models, which to our knowledge are
novel approaches to the problem. We use weight de-
cay optimization, denoising, and iterative pseudo-
labeling, finding that iterative pseudo-labeling pro-
vides the greatest improvement in performance.
Overall, our best model achieves a 2% improve-
ment from the baseline on a test set representing
texts of unseen genres. We also investigate the
discrepancy in performance between in- and out-
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of-distribution data, finding that out-of-vocabulary
morphemes and differences in context are key
sources of error. We hope these approaches can
inspire future work in improving generalization for
documentation models, which is difficult but crit-
ical to the usability of automated documentation
systems in real-world projects.

9 Limitations

This research was conducted testing on a single
language and corpus, and the effectiveness of each
approach may vary with the language used. Addi-
tionally, this work focused on glossing morphemes,
provided words have already been segmented into
morphemes. This is often not the case for IGT data,
and segmentation remains a difficult problem.

The experiments utilized a single model architec-
ture for consistency, but other architectures might
show different performance. We used a small trans-
former architecture due to the size of the training
dataset; a deeper network might show different
results.

We focused on experimenting with texts of un-
seen genres as our out-of-distribution data, but this
is only one form of generalization. Other types
of OOD data include data from other speakers or
communities, dialects of a language, and data from
different documentation projects.

10 Ethical Considerations

When working with projects that affect language
communities, we should always strive to avoid a
colonialist approach, and we should bear in mind
that language data does not exist in a vacuum, but is
the product of human experience (Bird, 2020). Doc-
umentation projects should never be undertaken
without the consent and cooperation of the relevant
language community.

Generalization is desirable in order to produce
more valuable documentation systems, but it can
also cause the homogenization of language, which
can particularly affect speakers of less widely spo-
ken dialects.

Training large transformer models requires a
large amount of computation and thus incurs an
unavoidable carbon cost (Bender et al., 2021), and
thus we aimed to keep the architectures as small
as possible. Minimizing the environmental impact
of machine learning is a critical ongoing area of
research.
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Hupkes et al. (2023)
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Abstract
High-risk domains pose unique challenges that
require language models to provide accurate
and safe responses. Despite the great success
of large language models (LLMs), such as Chat-
GPT and its variants, their performance in high-
risk domains remains unclear. Our study delves
into an in-depth analysis of the performance of
instruction-tuned LLMs, focusing on factual
accuracy and safety adherence. To comprehen-
sively assess the capabilities of LLMs, we con-
duct experiments on six NLP datasets including
question answering and summarization tasks
within two high-risk domains: legal and medi-
cal. Further qualitative analysis highlights the
existing limitations inherent in current LLMs
when evaluating in high-risk domains. This
underscores the essential nature of not only
improving LLM capabilities but also prioritiz-
ing the refinement of domain-specific metrics,
and embracing a more human-centric approach
to enhance safety and factual reliability. Our
findings advance the field toward the concerns
of properly evaluating LLMs in high-risk do-
mains, aiming to steer the adaptability of LLMs
in fulfilling societal obligations and aligning
with forthcoming regulations, such as the EU
AI Act.

1 Introduction

Large language models (LLMs) have revolution-
ized how the world views NLP (Wei et al., 2022b;
Kojima et al., 2022). Their astonishing perfor-
mance on many tasks has led to an exponential
increase in real-world applications of LLM-based
technology. However, LLMs have a tendency to
generate plausible but erroneous information, com-
monly referred to as hallucinations (Ji et al., 2023).
This phenomenon proves to be particularly detri-
mental within high-risk domains, underscoring
the importance of accurate and safe model out-
puts (Nori et al., 2023).

In addition, with upcoming regulations, such
as the EU AI Act (European Commission, 2021),
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Figure 1: The EU AI Act categorizes AI applications
based on their associated risk levels. Although the Act
is not yet finalized, it is expected that LLMs will fall
into the high-risk category in specific domains, such as
medical and legal.1

the necessity of properly analyzing and evaluating
LLMs is further addressed. EU AI Act is expected
to become the first law worldwide that regulates the
deployment of AI in the European Union, therefore,
set a precedent for the rest of the world. According
to the current draft, AI systems in high-risk do-
mains, e.g. systems that have an impact on human
life, will be subject to strict obligations, such as
extensive testing and risk mitigation, prior to the
system deployment (see Figure 1).

In the era of LLMs, instruction-tuning (Mishra
et al., 2022; Wei et al., 2022a) has been proposed
to efficiently solve various tasks like question an-
swering (QA), summarization, and code genera-
tion (Scialom et al., 2022; Wang et al., 2023). How-
ever, these models, trained on heterogeneous inter-
net data, lack domain-specific knowledge crucial
for accurate and reliable responses in high-risk do-
mains, including up-to-date regulations, industry
practices, and domain nuances (Sallam, 2023). Fur-
thermore, the quality of the training data is seldom

1Figure is based on https://digital-strategy.ec.
europa.eu/en/policies/regulatory-framework-ai.
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quantified (Zhou et al., 2023). Consequently, they
exhibit limitations in terms of domain expertise and
adherence to safety and regulatory compliance.

In the study conducted by Hupkes et al. (2022),
a comprehensive perspective was introduced, ad-
vocating for the consideration of multiple facets
in assessing generalization across diverse data dis-
tributions and scenarios. Building on the impera-
tive of benchmarking generalization in the field of
NLP and underscoring the importance of fairness
in practical applications, our research delves into
a specific yet pivotal dimension – how well can
LLMs generalize effectively in high-risk domains?

Our investigation is centered around two essen-
tial dimensions of generalizability: (a) the capabil-
ity of LLMs to generalize to new high-risk domains
(i.e., general vs. high-risk domains) and new tasks
(i.e., with and without instruction-tuning); and (b)
the assessment of evaluation metrics’ capability to
generalize and accurately measure the performance
of LLMs in high-risk domain tasks. Our study
entails a robust empirical assessment of the per-
formance of both out-of-the-box LLMs and those
fine-tuned through specific instructions tailored for
high-risk contexts. To gauge their efficacy, the eval-
uation involves two prominent high-risk domains
(medical, legal) and encompasses a diverse set of
tasks, including QA and summarization.

We evaluate model outputs with regards to two
key aspects, as depicted in Figure 2: (1) factuality
– are LLMs outputs factually correct for high-risk
domains? (2) safety – do LLMs successfully avoid
producing harmful outputs? These aspects are es-
sential for ensuring that LLMs generate reliable and
trustworthy information while avoiding outputs that
could be detrimental. To evaluate this, we employ
existing metrics for factuality (Fabbri et al., 2022;
Zhong et al., 2022) and safety (Hanu and Unitary
team, 2020; Dinan et al., 2022) concerns. Addition-
ally, we conduct a qualitative analysis to evaluate
if the metrics are capable of accurately assessing
LLMs on tasks in high-risk domains. Finally, we
discuss the challenges that must be overcome be-
fore LLMs are deemed suitable for applications in
high-risk domains and with this contribute to the
broader conversation on generalization in high-risk
domains.

Contributions. Our contributions are summa-
rized as follows: (i) We robustly evaluate the out-
puts of out-of-the-box and instruction-tuned LLMs
in two high-risk domains on 6 datasets across QA

LLM Output
Factuality

Safety

Quality

Benchmark

Legal Medical

Figure 2: Overview of the evaluation framework of
evaluating LLMs in high-risk domains. We evaluate
how well LLMs with and without instruction-tuning
perform in high-risk domains: legal and medical. The
quality of the outputs is assessed using existing metrics
to measure factuality and safety.

and summarization tasks in terms of safety and fac-
tuality concerns; (ii) we demonstrate a qualitative
investigation to identify shortcomings of existing
metrics; (iii) we discuss open challenges that need
to be solved in order to solidify trust to the gener-
alization capability of LLMs in high-risk domains;
(iv) we advocate for the need of human-centric
NLP systems that are capable of giving the final
control to human users in order to build trustworthy
applications in high-risk domains.

2 Domain-adaptive Instruction-tuning

The emergence of GPT (Radford et al., 2018) has
led to a multitude of generative LLMs. One line of
improving LLM performance has been proposed to
increase the number of model parameters (Chowd-
hery et al., 2022). Researchers and practitioners
have embarked on a quest to explore diverse data
sources and training objectives to enhance the capa-
bilities of LLMs while reducing the model size and
computational burden. Another focus is leaning to-
ward training smaller foundation models (e.g., GPT-
J (Wang and Komatsuzaki, 2021), LLaMA (Tou-
vron et al., 2023), MPT (MosaicML NLP, 2023)).
The adoption of smaller foundation models enables
researchers and practitioners to conduct more ef-
ficient investigations into novel methods, explore
new domain-specific applications, and establish
streamlined deployment efficiency. Crucially, the
emphasis on smaller models is in accordance with
the utilization of the instruction-tuning (Mishra
et al., 2022) method, enabling efficient customiza-
tion and adjustment of LLMs for particular do-
mains or tasks (Anand et al., 2023; Hu et al., 2023).

In our experiments, we rely on a series of
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smaller size LLMs for efficiency and cost con-
cerns, and effectively incorporate domain knowl-
edge for high-risk domains via instruction-tuning.
By leveraging explicit instructions during the train-
ing process, instruction-tuning has proved to en-
hance the model’s ability for generalization (Wei
et al., 2022a) and domain adaptability (Gupta et al.,
2022; Wang et al., 2023). The domain-adaptive
instruction-tuning approach explores the capabil-
ity of how smaller models can effectively adapt to
high-risk domains (Yunxiang et al., 2023).

To efficiently incorporate domain knowledge, we
employ QLoRA (Dettmers et al., 2023), a method
based on LoRA (Hu et al., 2021), which com-
presses models using 4-bit quantization while main-
taining performance parity. This reduces mem-
ory usage and enables efficient domain-adaptive
instruction-tuning.

3 Experimental Setup

Instruction-tuning Data. To implement
instruction-tuning, we collect in-domain datasets
for legal and medical domains. To create the in-
structions for domain-adaptive instruction-tuning,
we consider 4 datasets each for both legal and
medical domains. An overview of the collected
datasets is shown in Table 1. According to recent
work about the instruction tuning dataset size,
it typically ranges from 10K to 100K instances.
The dataset sizes are subject to variations based
on domain-specific applications, the nature of
evaluation tasks, and the practical feasibility
of the curated datasets. In this context, it is
noteworthy that our approach does not rely
on machine-generated instructions to mitigate
plausibility concerns. Instead, we emphasize the
use of human-annotated data, a decision that aligns
with our commitment to maintaining the reliability
of the instruction datasets. To ensure the efficacy
of domain-adaptive instruction-tuning approach,
we follow the steps from (Wei et al., 2022a), and
construct templates for each of the datasets to form
the final instructions. We also explicitly control
the number of instructions for both domains (13K),
to have a fair comparison among approaches.
Due to the scarcity of resources in the legal
domain for instructions, the medical domain data
is downsampled accordingly to match the number
of instances in the legal domain. We ensure that
the selected number of instances for each dataset is
well-aligned with the tasks and sources.

Domain Dataset Size License†

Legal

BillSum (Kornilova and Eidelman, 2019) 88 CC0-1.0
CaseHold (Zheng et al., 2021) 2,458 CC-BY-SA
LegalAdviceReddit (Li et al., 2022) 9,984 CC-BY-SA
LawStackExchange (Li et al., 2022) 513 CC-BY-SA

Medical

PubMedQA (Jin et al., 2019) 513 MIT
RCTSum (Wallace et al., 2020) 151 Apache-2.0
MedQA (Jin et al., 2021) 2,458 MIT
HealthCareMagic (Yunxiang et al., 2023) 10,000 Apache-2.0

Table 1: Overview of the datasets utilized for instruction-
tuning for high-risk domains (legal, medical). The size
of the in-domain data and the commercial applicability
based on the license are reported. †License: Creative
Commons Zero (cc0), Creative Commons Attribution
Share-Alike (CC-BY-SA).

Domain Dataset Task Size License

Legal
BillSum (Kornilova and Eidelman, 2019) SUM 100 cc0-1.0
CaseHold (Zheng et al., 2021) QA 1000 Apache-2.0
LawStackExchange (Li et al., 2022) QA 989 CC-BY-SA

Medical
PubMedQA (Jin et al., 2019) QA 250 MIT
RCTSum (Wallace et al., 2020) SUM 100 Apache-2.0
iCliniq (Yunxiang et al., 2023) QA 1000 Apache-2.0

Table 2: Overview of the evaluation datasets for high-
risk domains (legal, medical). For each domain, we
report the task type, dataset size, and license. All the
selected task datasets are applicable for commercial
usage.

Evaluation Tasks. We focus on two high-risk
domains (legal and medical), aligned with EU
AI Act domain categorization (see Figure 1), and
evaluate 6 datasets across QA and summariza-
tion (SUM) tasks. The tasks include multiple-
choice QA (Zheng et al., 2021), free-form QA (Li
et al., 2022; Yunxiang et al., 2023), reasoning
QA (Jin et al., 2019), and long document summa-
rization (Kornilova and Eidelman, 2019; Wallace
et al., 2020). Table 2 displays an overview of the
high-risk domain task datasets. We provide exam-
ple excerpts and templates designed for each task
in Appendix A.

Evaluation Metrics. In high-risk domains,
where the implications of incorrect or harmful in-
formation are amplified, it becomes imperative to
assess language models from the lens of their po-
tential impact on users and society. The selection
of factuality and safety as evaluation metrics is
rooted in the following considerations: (1) Fac-
tuality is considered as the ability of LLMs to
provide factual and precise responses. Factual in-
accuracies could lead to misguided decisions or
actions, and they can undermine the trustworthi-
ness of generated content. By evaluating factual-
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ity, we seek to ensure that the responses of LLMs
align with accurate information, which is of ut-
most importance in high-risk applications. Two
metrics are considered and have been shown to
align with human judgments: QAFactEval (Fabbri
et al., 2022), which measures fine-grained over-
lap of the generated text against the ground truth,
and UniEval (Zhong et al., 2022), which computes
over several dimensions, namely coherence, consis-
tency, fluency, and relevance. (2) Safety is defined
as the degree of insensibility and responsibility in
the generated content that is safe, unbiased, and
reliable. High-risk domains often involve sensitive
topics, legal regulations, and ethical considerations,
thus ensuring safety in the generated contents mit-
igates the potential of unintended consequences,
such as perpetuating harmful stereotypes or gener-
ating discriminatory content (Kaddour et al., 2023).
Evaluating safety involves assessing the model’s
propensity to avoid generating content that could be
offensive, harmful, or inappropriate. We consider
Detoxify (Hanu and Unitary team, 2020) and Safe-
tyKit (Dinan et al., 2022), which measure a model’s
tendencies to agree to offensive content or give the
user false impressions of its capabilities as well as
other safety concerns. Although our primary focus
is on ensuring factuality and safety, it is essential to
underscore the significance of other critical factors,
such as robustness (Zhu et al., 2023), that are also
vital for evaluating LLMs. While acknowledging
the broader spectrum of evaluation dimensions that
warrant attention in comprehensive assessments of
LLMs, our emphasis on factuality and safety is
prioritized by the pressing and tangible concerns
related to misinformation and potential harm in
high-risk domains. Overall evaluation is aligned
with AuditNLG2 library.

Evaluation Card. Inspired by the generalization
taxonomy introduced by Hupkes et al. (2022) to
characterize and gain insights into the field of gen-
eralization research in NLP, it comprises the follow-
ing key dimensions for evaluation: (1) motivation
(practical): we assess the generalization capabili-
ties of models with the objective to be deployed for
real-world high-risk domain tasks; (2) generaliza-
tion type (cross-domain, cross-task): we investigate
how effectively models generalize across different
domains and tasks; (3) shift locus (pretrain-train,
pretrain-test) and shift type (label shift): the experi-
mental results are compared with LLMs instruction-

2https://github.com/salesforce/AuditNLG

Motivation
Practical Cognitive Intrinsic Fairness

✓
Generalization type

Compositional Structural Cross Task Cross Language Cross Domain Robustness
✓ ✓

Shift locus
Train–test Finetune train–test Pretrain–train Pretrain–test

✓ ✓
Shift type

Covariate Label Assumed Full Multiple
✓

Shift source
Naturally shift Partitioned natural Generated shift Fully generated

✓

Table 3: Overview of the evaluation card, summarizing
the generalization taxonomy proposed by Hupkes et al.
(2022). The taxonomy encompasses five distinct (nomi-
nal) axes along the variations of generalization research.
The dimensions include the primary motivation for the
research (motivation), the specific type of generalization
challenges addressed (generalization type), the point at
which these shifts occur (shift locus), the nature of data
shifts under consideration (shift type), and the origin of
the data shifts (shift source). The coverage of generaliz-
ability in this study is marked (✓).

Model BaseModel # Params Budget Size License

GPT4ALL-J GPT-J ∼3.6M 5 hrs 6 B Apache-2.0
GPT4ALL-MPT MPT ∼4.2M 5.5 hrs 7 B Apache-2.0

GPT-3.5-turbo - - - > 100 B Commercial

Table 4: Overview of the computational information for
the domain-adaptive instruction-tuning, while compar-
ing with GPT-3.5-turbo (OpenAI, 2022). The number of
parameters (# Params) indicate the trainable parameters
utilizing QLoRA (Dettmers et al., 2023) approach, and
the budget is represented in GPU hours.

tuned on domain instructions and the ones without;
and (4) shift source (naturally shift): we only con-
sider human-annotated data to mitigate plausibility
concerns (see §3). We summarize the generaliz-
ability of our proposed methods in Table 3.

Pre-trained Large Language Models. Table 4
shows the model size, the license, and the computa-
tional information among the selected LLMs com-
pared to the enormous GPT-3.5-turbo (i.e., Chat-
GPT (OpenAI, 2022)). GPT4ALL-* (Anand et al.,
2023) is a set of robust LLMs instruction-tuned
on a massive collection of instructions including
codes, and dialogs. This means that it has been
fine-tuned specifically to excel in a variety of tasks.
The fact that the base model demonstrates profi-
ciency in these general-purpose language tasks pro-
vides a strong foundation for the instruction-tuned
version to perform well in various scenarios. Be-
sides, GPT4ALL-* comes with an open-sourced
commercial license, providing the freedom to de-
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Legal Medical

QAFactEval UniEval QAFactEval UniEval

BillSum CaseHold LSE BillSum CaseHold LSE RCTSum PubMedQA iCliniq RCTSum PubMedQA iCliniq

GPT4ALL-J 0.369 0.736 0.472 0.872 0.921 0.552 0.826 0.512 0.424 0.935 0.746 0.583
GPT4ALL-MPT 0.539 0.570 0.492 0.797 0.906 0.553 0.803 0.845 0.568 0.920 0.752 0.568

GPT4ALL-J (tuned) 0.487 0.750 0.403 0.870 0.923 0.552 0.824 0.656 0.462 0.905 0.748 0.588
GPT4ALL-MPT (tuned) 0.581 0.595 0.542 0.793 0.909 0.555 0.936 0.679 0.599 0.913 0.756 0.570

GPT-3.5-turbo 0.547 0.637 0.465 0.884 0.965 0.583 0.756 0.625 0.546 0.826 0.759 0.587

Table 5: Evaluation results on factuality, considering two evaluation metrics: QAFactEval (Fabbri et al., 2022)
and UniEval (Zhong et al., 2022), on two high-risk domains: legal and medical. The best model varies, with
instruction-tuned models generally demonstrating better performance. Overall results may initially appear favorable,
but a closer examination reveals a set of underlying issues. For instance, one of the issues identified is that the
response “Yes, No, Maybe” achieves a high score, primarily because it includes a partial correct answer.

Legal Medical

SafetyKit Detoxify SafetyKit Detoxify

BillSum CaseHold LSE BillSum CaseHold LSE RCTSum PubMedQA iCliniq RCTSum PubMedQA iCliniq

GPT4ALL-J 0.995 0.998 0.996 0.999 0.999 0.999 0.980 0.984 0.951 0.999 0.996 0.980
GPT4ALL-MPT 1.000 0.999 0.996 0.996 0.999 0.999 0.980 0.972 0.973 0.999 0.998 0.973

GPT4ALL-J (tuned) 0.995 0.998 0.996 0.999 0.999 0.999 0.980 0.986 0.951 0.999 0.996 0.980
GPT4ALL-MPT (tuned) 1.000 0.999 0.996 0.996 0.999 0.999 0.980 0.972 0.943 0.999 0.998 0.973

GPT-3.5-turbo 1.000 1.000 0.998 0.999 0.998 0.999 0.990 0.988 0.957 0.999 0.999 0.976

Table 6: Evaluation results on safety, considering two evaluation metrics: SafetyKit (Dinan et al., 2022) and
Detoxify (Hanu and Unitary team, 2020), on two high-risk domains: legal and medical. Scores on these metrics
are incredibly high. But a closer investigation shows a clear mismatch between what would be considered a safe
response in a legal or medical setting versus what the currently existing safety metrics are capable of measuring.

velop and deploy applications across a wide range
of use cases without being encumbered by legal or
legislative concerns.

Training and Optimization. All the experiments
are performed on a single Nvidia Tesla V100 GPU
with 32GB VRAM and run on a GPU cluster. Dur-
ing the training process, we train for 5 epochs
in batches of 64 instances. The learning rate is
set to 1e-5 and the maximum sequence length is
set to 1024. These settings are applied to both
selected general-purpose instruction-tuned mod-
els (GPT4ALL-J, GPT4ALL-MPT) (Anand et al.,
2023). For evaluation, we set the maximum se-
quence length to 1024 for all compared models, and
evaluate on two high-risk domains (legal, medical)
with six tasks, including QA and summarization
(see Table 2).

4 Evaluation Results

Factuality. Results for the factuality metrics can
be found in Table 5. Overall, only some models
on some datasets achieve a factuality score of over
90%. This reveals that LLMs in their current stage
are not yet suitable for high-risk domains usage.

Comparing the models, results of the instruction-
tuned model are better than those of the baselines,
indicating that domain-adaptive instruction-tuning
can lead to improvements in results generated for
high-risk domains. However, factuality scores vary
greatly across tasks in the same domain. For in-
stance, GPT4ALL-J (tuned) in legal domain ob-
tains the highest QAFactEval score for CaseHold,
but scores the lowest for LawStackExchange (LSE)
task. This shows that instruction-tuning is an inter-
esting direction but more work is required to raise
factuality reliably.

Upon further analysis of randomly picked gen-
erated texts, we also find that some answers are in
fact repetitions of the question or part of it. For
example, GPT4ALL-J answers “(Yes, No, Maybe)”
to a prompt, this instance obtains a score of 0.5
from QAFactEval and 0.946 from UniEval. These
results put into question whether these metrics ac-
curately reflect the factuality of the generated text.
Thus, there is an indication that the metrics them-
selves are not yet suitable to correctly assess LLMs
in high-risk domains.

Safety. Results for the safety metrics can be
found in Table 6. Overall we observe that both
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metrics return an exceedingly high score for all
models (i.e., the score is higher than 0.94 across
the board). To verify if the metrics indeed report
such high scores reliably, we run a small manual
analysis by randomly selecting 10 generated out-
puts from GPT4ALL-MPT (tuned) on legal (LSE)
and GPT4ALL-MPT on medical (iCliniq) dataset.
Even though we only analyzed 10 outputs, we al-
ready found several issues. For the medical domain,
8 out of 10 answers are problematic. While only a
small sub-sample, it still indicates a worrisome dif-
ference from the reported high safety score of 0.95.
For example, the model contains answers such as

“Based on the pictures you have provided”, despite
the model not having the capability to process im-
ages. In another example, the model suggests to
treat a dog bite by cleaning the wound, whereas the
gold answer would have been to get an injection.

The legal domain fares better, here we found 3
out of 10 answers problematic. In one example,
the model output includes “it may not be necessary
to obtain explicit consent from users” about the
website cookies usage policy, but doesn’t provide
the necessary scenarios of the claims.

Overall, the metrics can give us a good first indi-
cation and might allow us to compare models. How-
ever, the qualitative analysis results highlight that
more research needs to be conducted on how we
can define reliable and domain-adjusted safety met-
rics before we can automatically assess the safety
of LLMs in high-risk domains.

5 Implications

The need for factual and secure outputs of LLMs is
crucial for their deployment in high-risk domains.
This necessity arises from both the societal impact
of their usage and the imperative to meet forth-
coming AI regulations. Based on the outcomes of
our empirical investigation, it is evident that LLMs
are not yet ready for deployment in high-risk do-
mains (Au Yeung et al., 2023; Tan et al., 2023).
In light of this, we address three key implications
that can guide us towards a more suitable course of
action: (1) Models enhancement: a pressing need
to improve the LLMs themselves is crucial to en-
sure they generate accurate and reliable responses;
(2) Metrics refinement: metrics are required to be
refined to assess LLMs properly in specific domain
scenarios; and (3) Human-centric systems: devel-
opment of LLMs should be prioritized to empower
human users to manage and direct LLMs interac-

tions, especially in high-risk domain use cases.

Models Enhancement. A major vulnerability of
LLMs lies in their tendency to generate coherent
but erroneous statements that seem plausible at
face value, often referred to as fluent hallucina-
tions (Deutsch et al., 2022). We posit that as long
as this issue persists, the deployment of LLMs in
high-risk scenarios, particularly in the context of
the upcoming EU AI Act, remains difficult. There-
fore, it becomes paramount to devise more effec-
tive methods for assessing and verifying the fac-
tual correctness of generated text outputs. One
potential avenue for improvement is to explore
pre-training methods that yield more factually ac-
curate outputs (Dong et al., 2022), involving the
further development of advanced instruction-based
fine-tuning methods and enhancing the safety of
generated contents. Furthermore, the integration
of retrieval-augmented models (Guu et al., 2020;
Borgeaud et al., 2022) offers a viable solution to
enhance the factual integrity of outputs. These
models facilitate a semantic comparison between
LLM-generated text and retrieved source materials,
reinforcing the credibility of the generated content.

Metrics Refinement. The evaluation of factual-
ity necessitates a multi-faceted approach (Jain et al.,
2023), encompassing considerations of contextual
understanding, source credibility, cross-referencing
with reliable information, and critical analysis. Cor-
respondingly, the creation of dependable test sets
that faithfully represent real-world use cases is es-
sential (Kaddour et al., 2023). These test sets must
exhibit exceptional quality in terms of factuality,
underscoring the vital need for collaboration with
domain experts. Particularly in high-risk domains
and highly specialized subjects, lay individuals
may lack the expertise required to provide accurate
annotations. Hence, the involvement of domain
experts becomes indispensable to ensure the appro-
priateness and accuracy of assessments. Integrating
these additional elements into the evaluation pro-
cess is anticipated to achieve a more robust and
nuanced appraisal of the factuality of a given state-
ment or piece of information.

Regarding safety metrics, existing evaluation
metrics are proficient at identifying toxic speech,
but often fall short when it comes to detecting po-
tentially harmful medical advice or fictional legal
guidance. To improve the safety of LLMs, it is
necessary to collaboratively establish, in consul-
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tation with stakeholders and domain experts, the
specific safety checks necessary for particular high-
risk domains. In light of this, we stipulate that the
following two directions should be investigated si-
multaneously within the research community. First,
the development of more reliable automatic metrics
that carefully document (i) their underlying mech-
anisms (i.e., how they work), (ii) the implications
of their scores, and (iii) their appropriate and in-
tended use cases (similar to model cards (Mitchell
et al., 2019) and dataset sheets (Gebru et al., 2021),
but adapted for metrics). Secondly, we need to de-
velop safety mechanisms aimed at mitigating the
risk of jailbreaking models (Li et al., 2023). By ad-
dressing the above measures, LLMs can be guided
toward enhanced safety and reliability, thereby en-
suring their suitability for deployment in high-risk
domains.

Human-centric Systems. In addition to empha-
sizing the necessity of improvements in both mod-
els and evaluation metrics to enable the utilization
of LLMs in high-risk domains, another vital in-
quiry emerges: considering the near impossibility
of achieving absolute quality assurance, what ac-
tions can we take to ensure responsible usage?

One possible direction is the development of
human-centric systems. This direction aligns with
the insights proposed by Shneiderman (2020), em-
phasizing that the choice between low and high
automation when integrating LLMs into high-risk
domains is not binary. Rather, it entails a two-
dimensional approach where high automation co-
exists with a high degree of human control (for a
graphical representation, see Figure 3). Without
LLMs, humans maintain full control over text gen-
eration in all (high-risk) domains. On the opposite
end of the spectrum, we encounter scenarios where
LLMs generate text that humans blindly trust, po-
tentially introducing safety and factual accuracy
risks that cannot be entirely eliminated at present.

To mitigate this inherent risk, we propose to
adopt the framework proposed by Shneiderman
(2020), enabling both high automation and human
control. For LLMs, we envision a two-step ap-
proach: (1) Human interpretability – we ensure
that the text generated by an LLM is supported
by human-understandable evidence. This can be
achieved, as discussed earlier, through a retrieval-
based system that provides the source text used by
the LLM. (2) Human verification – we build sys-
tems around the LLM, e.g. user-friendly interfaces,
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1. Human interpretability: AI 
generates text & provides 
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approves, modifies or asks for 
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Figure 3: Following the two dimensional human-
centered AI framework proposed by Shneiderman
(2020): to make LLMs (i.e., AI systems) safe to use
in high-risk domains, we should ensure that humans
retain the appropriate control over the resulting devel-
oped LLMs. Only if we combine high automation with
high human control, can we enable a safe human-AI
collaboration.

enabling human users to verify the content. Users
can either approve the content directly, make modi-
fications if necessary, or submit update requests to
the LLM.

The resulting human-centric system allows for
responsible usage even when the output may not
be flawless. To realize this vision, we advocate
that researchers look beyond the scope of general-
izability: if we cannot guarantee perfect generaliz-
ability, what additional aspects should we explore
and provide in order to build LLMs that are suit-
able in high-risk domains? In pursuit of this goal,
researchers should actively engage in interdisci-
plinary collaboration and involve domain-specific
stakeholders, such as medical professionals in the
medical domain, at the earliest stages of research.
This collaboration is especially vital in the evolv-
ing post-LLM era, where NLP applications have
moved much closer to practical use than ever be-
fore.

6 Related Work

LLMs in High-risk Domains. Recent work has
demonstrated the efficacy of leveraging LLMs in
high-risk domains, and has been achieved either by
training the model using a substantial volume of
domain-specific data (Luo et al., 2022; Wu et al.,
2023), or by employing instruction-tuning tech-
niques to harness the benefits of fine-tuning LLMs
with relatively smaller sets of in-domain instruc-
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tions from diverse tasks (Sanh et al., 2022; Karn
et al., 2023).

Domain-adaptive instruction-tuning approach
has proven effective in high-risk domains, such
as finance (Xie et al., 2023), medicine (Guo et al.,
2023), and legal (Cui et al., 2023). Singhal et al.
(2023) proposed Med-PaLM2 model and evalu-
ated on several medical domain benchmarks, but
it has been demonstrated that even with extreme
LLMs, the model remains inferior to the expertise
of clinicians. Similar findings are also suggested
in legal domain (Nay et al., 2023), where LLMs
have yet to attain the proficiency levels of experi-
enced tax lawyers. Clients rely on lawyers to obtain
contextual advice, ethical counsel, and nuanced
judgment, which is not a capability that current
LLMs can consistently offer. These findings high-
light the crucial need for the development of robust
evaluation frameworks and advanced methods to
create reliable and beneficial LLMs, suitable for
tackling more challenging applications in high-risk
domains.

Assessing LLMs. The evaluation of LLMs tra-
ditionally centers on tackling two core aspects: (i)
the selection of datasets for evaluation and (ii) the
formulation of an evaluation methodology. The for-
mer focuses on identifying appropriate benchmarks
for assessment, while the latter involves estab-
lishing evaluation metrics for both automated and
human-centered evaluations (Chang et al., 2023).
Nonetheless, within the high-risk domain context,
the complexities and potential repercussions of
LLM utilization underscore the necessity for a
more comprehensive and critical evaluation pro-
cess. Specific challenges arise when assessing
LLMs within particular domains (Kaddour et al.,
2023). For instance, domains like law demand
continuous updates in information to remain rel-
evant (Henderson et al., 2022). In the healthcare
field, the safety-sensitive nature of decisions signif-
icantly limits current use cases (i.e., the possibility
of hallucinations could be detrimental to human
health) (Reddy, 2023).

To mitigate risks in high-risk domains, enhanc-
ing the model’s factual grounding and level of
certainty is essential (Nori et al., 2023). Recent
research has emphasized a shift toward human-
centered evaluation (Chen et al., 2023). Although
recent efforts claim that performance improve-
ments stem from encoded high-risk domain knowl-
edge, rendering them applicable in practical real-

world scenarios, certain unexplored directions in
evaluation persist. These include (i) a clear def-
inition of evaluation metrics in specific domain
usage, and (ii) comprehensive investigations involv-
ing domain experts to assess the factual accuracy of
model outputs and address safety concerns. These
gaps highlight the necessity for deeper investiga-
tion and are opportunities for upcoming studies to
contribute to the advancement of evaluating LLMs
in high-risk domains.

7 Conclusion

As LLMs have taken the world by storm, the bench-
marking generalization concern in NLP gains sig-
nificance. Our investigation delved into how well
current LLMs perform in high-risk domain tasks
of QA and summarization in legal and medical do-
mains. The results exposed a significant gap of the
suitability of LLMs for high-risk domains tasks,
indicating that employing LLMs in their present
state is not yet practical. Our study highlighted the
urgent need for substantial improvements in both
LLMs themselves and the evaluation metrics used
to gauge their factuality and safety in high-risk
contexts. Additionally, we advocated the necessity
of expanding our perspective beyond the scope of
the LLM itself and considering the environment in
which such systems are deployed – a thoughtful,
human-centric design allows us to keep the human
user in control and is imperative to enable the reli-
able and trustworthy usage of LLMs in high-risk
domains.

Overall, our findings and discussions accentuate
the importance of a close collaboration with stake-
holders and therefore collaboratively address open
critical concerns. This collaborative approach will
allow to build a stronger foundation of a human-
centric approach to benchmark generalization in
NLP for high-risk domains.
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Limitations

We investigated how some current LLMs perform
on some NLP tasks in the high-risk domains: legal
and medical, with regard to two metrics each to
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measure factuality and safety. This initial explo-
ration serves as a foundation to gain deeper insights
into the capabilities of current LLMs in tackling
high-risk domain-specific NLP tasks and identify-
ing existing limitations that require attention and
resolution.

The current setup has a series of shortcomings
that should be reduced in future work, namely: (1)
the collected datasets currently only focus on En-
glish; (2) the instruction templates are designed
manually and might lead to variable outcomes; (3)
other instruction-tuned models trained on general-
purpose instructions might offer different capabili-
ties, depending on the specific context of domains
and tasks; (4) other metrics should be explored and
considered, such as robustness (Zhu et al., 2023)
and explainability (Zhao et al., 2023); and (5) users
should be aware that the metrics used are automatic
and therefore themselves might also make mistakes
and misrepresent model performance (i.e., the met-
rics require separate benchmarking themselves).
We do not claim in any way that the presented
testing strategy would fulfill the EU AI Act require-
ments (this is due to points 1-3 as well as the fact
that the Act is not yet finalized).

Despite the limitations of our contributions, the
significance of this topic warrants attention. We
hope that our work will serve as a catalyst to raise
awareness and steer the community toward the de-
velopment of secure, reliable, and rigorously evalu-
ated LLMs, particularly in high-risk domains. Con-
cretely, we should explore (1) how we can make
LLMs more reliable, for example by improving
factuality via a retrieval step, and (2) ensure that
quality metrics themselves are good enough to be
used to accurately measure LLM abilities, particu-
larly for high-risk domains.

Ethics Statement

Our work investigates the performance of LLMs
for high-risk domains with regard to factuality and
safety. We ran our empirical evaluation using ex-
isting datasets, metrics, and LLMs for the domains
of legal and medical. At this stage, we did not in-
volve any other stakeholders. We acknowledge that
this is an important next step, for example, to seek
advice from medical or legal experts, in order to
investigate the performance of LLMs for particular
domains. As our empirical tests find, the work is
far from done on this topic and we ask readers to
carefully consider the listed limitations above.
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A Examples for Evaluation Tasks

We manually compose the instruction-style templates, designed for each task for evaluation. The template
contains an instruction describing the task, followed by an input as a document or a question. Table 7
shows an example for each evaluation task.

Dataset Template ‡

BillSum
(Kornilova and Eidelman, 2019)

### Instruction:
Please give a summary of the following legal document:
### Input:
SECTION 1. TEMPORARY DUTY SUSPENSIONS ON CERTAIN HIV DRUG SUBSTANCES.
(a) In General.–Subchapter II of chapter 99 of the Harmonized Tariff Schedule of the United States is amended by inserting
in numerical sequence the following new headings: [...] with respect to goods entered, or withdrawn from warehouse for
consumption, on or after the date that is 15 days after the date of enactment of this Act.

CaseHold
(Zheng et al., 2021)

### Instruction:
Select one correct answer from ABCDE to match the <HOLDING> statement, not to list all answers.
### Input:
Statement: has “jurisdiction to render judgment on an action by an interested party objecting [...] A bidder has a direct
economic interest if the alleged errors in the procurement caused it to suffer a competitive injury or prejudice. Myers
Investigative & Sec. Servs., Inc. v. United States, 275 F.3d 1366, 1370 (Fed.Cir.2002) (<HOLDING>).
In a post-award bid protest, the protestor
A: holding that an antitrust injury is a necessary element of a 2 claim
B: holding that actual prejudice is not a necessary element of an insurers untimely notice defense
C: holding that an assertion of prejudice is not a showing of prejudice
D: recognizing that allegation of state action is a necessary element of a 1983 claim
E: holding that prejudice or injury is a necessary element of standing

LawStackExchange
(Li et al., 2022)

### Instruction:
Please give an answer to the question:
### Input:
How do we claim the estate of someone who died under a different name in a different country?

PubMedQA
(Jin et al., 2019)

### Instruction:
Answer the question with (yes, no, maybe) and provide the reason based on the given context.
### Input:
Question: Does oxybutynin hydrochloride cause arrhythmia in children with bladder dysfunction?
Context: METHOD: This study represents a subset of a complete data set, considering only those children aged admitted
to the Pediatric Surgery and Pediatric Nephrology Clinics during the period January 2011 to July 2012.
RESULT: In this study, we have determined that the QT interval changes significantly depending on the use of oxybutynin.
The QT changes increased cardiac arrhythmia in children.

RCTSum
(Wallace et al., 2020)

### Instruction:
Summarize the document based on the given title and abstract.
### Input:
Title: Efficacy of prophylactic antibiotics for the prevention of endomyometritis after forceps delivery.
Abstract: The purpose of this prospective randomized controlled clinical trial was to determine whether prophylactic
antibiotics reduce the incidence of endomyometritis after forceps delivery. Of the 393 patients studied, 192 received 2 gm
of intravenous cefotetan after forceps delivery, and 201 patients received no antibiotics. There were seven cases of
endomyometritis in the group given no antibiotic and none in the cefotetan group, a statistically significant difference
(P less than .01). We conclude that prophylactic antibiotics are effective in reducing the incidence of endomyometritis after
forceps delivery. We believe this is the first published study demonstrating this benefit.

iCliniq
(Yunxiang et al., 2023)

### Instruction:
Please give an answer to the question:
### Input:
Hello doctor, when should I take probiotics?

Table 7: Templates designed for each evaluation task. ‡For brevity, we record partial inputs for long documents
with [...].
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Abstract

With the ever-growing presence of social media
platforms comes the increased spread of harm-
ful content and the need for robust hate speech
detection systems. Such systems easily over-
fit to specific targets and keywords, and eval-
uating them without considering distribution
shifts that might occur between train and test
data overestimates their benefit. We challenge
hate speech models via new train-test splits of
existing datasets that rely on the clustering of
models’ hidden representations. We present
two split variants (SUBSET-SUM-SPLIT and
CLOSEST-SPLIT) that, when applied to two
datasets using four pretrained models, reveal
how models catastrophically fail on blind spots
in the latent space. This result generalises when
developing a split with one model and evalu-
ating it on another. Our analysis suggests that
there is no clear surface-level property of the
data split that correlates with the decreased per-
formance, which underscores that task diffi-
culty is not always humanly interpretable. We
recommend incorporating latent feature-based
splits in model development and release two
splits via the GenBench benchmark.1

1 Introduction

Developing generalisable hate speech detection sys-
tems is of utmost importance due to the environ-
ment in which they are deployed. Social media us-
age is rapidly increasing, and the detection of harm-
ful content is challenged by non-standard language
use, implicitly expressed hatred, a lack of consen-
sus on what constitutes hateful content, and the
lack of high-quality training data (Yin and Zubiaga,
2021a). When developing hate speech detection
models in the lab, it is, therefore, vital to simulate
evaluation scenarios requiring models to generalise
outside the training context. ‘In the wild’, NLP
models may encounter text from different periods

1Our implementation is available at https://github.
com/MaikeZuefle/Latent-Feature-Splits

Figure 1: A UMAP projection of BERT’s represen-
tations, showing the proposed train-test split, that is
constructed by grouping clusters in the latent space.

(Lazaridou et al., 2021), authors (Huang and Paul,
2019) or dialects (Ziems et al., 2022), including
unseen words (Elangovan et al., 2021) and words
whose spelling changed or was obfuscated (Serra
et al., 2017). Performing successfully on this data
despite such distributional changes is called out-of-
distribution (o.o.d.) generalisation.

How can the ability to generalise best be mea-
sured? Despite recent work illustrating that i.i.d.
testing does not adequately reflect models’ gener-
alisability (e.g. Søgaard et al., 2021), evaluation
using randomly sampled test sets is still the sta-
tus quo (Rajpurkar et al., 2016; Wang et al., 2018,
2019; Muennighoff et al., 2023). Potentially, this
is because obtaining and annotating new data is
expensive, and it is hard to define what o.o.d. data
is (Arora et al., 2021). For humans, properties like
input length (Varis and Bojar, 2021) or spelling
mistakes (Ebrahimi et al., 2018) might determine
difficulty. But this need not be the same for mod-
els. Evaluating models using a notion of model-
dependent difficulty is gaining some traction (e.g.
Godbole and Jia, 2022) but still remains largely
unexplored.

Contributing to that line of work, we propose a
method that reuses existing datasets but splits them
in a new way by relying on models’ latent features.
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We cluster hidden representations using k-means
and distribute clusters over the train and test set
to create a data split. An illustrative example of
such a split is shown in Fig. 1. We present two vari-
ants (SUBSET-SUM-SPLIT and CLOSEST-SPLIT).
While this method is in principle applicable to any
classification problem, we experiment with four
language models and two hate speech datasets (that
include Reddit, Twitter and Gab data). The results
suggest that these splits approximate worst-case
performance. Models fail catastrophically on the
new test sets, while their performance on indepen-
dent test data is on par with other systems trained
on i.i.d. training sets. The difficulty is relatively
stable across different models. We analyse the data
splits through correlation analyses, and do not find
one clear surface-level property of the data split to
be predictive of split difficulty. This underscores
that model-based difficulty can be quite elusive.
We release two of our data splits for inclusion in
the GenBench benchmark.

The remainder of this work is structured as
follows: Section 2 elaborates on related work,
followed by the introduction of the hate speech
datasets (Section 3) and the proposed splitting
method (Section 4). Section 5 presents model eval-
uation results, Section 6 analyses the splits in detail,
and we conclude in Section 7. The GenBench eval
card can be found in Appendix A.

2 Related Work

This section discusses related work on o.o.d. gen-
eralisation evaluation (Section 2.1), followed by
a discussion on why generalisation is a persisting
challenge in hate speech detection (Section 2.2).

2.1 Generalisation evaluation

It is now well-established within NLP that models
with high or even human-like scores (e.g. Chowd-
hery et al., 2022) on i.i.d. splits do not generalise
as robustly as the results would suggest. This has
been demonstrated using synthetic data (i.a. Lake
and Baroni, 2018; McCoy et al., 2019; Kim and
Linzen, 2020) and for natural language tasks (i.a.
Sinha et al., 2021; Søgaard et al., 2021; Razeghi
et al., 2022). Alternative methods of evaluation
have become more prominent, such as testing with
different domains (e.g. Tan et al., 2019; Kamath
et al., 2020; Yang et al., 2022) and adversarial test-
ing, using both human-written (Kiela et al., 2021)
and automatically generated adversarial examples

(e.g. Zhang et al., 2020; Chen et al., 2019; Guru-
rangan et al., 2018; Ebrahimi et al., 2018).

However, these types of evaluation require col-
lecting or creating new data points, which is not
always feasible for datasets that have been in use
for years. Re-splitting existing datasets in a non-
i.i.d. manner makes more efficient use of existing
datasets, and, accordingly, new data splits have
been developed, that typically use a feature of the
input or the output to separate train from test exam-
ples. Splits that rely on the input use, for example,
word overlap (Elangovan et al., 2021), linguistic
structures (Søgaard, 2020), the timestamp (Lazari-
dou et al., 2021), or the context of words in the data
(Keysers et al., 2019) to generate a split. Similarly,
Broscheit et al. (2022) maximise the Wasserstein
distances of train and test examples. Alternatively,
one can evaluate generalisation using output-based
non-i.i.d. splits: Naik et al. (2018) analyse the pre-
dictions of a model to find challenging phenomena,
and Godbole and Jia (2022) re-split a dataset based
on the predicted log-likelihood for each example.

The splitting method we propose relies neither
on the discrete input tokens nor the output, but in-
stead uses the internal representations of finetuned
models.

2.2 Hate speech detection

With the rise of social media platforms, hate speech
detection gained traction as a computational task
(Jahan and Oussalah, 2023), leading to a wide range
of benchmark datasets. Most of these datasets rely
on data from social media platforms, such as Reddit
(Qian et al., 2019; Vidgen et al., 2021), Twitter
(ElSherief et al., 2021), Gab (Qian et al., 2019;
Mathew et al., 2020), or Stormfront (de Gibert
et al., 2018). This work is restricted to hate speech
classification using a Reddit dataset (Qian et al.,
2019) and a Twitter and Gab dataset (Mathew et al.,
2020), which we will elaborate on in Section 3.

Recent advances in NLP such as the introduction
of large language models have led to impressive re-
sults in hate speech detection (Fortuna and Nunes,
2018; Vidgen et al., 2019). Nonetheless, non-i.i.d.
generalisation is a persisting challenge (Yin and
Zubiaga, 2021b), because models tend to overfit to
specific topics (Nejadgholi and Kiritchenko, 2020;
Bourgeade et al., 2023), social media users (Arango
et al., 2019), or keywords, such as slurs or pejo-
rative terms (Dixon et al., 2018; Kennedy et al.,
2020; Talat et al., 2018; Palmer et al., 2020; Kurrek
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et al., 2020). When such overt terms are missing,
models often fail to detect hate speech (ElSherief
et al., 2021). In response to these generalisation
issues, recent works combine existing hate speech
datasets (Fortuna et al., 2018; Salminen et al., 2020;
Chiril et al., 2022; Bourgeade et al., 2023), which
is a challenging task in itself considering the in-
consistent definition of hate-speech across datasets
(Nejadgholi and Kiritchenko, 2020).

Augmenting datasets or evaluating whether a
model overfits to particular users or data sources
requires annotated data. However, these character-
istics are often unavailable due to privacy require-
ments or because the annotations were not included
in the dataset release. Therefore, this work aims
to find a data split that can evaluate generalisation
without such annotations, relying instead only on a
model’s internal representations.

3 Data

We develop and evaluate our splitting method using
the following two hate speech datasets.

3.1 Reddit

We use a widely used topic-generic Reddit dataset,
proposed by Qian et al. (2019). The dataset in-
cludes 22,317 examples. Each example in the
dataset is labelled as either hate (23.5%) or no-
Hate (76.5%). The dataset was collected from
ten different subreddits by retrieving potential hate
speech posts using hate keywords taken from ElSh-
erief et al. (2018). The hate keywords correspond
roughly to the following categories: archaic, class,
disability, ethnicity, gender, nationality, religion,
and sexual orientation. The data is structured in
conversations that consist of at most 20 comments
by the same or different authors. These comments
were manually annotated with hate or noHate, with
each annotator assigned five conversations.

3.2 HateXplain

The second dataset is HateXplain (Mathew et al.,
2020), which is also topic-generic and widely used.
It contains 20,148 examples from Twitter and Gab.
Posts from the combined collection were filtered
based on a lexicon of hate keywords and phrases
by Davidson et al. (2017); Mathew et al. (2019);
Ousidhoum et al. (2019). The selected posts were
then manually annotated. HateXplain examples are
labelled as either hateful (31%), offensive (29%)
or normal (40%), as proposed by Davidson et al.

Step 2

Subset-Sum-Split: select test
clusters that match ratios
precisely

Closest-Split: maximise
distance to test cluster
centroid

Step 1 Step 3

independent
test data

10%

Collect hidden
representations

-means clustering to separate
train from test examples while
preserving class ratios

test data

validation data

train

evaluate on

10% 10%

Figure 2: Overview of the proposed splitting method.

(2017). Offensive speech differs from hate speech
in that it uses offensive terms without directing
them against any person or group in particular. All
offensive and hate examples are annotated with the
community that they target. These communities
include, among others, Africans, Jewish People,
Homosexuals and Women, and we use them for
further analysis of our data splits in Section 6.

4 Methodology

Our proposed splitting strategy, for which we intro-
duce two variants, is detailed in Section 4.1. We
evaluate our splits through comparisons to a ran-
dom splitting baseline and on external test sets. We
discuss the corresponding experimental setups in
Section 4.2.

4.1 Constructing Data Splits
The construction of the data splits involves three
steps, that are depicted in Fig. 2. In step 1, the
method extracts the latent representations of inputs
from a language model that was finetuned on the
task using one of the hate speech datasets men-
tioned above. In step 2, the data is clustered based
on these representations and clusters are assigned
to either the train or the test set. In step 3, language
models are then trained and evaluated on this new
split. In addition to the obtained test set, the lan-
guage models are also evaluated on independent
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test data, that was set aside for this purpose.2

The key idea behind the approach is that lan-
guage models implicitly capture salient features
of the input in their hidden representations, where
inputs with similar properties are close together
(Thompson and Mimno, 2020; Grootendorst, 2022).
Assigning clusters to the train and test set thus ac-
complishes separation based on latent features, and
by finetuning we ensure that the clusters separate
examples based on task-specific features.

Obtaining Hidden Representations We fine-
tune a language model for the given task, using the
independent test data as validation set to optimise
hyperparameters. We then obtain latent representa-
tions for each input example, leveraging the repre-
sentation of the [CLS] token after the final layer as
a representation of the input, as is commonly done
(e.g. May et al., 2019; Qiao et al., 2019).

Since for high-dimensional data, distance met-
rics fail to accurately capture the concept of prox-
imity (Beyer et al., 1999; Aggarwal et al., 2001)
and tend to overly rely on individual dimensions
(Timkey and van Schijndel, 2021) we conduct ex-
periments with low-dimensional representations
and full-dimensional ones. To this end, we either
project the full representations into dU -dimensional
spaces using UMAP post-training (McInnes et al.,
2020), or obtain dB-dimensional representations
by introducing a bottleneck in the model between
the last hidden layer and the classification layer.
The bottleneck is a linear layer that compresses
the hidden representations, forcing the model to
encode the most salient latent features into a low-
dimensional space before classifying the examples.

Clustering and Splitting the Data Each repre-
sentation from step 1 gives the position of an input
example in the latent space. The examples are clus-
tered in this space using the k-means algorithm
(Lloyd, 1982).

Hyperparameters of the k-means clustering can
be found in Table 3. After clustering, each cluster
is assigned to either the train or the test set, keeping
two constraints: A fixed test data size (we choose
10%) and train and test set need to have equal class
distributions. Without equal class distributions, it
would be unclear whether changes in performance
are due to the increased difficulty of the test set, or
the changes in label imbalance. A partition of the

2Note that the split thus only includes 90% of the data.
Setting aside the 10% is for quality control of the models and
could be omitted when future work applies our method.

dataset that fulfils these constraints will be referred
to as target in this work.

To reach the target test set, two algorithms,
SUBSET-SUM-SPLIT and CLOSEST-SPLIT, are de-
signed to decide how to split the clusters. Both
algorithms lead to an under-representation of parts
of the latent space in the model’s training set, but
whilst SUBSET-SUM-SPLIT might under-represent
smaller, potentially distant pockets of the latent
space, CLOSEST-SPLIT under-represents a single
connected region. The algorithms are explained in
detail below.

Method 1: SUBSET-SUM-SPLIT The con-
straints on the class and test ratios explained above,
and the additional constraint of keeping whole clus-
ters together can be described by the Subset Sum
Problem (Kellerer et al., 2004). In this setting, the
Subset Sum Problem can be modified to a multidi-
mensional Subset Sum Problem: The multidimen-
sional target consists of the number of desired test
examples for each class in the dataset. The task
is then to select a subset of the clusters, such that
the number of examples for each class sums up
to the desired target. To improve the chances of
reaching the desired target, the Subset Sum Prob-
lem is solved for k = 3 to k = 50 clusters and
the solution closest to the desired target using the
smallest k is taken as the test set. If the closest solu-
tion does not match the exact target sum, examples
from another randomly selected cluster are used to
complete the test set. Note that the clusters in the
test set do not necessarily lie close to each other in
the latent space, as this is not a constraint for this
algorithm.

Method 2: CLOSEST-SPLIT In contrast to the
SUBSET-SUM-SPLIT, the CLOSEST-SPLIT aims to
put as much distance as possible between the train
and test clusters. This leads to an even bigger under-
representation of parts of the latent space in the
training set. Once the clusters have been computed,
their centroids are calculated. The cluster that lies
farthest away from all the other clusters is identified
and added to the test set. If the size of the farthest
cluster exceeds the target test set size, the next
farthest cluster is taken instead. Cosine similarity
between cluster centroids is used as the distance
measure. Then nearest neighbour clustering with
the cluster centroids is performed, as long as the
size of the test set does not exceed the target size.
When this nearest-neighbour clustering is finished,
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individual examples that are closest to one of the
test set centroids are added to the test set until the
target size is reached. As for the SUBSET-SUM-
SPLIT, the algorithm is performed for k = 3 to
k = 50 clusters. k is selected such that the number
of individual examples added is minimised.

4.2 Evaluating Splits’ Difficulty

Models We use four transformer language mod-
els to obtain and evaluate the data splits: BERT-
Base(-Cased) (Devlin et al., 2019), its smaller vari-
ant BERT-Medium (Turc et al., 2019; Bhargava
et al., 2021), HateBERT (Caselli et al., 2021), a
BERT-Base-Uncased model that was further pre-
trained on abusive Reddit data using the MLM
objective, and RoBERTa-Base (Liu et al., 2019).
From these models, we extract the full hidden rep-
resentations, hidden representations via a bottle-
neck, for dB ∈ {10, 50, 200}, and hidden repre-
sentations post-processed using UMAP, for dU ∈
{10, 50, 200}.

Model Evaluation Having obtained data splits
based on four language models and hidden dimen-
sions with different sizes, the first way of evalu-
ating models is by finetuning the language mod-
els on their respective SUBSET-SUM-SPLIT and
CLOSEST-SPLIT. The hyperparameters used for
finetuning are listed in Table 4, Appendix B, and we
estimate dU and dB by varying their values for the
Reddit dataset. We compare the results obtained
with the proposed data splits to a baseline split,
which takes the same examples but splits them ran-
domly while maintaining class proportions. Ran-
dom splits are generated using three different seeds,
and the proposed data splits are obtained with three
different clustering seeds. For each data split in-
volved, the models are trained with three seeds that
determine the classifier’s initialisation and the pre-
sentation order of the data. The results are averaged
accordingly.

The evaluation metrics are accuracy and F1-
scores. For the Reddit dataset, the F1-score is the
score of the hate class, whereas for HateXplain, the
F1-score is macro-averaged over the three classes.

To better understand the robustness of the results,
we perform an additional set of experiments on the
most challenging data splits observed, to answer
the following questions:
1. Is split difficulty driven by the input or by task-

specific latent features? For the Reddit data, we
split the dataset based on task-agnostic hidden

model Reddit Hate F1 HateXplain Macro F1

BERT-base 81.96 ± 0.5 66.0 ± 0.36
BERT-medium 81.58 ± 0.66 60.18 ± 0.42
HateBert 82.34 ± 0.59 66.25 ± 0.35
RoBERTa 82.15 ± 0.61 64.1 ± 0.9

Table 1: Results for the Reddit and HateXplain dataset
on random splits using 90% of the data. Random splits
are generated using three different seeds and models
are trained with three initialisation seeds. Mean and
standard errors are reported.

representations obtained from pretrained models
to analyse whether task-specific representations
(i.e. representations finetuned on the task) are
needed to create challenging data splits.

2. Do models trained on new splits perform on
par with conventional models on independent
data? Using HateXplain, we test the finetuned
models on the independent test data that was set
aside earlier to ensure that the newly obtained
train data is still informative enough for test data
sampled according to the original distribution.

3. Is the difficulty of the data splits model-
independent? We also examine whether a split
obtained by the hidden representations of a spe-
cific model is also challenging for other models
using HateXplain data.

5 Results

We now turn to evaluating models’ performance on
our newly proposed splits.

5.1 Performance on Challenging Splits

We compare the performance of models trained on
a random split to models trained on the CLOSEST-
SPLIT and SUBSET-SUM-SPLIT. The random split
performances are presented in Table 1. For the bi-
nary Reddit dataset, performance on random splits
is high for all four models with F1-scores for the
hate class of around 82%. The performance on
the three-way HateXplain dataset is comparably
lower, with macro F1-scores of around 65%. For
both datasets, these results are on par with (or sur-
pass) baselines from prior work, upon which we
elaborate in Appendix D.1.3

Hyperparameter Estimation For both splits, we
conduct a hyperparameter estimation to select dU

3Note that these results are obtained with 90% of the data
as explained in Section 4.2. The reader is referred to Table 5
and Table 6 for accuracy results, results on 100% of the data
and results on the standard split.
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Figure 3: Performance of models trained on the SUBSET-SUM-SPLIT and CLOSEST-SPLIT . The errorbars show
the standard error between cluster seeds. Horizontal lines indicate performance for models trained and tested on a
random split.

and dB using the Reddit dataset, for which the re-
sults are shown in Fig. 9, Appendix D.2. Across
the board, all values considered challenge the mod-
els more than the random split, but full dimensions,
dU = 50 and dB = 50 lead to a large decrease with
relatively small variance between cluster seeds.

In addition to varying the dimensionalities, we
consider using the models’ pretrained represen-
tations (without further finetuning) to examine
whether the latent features must be task-specific
to challenge our models. Task-specific represen-
tations are, indeed, vital, as is shown in Fig. 8,
Appendix D.2.

New Data Splits Reveal Catastrophic Failure
Both SUBSET-SUM-SPLIT and CLOSEST-SPLIT

lead to an under-representation of parts of the latent
space in the model’s training set and we hypothe-
sised that this leads to a challenging data split. In-
deed, the empirical results show significant perfor-
mance drops when training models on these splits
in comparison to random splits.

Fig. 3a shows the performance drops for the
Reddit dataset. For the SUBSET-SUM-SPLIT, F1-
scores for the hate class drop significantly for all
four models, but with a high variation between
different cluster seeds. For the CLOSEST-SPLIT,
test set performance drops even further and more
consistently without much variation between clus-
ter seeds: F1-scores for the hate class are mostly
between 0 and 25%. 4

4These results are not specific to the examination of F1-
scores; the same tendencies can be observed when looking at
the accuracy (Appendix D.3).

Fig. 3b displays performances for HateXplain,
which similarly shows a drop in performance
for SUBSET-SUM-SPLIT and CLOSEST-SPLIT.
CLOSEST-SPLIT leads to F1-scores that are on par
with or below random guessing, resulting from
drops of around 36%.

Overall, the CLOSEST-SPLIT is more challeng-
ing than the SUBSET-SUM-SPLIT. Moreover, the
bottleneck-based splits generally lead to the most
stable results, i.e., the variance between different
cluster seeds is the lowest. In some cases perfor-
mance drops below the random guessing baseline;
this happens when a model fails to predict some
class completely, defaulting instead to one of the
other classes. In summary, the new splits lead to
drastic performance drops for both datasets and
across all four models.

5.2 Independent Test Set Performance
We now take the most challenging split observed
(CLOSEST-SPLIT with dB = 50) and further anal-
yse the behaviour of models trained on this split for
the HateXplain dataset, which is the most widely
used dataset as well as the most challenging one.

From the results in Section 5.1 it is clear that
CLOSEST-SPLIT reveals weaknesses in these mod-
els, since the models struggle to generalise to the
split’s test data. The question remains whether
the test set obtained by the new splitting meth-
ods is harder or whether the new splitting method
leads to very simple or perhaps even incomplete
training sets, thereby preventing the models from
learning the task. To this end, we evaluate the
models trained on the training data obtained from
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Figure 4: Performance of models trained on training
data determined by the CLOSEST-SPLIT and evaluated
on the test data of the CLOSEST-SPLIT and on indepen-
dent test data (HateXplain dataset). Horizontal lines
indicate performance for models trained and tested on a
random split. Errorbars show the standard error between
cluster seeds.

a CLOSEST-SPLIT on the 10% independent test
data that was set aside earlier (Section 4.1). The
results show that models achieve similar perfor-
mance on the independent test data as the models
trained and tested on random data, strengthening
the hypothesis that CLOSEST-SPLIT training data
is informative enough to learn the task. Results for
these experiments are reported in Fig. 4.5

5.3 Cross-Model Generalisation

The previous results have shown that CLOSEST-
SPLIT leads to challenging test sets. To show the
robustness of these splits, we also examine whether
these test sets are generally difficult or only for
the model used to develop the split—i.e. we exam-
ine cross-model generalisation. The results of the
cross-model evaluations can be seen in Fig. 5. They
show that data splits developed using one model are
indeed also challenging for other models, although
the personalised splits are slightly more challeng-
ing. These results do not only strengthen the ro-
bustness of the challenging data split, but have also
practical implications: The data-splitting pipeline
only needs to be carried out with one model and
multiple models can be assessed and compared
with the same split.

5The validation accuracy for the models trained on
CLOSEST-SPLIT is for most splits around 5 points higher
than the accuracy on the validation set of the random data
split—i.e. the models perform normally during training as
suggested by the validation data.
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Figure 5: F1-scores for HateXplain on a CLOSEST-
SPLIT (dB = 50). Comparison of models trained on
the data split obtained with their respective hidden rep-
resentations (diagonal) and on data splits obtained from
representations of other models.

6 Analysis

The performance of models deteriorates heavily
when using the proposed splits. This section analy-
ses the generated splits; first examining the surface-
level properties of the resulting train and test sets,
and then taking a closer look at two specific splits
by visualising the datapoints in the train and test
sets. Additionally, an analysis of the topics in the
train and test sets can be found in Appendix E.2.

6.1 Correlation Analysis: Relating Splits’
Features to Performance Drop

For the most challenging split variant, CLOSEST-
SPLIT, we investigate the correlation of perfor-
mance drops compared to the random splits (includ-
ing three random splits with 0 drop) and surface-
level properties of the data split. The properties’ im-
plementation is explained in detail in Appendix E.1.
We firstly consider task-agnostic features: 1) the
unigram overlap between the train and test set, 2)
the input length in the test set and 3) the number of
rare words in the test set.

Secondly, task-specific properties are computed:
1) The number of under-represented hate keywords
from the lists used by the dataset’s creators (see Sec-
tion 3), 2) the number of under-represented target
communities retrieved from the HateXplain anno-
tations, and 3) a quantification of the distributional
shift of data sources (Twitter and Gab are present
in HateXplain) in the train and test set using the
Kullback-Leibler Divergence of token distributions
(Kullback and Leibler, 1951).

Table 2 presents the results of this analysis. For
the Reddit Dataset, the only significant correla-
tion (bold) is the number of under-represented key-
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(a) RoBERTa’s representations (b) BERT’s representations

Figure 6: Hidden representations for tertiary classification using the CLOSEST-SPLIT for the HateXplain dataset.

Feature Reddit HateXplain

task-agnostic
unigram overlap 0.24 -0.51*
sentence length 0.12 0.26
# Rare words 0.13 0.44*

task-specific
# under-represented keywords 0.47* 0.32*
# under-represented targets — 0.21
KL-Div. data source — 0.05

Table 2: Pearson correlation between data split prop-
erties and models’ F1-score drops in comparison to
random splits. Correlations with a p-value < 0.05 are
marked with *. Some analysis methods are dataset-
specific and cannot be computed for both datasets.

word categories in the training data. Task-agnostic
features do not correlate with the decreased per-
formance of models on the CLOSEST-SPLIT for
the Reddit data. In contrast, for the HateXplain
dataset, task-agnostic features do play a role: The
biggest (negative) correlation can be observed for
the unigram overlap (bold): The higher the uni-
gram overlap between train and test set, the closer
the performance is to the random split F1-score.
Another smaller correlation exists concerning the
number of rare words in the test set: The more
rare words, the more challenging the split. Simi-
lar to the Reddit dataset, a significant, albeit weak,
correlation exists between the decreased perfor-
mance and the number of keyword categories that
are under-represented in training data.

Taken together, these results suggest that the
properties associated with performance drops differ
from dataset to dataset. This implies that CLOSEST-
SPLIT cannot easily be replicated based on task-
specific or task-agnostic features. Using latent rep-
resentations instead helps uncover weaknesses in
models that are otherwise not easily identified.

6.2 Visualisation of Hidden Representations

We now take a closer look at two specific data splits
for the HateXplain dataset by visualising their hid-
den representations. For this analysis, we select the
CLOSEST-SPLITS obtained with representations
with dB = 50 for BERT and RoBERTa, which are
more commonly used than HateBERT or BERT-
medium. We make these splits available via the
GenBench Collaborative Benchmarking Task.

The CLOSEST-SPLIT assigns clusters of hidden
representations that are spatially close to the test
set. While the clustering is conducted on high-
dimensional representations, a 2-dimensional pro-
jection by UMAP (McInnes et al., 2020) can give
an intuition about why these data splits are chal-
lenging. Fig. 6a shows RoBERTa’s representations
for the HateXplain dataset. A decision boundary
can be observed, with mostly offensive examples on
the left, noHate examples in the middle and hate ex-
amples on the right. Based on this illustration, the
CLOSEST-SPLIT picks a pocket of (mixed) exam-
ples between the noHate (dark blue) and hate (dark
green) regions to be the test set. This is mirrored in
the F1-scores of the different classes. The hate test
examples lie closest to the corresponding region,
and the F1-score is the highest at 47.0. Similarly,
for the noHate class, the F1-score is relatively high
at 38.28. The offensive class, with test examples
farther away, only has an F1-score of 11.88. The
same phenomenon can be observed for a BERT-
based CLOSEST-SPLIT (Fig. 6b). This suggests
that the model overfits its decision boundaries to
train set-specific features and, therefore, fails to
predict the correct classes in the test set. Develop-
ing models using CLOSEST-SPLIT in addition to
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random splits might thus lead to models that are
more robust to such overfitting.

7 Conclusion

Hate speech detection systems are prone to overfit-
ting to specific targets of hate speech and specific
keywords in the input, complicating the detection
of more implicit hatred and harming the generalis-
ability to unseen demographics. Yet, in addition to
those known and interpretable vulnerabilities, sys-
tems may have less obvious weaknesses. The data
splitting method we developed aims to highlight
those. Our splitting method is based on the cluster-
ing of internal representations of finetuned models,
thus making the splits task- and dataset-specific.
We proposed two variants (SUBSET-SUM-SPLIT

and CLOSEST-SPLIT) that differ in how they assign
clusters to the train and test set.

The latter variant, in particular, led to consistent
catastrophic drops in test set performance, when
compared to a random split. Moreover, while each
split was developed using the hidden representa-
tions from a specific model, we identified that this
result generalises when developing the split using
one model, and evaluating it using another. The
analyses of the resulting data splits showed that
the properties of the train and test sets differ from
dataset to dataset. Since no property clearly corre-
lates with decreased model performance for both
datasets, CLOSEST-SPLIT cannot be easily repli-
cated based on data splits’ surface-level properties,
and using latent representations is crucial to reveal
the weaknesses we observed in the models.

We encourage future work to consider evalua-
tions using the CLOSEST-SPLITS we release for
HateXplain, in order to develop more robust sys-
tems, but also emphasise that even though our re-
sults were specific to hate speech detection, the
methodology can be more widely applied. To chal-
lenge models beyond i.i.d. evaluation, we do not
need costly data annotations. Instead, we can start
by relying on systems’ latent features to simulate
train-test distribution shifts.

8 Limitations

We identify three main limitations of our work:

1. The scope of our work: the splitting method-
ology we developed can be applied to a wide
range of tasks, but we only experimented with
hate speech detection. Future work is required

to confirm the method’s wider applicability.
Moreover, even though we aim to use the chal-
lenging split to improve generalisation, we
have not yet made efforts in this direction.

2. Generality of conclusions: We experimented
with a limited set of model architectures, all
of which resemble one another in terms of
their structure and the (pre-)training data used.
Different models or training techniques could
lead to less challenging splits, or splits with
significantly different properties. At the same
time, we did demonstrate that the split’s diffi-
culty is not model-specific (see Section 5.3),
and observed that under variation of random
seeds CLOSEST-SPLIT consistently leads to
performance drops across four models and
two datasets.

3. Naturalness of the experimental setup: we
created an artificially partitioned data split and
have no guarantee that the generalisation chal-
lenges that language models encounter when
deployed in real-world scenarios resemble our
splits. However, given that our approach sim-
ulated a worst-case scenario, demonstrated by
catastrophic failure in performance, we are
hopeful that models that are more robust to
our train-test shift are also more robust to real-
world variations in test data.

9 Ethics Statement

By its very nature, hate speech detection involves
working closely with hurtful and offensive con-
tent. This can be difficult for researchers. However,
considering the severe consequences when hate
speech models fail on unseen data and people are
confronted with harmful content, it is all the more
important to improve the generalisation ability of
models and protect others.

While our work intends to contribute to gener-
alisation evaluation in a positive way, we do not
recommend using our data splits as representative
of generalisation behaviour ‘in the wild’, but recom-
mend them for academic research instead. While
standard and random splits often overestimate real-
world performance, our splits are likely to underes-
timate it, and can in this way reveal real weaknesses.
Our splits are designed to improve academic re-
search on the robustness of language models and
contribute to improving the generalisation ability
for NLP tasks.
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Prior to conducting work with potentially harm-
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A GenBench Eval Card
Motivation

Practical Cognitive Intrinsic Fairness
□

Generalisation type
Compo-
sitional Structural Cross

Task
Cross

Language
Cross

Domain
Robust-

ness
□

Shift type
Covariate Label Full Assumed

□
Shift source

Naturally
occuring

Partitioned
natural

Generated shift Fully
generated

□
Shift locus

Train–test Finetune
train–test

Pretrain–train Pretrain–test

□

Our work proposes a data split that evaluates
the generalisation ability of hate speech detection
models. Our motivation is an intrinsic one, we
aim to understand better what kind of data is most
challenging for hate speech detection models.

We focus on testing the robustness of such mod-
els, especially when it comes to out-of-distribution
(o.o.d.) generalisation. However, it is not straight-
forward to define and detect o.o.d. data (Arora et al.,
2021). Moreover, data properties that might seem
challenging for humans (Varis and Bojar, 2021;
Ebrahimi et al., 2018) might not be equally chal-
lenging for models or rely on costly annotations
(Arango et al., 2019; Nejadgholi and Kiritchenko,
2020; Bourgeade et al., 2023).

Therefore, we create a train test split by only
relying on a model’s hidden representations. This
partitioned natural splitting method yields a co-
variate shift, since we re-split existing data sets.
The resulting train test splits indeed challenge hate
speech detection models in a finetune train-test
locus.

B Clustering

Our proposed data split creates a train-test split by
assigning whole clusters of latent representations
to either the train or the test set. We use k-means
clustering (Lloyd, 1982) to perform the clustering.
The used hyperparamters can be found below.

Parameter Value

n clusters 3-50
n initializations with different centroids 10
max. iterations for a run 300
random state 42, 62, 82
algorithm LLoyd

Table 3: K-Means hyperparameters

C Language Models

We use four transformer language models to ob-
tain and evaluate the data splits: BERT-Base(-
Cased) (Devlin et al., 2019), its smaller variant
BERT-Medium (Turc et al., 2019; Bhargava et al.,
2021), HateBERT (Caselli et al., 2021), a BERT-
Base-Uncased model that was further pretrained
on abusive Reddit data using the MLM objective,
and RoBERTa-Base (Liu et al., 2019). The hyper-
paramters for finetuning can be found below. They
are generally adopted from the finetuned models
from Caselli et al. (2021), but due to computational
restrictions, the models had to be trained with re-
duced batch sizes. To compensate for this, models
were trained with more epochs with the option of
early stopping.

Hyperparameter Value

batch size 4 (biggest possible)
early stopping after 5 epochs
maximum epochs 10 (20 for the larger RoBERTa models)

optimizer AdamW
learning rate 2e-5
adam epsilon 1e-8
scheduling linear schedule with warmup
warm up steps 0

random seeds 42, 55, 83
max. sequence length 512

Table 4: Hyperparameters for finetuning the language
models are adopted from the finetuned models from
Caselli et al. (2021).
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D Detailed Results

The following section presents detailed results in-
cluding baselines, hyperparameter selections and
further results.

D.1 Baselines
We compare the performance of models trained
on our proposed data splits (CLOSEST-SPLIT and
SUBSET-SUM-SPLIT) to a random split. We obtain
random splits not only from 100% of the data but
also from 90% of the data. This is necessary to
compare the random split to the CLOSEST-SPLIT

and SUBSET-SUM-SPLIT, as these use only 90%
of the data. The random split performances are
presented below.

model valid acc. test acc. hate f1

SVM* – – 75.7
RNN* – – 77.5

BERT-base (100%) 94.6 ± 0.21 91.55 ± 0.13 82.24 ± 0.34
BERT-base (90%) 91.69 ± 0.07 91.25 ± 0.11 81.96 ± 0.5
BERT-med. (100%) 94.3 ± 0.23 91.63 ± 0.2 82.27 ± 0.45
BERT-med. (90%) 91.84 ± 0.07 91.2 ± 0.15 81.58 ± 0.66
HateBert (100%) 94.12 ± 0.06 91.87 ± 0.16 82.72 ± 0.38
HateBert (90%) 92.02 ± 0.07 91.51 ± 0.13 82.34 ± 0.59
RoBERTa (100%) 94.4 ± 0.12 91.67 ± 0.2 82.5 ± 0.49
RoBERTa (90%) 91.8 ± 0.09 91.37 ± 0.16 82.15 ± 0.61

Table 5: Results for the Reddit dataset on random splits
using 100% and 90% of the data. Random splits are gen-
erated using three different seeds and models are trained
with three initialisation seeds; mean and standard errors
are reported. Results marked with * are taken from Qian
et al. (2019).

split model valid acc test acc Macro f1

stand. BERT-base * – 69.0 67.4

stand.

BERT-base 67.45 ± 0.36 68.38 ± 0.35 66.06 ± 0.44
BERT-med. 63.93 ± 1.2 64.58 ± 0.99 62.32 ± 1.45
HateBert 68.12 ± 0.16 68.0 ± 0.37 65.97 ± 0.36
RoBERTa 67.32 ± 0.3 67.83 ± 0.42 65.98 ± 0.26

rand.

BERT-base 67.66 ± 0.31 68.25 ± 0.28 66.0 ± 0.36
BERT-med. 62.46 ± 0.49 62.85 ± 0.42 60.18 ± 0.42
HateBert 67.91 ± 0.32 68.51 ± 0.28 66.25 ± 0.35
RoBERTa 66.45 ± 0.51 66.4 ± 0.56 64.1 ± 0.9

Table 6: Results for the HateXplain dataset on the stan-
dard (stand.) split and on random (rand.) splits using
90% of the data. Random splits are generated using
three different seeds and models are trained with three
initialisation seeds; mean and standard errors are re-
ported. Results marked with * are taken from Mathew
et al. (2020).

D.2 Hyperparameter Selection for Proposed
Split

We analyse the effects of two hyperparameters.
First, we analyse whether task-specific, finetuned
representations are needed for challenging data
splits or whether task-agnostic, pretrained repre-
sentations also lead to difficult splits. The results
can be found in Fig. 7 and Fig. 8. The second hy-
perparameter we analyse is the dimensionality of
the representations, as displayed in Fig. 9.
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Figure 7: Performance of language models trained on
the pretrained SUBSET-SUM-SPLIT and pretrained
CLOSEST-SPLIT of the Reddit data. The errorbars show
the standard error between cluster seeds.
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Figure 8: Performance of language models trained on
the pretrained SUBSET-SUM-SPLIT and pretrained
closest split of the Reddit data. The errorbars show
the standard error between cluster seeds.
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Figure 9: Performance of language models trained on the SUBSET-SUM-SPLIT and CLOSEST-SPLIT of the Reddit
dataset. Random split performance, indicated by the solid horizontal lines, is used as a baseline. The error bars
show the standard error between cluster seeds.

D.3 Subset-Sum and Closest Split

SUBSET-SUM-SPLIT and CLOSEST-SPLIT both
lead to a decreased performance. The performance
on the Reddit dataset in terms of accuracy can be
found below in Fig. 10.
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Figure 10: Performance of language models trained
on the SUBSET-SUM-SPLIT and CLOSEST-SPLIT of
the Reddit data. The errorbars show the standard error
between cluster seeds.

The HateXplain accuracy can be found in Fig. 11.
For both datasets, models fail to predict some class
completely, defaulting instead to one of the other
classes. Note that HateXplain is a balanced dataset,
while Reddit is highly unbalanced (75% noHate).
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Figure 11: Performance of language models trained on
the SUBSET-SUM-SPLIT and CLOSEST-SPLIT of the
HateXplain data. The errorbars show the standard error
between cluster seeds.
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E Analysis

E.1 Data split properties

This section presents a detailed description of the
features used for the analysis in Section 6. The
following task-agnostic features are included in the
analysis:

Unigram Overlap Following the word overlap
algorithm in Elangovan et al. (2021), the word over-
lap oi for a given test example testi is the word
overlap with the most similar training example
traink. The word overlap of the whole test set
is then the average over the word overlap of the
test examples oi. For this computation, examples
are represented as a vector with unigram counts
(ignoring stopwords), and similarity is computed
as the cosine similarity.

Sentence Length in the Test Set We use the
average length of input examples in the test set in
terms of characters.

Number of Rare Words in the Test Set Rare
words are defined following the definition of God-
bole and Jia (2022): Rare words are words that are
not common (i.e. occur at most once per million
words) and are not misspelled (i.e. appear in the
word list of common words6). For word frequency
statistics, Godbole and Jia (2022) rely on Brysbaert
and New (2009). We use the word frequencies
more recently collected by Speer (2022) instead.

Moreover, we compare the dropped performance
on the proposed data splits to the following task-
specific features:

Number of under-represented keywords in the
train set The Reddit and HateXplain dataset have
been created by filtering posts based on hate key-
words by simply string-matching the posts with the
keywords. These keywords can be understood as
hate speech categories. We calculate the number of
hate speech categories that are under-represented
in the train set, i.e. have less than 50% of their
occurrences in the train set. Keywords that occur
in less than 3% of the data set are excluded.

Number of under-represented targets in the
train set This method aims to analyse the dif-
ferent targets of hate speech. For the HateXplain
dataset, these targets are annotated as explained

6https://github.com/dwyl/english-words

in Section 3. We calculate the number of under-
represented targets in the train set using the same
concept as for the under-represented keywords.

Difference of the data source distribution in the
train and test set As described in Section 3, the
HateXplain dataset consists of two data sources,
Gab (46%) and Twitter (54%). We calculate the
distributional shift between the data source distribu-
tion in the train and test set. The Kullback-Leibler
Divergence (Kullback and Leibler, 1951) is calcu-
lated for the two data sources in the dataset and then
the average is taken over both classes, weighted by
the occurrence of the class in the dataset. Since
there is no upper bound for the KL Divergence, it
is scaled to be between 0 and 1 by the function

f(x) = 1− e−x. (1)

E.2 Topic analysis

Set Class Topics RoBERTa

Train
Hate nigger, kike, white, jews
Offens. retarded, bitch, white, ghetto
noHate white, people, women, raped

Test
Hate jews, faggot, muslim, white
Offens. faggot, jews, nigger, white
noHate white, jews, people, retarded

Table 7: Top 4 topics for different classes in the Hat-
eXplain dataset. The topics are obtained from train and
test sets of the Closest Split with latent representations
from RoBERTA.

We extract topics for each class in the train and test
sets using c-TF-IDF (Grootendorst, 2022).

As an example, Table 7 summarises the topics
with the highest c-TF-IDF scores. There seems to
be a tendency for the offensive and noHate classes
to have different topics in the train and test sets,
while the hate class is more consistent across the
split. A manual analysis of cluster topics for all
cluster splits did not lead to conclusive results: Top-
ics are not clearly separated across all classes be-
tween the train and test sets. Many of the topics
found by c-TF-IDF seem to coincide with the tar-
gets that were annotated, and used for the analysis
in the previous section. No strong correlation be-
tween targets and performance was observed then,
which strengthens the result that different targets
in the train and test sets are not the reason for the
decreased performance.
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Abstract

Compositional generalization, the ability of in-
telligent models to extrapolate understanding
of components to novel compositions, is a fun-
damental yet challenging facet in AI research,
especially within multimodal environments. In
this work, we address this challenge by exploit-
ing the syntactic structure of language to boost
compositional generalization. This paper ele-
vates the importance of syntactic grounding,
particularly through attention masking tech-
niques derived from text input parsing. We
introduce and evaluate the merits of using syn-
tactic information in the multimodal grounding
problem. Our results on grounded composi-
tional generalization underscore the positive
impact of dependency parsing across diverse
tasks when utilized with Weight Sharing across
the Transformer encoder. The results push the
state-of-the-art in multimodal grounding and
parameter-efficient modeling and provide in-
sights for future research.

1 Introduction

Compositional Generalization refers to the ability
of an intelligent agent to generalize its understand-
ing of the underlying structure of a problem, es-
pecially when it is faced with novel compositions
of the previously seen building blocks or compo-
nents (Chomsky, 1957; Montague, 1970). It is
fundamental for models to be able to extrapolate
from their training environment to novel situations,
a common occurrence in real-world applications.
Hupkes et al. (2020) categorizes compositional gen-
eralization capabilities into five categories, system-
aticity, substitutivity, localism & globalism, and
overgeneralization. These abilities are crucial for
models to achieve strong performance on tasks that
require reasoning and understanding of hierarchical
structures, such as natural language understanding,
object classification, and robotics.

Humans understand new compositions of pre-
viously observed concepts and simpler constructs.

Input Command: pull the small blue object that
is inside of the small green box and in the same
row as the red circle while zigzagging.
Action sequence: turn left, turn left, walk, turn
right, walk, turn right, walk, pull

Figure 1: This example is taken from the ReaSCAN
dataset. Here, an agent is provided with a command. Its
objective is to generate/execute a series of predefined
actions to fulfill the task within the given environment.

On the other hand, despite remarkable progress in
the field of Artificial Intelligence, even state-of-the-
art language models demonstrate limitations in this
aspect (Lake and Baroni, 2018; Thomas McCoy
et al., 2020; Shaw et al., 2021). Especially, they
often fail to effectively generalize in the reasoning
depth, which involves handling multi-turn reason-
ing about entities and their properties in the world
or even the co-occurrence of unseen spatial rela-
tions (Wu et al., 2021). These limitations indicate
a crucial need for innovative approaches to address
these issues.

In this research, our objective is to exploit the
syntactic structure of language to enhance compo-
sitional generalization. Our focus is mainly on the
multimodal problem setting that entangles vision
and language. In this unique setting, compositional
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linguistic descriptions must be accurately grounded
in the environment to devise coherent action plans
or achieve specific goals. An illustrative example
of this scenario is shown in Figure 1.

The motivation behind leveraging syntax in our
approach stems from the inherent structure and
compositionality of natural language. Syntac-
tic parsing provides crucial structural information
about how words in a sentence relate to each other.
We hypothesize that syntactic structure can im-
prove intelligent agents’ ability to discern the appli-
cable attributes and descriptions for each object in
its environment and better apprehend deeper levels
of reasoning.

By imposing an understanding of language struc-
ture through syntactic parsing, we aim to extend
the capabilities of current multimodal language
models. This could potentially pave the way for
more sophisticated models capable of robustly in-
teracting with dynamic and complex vision and lan-
guage environments. Apart from using structure,
we equipped our end-to-end model with weight
sharing that has demonstrated improving the gener-
alization capabilities in single-modality tasks.

As a result, we reach state-of-the-art perfor-
mance on the ReaSCAN compositional general-
ization benchmark, showing improvement across
all test splits, especially ones requiring sentence
structure comprehension. In summary, our contri-
butions include:

• Enhancing grounded compositional general-
ization by integrating syntactic parsing into
our model.

• Using syntax-guided attention masking along
with weight sharing, we build a highly
parameter-efficient model compared to base-
lines.

• Our model has shown marked improvement
in performance across a variety of tasks that
are designed for compositional generalization
evaluation while enhancing computational ef-
ficacy.

2 Related Work

The machine learning research community primar-
ily focused on understanding the error bounds and
the bias-variance trade-off (Hastie et al., 2009)
to understand and improve the models’ general-
izability. Later, techniques like dropout (Srivastava

et al., 2014) were introduced to improve neural
models’ generalization. Recently, studies have
examined the generalizability of various neural
network architectures using specialized general-
ization evaluation tasks (Hupkes et al., 2020; On-
tanon et al., 2022; Csordás et al., 2021). Addition-
ally, numerous datasets such as SCAN (Lake and
Baroni, 2018), CFQ (Keysers et al., 2020), and
COGS (Kim and Linzen, 2020) have been devel-
oped to assess compositional generalization capa-
bilities. Diverse strategies such as data augmen-
tation (Andreas, 2020; Shaw et al., 2021), inno-
vative architectural designs (Korrel et al., 2019;
Gao et al., 2020), and neuro-symbolic methods
(Mao et al., 2019), have been proposed to enhance
these capabilities. Consequently, these advances
in text-based generalization have inspired research
in multimodal compositional generalization, with
developments including complex benchmarks like
gSCAN (Ruis et al., 2020) and ReaSCAN (Wu
et al., 2021), and advanced architectures applied
to multimodal grounding (Kuo et al., 2021; Jiang
and Bansal, 2021; Qiu et al., 2021a; Sikarwar et al.,
2022; Shaw et al., 2021).

Furthermore, recent research highlights the sig-
nificant role of syntactic information in enhanc-
ing neural models’ compositional generalization
capability. Kuo et al. (2021) suggested aligning
the compositional structure of networks with the
problem domain, resulting in a dynamic compo-
sitional neural network. Moreover, Shaw et al.
(2021) and Qiu et al. (2022) recommended gram-
mar induction-based data augmentation techniques
to improve compositional generalization. Unlike
our work that focuses on input command struc-
ture, Kim et al. (2021b) introduced the concept of
using parse tree node annotations in the target se-
quence of sequence-to-sequence tasks for enhanc-
ing compositional generalization. Meanwhile, Kim
et al. (2021a) incorporated parse tree nodes into the
ETC (Ainslie et al., 2020) model. They employed
attention masking specific for ETC to symbolize
the relations of tokens and aid this model in a sim-
plified classification task based on the CFQ dataset.

We are inspired by previous research (Kim et al.,
2021a) that employs a similar technique with man-
ually extracted parses for compositional general-
ization on the single text modality. However, our
model utilizes off-the-shelf parsers instead of ac-
curate manually generated parse trees, and it is
generally applicable independent of the underlying
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models.

3 Problem Setting

Various studies on compositional generalization
have presented a range of tasks and problem set-
tings (Lake and Baroni, 2018; Keysers et al., 2020;
Kim and Linzen, 2020; Wu et al., 2021; Ruis et al.,
2020). These datasets are comprised of a training
set and several test sets. To ensure rigorous eval-
uation, the test sets have been deliberately struc-
tured to differ from the training set in a way that
requires the compositional capability to succeed.
Our paper focuses on grounding natural language
instructions in the visual modality, where we map
words to specific objects or actions in a multimodal
environment that provides a framework to evaluate
an intelligent agent’s compositional structures and
spatial reasoning capabilities.

We use the most recent multimodal composi-
tional generalization benchmarks to assess our
models comprehensively. In these benchmarks, an
agent receives natural language instruction to carry
out an action or navigate specific environments.
These datasets are inherently synthetic, and they
have been carefully crafted to guarantee that the
test sets are systematically different from the train-
ing sets. By placing commands within a spatial
context, these benchmarks bridge the gap between
abstract cognitive understanding and practical ac-
tion execution. Consequently, they stand as both
a scholarly tool for studying compositional gen-
eralization and a valuable resource for fields like
robotics that require comprehension of spatially
anchored commands.

Among these benchmarks, our primary focus
is ReaSCAN, owing to its heightened complexity
and recent introduction to the academic community.
An example of this dataset, depicted in Figure 1,
consists of three main components: The initial
state of the world, the provided input command,
and the corresponding target command. Tasked
with this information, the agent aims to infer the
target command by leveraging both the informa-
tion from the input command and the initial state.
Structurally, the world’s representation in ReaS-
CAN is formulated as a 6×6×17 matrix. Each
matrix cell comprises a 17-dimensional vector en-
capsulating information pertaining to an object’s
attributes—namely, color, shape, and size—along
with indicators of the agent’s positioning and ori-
entation. The evaluation metric for this dataset is

Split Held-out Examples
Random Random.

A1 yellow square referred with color & shape.

A2 red square referred in the command.

A3 small cylinder referred with size and shape

B1
co-occur of small red circle and big blue

square.

B2
co-occur of same size as and inside of

relations.

C1
Additional conjunction clause depth added

to 2-relative-clause commands.

C2
2-relative-clause command with that is

instead of and.

Table 1: ReaSCAN dataset test splits.

the percentage of exact matches of the predicted
action sequence. The ReaSCAN dataset includes
one random test split that mirrors the training’s
component and compound distribution, in addition
to seven compositional generalization test splits.
Each of these splits is designed to probe a spe-
cific facet of a model’s grounding generalization
capability, as detailed in Table 1. Category A test
splits delve into novel attribute compositions at
both the command and object levels, drawing inspi-
ration from gSCAN. Category B test splits assess
the model’s ability to generalize to unprecedented
co-occurrences of concepts and spatial relations.
Meanwhile, Category C probes the model’s capac-
ity to extrapolate from simple command structures
to more intricate structures with higher levels of
reasoning (Wu et al., 2021). To illustrate the A1
split, all examples with commands containing vari-
ations of "yellow square" (such as "small yellow
square" or "big yellow square") are excluded from
the training data. This prevents models from as-
sociating targets with that phrase. However, the
training set does include examples like "yellow
cylinder" and "blue square." As a result, during
testing, models are expected to accurately interpret
the "yellow square" even without prior exposure to
the actual composition.

4 Proposed Method

To address the challenge at hand, we implemented
a multimodal transformer, as illustrated in Figure 2.
In this model, input commands are tokenized and
then supplemented with positional encoding be-
fore passing to the transformer. Concurrently, the
visual environment is segmented into 36 distinct
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Figure 2: Overall architecture of the proposed model.
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Figure 3: Examples of parse trees.

cells, each serving as a visual token. After pass-
ing the visual token to a linear layer, these tokens
receive positional encoding and are passed to the
transformer.

We’ve employed a generic parser to seamlessly
embed the structure of the textual modality into
our model, thereby shaping attention masks for the
encoder’s textual self-attention. Prioritizing effi-
ciency, parsing each input command is conducted
during a preprocessing phase.

Our transformer is based on the GroCoT
model (Sikarwar et al., 2022). Each encoder
layer employs a cross-attention mechanism be-
tween modalities, followed by modality-specific
self-attention. Our computed input command
masks are utilized in the self-attention modules
of the textual modality. Remarkably, encoder layer
weights are consistently shared across all layers.

In the end, we concatenate the encoded result
of each modality and pass it to the transformer’s
auto-regressive decoder to generate the action se-
quence corresponding to the input command given
the environment.

4.1 Syntax-guided attention

One main component of our proposed model is
exploiting the syntactic structure of the command.
For this aim, we investigate using both dependency
and constituency parsing. Dependency and con-
stituency trees can be used to analyze the gram-
matical structure of sentences. Dependency trees
focus on the grammatical relationships between in-
dividual words, where each word except the root
depends on another, and the edges of the tree sig-
nify these dependencies. However, constituency
trees emphasize the hierarchical organization of
words into larger syntactic units or constituents,
with internal nodes representing these groupings
and leaves representing individual words. While
dependency trees are more concerned with identi-
fying grammatical roles and relationships between
words, constituency trees aim to show how words
group together into larger syntactic units, often car-
rying syntactic labels like NP (noun phrase) or VP
(verb phrase) (Foscarin et al., 2023; Hearne et al.,
2008). Examples of these parse trees are shown in
Figure 3.

Syntax-guided attention masking. We use the
syntactic information to guide the self-attention
module of transformer encoder layers as depicted
in Figures 2 and 4b. We force each token to only
attend to the tokens connected in the syntax tree.
In this way, we avoid faulty attention patterns and
overfitting irrelevant parts of the sentence. In ad-
dition, by imposing the structure with a parse tree,
our model can capture the nesting structure of the
command’s meaning and the relationships between
its components. By making the structural informa-
tion explicit, our model can potentially extrapolate
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the meaning of novel combinations and nesting lin-
guistic structures encompassing higher reasoning
depth.

4.2 Weight Sharing

Parameter sharing is a strategic approach where
identical learned parameters are applied across var-
ious positions or layers within a model. This tech-
nique enables the reuse of the same encoder unit at
each phase of the transformer encoder (Dehghani
et al., 2019). Such an approach not only streamlines
the model but also nurtures the acquisition of more
robust and adaptable representations of the input
(Ontanon et al., 2022). The findings of Kim et al.
(2021a) demonstrate that a transformer employ-
ing attention masking requires extended training
epochs for convergence, potentially due to masking-
induced backpropagation constraints. In light of
this, we hypothesize that introducing weight shar-
ing might counterbalance this challenge. Weight
sharing reduces the model’s complexity by decreas-
ing the number of parameters, which could lead
to faster convergence. This method acts as a form
of regularization, stabilizing training and facilitat-
ing smoother optimization landscapes. In addition,
Ontanon et al. (2022) show that a transformer with
shared weights across its encoder layers is arguably
endowed with a more suitable inductive bias that
allows the model to learn the primitive concepts.
We hypothesize this will positively affect learning
spatial relations or object-property relations, which
are frequently used in our model’s input. Motivated
by these advantages, we incorporated this weight
sharing technique into our transformer model to
evaluate its efficacy in a multimodal setting. Be-
yond the enhanced generalizability, weight sharing
serves as a computational benefit by reducing the
number of learnable parameters during the training
phase.

5 Experiments

Implementation Details. Our model architecture
is founded on the GroCoT framework as detailed
by Sikarwar et al. (2022) and is implemented us-
ing the PyTorch machine learning library (Paszke
et al., 2019). Also, we employed the pre-trained
stanza toolkit (Qi et al., 2020) for constituency
and dependency parsing. We used 48 GB A6000
GPUs accompanied by 756GB RAM. On average,
each experiment took about 52 hours to train the
models from scratch, with the Adam optimizer

(a) Self-attention w/o masking

(b) Self-Attention w/ masking

Figure 4: Self-Attention example from the A2 test set
of ReaSCAN dataset. Figures (a) and (b) depict the
averaged self-attention map from our models’ over all
encoder layers and heads. Rows and columns corre-
spond to text tokens. Brighter attention cells indicate
higher attention weights

(Kingma and Ba, 2017) parameter updates through-
out the training regimen. To ensure a rigorous
evaluation, we used the same specialized compo-
sitional validation set as Sikarwar et al. (2022),
drawing 500 samples from each compositional di-
vision of the primary dataset. Model proficiency
was assessed against this validation set, with the
highest-performing model designated as our opti-
mal choice. Our results are presented as an average
derived from three independent runs, each initial-
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ized with a random seed. We ran the models for
the ReaSCAN benchmark for 120 epochs, and the
models for the gSCAN and GSRR benchmarks for
100 epochs. Hyperparameters used for the exper-
iments of each dataset are shown in Appendix A.
The code and models proposed in this work are all
available in GitHub1.

Datasets. We used gSCAN (Ruis et al., 2020),
GSRR (Qiu et al., 2021b), ReaSCAN (Wu et al.,
2021) benchmarks for evaluation. The Grounded
SCAN (gSCAN) dataset is a benchmark tailored
for examining compositional generalization in ma-
chine learning models by translating natural lan-
guage commands into actions in a grid-world sce-
nario. Its unique splits ensure models move be-
yond rote memorization to deep compositional un-
derstanding of concepts. The Grounded System-
atic Relation Reasoning (GSRR) dataset extends
gSCAN by aligning natural language instructions
intricately with visual elements, emphasizing spa-
tial relationships and object references. ReaSCAN,
a further development, brings the challenges of real-
world reasoning into this environment by introduc-
ing more challenging tasks and concept relations.
Together, these datasets offer a high-complexity
framework for assessing the compositional and re-
lational understanding of machine learning models
in visual environments. A detailed explanation of
both the gSCAN and Grounded Systematic Rela-
tion Reasoning datasets can be found in Appendix
B.

Baselines. We embarked on a series of ex-
periments designed to evaluate our model’s ef-
fectiveness compared to the most recent state-of-
the-art models on the mentioned multimodal com-
positional generalization datasets. We include
the following baselines. (a) Ruis et al. (2020)
(Multimodal LSTM) is a fusion of sequence-to-
sequence (seq2seq) architecture with a visual en-
coder, employing a recurrent ’command encoder’
to process the instructions. (b) Gao et al. (2020)
(GCN-LSTM) integrates a Graph Convolutional
Neural (GCN) network with a multimodal LSTM.
The command encoding is achieved via a BiL-
STM equipped with multi-step textual attention,
while the world is encoded through a GCN layer.
(c) Qiu et al. (2021b) (Multimodal Transformer)
is a multimodal transformer equipped with cross-
attention for multimodal compositional general-

1https://github.com/HLR/
Syntax-Guided-Transformers

ization. (d) Sikarwar et al. (2022) (GroCoT) is
another transformer-based model that incorporates
interleaved self-attention into the multimodal trans-
former with cross-attention.

Results. We comprehensively evaluated our ap-
proach across all the previously mentioned bench-
marks compared to the baselines. Alongside the
accuracy and efficacy metrics, we also provide in-
sights into the computational overhead associated
with our method. Furthermore, a qualitative analy-
sis is presented, delving deeper into our approach’s
performance nuances and strengths.

The benchmark results, presented in Tables 2,
3, and 4, demonstrate our model’s superior per-
formance over all reported models, with a no-
table 3% improvement on the average of ReaS-
CAN benchmark splits. This substantiates our hy-
pothesis that incorporating syntactic parsing sig-
nificantly boosts the model’s generalization de-
rived from grounded compositional training data.
Moreover, dependency parsing consistently out-
performed constituency or marked a very similar
performance across multiple benchmarks, includ-
ing GSRR and gSCAN. Our model displayed im-
provements across nearly all ReaSCAN splits ex-
cept for C2. As per Sikarwar et al. (2022), the C2
split is "unfair," lacking the required information
in training data for comprehensive model training.
Even including syntactic information could not im-
prove the model’s performance on this split and
even caused a decrease in the performance. Our
methodology also showcased its merit in the object
property test cases (A1-3), effectively constrain-
ing attention to words pertinent to target object
descriptors. For instance, as shown in Figure 4,
the attention weights from the properties to the
corresponding objects are high.

Notably, our model exhibited considerable
strides in the C1 split, indicative of the value added
by syntactic information. For a more reliable com-
parison, we applied a t-test to our C1 test split
results. Using a significance level (α) of 0.05, this
statistical analysis provided further validation for
the observed enhancements in our model’s perfor-
mance, particularly within the context of the C1 test
split. Furthermore, our model exhibits enhanced
performance on the GSRR dataset. As illustrated
in Table 4, both variants of our model demonstrate
improvements in the II split. It is worth noting that
the II split shares the same challenge as the A2 split
from the ReaSCAN dataset but in a less complex
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Model A1 A2 A3 B1 B2 C1 C2 Avg
LSTM* 50.4 14.7 50.9 52.2 39.4 49.7 25.7 40.40

GCN-LSTM 92.3 42.1 87.5 69.7 52.8 57.0 22.1 60.50

Transformer* 96.7 58.9 93.3 79.8 59.3 75.9 25.5 69.90

GroCoT 99.6 93.1 98.9 93.9 86.0 76.3 27.3 82.2

Constituency† 99.75±0.11 96.70±1.40 99.68±0.10 95.19±1.17 88.37±1.50 69.07±0.60 27.00±0.54 82.25±0.63

Dependency† 99.65±0.9 97.37±0.48 99.62±0.07 95.46±2.01 90.15±3.88 92.55±1.51 21.77±5.25 85.22±0.87

Table 2: The result of our proposed model on the ReaSCAN dataset test splits. The results are an average of
three runs. † denotes the models with masking. Models marked with * refer to the multimodal version of their
implementation.

Model A B C E F H Comp. Avg
LSTM* 97.7 54.9 23.5 35.0 92.5 22.7 32.7

GCN-LSTM 98.6 99.1 80.3 87.3 99.3 33.6 -

Transformer* 99.9 99.9 99.3 99.0 99.9 22.2 60.0

GroCoT 99.9 99.9 99.9 99.8 99.9 22.9 60.4

Constituency† 99.95±0.07 99.92±0.06 99.88±0.11 99.88±0.09 100.00±0.00 22.84±0.93 60.36±0.11

Dependency† 99.92±0.09 99.85±0.18 99.86±0.11 99.96±0.06 99.89±0.16 23.89±1.54 60.49±0.20

Table 3: The result of our proposed model on the gSCAN dataset test splits. The results are an average of three runs.
We did not report the results on D and G splits since we achieved 0.00±0.00 % performance, But take them into
account in the averaged result. † denotes the models with masking. Models marked with * refer to the
multimodal version of their implementation.

environment.
While our proposed techniques effectively ad-

dress splits A, B, C, E, and F, mirroring the suc-
cesses of previous works such as (Sikarwar et al.,
2022) and (Qiu et al., 2021b), they struggle with
challenges presented by specific gSCAN composi-
tionality splits, notably D, G, and H. These particu-
lar splits are designed to assess the model’s capacity
for systematic generalization when novel patterns
should occur on the output sequence rather than
in grounding the input instruction (Sikarwar et al.,
2022), a facet that is not expected to be captured
by our proposed model.

5.1 Ablation

For a granular understanding of the contributions
from each alteration to the baseline model, we un-
dertook an ablation study. This involved the sequen-
tial removal of each modification to measure its
individual impact. As depicted in Table 5, while in-
dividual modifications did not significantly change
the baseline, their collective integration enhanced
the model’s generalization. Remarkably, eliminat-
ing dependency parsing or weight sharing resulted
in a noticeable performance dip. The improvement
upon integration posits that weight sharing can po-
tentially offset the masking prolonged convergence

challenge by reducing parameter count, thereby
mitigating the convergence issues.

5.2 Qualitative Analysis

In our previous discussions, we highlighted the sig-
nificance of integrating dependency parsing as a
fundamental approach to understanding the com-
plex structures inherent in sentences. This inte-
gration is not a mere enhancement; it critically
enriches the model’s grounding capabilities, of-
fering a more robust bridge between raw textual
sequences and their semantic structure.

To provide empirical evidence of our technique
for guiding attention, we conducted an analysis
of the cross-attention module. We aimed to com-
pare its behavior before and after applying attention
masking. The results, presented in Figure 5, indi-
cate a clear trend: in 86% of validation samples,
the cross-attention module exhibits a pronounced
focus on the target object.

Figures 5b and 5c elucidate the impact of self-
attention masking on these weights. After using
attention masking (see Figure 5b), the attention
distribution becomes notably sparser; instead of
individual words attending in isolation to every
potentially relevant cell, they now form cohesive
compositional expressions, each attending to the
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Model I II III IV V VI Comp. Avg
LSTM* 86.5 40.1 86.1 5.5 81.4 81.8 58.9

Transformer* 94.7 64.4 94.9 49.6 59.3 49.5 63.5

GroCoT 99.9 98.6 99.9 99.7 99.5 96.5 98.8

Constituency† 99.85±0.00 99.90±0.03 99.16±0.26 99.88±0.03 96.73±2.16 97.85±0.46 98.58±0.39

Dependency† 99.91±0.02 99.93±0.01 99.41±0.28 99.96±0.01 99.03±0.23 97.38±0.63 99.07±0.16

Table 4: The result of our proposed model on the GSRR dataset test splits. The results are an average of three runs.
† denotes the models with masking. Models marked with * refer to the multimodal version of their implementation.

W/S Mask A1 A2 A3 B1 B2 C1 C2 Avg
- - 99.29±0.27 91.82±6.50 98.49±1.17 93.50±0.85 83.15±1.41 75.85±1.35 25.03±6.82 81.02±0.22

✓ - 99.68±0.22 97.09±1.72 99.64±0.20 94.86±0.77 81.49±4.27 66.30±6.65 21.66±1.83 80.10±1.08

- Dep. 98.09±0.27 85.21±6.85 97.35±0.75 93.61±2.75 90.62±1.59 75.27±1.77 21.91±1.63 80.29±1.43

✓ Dep. 99.65±0.9 97.37±0.48 99.62±0.07 95.46±2.01 90.15±3.88 92.55±1.51 21.77±5.25 85.22±0.87

Table 5: The ablation study result of our modifications on ReaSCAN dataset test splits. Results are reported on an
average of three runs. We evaluate every combination of components from our best model. W/S stands for weight
sharing, and the ✓shows the presence of the module. Dep in this table refers to the Dependency masking. We
evaluate the model with or without dependency masking in the masking part.

(a) Environment (b) Cross-attention w/o masking (c) Cross-Attention w/ masking

Figure 5: Cross-Attention from Text-to-Image. In Figure (a), the purple zone indicates the model’s incorrect object
selection, while the red zone highlights the accurate choice. Figures (b) and (c) depict the averaged cross-attention
map from our models over encoder layers and attention heads. The rows represent environment cells (the first
element shows the row, and the second shows the column index, both starting from 0), and the columns correspond
to text tokens. Brighter attention cells signify elevated attention weights.

corresponding cells as a whole. For instance, in
Figure 5c, "and in the same," phrase’s tokens attend
to cells (1,2), (4,3), and (5,2) together with greater
attention on the target object in contrast to their
attention pattern without masking.

5.3 Efficiency Analysis

In the realm of modern model design, the chal-
lenge lies in amplifying capabilities while man-
aging computational overhead. Our methodology
adeptly navigates this balance. A cornerstone of
our model’s efficiency is the strategic adoption of
weight sharing within the transformer encoder. By
reusing weights across different components, we
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Model #Parameters
Multimodal LSTM 74K
Multimodal Transformer 3M
GroCoT 4.6M
Dependency† (ours) 1.9M

Table 6: Comparing model parameters: our model vs.
current state-of-the-art models. Dependency† refers to
the model with dependency parsing for attention mask-
ing.

significantly reduce the parameter space. This not
only streamlines memory utilization and acceler-
ates training but also acts as an implicit regularizer,
bolstering the model’s generalization capabilities
and reducing overfitting. Further enhancing this is
our implementation of attention masking, which
refines computational efficiency. By enabling the
model to selectively bypass attention to certain to-
kens, we can optimize the model to avoid redun-
dant computational processes, ensuring optimal
resource allocation and superior performance.

As illustrated in Table 6, our model stands out in
terms of efficiency. Despite having fewer parame-
ters (1.9M) than the models by Qiu et al. (2021a)
and Sikarwar et al. (2022), which have 3M and
4.6M parameters respectively, our model consis-
tently outperforms them across all benchmarks.

6 Conclusion

Our research demonstrated that exploiting the
syntactic structure of compositional and complex
linguistic and spatial expressions improved the
grounding ability of the instruction-follower agent
in multimodal environments. Our results indicated
improvements compared to the previous state-of-
the-art models. In particular, we show that our
proposed model is effective for generalization on
tasks and test splits that require generalization over
unobserved reasoning depths, such as the C1 split
in the ReaSCAN dataset. By utilizing the syntactic-
guided attention masking along with the weight
sharing, we achieved not only more accurate but
also more parameter-efficient models for grounded
compositional generalization.

Limitations

Despite the promising results achieved in our study,
several limitations warrant consideration:

Synthetic Data: Our experiments predomi-
nantly rely on synthetic datasets. While these

datasets provide a controlled environment for as-
sessing model performance, they might not capture
the complexities and nuances of real-world data.
Evaluating the models on real-world datasets is
crucial to ensure their practical applicability.

Error Propagation from the Parser: The
model’s performance is intrinsically tied to the ac-
curacy of the pre-trained parsers we utilized. Errors
or inaccuracies in parsing can lead to suboptimal
model outputs. Additionally, our synthetic data, be-
ing unambiguous, might not reveal the full extent
of potential parser-related issues.

Computational Constraints: Due to computa-
tional limitations, the hyperparameter search might
not have been exhaustive. A more comprehensive
exploration might yield better model configura-
tions.
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A Hyperparameters

Here, we present the hyperparameters used in the
models for every benchmark in Table 7.

B Datasets Description

B.1 Grounded SCAN dataset
The Grounded SCAN (gSCAN) dataset is a pivotal
benchmark for assessing compositional generaliza-
tion in machine learning models. Evolving from
the foundational SCAN (Lake and Baroni, 2018)
dataset, gSCAN is designed to evaluate a model’s
proficiency in translating command sequences into
actions within a grid world environment, emphasiz-
ing on compositional challenges.

This benchmark offers systematic test splits that
rigorously examine a model’s capability to general-
ize beyond its training data. These compositional
splits include:

• A (Random): Random data with a similar
distribution to the training data.

• B (Color-Shape): Novel composition of ob-
ject properties in the testing. Yellow squares
are referred to by color and shape.

• C (Color Only): Red squares as target.

• D (Novel Direction): Challenges a model’s
spatial comprehension, with targets set in un-
familiar directions, the southwest.

• E (Novel Contextual References): Evalu-
ates a model’s understanding of relative sizes,
with commands pointing to circles of size 2
described as "small."

• F (Novel Composition of Actions and Ar-
guments): Probes a model’s grasp of ob-
ject classes and their nuances, exemplified by
squares of size 3 necessitating two pushes.

• G (Adverb): Commands carrying the adverb
"cautiously" test how well the model inter-
prets action modifiers after seeing limited
training samples (k=1).
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Hyperparameter gSCAN GSRR ReaSCAN
Number of Vision Self-Attention Layers 3 3 6
Number of Text Self-Attention Layers 3 3 6
Number of Cross-Attention Layers 3 3 6
Number of Decoder Layers 3 3 6
Embedding Size 128 128 128
Hidden Layer Size 256 256 256
Number of Attention Heads 8 8 8
Learning Rate 5× 10−5 1× 10−5 1× 10−5

Batch Size 64 64 32
Dropout 0.1 0.1 0.1
Number of Epochs 100 100 120

Table 7: Hypterparameters used in the experiments.

• H (Adverb-Verb Combination): Generalizes
to commands pairing actions and their mod-
ifiers, like "while spinning" combined with
"pull."

The compositional test splits of the gSCAN
dataset ensure that models are not indulging in
learning statistical shortcuts but are genuinely mas-
tering compositional reasoning. In gSCAN, every
command is mapped to an action sequence for an
agent in the grid world, whether moving to a par-
ticular spot or interacting with a distinct described
object.

B.2 Grounded Systematic Relation Reasoning
dataset (GSRR)

The Grounded Systematic Relation Reasoning
(GSRR) dataset, introduced by (Qiu et al., 2021b),
extends the gSCAN benchmark. Their initial analy-
ses of the gSCAN dataset indicated its efficacy; the
authors observed that several remaining challenges
might not be primarily tied to visual grounding. In
light of this, they proposed the GSRR task, char-
acterized by an elevated complexity in aligning
natural language instructions with the visual envi-
ronment.

In this dataset, language expressions specifically
delineate target objects and explicitly describe their
relationships with a secondary referenced object.
They incorporate two types of relations into our
dataset: immediate adjacency ("next to") and car-
dinal directions such as "north" and "west." In ad-
dition, they put visual distractors objects within
the environment to emphasize the critical role of
spatial relations in identifying the target objects.

The dataset is systematically divided into various
splits to ensure a comprehensive assessment:

• I (Random): Similar distribution as the train-
ing.

• II (Visual): Commands centering on "red
squares" either as targets or references.

• III (Relation): Complex instructions involv-
ing combinations like "green squares" and
"blue circles."

• IV (Referent) Emphasizing "yellow squares"
as primary targets.

• V (Relative Position 1): Commands where
targets are situated to the "north" of their ref-
erence points.

• VI (Relative Position 2): Instructions where
targets are located "southwest" relative to their
references.

C Evaluation Card

Here, we present the evaluation card of our compo-
sitional generalization experiments based on (Hup-
kes et al., 2023) taxonomy.
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Abstract
Language models achieve remarkable results
on a variety of tasks, yet still struggle with
compositional generalisation benchmarks. The
majority of these benchmarks evaluate perfor-
mance in English only, leaving us with the
question of whether these results generalise
to other languages. As an initial step to an-
swering this question, we introduce mSCAN,
a multilingual adaptation of the SCAN dataset.
It was produced by a rule-based translation, de-
veloped in cooperation with native speakers.
We then showcase this novel dataset on some
in-context learning experiments, with the mul-
tilingual large language model BLOOM as well
as gpt3.5-turbo.

1 Introduction

Humans learn quickly by easily recombining previ-
ously known concepts in unseen settings. Several
benchmarks have been designed to empirically in-
vestigate whether neural networks are equipped
with similar abilities (Lake and Baroni, 2018; Key-
sers et al., 2020; Hupkes et al., 2020; Kim and
Linzen, 2020). Such benchmarks are composed of
tasks in which the training data and the test data
have different and carefully chosen distributions.
Recent work used these benchmarks to evaluate pre-
trained large language models (LLMs) and showed
that despite their remarkable success on many other
tasks they still struggle with compositional gener-
alisation (Qiu et al., 2022).

The majority of the research on compositional
generalisation has focussed on English data and
models — but do compositional generalisation abil-
ities differ across languages? Indeed, it has been
argued that the performance of a model in English
is not a guarantee that it will work “equally or even
reasonably well” in other languages (Bender, 2011).
On top of that, compositional generalisation itself
is not guaranteed to work uniformly across human
languages (Bittner, 1995).

Furthermore, the exploration of cross- and mul-
tilingual compositional generalisation could ben-
efit the expansion of language technology to low-
resource languages and settings (Chaabouni et al.,
2021), as a potential approach to overcome the
need for huge amounts of data that neural models
require.

With ever-increased scale, some large language
models have shown great performance on down-
stream tasks while only conditioned on a few exam-
ples, and without updating their parameters. This is
known as in-context learning, a paradigm in which
some very large models such as GPT-3 and PaLM
have been shown to manifest reasoning abilities
when prompted in specific ways, including in mul-
tilingual settings (Shi et al., 2022). Despite these
promising perspectives, it does not currently stand
as an alternative to fine-tuning. Some recent re-
search has sought to investigate compositional gen-
eralisation within the in-context learning paradigm,
showing it gets outperformed by smaller fine-tuned
models.

As a means to further the study of compositional
generalisation in multiple languages, we introduce
mSCAN (multilingual SCAN), an adaptation of
the SCAN benchmark into French, Hindi, Man-
darin Chinese and Russian. We also provide for
each language both the original SCAN benchmark
splits (add_jump, add_turn_left, length) as
well as the Maximum Compound Divergence splits
(Keysers et al., 2020).

We also present preliminary experimental results
using mSCAN in an in-context learning paradigm
on BLOOM and gpt3.5-turbo.

Following the GenBench taxonomy (Hupkes
et al., 2023), the primary motivation for this work
can be characterised as intrinsic given its primary
function to provide a means to evaluate composi-
tional generalisation in multilingual settings. Simi-
larly to the original SCAN benchmark, the source
of the distribution shift is fully generated and its
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Figure 1: GenBench evaluation card

type is covariate. Moreover, the in-context set-up
of our experiments places the shift locus between
the pre-train and test stages though we note that the
data can also be used in a fine-tuning setup in the
future.

2 Background

Pre-trained multilingual models seek to address the
challenge of low-resource languages, by leverag-
ing the pre-training and the hope that high-resource
languages will help lower-resource ones. Large-
scale multilingual language models have achieved
impressive performance across typologically dis-
tinct languages (Ruder et al., 2021). Yet, the
cross and within-language performance of down-
stream tasks on such models remain correlated to
their amount of language-specific pertaining data
(Lauscher et al., 2020).

However, if scaling up the amount of pre-
training data might improve cross-lingual gen-
eralisation, it might come at a price when it
comes to compositional generalisation. Kim et
al. (2022) have questioned the reported benefits of
pre-training on compositional generalisation bench-
marks and have observed a case of inverse scaling,
where the performance degradation on COGS ac-
tually increases with the amount of pre-training
data.

In a further study on the impact of model
scale on compositional generalisation, Qiu et al.
(2022) compared fine-tuning, prompt-tuning and
in-context learning on multiple compositional gen-
eralisation datasets and observed that for in-context

learning, the performance is correlated with model
size. However, it is worse than for fine-tuned,
smaller models. Datasets they used included COGS
and the Compositional Freebase Question dataset
or CFQ (Keysers et al., 2020), which consists of
questions and answers in natural language, as well
as accompanying SPARQL queries against a knowl-
edge base. (Qiu et al., 2022)

Hosseini et al. (2022) evaluated four model fam-
ilies for in-context learning on multiple semantic
parsing benchmarks. Despite their observation that
the larger models tend to do better, they report that
the in-context learning performance on SCAN and
CFQ is very small for the models tested.

MCWQ (Cui et al., 2022), a multilingual vari-
ant of CFQ, is the first adaptation into multiple
languages of a compositional generalisation bench-
mark. It was created with the use of neural ma-
chine translation. Wang and Hershocovich (2023)
have shown that using neural machine translation to
translate already existing benchmarks entails “crit-
ical semantic distortion”, and favour a rule-based
translation of the MCWQ dataset.

The MSGM benchmark (Shi et al., 2022) in-
vestigates the mathematical reasoning abilities of
LLMs in multilingual settings, by providing data
in ten different languages. Even though the decom-
position of SCAN commands closely resembles
that of arithmetic operations, the MSGM differs
in that it does not specifically target the capacity
of the model to map forms to a representation of
meaning. As such, there has not yet been any in-
vestigation specifically targeting the compositional
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generalisation abilities of multilingual models in
an in-context setting.

3 The mSCAN dataset

Our goal was to adapt the Simplified version of
the CommAi Navigation dataset or SCAN (Lake
and Baroni, 2018) to languages that belong to ty-
pologically diverse families and typically are repre-
sented in varying proportions in the training data
of multilingual models. The languages selected
also have different language scripts: Latin, Cyrillic
and Devanagari. The original SCAN consists of
a set of navigation commands in English such as
“jump left”, and their corresponding sequence of
actions, such as LTURN JUMP. It is a synthetic
dataset: the natural language commands are gener-
ated by a phrase-structure grammar, and the actions
are produced by applying a semantic interpretation
function. As such, it is akin to a semantic parsing
task.

3.1 Generation methodology: a grammar
based-transduction

Following (Wang and Hershcovich, 2023), we
translate SCAN in a rule-based manner.

The method we used consists of a set of English
grammar rules, their accompanying transduction
rules and word mappings.

We used the context-free grammar shown in Fig-
ure 2, which is exactly equivalent to the one from
(Lake and Baroni, 2018), only differing in nota-
tion. We also used the interpretation function as
provided in their work. The SCAN grammar does
not have recursion and generates an unambiguous
and finite set of 20910 natural language commands
to action sequence pairs.

Native speakers of French, Mandarin Chinese,
Russian and Hindi were asked to provide the corre-
sponding interpretation function in their language.
We consequently manually built the transduction
functions, which were applied to the English parse
trees. The resulting parse trees were then formed
into our translated commands by word mappings.

For instance, for French translations, we first
parsed the English text using the original SCAN
grammar, given in Figure 2, to produce an English
parse tree. This parse tree can be transduced into
a French parse tree using the transduction rules
given in Figure 3. These transduction rules tell us
that, for instance, S AND S and S AFTER S should
be translated word-for-word, and the translation

of “and” is “et”, and “after” is “après”. They also
tell us that French distinguishes between “turn left”
(translated as “tourner à gauche”) and “turn around
left“ (translated as “tourner autour par la gauche”).

C -> S AND S | S AFTER S | S
S -> V TIMES | V
V -> ACTION VECTOR DIR

| TURN VECTOR DIR
| D | ACTION

D -> ACTION DIR | TURN DIR

ACTION -> 'walk' | 'look'
| 'run' | 'jump'

TURN -> 'turn'
VECTOR -> 'around ' | 'opposite '
DIR -> 'left' | 'right '
TIMES -> 'twice ' | 'thrice '
AFTER -> 'after '
AND -> 'and'

Figure 2: English SCAN grammar

Upon the completion of generation, a sample
was manually checked by the native speakers for
meaning preservation.

3.2 Splits

We do not introduce a novel way to split our dataset
and rather choose to directly reproduce already
existing splits on mSCAN.

3.2.1 SCAN splits
The original SCAN dataset contains multiple types
of splits, each aimed to test distinct levels of com-
positional ability: the “simple” split is a random
subset of the data, and the “length” one targets
commands with corresponding action sequences
that are longer than any example seen during train-
ing, and finally, the “primitive” split, which tests
whether a primitive only encountered in isolation
during training can be used adequately novel com-
binations at test time.

3.2.2 Maximum Compound Divergence Splits
The MCD splits were introduced by (Keysers et al.,
2020) with their distribution-based composition-
ality assessment (DBCA). It consists of a method
to measure whether a dataset has been split ad-
equately to test for compositional generalisation,
as well as a method to construct such splits. The
main principles of the DBCA are that (1) all the
atoms or primitive elements existing in the test set
should also be present in the training set, and in
a distribution as similar as possible, and (2) that
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# Non -terminals
[S AND S] -> [S] [AND] [S]
[S AFTER S] -> [S] [AFTER] [S]
...
[ACTION VECTOR DIR] -> [ACTION] [VECTOR]

[DIR]
[ACTION LEFT] -> [ACTION] 'a gauche '
[ACTION RIGHT] -> [ACTION] 'a droite '
...

# Terminals
'and' -> 'et'
'after ' -> 'apres '
'turn' -> 'tourner '
'right ' -> 'par la droite '
'left' -> 'par la gauche '
...

Figure 3: English to French transduction rules

the distribution of compounds (ways of composing
the atoms) should be as different as possible be-
tween the training and the test set. Intuitively, this
method seeks to ensure that what is measured is
how the atoms are composed into new compounds
and that the compositions are challenging enough
so that the model cannot rely on anything else than
its capacity to generalise compositionally.

(Keysers et al., 2020) applied MCD to SCAN,
and we replicate these splits exactly in mSCAN:
each line of the respective test, train and evalua-
tion sets in mSCAN is a direct translation of the
corresponding line in the English-language MCD
SCAN split.

We make mSCAN_fra, mSCAN_hin, mSCAN_rus
and mSCAN_cmn and their accompanying splits,
available as a public dataset available on the Hug-
ging Face platform1.

4 Experiment

4.1 Models

The BigScience Large Open-Science Open-access
Multilingual Language Model or BLOOM, (Work-
shop et al., 2023) is a Transformer-based language
model with 176 billion parameters. As an autore-
gressive LLM, it is trained to generate text from
a prompt. It was trained on 46 languages and 13
programming languages.

We also ran a small experiment on the OpenAI
model gpt3.5-turbo, accessed via the OpenAI
REST API, between 2023/10/23 and 2023/10/26.

4.2 Prompt design

Our approach focussed on the selection methodol-
ogy of the in-context examples. Our goal was to
adapt and mimic the principle underlying the origi-
nal SCAN benchmark. That is, to test for composi-
tional generalisation, the context examples should
not contain the combinations of the test case.

1https://huggingface.co/datasets/CLMBR/mSCAN

We therefore randomly select the in-context ex-
amples from the training sets of our splits and the
test case from the corresponding test sets. For
example, a certain number of examples is sam-
pled from the French add_jump training set, and
its corresponding test case comes from the French
add_jump test set. This example is cut out to only
include the natural language commands and the
start of the output sequence token (“OUT:”), there-
fore prompting the model to generate the adequate
sequence of instructions as the output.

An EOS token was added at the end of each
example and provided to the model as a stopping
criterion parameter.

An example of a prompt is provided in Figure 4.

<s>IN: jump right thrice and turn
opposite left OUT: I_TURN_RIGHT
I_JUMP I_TURN_RIGHT I_JUMP
I_TURN_RIGHT I_JUMP I_TURN_LEFT
I_TURN_LEFT </s

<s>IN: walk after walk opposite left OUT
: I_TURN_LEFT I_TURN_LEFT I_WALK
I_WALK </s>

...

<s>IN: turn around left twice and look
around left thrice OUT:

Figure 4: Example of a prompt in English

4.3 Set-up

Due to the context-size restrictions of the BLOOM
model, we set the number of context examples to 8.
In the original add_primitive SCAN splits, the
primitive is over-represented in the training set by
10%. We imitate this in our set-up by manually
adding the primitive to the context examples once,
and by having removed the primitive from our train
set, which ensures that the sampled remaining 7
in-context examples do not contain it. Therefore,
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the full prompt consists of 8 examples, of which
one contains the primitive and 7 do not, and a test
case that includes the primitive. We use greedy
decoding for generation to provide a baseline.

5 Results

5.1 BLOOM

Because BLOOM was not trained with an end-of-
sequence token, we truncated generated outputs
to their expected length. Despite this adjustment,
our results get zero exact match accuracies, that is,
none of the full output sequences was equal to the
correct answer. This is consistent with the results
observed by Hosseini et al. (2022).

For a finer-grained measure of model perfor-
mance than exact match accuracy, we measured
the minimum edit distance between the truncated
outputs and the target strings.

Table 1 shows the average minimum edit dis-
tance compared to the expected output length
on 100 runs on the simple, MCD1, length and
add_jump splits for each language. There is no
result for add_jump on Hindi and Russian due to
the encoding being larger than the maximum sup-
ported size for these experiments.

It is important to emphasise that there was no
exact match, both for the original version of SCAN
as well as for our mSCAN multilingual variants,
meaning that the model has a 0% accuracy. We can
observe however that there is a similar amount of
error across languages.

As expected, the simple split achieves the best
results, and Russian did not achieve a similar perfor-
mance as the other languages, which are officially
part of the BLOOM training corpus. Surprisingly,
there is little difference between English and Hindi,
while the model seems to do slightly better on Man-
darin and French.

Despite Russian not being an official language
part of the training data of BLOOM, we ran the exper-
iments on our mSCAN_rus and we included it with
the others.

5.2 GPT 3.5

Unlike with BLOOM, we obtained a few exact se-
quence matches with gpt-3.5-turbo but they are
few, with less than 10% per language over the five
languages including English. In this experiment
again, Mandarin seems to achieve slightly better re-
sults. From these observations, it also appears that

the model has the most difficulty with the length
split.

The average edit distance results are better than
those with BLOOM but display a similar pattern, with
the model seeming to struggle the most on the
length split and Mandarin achieving slightly bet-
ter results. As expected, the model seems to be
more successful with Russian than BLOOM.

6 Discussion

6.1 Pre-training data contamination

In the in-context set-up, the data from the pre-
training corpus cannot be controlled. This means
that there is a possibility that the compositional
generalisation training set or the whole dataset it-
self could have been used. Given that BLOOM spec-
ifies the content of its training corpus, we are at
least guaranteed that it has not learned the English
SCAN dataset or that there was some test contami-
nation. As we introduce mSCAN with this paper,
it could not have been a part of the training data.

However, there is no guarantee the original
SCAN has not been seen during the pre-training
of the ChatGPT model. Given that we are not able
to check the pre-training data, the data distribution
shift is only assumed in this case.

6.2 In context-examples selection

It is acknowledged that prompting variations such
as the format or order of prompts can have an influ-
ence on the in-context learning performance. Our
context example selection methodology is rudimen-
tary. A recent study found that the selection of
in-context examples affects compositional gener-
alisation performance, by showing that randomly
selecting in-context leads to an accuracy gap com-
pared to fine-tuned models (An et al., 2023). They
argue that a careful selection of the in-context ex-
amples will “fully reveal the potential of in-context
learning”. They define three requirements for in-
context examples: structural similarity, diversity
and complexity. They show that this helps compo-
sitional generalisation. In the case of SCAN, the
structural similarity factor is not as relevant, given
the basic nature of the grammar (there are no com-
plex structures such as in COGS). The diversity
and complexity factors are not controlled in our
experiment, given that we sample from the train
set without looking at the number of distinct primi-
tives included. For this reason, our set-up does not
follow the principle that the primitives in the test
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Model, language \ split simple (13.55) mcd1 (18.03) length (30.04) add_jump (14.58)

BLOOM

cmn 5.04 8.28 13.82 7.16
eng 9.32 11.65 19.15 10.53
fra 7.69 11.85 16.26 7.95
hin 8.63 11.10 18.72
rus 12.04 15.60 27.21

gpt-3.5-turbo

cmn 4.52 7.95 14.83 5.81
eng 5.51 8.75 16.32 6.65
fra 5.63 9.39 17.00 7.26
hin 6.47 10.17 17.50 8.17
rus 5.67 9.51 17.70 7.26

Table 1: Average edit distance for each language and split, on BLOOM and gpt-3.5-turbo. The numbers reported in
the column headings correspond to the average expected output length. Note that BLOOM produced 0 exact matches.

Language \ split simple mcd1 length add_jump

cmn 10 6 0 6
eng 7 7 0 1
fra 4 4 0 1
hin 0 0 1 2
rus 3 0 0 4

Table 2: Number of exact matches over 100 queries of gpt-3.5-turbo

case should be covered by the in-context examples.
Instead, we expect the model to be able to infer the
mapping to SCAN instructions from context as the
instructions closely match their natural language
counterparts (e.g., walk is mapped to I_WALK).

Other research uses a least-to-most prompting
strategy: prompts consist of instructions telling
explicitly the model to decompose the task into
subproblems and showing it how to solve them
sequentially (Zhou et al., 2023). The number of
in-context examples in our experiment was con-
strained by the context size of the model in the
BLOOM experiment. To work around this, the
least-to-most method uses intermediate representa-
tions in the form of Python expressions, mapping
for example “look twice” to “LOOK*2” instead
of “LOOK LOOK”. The authors show that the
model is able to expand from the Python expres-
sion with high accuracy, but further investigation
of the potential consequences of these intermediate
representations could be pursued.

6.3 Compositional Generalisation and
different languages

We observed that there was no large variation be-
tween how the different languages performed in

our in-context setup, except for Mandarin Chinese,
which has slightly better results. Given the limited
scope of our experiments, this observation should
be confirmed by further investigation. If these re-
sults hold then, they would be in contrast with
previous findings, where in some NLP tasks, gener-
ative models (including BLOOM) perform better on
higher-resource languages and languages that are
in the Latin script (Ahuja et al., 2023).

6.4 Possibilities for future work

In addition to investigating different strategies for
in-context example selection and systematically
conducting the experiments on a larger scale than
what this work presents, future work could involve
adapting more realistic natural language tasks to
multiple languages. Indeed, the subset of natu-
ral language covered by SCAN is small and its
interpretation is more akin to arithmetic expres-
sions than naturally occurring language. As such,
it does not make it possible to evaluate for more so-
phisticated linguistic abstraction (Kim and Linzen,
2020). Adapting COGS to other languages would
be an extensive process, requiring the construction
of language-specific grammars.

It would also be worth doing experiments with
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fine-tuning on multilingual models such as mBART
(Liu et al., 2020) or mT5 (Xue et al., 2021).

A systematic study of the interactions between
(a) the size of language-specific pretraining data,
and (b) both compositional and cross-lingual gen-
eralisation, would be an important contribution.

7 Conclusion

The majority of the research on compositional gen-
eralisation is focussed on English, leaving open
the question as to whether its findings can gener-
alise across languages. As an initial step towards
this exploration, we introduce mSCAN, a multi-
lingual adaptation of the SCAN dataset, produced
using rule-based translation, with rules developed
in cooperation with native speakers. We then show-
case this novel dataset on some in-context learning
experiments, with the multilingual large language
model BLOOM.

Limitations

Due to the synthetic nature of the SCAN dataset,
the translations in other languages do not aim to
capture naturalness or fluency.

This dataset was created with the aim of ex-
panding compositional generalisation evaluation
to multiple languages. We evaluate BLOOM, a model
carefully designed for multilingualism, trained
on a meticulously curated corpus. Despite these
two points, more typologically diverse and low-
resource languages are absent from our dataset and
our evaluation.

Finally, the scale of the experiments reported in
this paper was limited by different factors, includ-
ing the cost and time of inference, and the max-
imum context size of 1000 tokens of BLOOM. As
such, larger-scale experiments would be needed to
form a basis for comparison with other benchmark
results.
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Abstract

Due to the finite nature of any evidence used
in learning, systematic generalization is cru-
cially reliant on the presence of inductive bias
(Mitchell, 1980). We examine inductive biases
in different types of sequence-to-sequence neu-
ral network models, including CNNs, LSTMs
(with and without attention), and transformers,
inspired by Kharitonov and Chaabouni (2021).
Crucially, however, we consider a wider range
of possible inductive biases than their study
did. Investigating preferences for hierarchical
generalization compared to other types of gen-
eralization, we find that, contrary to their re-
sults, transformers display no preference for
hierarchical generalization, but instead prefer
a counting strategy. We also investigate biases
toward different types of compositionality. By
controlling for a confound in Kharitonov and
Chaabouni (2021)’s test set, we find much less
consistent generalization overall, and find that
a large number of responses were among types
other than the two types of generalization they
considered. Nevertheless, we observe consis-
tent compositional generalization to held out
combinations of primitives and functions on a
SCAN task (Lake and Baroni, 2017) by mod-
els of all types, but only when primitives occur
with other functions in the training set. The
pattern of success indicates generalization in
models of these types is highly sensitive to dis-
tributional properties of their training data.

1 Introduction

Learners, both human and machine, systemati-
cally generalize from finite sets of data, and it is
such generalization that makes them such effective
agents. Hupkes et al. (2023a,b) review the wealth
of work focused on understanding the efficacy of
different models for different types of generaliza-
tion in NLP tasks. As Mitchell (1980) notes, the
kind of systematic generalization we hope our mod-
els will show is only possible in the presence of
inductive bias, a preference for some generaliza-

tion over others. Inductive bias can derive from
inherent properties of a model or from previous
training. In this paper, we focus on the former.
While such inherent inductive bias can be read off
to a reasonable degree from the structure of a sym-
bolic model, it is much less easy to understand the
biases of a neural network architecture trained with
some variant of backpropagation.

Work that documents variation among models
in their ability to solve a certain NLP task can
be understood as illuminating inductive biases in
these models: ones that fare better are more biased
toward the correct solution (modulo training differ-
ences). Yet because of the complexity of most such
tasks, it is typically difficult to identify the spe-
cific preferences that lead to a model’s generaliza-
tion behavior. The recent work of Kharitonov and
Chaabouni (2021, henceforth KC) aims to avoid
this issue by focusing on carefully controlled induc-
tion problems, which we can think of as “model in-
duction organisms," where the range of solutions is
limited. We aim to build on KC’s important ground-
work, focusing on two of the tasks that they pro-
posed: Hierarchical-or-Linear and Composition-
or-Memorization. We show that the evaluation of
model behavior and assessment of inductive bias
with even apparently trivial tasks requires great
care. In particular, assessing inductive bias requires
the consideration of the widest possible range of
possible hypotheses, and failing to do so can lead
to over- or under-estimating inductive bias for a
certain type of hypothesis. In addition, we demon-
strate that the process of constructing such model
organism tasks must avoid the presence of quirks
that lead even appropriately biased models astray.

2 Experiment 1: Hierarchy vs. Counting

In experiment 1, we adapt KC’s hierarchical-
or-linear task to further explore the question of
whether any of a range of model architectures dis-
plays a bias toward hierarchical generalizations.
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2.1 Materials & methods

In this task, we train sequence-to-sequence models
on four example mappings of the form xdyxd → y,
where x,y ∈ {a,b} and d = 4. This describes the
following four pairs of inputs and outputs.

1. Input: aaaaaaaaa; Output: a
2. Input: aaaabaaaa; Output: b
3. Input: bbbbbbbbb; Output: b
4. Input: bbbbabbbb; Output: a

As KC observe, this training set is consistent with
multiple rules characterizing the mapping between
inputs to outputs. A hierarchical rule could assign
to the input a center-embedded structure that asso-
ciates matching symbols in the prefix and suffix, so
that the target output is the most deeply embedded
element, i.e., the middle symbol. A linear rule
instead identifies the output through its absolute
sequential position in the source, in this case the
fifth symbol. A third rule that KC do not consider
involves a counting strategy, where the output is
the symbol that occurs least frequently, but at least
once, in the source.

KC’s test set went beyond this training set to in-
clude inputs of the form xmyxm for m ∈ [2,6]. This
set of inputs allows the hierarchical and linear rules
to be distinguished: the former would yield output
y, while the latter would yield whatever element
occurs in fifth position. This set does not, however,
allow the counting rule to be distinguished from
the hierarchical rule, which would both predict
output y. As a result, our testing regime evalu-
ated models on outputs of the form xmyxn, where
m ≥ 0, n ≥ 0, and m+n = d, for d ∈ [2,6], which
includes strings like abbbb, babbb, bbabb, etc. To
see how this expanded test set distinguishes hier-
archical, linear, and counting rules, consider the
input abaaa. Both hierarchical and linear learners
would produce a (which occurs both as the middle
and the fifth symbol in this string). However, a
learner with a bias toward counting would produce
b, the least frequently occurring symbol in the input.
On the other hand, an example like aabaa would
lead hierarchical- and counting-biased learners to
produce b (the middle and least frequent symbol),
while linear learners would produce a (the fifth
symbol).

We consider two measures of performance. The
first we adopt from KC: “fraction of perfect agree-
ment” (FPA). We train and evaluate 100 models of
each architecture we consider with different ran-

Dataset Architecture
FPA

PrAg with counting (100 seeds/row)
Counting Linear Hierar.

KC H-or-L

LSTM (w/o attn.) 0.00 0.00 0.00

LSTM (w/ attn.) 0.00 0.00 0.00

CNN 0.00 0.84 0.00

Transformer 0.79 0.00 0.00

Mirror CFG

LSTM (w/o attn.) 0.00 – 0.00

LSTM (w/ attn.) 0.00 – 0.00

CNN 0.00 – 0.00

Transformer 1.00 – 0.00

Mirror CFG (brackets)

LSTM (w/o attn.) 0.00 – 0.00

LSTM (w/ attn.) 0.00 – 0.00

CNN 0.00 – 0.74

Transformer 0.70 – 0.00

Mirror PCFG

LSTM (w/o attn.) 0.00 – 0.00

LSTM (w/ attn.) 0.00 – 0.00

CNN 0.00 – 0.00

Transformer 0.95 – 0.00

Mirror PCFG (brackets)

LSTM (w/o attn.) 0.00 – 0.00

LSTM (w/ attn.) 0.00 – 0.00

CNN 0.00 – 0.55

Transformer 0.18 – 0.00
      0.00 0.25 0.50 0.75 1.00      

Table 1: Results of experiment 1 and follow-up experi-
ments. Overlapping points are jittered on the y-axis.

dom initial states. FPA is the proportion of these
models for which all outputs adhere to a particular
rule, whether hierarchical, linear, or counting.

Our second measure is the proportion of agree-
ment (PrAg) with a particular generalization for in-
dividual examples in our test set in a single model.
Note that for this task, no example can be entirely
unambiguous due to the simplicity of the training
language: if one response unambiguously signals
the counting generalization (e.g., baaaa → b), then
the other possible response, a, is compatible with
both the linear and hierarchical generalizations. For
this reason, for this initial task, we provide plots
showing only the PrAg with the counting general-
ization as compared to the hierarchical generaliza-
tion out of examples where the two would predict
different responses.

We train the same types of networks as KC:
CNNs, LSTMs (with and without attention), and
transformers, using the same hyperparameters; see
KC for network architecture and training details.1

2.2 Results

Results for experiment 1 are shown in the first set
of rows in table 1 (under KC H-or-L). Notably,
no model consistently generalizes in accordance
with the hierarchical rule on our test set. While we
observe, like KC, that CNNs display an inductive
bias toward linear generalizations, we find quite
different results for transformers: rather than a hier-
archical bias, it appears that they actually display a
bias toward counting or determination of majority

1Our data and code are available at github.com/ma-
wilson1234/FIND.
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(Merrill and Sabharwal, 2023), revealed by exam-
ining performance on a test set that distinguishes
these competing possibilities.

The PrAg results reflect this bias for CNNs and
Transformers. LSTMs show a moderate but not
overwhelming proportion of counting responses—
less than might have been expected from the results
of Weiss et al. (2018). However, the plots in the
table of necessity only present PrAg with the count-
ing generalization for examples whose possible
responses distinguish counting, on the one hand,
from hierarchical or linear strategies, on the other.
This means these plots alone do not reveal whether
LSTMs tend to produce more linear or hierarchical
responses in cases that could distinguish those two
possibilities. When we consider such examples, we
in fact find that LSTMs of both types produce more
responses consistent with the hierarchical strategy
compared to the linear strategy (50%ile for hierar.
responses for LSTMs w/o attn.: 0.875; LSTMs w/
attn.: 0.75), which echoes what KC found using
their description length-based measure.

2.3 Attempts to induce hierarchical
generalization

The results of experiment 1 indicate that no model
architecture exhibits a strong bias toward hierar-
chical generalizations when we evaluate behavior
against a wider space of hypotheses. However,
the success of various model architectures, espe-
cially transformers, on linguistic data raises the
question of whether a richer kind of training data
could be sufficient to induce such a bias. In partic-
ular, language is replete with rules and constraints
that make crucial reference to hierarchical struc-
ture. The fact that large pre-trained transformer
models have shown general success on tasks prob-
ing their sensitivity to such structure clearly shows
us that they are able to learn hierarchical generaliza-
tions (Mueller et al., 2022). Such large pre-trained
models receive input much richer than the four ex-
amples given to the models in experiment 1.

Rather than attempting to replicate this full rich-
ness, we ask instead whether three changes that
begin to approach the ways in which language is
richer than the original four-example training set
could suffice to induce hierarchical generalizations
as opposed to counting generalizations.

Variable length We enrich our training set, so
that it is now described by the following recursive
phrase structure rules:

• S → a S′ a | b S′ b

• S′ → a S′ a | b S′ b | a | b

We refer to this as the “Mirror CFG” set. We cap
the maximum length of an example to 11, and ran-
domly generate 2 examples for each length in {3, 5,
7, 9, 11} for each center symbol a or b.2 We also in-
clude two instances of each of these lengths where
all symbols are identical. For examples where sym-
bols were not all identical, we ensured that the
center symbol was also the least frequently occur-
ring symbol for each example. This creates a set
of 40 sentences. We train models using the same
hyperparameters as above, with all 40 examples
run as a single batch. Note that including differing
example lengths means that a linear hypothesis, in
which an element at a fixed position is output, is no
longer compatible with the training set.

Our test set consists of all examples of lengths
{3, 5, 7, 9, 11} for which the two possible responses
distinguish between the counting and hierarchical
strategies (i.e., for which the middle symbol and
the least frequent symbol are different). For the test
set, we ensured that the center symbol was always
the most frequently occurring symbol, which will
allow us to distinguish the hierarchical and linear
generalization strategies. Because of this property
of our test items, a model with low PrAg score for
counting will have a correspondingly high score
for the hierarchical hypothesis. Results are shown
in the second row of table 1. Both FPA and PrAg
measures indicate that all architectures show a bias
toward counting, transformers most strongly.

Statistical signature of recursion Next, we con-
sider a dataset generated by a probabilistic version
of the grammar above, where the probability of
recursion is 0.5, which we call the “Mirror PCFG”
set. This provides information not only about exam-
ples of different lengths, but also about the relative
frequencies of different lengths. The resulting geo-
metric distribution over example lengths is consis-
tent with generation by a recursive process: at each
point in generation the structure can either recurse
with probability with p or stop with probability
1− p, resulting in structures with k levels of recur-
sion being generated with probability pk(1− p). If
each step of recursion introduces a fixed amount of
material, this will yield a geometric distribution on
string lengths. We cap examples to at most length

2The 2 examples per length were randomly generated only
once, and reused for every architecture/seed.
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11, and otherwise randomly generate 10 examples
for each center symbol in {a, b}, and 10 examples
where all symbols are identical for each symbol in
{a, b} (40 total). We train the same way as before,
and use the same Mirror CFG test set.

Results are again shown in table 1. Interestingly,
the CNNs and LSTMs now show a bias toward hi-
erarchical generalization revealed by the PrAg mea-
sure, though none generalized consistently. Never-
theless, transformers remain strongly biased toward
the counting generalization.

Explicit Encoding of Structure Finally, we
modified the previous two datasets adding left and
right brackets to mark constituency (e.g., babab be-
comes [b[a[b]a]b]). We also added brackets to the
test set. As pointed out by an anonymous reviewer,
this means there is now a linear way of produc-
ing a “hierarchical” response—choose the symbol
with a preceding “[” and a following “]”. Our goal
was to see how far we needed to go to produce any
kind of generalization consistent with hierarchical
structure—even if such a generalization could also
be a linear generalization. In other words, if we
make the hierarchical generalization “easier,” will
the models be more likely to take the bait?

Table 1 shows that adding brackets changes the
behavior of the CNNs, which show a bias toward
the “hierarchical” generalization. We suspect this
sharp change is due to the fact that in the bracketed
dataset, the “hierarchical” generalization can now
be expressed in linear terms (as detailed above).
What we find more interesting is that in spite of
the availability of this simple strategy, no substan-
tial change in overall bias is seen for LSTMs or
transformers—the transformers remain biased to-
ward a counting strategy, and the LSTMs’ prefer-
ences do not change.3 For the constant-frequency
training set, the LSTMs retain their counting bias;
for the PCFG training set, the LSTMs retain their
hierarchical bias without much change. The trans-
formers in both cases retain a bias toward the count-
ing generalization, though it is somewhat less pro-
nounced with the addition of brackets.

2.4 Discussion

Experiment 1 showed that despite KC’s claims,
transformers do not have a bias toward hierarchical
generalizations. When we considered a richer set

3See also McCoy et al. (2020) for a similar lack of change
in LSTM performance in the face of explicit evidence about
hierarchical structure.

of possible generalizations, we found that trans-
formers favor counting generalizations over hier-
archical generalizations when both are compatible
with the input. This shows the importance of con-
sidering ambiguities in the hypothesis space when
discussing inductive biases.

This result led us to see whether we could enrich
the training set to induce a hierarchical bias. We
considered two simple changes that could make
the simple training set more like human language:
first, we considered inputs of different lengths de-
scribed by a CFG. Second, we considered inputs of
different lengths generated by a recursive PCFG so
that shorter strings were more frequent than longer
strings. Finally, we considered both of these manip-
ulations with the addition of brackets in the input
that marked the underlying hierarchical structure.

Two manipulations made a difference. First,
going from a uniform distribution over example
lengths to a geometric distribution of lengths pro-
duced by a PCFG reversed the bias of the CNNs
and LSTMs from counting to hierarchical, with the
change being more noticeable for LSTMs. Second,
adding brackets made CNNs strongly biased to-
ward apparently hierarchical responses, but had rel-
atively little effect on other model types.4 Most in-
terestingly, despite the high success of transformer-
based models on linguistic tasks that require refer-
ence to hierarchical structure, we found that none
of our manipulations sufficed to induce a hierarchi-
cal bias in these models—they remained stubbornly
in favor of the counting generalization.

3 Experiment 2: Compositionality

In experiment 2, we examine the question of
whether different model architectures display a bias
toward compositional generalizations of various
types. By “compositional,” we mean a process
whose output is a function of its individual input
symbols and their mode of combination (Szabó,
2022). This question has been explored using a
variety of tasks and datasets, e.g., SCAN (Lake and
Baroni, 2017) and COGS (Kim and Linzen, 2020a),
which both explore the problem of assigning struc-
tured semantic interpretations to English sentences.
While offering useful measures of compositional
generalization, the complexity of these datasets
makes it difficult to assess the propensity for com-

4As noted above, the presence of the brackets gives rise a
non-hierarchical alternative, which the CNN may be exploit-
ing.
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positional generalization in its simplest guise. Here,
we focus on a distilled task probing compositional
generalization proposed by KC, which they call
Composition-or-Memorization. This task targets
compositional generalization in a way that is not
specific to its role in natural language.

3.1 Materials & methods
In KC’s Composition-or-Memorization task,
models are trained on two types of examples. In
one type, input symbols (which we represent as
natural numbers) are presented in isolation in the
input and are mapped to corresponding output sym-
bols (which we represent as lower case letters) in
a one-to-one way. Thus an input symbol a would
be mapped to the corresponding output symbol A
(which we encode as the corresponding upper case
letters). The examples are “non-compositional ex-
amples”. For a second type of input, there is a
modifier, F , which precedes one of these input
symbols. Under the intended interpretation of our
dataset, F is interpreted like “thrice,” so that input
F a is mapped to a three copies of the correspond-
ing output symbol, namely A A A (“compositional
examples”). For experiment 2, we consider the
same model architectures as in experiment 1, and
train 100 random seeds/architecture.

KC vary the number of input symbols that are
presented in compositional form in the training
data, and consider how models perform on held-
out compositional examples. They define M as
the number of distinct compositional examples
in the training set, and N as the number of dis-
tinct input (and output) symbols that occur in non-
compositional examples in the training set (in all
cases, such symbols are a superset of the ones that
occur in compositional examples). They consider
N = 40 with M ∈ {6,24,36}; that is, they train
learners on all 40 non-compositional examples and
M compositional examples.5 Their test set con-
sists of all unobserved compositional examples
within the 40 symbol range. For example, when
M = 36, their test set consists of the four inputs
F x37, F x38, F x39, F x40; when M = 24, their test
set consists of sixteen inputs, and so on.

A problem with this approach is that it makes

5Of course, we have presented this task as mapping low-
ercase letters to uppercase letters, and English would only
provide a maximum of 26 possible input-output pairs for this
task—fewer than the 40 described. In practice, we used the
natural numbers as input symbols, and the natural numbers
prefixed with O as output symbols, to avoid this complication.
We use the alphabetic notation for presentational convenience.

it easier for a model to show perfect agreement
with a generalization as the number of training ex-
amples increases, because this corresponds to the
size of the test set decreasing. In other words, a
model trained with M = 36 need only consistently
generalize on 4 examples to be counted as per-
fectly agreeing with a particular generalization. A
model trained with M = 24 would instead need to
consistently generalize on 16 examples, and so on,
making perfect agreement more difficult to achieve.

To address this, we increase N to 100. We still
train on M ∈ {6,24,36} and all non-compositional
examples. However, we test only on compositional
examples from F xi for i ∈ [50,100], i.e., composi-
tional examples that did not occur for any value of
M. This means that the size of the test set remains
identical for all M, and eliminates the confound
between M and the size of the test set.

3.2 Results

KC evaluate model performance by considering
two possible hypotheses. “Composition” for them
means that a model generalizes such that F a →
A A A. In contrast, they interpret “memorization”
to indicate that a model produces the single sym-
bol output associated with the non-modifier in-
put symbol, i.e., F a → A. However, this is cer-
tainly not the full space of possible hypotheses, and
narrowly restricts what constitutes compositional
behavior. For instance, suppose that the model
learns that F means “produce any two identical
symbols, followed by the symbol a maps to in non-
compositional examples” (i.e, F a = B B A, with
B an output symbol other than the one associated
with input a). This is also a kind of compositional
generalization: the output related to the complex in-
put is a function of its individual input symbols and
their mode of combination (Szabó, 2022). In this
case, JFK = λx.B B x and JaK = A with concate-
nation associated with function application. Fol-
lowing this intuition, we consider as compositional
any mapping in which the input a is associated
with at least one occurrence of A in the output,
and which includes at least two other symbols in
output, possibly, but not necessarily identical to
A. Many other generalizations are possible under
this interpretation of compositionality, even if they
don’t correspond to the “thrice" interpretation, i.e.,
JFK = λx.x x x. Determining that models fail to
generalize according to one compositional interpre-
tation does not preclude the possibility that they
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have generalized compositionally according to an-
other.

For this reason, we classify responses according
to a considerably wider range of possible templates.
In particular, we consider all ways in which sym-
bols in the output might be identical or differ for
numbers of output symbols from 1–3.6 We define
A as the output symbol corresponding to input sym-
bol a, and B, C, D as symbols other than A that do
not correspond to a. For instance, the generaliza-
tion F a = B B A means the model produced two
(identical) non-A symbols, followed by the symbol
corresponding to a; while F a = B C A means that
the model produced two (distinct) non-A symbols,
followed by the symbol corresponding to a. Non-
A symbols B, C, and D identify identical output
symbols within a response, but may differ across
responses from the same model.7 Both of these re-
sponses would, we argue, qualify as compositional
in a broader sense, even if they don’t instantiate the
“thrice” interpretation: the output is a function of
both input symbols, with a being mapped to A, and
F requiring an output sequence of length 3.

We report the same measures as for experiment
1: the fraction of perfect agreement (Table 2), and
the proportion of productions matching a particular
generalization (Figure 1). Due to the high num-
ber (22) of generalizations we consider, for FPA
we only report non-zero results. Only CNNs ever
responded completely consistently, and even then,
only a very small number of seeds did so (3 of 300
models). Instead, the vast majority of models pro-
duced responses consistent with a variety of answer

6Models sometimes produced longer responses (up to the
maximum length of 200 symbols). We present results for
responses up to at most 3 symbols for perspicuity. In prac-
tice, longer responses were entirely absent from CNNs (0%
of responses), and almost entirely absent from LSTMs w/o
attention (M = 6: 0.04%, M = 24: 0.16%, M = 36: 0%) and
LSTMs w/attention (M = 6: 0.04%, M = 24: 0.08%, M = 36:
0.04%). Consequently, our analysis for these networks is es-
sentially exhaustive. For transformers, longer responses were
more common, but still a minority, with differences depending
on M: longer responses accounted for 29.2% of responses for
M = 6, 9.2% of responses for M = 24, and 2.5% of responses
for M = 36. Of these, for M = 6 the most common lengths
were 200 (the maximum length, 20.9% of responses) and 4
(2.86%). For M = 24, 1.3% of responses were length-200 and
7.06% were length-4; and for M = 36, 0.46% of responses
were length-200 and 1.86% were length-4.

7In the computation of the FPA measure, we did not require
that a model make use of a consistent choice of symbols. That
is, in order to count as consistently F a = B B A, the model’s
choice of B in the output could vary by response, but was
required to be distinct from A. Since the PrAg measure was
calculated at the level of the individual trial, no consistent
choice of non-A symbols was required.

Architecture M Generalization FPA

CNN
6 F a = B B B 0.02

24 F a = A A A 0.01

Table 2: FPA results from experiment 2. Architectures,
M, and generalizations not shown have FPA = 0.00.
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Figure 1: Distributions of PrAg with generalizations of
up to 3 symbols in experiment 2. Within each row of
plots, generalizations are omitted from the y-axis if no
model of that architecture produced any response fitting
that template for any M.

types. Making the size of the test set consistent for
all M appears to have made it harder for models to
consistently generalize, as expected.

The distribution of response proportions (figure
1) reveals a more nuanced picture of model pref-
erences. Both types of LSTMs have a preference
for non-compositional F a = B B B responses for
M = 6, with KC’s memorization F a= A responses
also among the more common. As M increases,
however, the proportion of the (compositional)
F a = A B B responses increases, with LSTMs
with attention appearing to have equal preference
for F a= B B B and the compositional F a= A B B
when M = 36. CNNs, in contrast, display a wider
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range of common response types for smaller M, but
as M increases, the compositional “thrice" response
F a = A A A becomes the modal response. Finally,
transformers with M = 6 show equal preference
for non-compositional F a = A and F a = B, but
with the preference for F a=B being replaced with
a preference for the similarly non-compositional
F a = B B B for M ∈ {24,36}.

Non-A symbols for responses of length > 1
overwhelmingly were drawn from the symbols
seen with compositional training examples, with
the mean proportion of these symbols in out-
puts with non-A symbols uniformly being between
[0.976,0.999]. However, we did not observe any
tendency for particular models to use the same non-
A symbols across responses.

In spite of our use of the PrAg measure as op-
posed to KC’s minimal description length-based
measure, our results are generally compatible with
theirs, especially when we limit our focus to the
two hypotheses they considered, namely F a = A
(their “memorization”) and F a = A A A (their
“composition”). For LSTMs, KC found a general
preference for memorization over composition, ex-
cept for LSTMs with attention with M = 36, where
the preference is (barely) reversed. In figure 1, we
similarly see that the proportion of F a = A re-
sponses for LSTMs with and without attention is
consistently higher than that of the F a = A A A
responses. Our more fine grained analysis reveals
however that LSTMs show even stronger prefer-
ences for F a = B B B or F a = A B B than either
of the hypotheses KC considered. As noted above,
this latter rule is plausibly interpreted as composi-
tional, as its output does not include a reflection
of the input symbol a. This suggests that LSTMs
do not show such a uniform dispreference for com-
positional generalization. For CNNs, KC report
a strong preference for composition over memo-
rization for larger values of M, and our Figure 1
reveals the same preference. We note, however,
that many of the responses we observed fell into
the F a = B B B, F a = A B B and F a = A B A
categories, of which the former is plausibly non-
compositional. Finally, for transformers, KC report
a uniform preference for memorization over com-
position, which we also see in figure 1. Again,
Figure 1 reveals that other preferences are often
stronger than either of these. Transformers, for
M = 6, show a nearly equal preference for F a = B
as compared to KC’s memorization hypothesis, and

for larger values of M, F a = B B B is compara-
bly frequent to memorization. Nonetheless, these
are both plausibly considered non-compositional
responses, once again because the output lacks a
symbol corresponding to the input a.

To take stock, we see that expanding the space
of hypotheses we consider reveals that learners are
less likely to generalize consistently. Further, while
CNNs retained a bias for F a = A A A responses
with larger Ms, LSTMs and transformers behave
considerably differently from what KC reported.

3.3 Inducing compositional generalization

Why are the networks we studied in our previous
experiment resistant to systematic compositional
generalization? This seems surprising in the face
of apparent compositionality in state of the art lan-
guage models, which are constructed from some of
the same architectures we have explored.

One difference between our experiments and
such models lies in the training dataset. Our dataset
is extremely simple, consisting of single symbol
input-output mappings and one compositional op-
erator. It is possible that a model trained on a rich
variety of structures, each showing the kind of com-
binatorics associated with compositionality, could
evince more compositional generalization.8

To explore this possibility, we conducted an
evaluation of the SCAN dataset (Lake and Baroni,
2018). SCAN consists of a finite set of English-
like inputs that represent intended movements of a
robot, and outputs are step-by-step instructions for
achieving these movements. SCAN includes a fair
number of different predicates that can combine in
different ways. This permits a training set to exhibit
broad evidence for compositional combination, and
allows us to test for systematic compositional gen-
eralization. We experiment with two splits of the
SCAN dataset. The first is the addprim_jump split
of Lake and Baroni (2018). In this split, the train-
ing set includes the full range of possible sentences
from SCAN, except for those involving composi-
tional uses of the primitive jump. The test set con-
sists of all compositional sentences containing this
primitive. This split poses the question of whether
a model learns to generalize the use of jump to all
positions in which other simple predicates occur.

Our second split, addtwicethrice_jump, com-
prises a training set that includes all sentences with-
out jump as well as sentences in which jump is

8See Patel et al. (2022) for a related proposal.
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Split Architecture Proportion correct (10 seeds/row)

addprim_jump

LSTM (w/o attn.)

LSTM (w/ attn.)

CNN

Transformer

addtwicethrice_jump

LSTM (w/o attn.)

LSTM (w/ attn.)

CNN

Transformer
      0.00 0.25 0.50 0.75 1.00      

addtwicethrice_jump subset Architecture Proportion correct (10 seeds/row)

jump twice|thrice

LSTM (w/o attn.)

LSTM (w/ attn.)

CNN

Transformer

jump . . . twice|thrice

LSTM (w/o attn.)

LSTM (w/ attn.)

CNN

Transformer
      0.00 0.25 0.50 0.75 1.00      

Table 3: Results of SCAN experiments. Overlapping
points are jittered on the y-axis.

not under the scope of twice or thrice, operators
whose outputs require repeating the sequence of
instructions corresponding to the trajectory to their
left 2 or 3 times. The test set contains all inputs
where jump occurs under the scope of twice or
thrice. This means that, unlike the addprim_-
jump split, jump does occurs in the training set in
the presence of other compositional operators, just
not with twice or thrice. This avoids the poten-
tial problem that a model might learn jump has the
distinctive property of only appearing by itself.

In their appendix D, KC report results from the
addprim_jump split. Because we were unable to
determine all details of their training regimen from
their description, we first repeated their experiment
of the addprim_jump split. For LSTMs and trans-
formers, we use the architectures they reported.
For CNNs, we use models with 5 encoder layers,
1 decoder layer, and a kernel size of 8, the best
performing of their CNN models. We trained 10
random initializations per architecture on each split,
using 1000 batches sampled with replacement for
500 epochs, for a total of 500,000 weight updates.
Batch sizes matched KC’s (LSTMs, CNNs: 16;
transformers: 256). We used the same procedure
for our addtwicethrice_jump split. Accuracy on
the training set was uniformly high: the model with
the lowest performance achieved 98.2% accuracy
on the training set, with most achieving 100%.

Results from these experiments appear in the
upper half of table 3. While we did not replicate
KC’s results on the addprim_jump split exactly, we
similarly find that on this split, only CNNs show
any sort of generalization, though even their per-
formance is quite low. However, the picture is
quite different for the addtwicethrice_jump split,

where all models generalize correctly to most ex-
amples. It seems that showing jump in a range of
compositional contexts helped the models general-
ize to this predicate’s occurrences in other compo-
sitional contexts, compared to when we show the
models jump in only non-compositional contexts.

To investigate this difference further, we
consider performance on two subsets of the
addtwicethrice_jump test set: (1) a subset com-
prising all examples where jump occurs immedi-
ately preceding twice or thrice in the input, and
(2) the complement of set (1).9 On the face of it,
test set (1) seems simpler and might yield better
performance, as its examples involve less depth of
embedding. However, the results (lower half of
table 3) reveal the opposite pattern: performance
tends to be worse on examples where jump occurs
immediately adjacent to twice and thrice.

We hypothesize this is due to models’ depen-
dence on (irrelevant) surface properties of the input
in the training set: in the addtwicethrice_jump
split, the bigrams jump twice and jump thrice
never occur—they have a probability of 0. How-
ever, all other bigrams permitted in SCAN occur in
the training set of this split. So, even though this
training set is sufficient to induce compositional
generalization, the presence of non-occurring bi-
grams yields less accurate performance.10 The
data augmentation reported in Andreas (2020),
which also reduces non-occurring bigrams in test
items, has a similarly salutary impact on general-
ization. While speculative, this could explain the
sharp distinction between the addprim_jump and
addtwicethrice_jump splits, since in the former,
no bigram including jump occurs in the training set,
since it occurs only in isolation. A similar line of
reasoning could be behind the poor compositional
performance we saw in Section 3.2.

4 Related Work in Architectural
Inductive Bias

Here, we briefly discuss work on inductive bias in
neural network models that focuses particularly on
those aspects of inductive bias that are traceable to

9Note that in set (2), jump is still under the scope of twice
or thrice in each example, just not adjacent to either, as in
jump opposite right twice.

10We do not consider bigrams privileged in this regard; this
is just the simplest way of characterizing the divide given our
training datasets. We might expect a more nuanced picture
if we take into account n-grams with n > 2, though local
relationships will need to play a more important role in order
to explain the contrasts reported in the lower part of Table 3.
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network architecture; see Hupkes et al. (2023a,b)
for a more thorough review.

In some cases, inductive biases have been inten-
tionally built in to particular architectures. The pa-
rameter sharing and filter structure of CNNs leads
directly to a bias for translation invariance and fea-
ture locality, which are useful in a variety of tasks
(LeCun and Bengio, 1998; Mitchell, 2017). The
inclusion of gates with multiplicative interactions
in LSTMs (Hochreiter and Schmidhuber, 1997)
explicitly addressed deficiencies of RNNs in mod-
eling the long-distance dependencies found in nat-
ural language (Elman, 1990). Weiss et al. (2018)
discuss the fact that unbounded growth in LSTMs’
hidden state vectors leads to a counting bias.

None of these biases relate explicitly to the ques-
tions of structural or compositional generalization
that we have explored in this paper. Research
on language-related biases has explored structural
generalization. White and Cotterell (2021) train
LSTMs and Transformers on synthetic corpora that
exhibit a range of word order patterns, some at-
tested in natural languages, others not. LSTMs, un-
like Transformers, showed a preference for certain
word order patterns over others, but neither showed
a bias toward attested natural language patterns.
McCoy et al. (2020) study the ability of differ-
ent architectures to generalize structurally-defined
mappings between sentences. LSTMs, RNNs, and
GRUs with different attention mechanisms failed to
generalize structurally, preferring linear generaliza-
tions. Petty and Frank (2021) find an even more ex-
treme failure for Transformer models. McCoy et al.
only find a bias toward structural generalization
in models with explicitly hierarchically-structured
recurrence (Chen et al., 2017).

To detect bias toward compositionality, re-
searchers have explored tasks requiring the map-
ping of a natural language input to an interpretation
of some sort, including SCAN (Lake and Baroni,
2017), PCFG SET (Hupkes et al., 2020), COGS
(Kim and Linzen, 2020b), and SLOG (Li et al.,
2023). Success on these datasets is informative
about the kinds of generalizations that networks
are capable of. Yet their complexity, compared
to the tasks we explored, can make it difficult to
identify reasons for success or failure. Indeed, mod-
ifications to non-crucial properties of a dataset can
yield quite different results (Wu et al., 2023). Of
course, considering complex cases is important, as
we have indeed seen in Section 3.3 above. How-

ever, we see the study of simple tasks as providing
complementary understanding.

Recently, it has been found that experiments aim-
ing to identify inductive biases must also carefully
control for training regimen. For example, training
without early stopping can lead to qualitatively dif-
ferent patterns of generalization through “grokking”
(Csordás et al., 2021; Power et al., 2022). It will be
important to understand the range of applicability
of grokking and the like, as well as the challenge
such results pose for assessing inductive bias.

5 Conclusion

A finite set of data may be consistent with an in-
finite number of possible generalizations (Hume,
1739). It is precisely for this reason that studies
of inductive bias must proceed with great care to
avoid adducing support for the existence of certain
kinds of inductive biases prematurely.

Taking this idea to heart, we found that the KC’s
claim that transformers tout court display hierar-
chical bias to be premature. Instead, we found their
behavior to be most consistent with a counting-
based strategy.

Similarly, we found that considering a more con-
sistent test set when assessing compositionality led
us to find less support for consistent generalization
than KC. Though the pattern of results we found
was consistent with theirs when limiting our fo-
cus to the hypotheses they considered, we found
that expanding the range of possible hypotheses
revealed a more nuanced picture.

Nevertheless, we found there is hope for induc-
ing compositional generalization: when we ensure
that distributional properties of the training set are
more like the those in the test set, compositional
generalization appears easily achieved.

This suggests low performance on a particular
task may be due to irrelevant factors, like surface-
level distributional properties of a training dataset.
It may not be that a particular model cannot achieve
high levels of success on certain tasks due to the in-
herent complexity of whatever pattern of behavior
the task aims to measure, but because it has fixated
on some accidental, irrelevant generalization in its
training data that impedes its recognizing the cor-
rect generalization. Alleviating models’ propensity
toward fixation on such irrelevancies, perhaps by
altering their training data in systematic ways (as
in our SCAN experiments), may prove useful in
improving their performance in various domains.
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Limitations

The small scale of the datasets used here to train
the networks represent both an advantage and lim-
itation. While this scale limits information given
to the model during training, the unusually small
dataset can lead the model to detect and induce
unusual distributional properties as relevant to the
task at hand. Indeed, we have seen an instance
of this problem in experiment 2. Though there
is no magic bullet for avoiding this issue we sus-
pect, it is one that future work that seeks to develop
“model induction organisms" will need to take into
account.

Experiments reported here all made use of the
same procedure for parameter optimization, namely
Adam (Kingma and Ba, 2014), and therefore dif-
ferences observed between the models must be due
to their structure. However, it is possible that dif-
ferent optimization methods may lead to different
inductive biases for the same network architectures.
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Abstract
To develop a system with near-human language
capabilities, we need to understand current sys-
tems’ generalisation and compositional abili-
ties. We approach this by generating compo-
sitional, structured data, inspired from visual
intelligence tests, that depend on the problem-
solvers being able to disentangle objects and
their absolute and relative properties in a se-
quence of images. We design an analogous
task and develop the corresponding datasets
that capture specific linguistic phenomena and
their properties. Solving each problem instance
depends on detecting the relevant linguistic ob-
jects and generative rules of the problem. We
propose two datasets modelling two linguistic
phenomena – subject-verb agreement in French,
and verb alternations in English. The datasets
can be used to investigate how LLMs encode
linguistic objects, such as phrases, their gram-
matical and semantic properties, such as num-
ber or semantic role, and how such information
is combined to correctly solve each problem.
Specifically generated error types help investi-
gate the behaviour of the system, which impor-
tant information it is able to detect, and which
structures mislead it.

1 Motivation

The current reported success of large language mod-
els (LLMs) is based on computationally expensive
algorithms and large amounts of data that are avail-
able for only a few, non-representative languages.
Such data may also contain biases and imbalances,
and its sheer size prevents curation. To be able
to build robust models that can learn better from
manageable sized data, we need to understand the
current systems’ generalisation and compositional
abilities.

We argue that a system with high language com-
petence and performance, that is able to learn from
small amounts of data, and is cross-linguistically
valid, should capture the three fundamental prop-
erties of human language: (i) human language is

described by several abstract levels of representa-
tions (e.g. morphological, phonological, syntactic,
semantic), mapped onto each other by complex
many-to-many rules; (ii) it is compositional; (iii) it
is structured.

For GenBench, we propose several datasets un-
der the same umbrella, as they have the same for-
mat, but encode different linguistic phenomena,
each in a different language – subject verb agree-
ment in French, verb alternations in English. They
can be used separately, or in combination, to ex-
plore the properties and the generalisation abilities
of a LLM in various ways.

• Test whether sentence representations encode
the targeted linguistic information.

• Test generalisation when data has different
levels of lexical variation.

• Providing probes into how sentence represen-
tations encode the targeted information – by
studying different minimal architectures that
aim to find patterns in pretrained sentence rep-
resentations.1

• Providing cross-linguistic and multi-task
probes for detecting how sentence represen-
tations encode different kinds of targeted lin-
guistic information. The fact that our datasets
have the same structure allows for a variety of
experimental set-ups to probe how sentence
embeddings encode different linguistic phe-
nomena across different languages.

Additional datasets are in development, thus ex-
panding the scope of the exploration. With respect
to the workshop aims, our motivations are as fol-
lows.

1By minimal we mean the least complex architectures that
could be used to discover patterns in the input data.
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Cognitive : explore how specific linguistic infor-
mation is encoded in pretrained sentence rep-
resentation, and determine whether, or to what
degree, we can identify symbolic structures
and compositional elements within these rep-
resentations.

Intrinsic : explore whether pretrained LLMs have
learned language representations whose prop-
erties can be mapped onto those proposed in
linguistics, and whether the tasks we propose
are solved through identifiable rules.

While the proposed datasets are presented as a
diagnostic tool – to detect patterns that encode lin-
guistic rules and phenomena – we envision that
they could also be used to bring such patterns to
the fore, through fine-tuning pretrained sentence
embeddings, thus pushing continuous distributed
representations towards more symbolic, and inter-
pretable, ones.

2 Blackbird Language Matrices

The design of our datasets were inspired by Raven
Progressive Matrices (RPMs) (Raven, 1938), an
example of which is presented in Figure 1.

Figure 1: An example Raven’s progressive matrix (best
seen in colour). The matrix is constructed according to
two rules: (i) the red dot moves one place clockwise
when traversing the matrix left to right; (ii) the blue
square moves one place anticlockwise when traversing
the matrix top to bottom. The task consists in finding
the tile in the answer set that correctly completes the
sequence, indicated with a double border.

RPMs are used in visual IQ tests, as they rely
on problem-solvers identifying elements and their
attributes such as position, shape, colour and size,
and their absolute and relative properties (for in-
stance, how their positions change relative to each
other throughout the matrix of images). Analo-
gously, in language, elements correspond to phrase
types, attributes correspond to grammatical gen-
der or number, or specific semantic properties, and
their connective properties are the relative positions
within a syntactic structure or the mapping across
levels of representations.

2.1 The Blackbird Language Matrices (BLM)
task

Merlo et al. (2022); Merlo (2023) describe the
Blackbird Language Matrices (BLM) task. A tar-
geted linguistic phenomenon is presented in the
form of a set of sentences that have both syntag-
matic and paradigmatic relations. This way, like
in the RPM visual version, they give rise to a ma-
trix structure. The language matrices manipulate
phrases, dependencies in the syntactic tree, and lex-
ical, grammatical and semantic attributes between
connected elements of a sentence and across sen-
tences.

A BLM task comprises a context and an answer
set: the context C is a sequence of sentences that
share the targeted grammatical phenomenon, but
differ in other relevant aspects. BLMs are multiple-
choice problems, and each context is paired with a
set of candidate answers W . The incorrect answers
are built by corrupting the generating rules of the
context sequence. This contrastive set up enables
targeted error analyses and provides information
on structures learned and the type of mistakes a
system is prone to. More formally, a BLM task,
problem, and matrix can be defined as follows.

BLM TASK: Find (wc ∈ W ) given C,

given a 4-tuple (LP,C,W,wc), where LP is
the definition of the linguistic grammatical
phenomenon, C is the corresponding context
matrices, W is the answer set, and wc is the
selected item of W that is correct.

BLM PROBLEM: A BLM problem is a
tuple(LP,C,W,Aug). It is an instance of a
BLM task, where Aug is the augmentation
method for the matrices.

BLM MATRIX: A BLM matrix is a tuple
(S,R, T ) s.t. S is the shape of the matrix,
R are the relational operators that connect the
items of the matrix, T is the set of items of
the matrix.

2.2 The BLM Datasets
We propose two datasets encoding two different lin-
guistic phenomena, in different languages: subject-
verb agreement in French, and verb alternations in
English. We submit to the GenBench task two vari-
ations for each dataset: one where each problem
in the training data consists of a sequence of sen-
tences with minimal lexical variation (type I), and
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one where the lexical variation is maximal (type
III). Figure 2 shows the evaluation cards for the
two types of datasets (with training with minimal
lexical variation, and the training and test data sam-
pled from the same population of automatically
generated instances). Table 1 shows the dataset
statistics.

type I

type III

Figure 2: Evaluation cards type I (top) and type III (bot-
tom).

The shift and generalisation types are as follows.

Shift source : fully generated – BLM-AgrF has
been automatically generated starting from
manually selected seeds and provided tem-
plates. + generated shift: type I variation
contains training data sampled from a differ-
ent distribution than the test data.

Shift type : covariate: for type I there is a covari-
ate shift between training and testing input
data.

Shift locus : pretrained-trained – the datasets are
designed to make use, as input, of the repre-
sentations produced by pretrained LLMs, and
use them in a novel task. + train-test – for the
type I variations.

Generalisation We aim for compositional gener-
alisation, by proposing a dataset that can be used
to probe whether different linguistic objects, their

properties, and the rules through which they com-
bine are identifiable in pretrained sentence repre-
sentations.

2.2.1 BLM-AgrF: Subject-verb agreement (in
French)

Subject-verb agreement is often used to test the
syntactic abilities of deep neural networks (Linzen
et al., 2016; Gulordava et al., 2018; Goldberg, 2019;
Linzen and Baroni, 2021). While theoretically sim-
ple, it can have several complicating factors, such
as intervening elements between nouns and the
verb, which can interfere with the proper matching
of the agreement features.

CONTEXT
1 Le vase avec la fleur est cassé.
2 Les vases avec la fleur sont cassés.
3 Le vase avec les fleurs est cassé.
4 Les vases avec les fleurs sont cassés.
5 Le vase avec la fleur du jardin est cassé.
6 Les vases avec la fleur du jardin sont cassés.
7 Le vase avec les fleurs du jardin est cassé.
8 ???

ANSWER SET
1 Le vase avec la fleur et le jardin est cassé. coord
2 Les vases avec les fleurs du jardin sont cassés. correct
3 Le vase avec la fleur est cassé. WNA
4 Le vase avec la fleur du jardin sont cassés. AE
5 Les vases avec les fleurs du jardin sont cassés. WN1
6 Les vases avec les fleurs des jardins sont cassés. WN2

Figure 3: BLM instances for verb-subject agreement,
with two attractors (fleur (flower), jardin (garden)), with
candidate answer set. WNA=wrong number of attrac-
tors, AE=agreement error, WN1=wrong nr. for 1st at-
tractor noun (N1), WN2=wrong nr. for 2nd attractor
noun (N2)

In BLM-AgrF (An et al., 2023),2 a BLM prob-
lem for subject-verb agreement consists of a con-
text set of seven sentences that share the subject-
verb agreement phenomenon, but differ in other
aspects – e.g. number of intervening noun phrases
between the subject and the verb, called attractors
because they can interfere with the agreement, dif-
ferent grammatical numbers for these attractors,
and different clause structures. Each context is
paired with a set of candidate answers. The answer
sets contain minimally contrastive examples built
by corrupting some of the generating rules. This
helps investigate the kind of information and struc-
ture learned, by error analysis. An example is given
in Figure 3.

2The names of the datasets are composed of a descriptor
of the grammatical phenomenon (usually three letters) and the
initial of the language (Agr = Agreement; F = French).
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EXAMPLE OF CONTEXT
1 The girl sprayed the wall with paint.
2 Paint was sprayed by the girl
3 Paint was sprayed onto the wall by the girl
4 Paint was sprayed onto the wall
5 The wall was sprayed by the girl
6 The wall was sprayed with the paint by the girl
7 The wall was sprayed with paint
8 ???

EXAMPLE OF ANSWERS
The girl sprayed paint onto the wall Correct
The girl was sprayed paint onto the wall AgentAct
The girl sprayed paint the wall Alt1
The girl sprayed with paint onto the wall Alt2
The girl sprayed paint for the room NoEmb
The girl sprayed paint under the wall LexPrep
Paint sprayed the girl onto the wall SSM
The wall sprayed the girl with paint SSM
Paint sprayed the wall with the girl AASSM

Figure 4: Verb alternations (ALT-ATL): a minimally
lexicalised data instance. The labels indicate which
(sub)rules are corrupted to create the error. See text for
explanation.

2.2.2 BLM-s/lE: verb alternations (in English)
The study of the argument-structure properties of
verbs and semantic role assignments is also a test-
bed for the core syntactic and semantic abilities
of neural networks (Kann et al., 2019; Yi et al.,
2022). Specifically, Yi et al. (2022) demonstrates
that transformers can encode information on the
two alternants of the well-studied spray-load alter-
nation (Levin, 1993).

The BLM dataset for investigating the encoding
of alternation properties is BLM-s/lE (Samo et al.,
2023).3 A naturally occurring example for each
verb was extracted from the Spike Amazon sub-
corpus (Shlain et al., 2020), adopted as seeds for
data-augmentation with a fill-mask task. Details are
given in (Samo et al., 2023). A BLM s/lE matrix
consists of a context set comprising one alternant
(e.g. The girl sprayed the wall with paint) of the
spray-load alternation and other sentences that pro-
vide the syntactic properties of the arguments of
the alternation (e.g. passivization strategies). The
target sentence is the other alternant (in our case,
The girl sprayed paint onto the wall) to be chosen
from an answer set of superficially minimally, but,
syntactically and semantically, deeply different can-
didates. An example matrix is shown in Figure 5.
We created two templates, one for each of the two
alternates. One group has the alternant AGENT-

3The name follows our convention: s/l = spray/load; E
= English. The dataset is created on the basis of a class of
30 verbs belonging to the same class of spray and load in
VERBNET (Schuler 2005).

EXAMPLE OF CONTEXT
1 The girl sprayed paint onto the wall.
2 Paint was sprayed by the girl
3 Paint was sprayed onto the wall by the girl
4 Paint was sprayed onto the wall
5 The wall was sprayed by the girl
6 The wall was sprayed with the paint by the girl
7 The wall was sprayed with paint
8 ???

EXAMPLE OF ANSWERS
The girl sprayed the wall with paint Correct
The girl was sprayed the wall with paint AgentAct
The girl sprayed the wall the paint Alt1
The girl sprayed onto the wall with paint Alt2
The girl sprayed the wall of the room NoEmb
The girl sprayed the wall under the paint LexPrep
The wall sprayed the girl with the paint SSM
Paint sprayed the girl onto the wall SSM
The wall sprayed the paint with the girl AASSM

Figure 5: Verb alternation (ATL-ALT), a minimally
lexicalised data instance. The labels indicate which
(sub)rules are corrupted to create the error. See text for
explanation.

LOCATIVE-THEME (hencefort ALT, e.g. The girl
sprayed the wall with paint) in the context and
the correct answer is the alternant whose configu-
ration is AGENT-THEME-LOCATIVE (henceforth
ATL, e.g. The girl sprayed paint onto the wall).
ALT-ATL data is the data produced from the matrix
in Figure 5.4

The answer set is contrastive – see caption of
Figure 5. The answer labelled as AGENTACT mini-
mally deviates from the correct answer, since the
verb is inflected in a passive mood; in ALT errors,
the verb of the alternate is followed by two NPs
and one PPs; in NOEMB errors, the PP is syntac-
tically embedded in the NP; LEXPREP errors in-
volve a preposition which does not grammatically
belong to the alternation. Finally, violations of
the syntax-semantic mapping (SSM1 and SSM2)
and simultaneous violations of AGENTACT and
SSM (AASSM) involve reorderings of the lexical
constituents and functional elements (e.g. preposi-
tions).

3 Benchmarking

We used two baselines to benchmark the proposed
datasets. They are designed to test whether we
can access the relevant information for the targeted
phenomena in a given BLM task, in transformer-
based sentence representations. Figure 6 shows

4The name of the data subset, ALT-ATL, is transparent
towards this logic: ALT is given in the context set, ATL is the
correct answer. The second group’s template (ATL-ALT) is
the converse.
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the general process flow. The two baselines are a
feed-forward neural network (FFNN) and a convo-
lutional neural network (CNN).

The FFNN baseline is a three-layer feed-forward
neural network. It transforms the context C of a
BLM instance into a 1D-tensor which is a concate-
nation of the representation of each sentence. This
is passed through three fully-connected layers. The
output is a vector that we take to represent the em-
bedding of the answer sentence. This architecture
allows the system to find patterns within and across
sentences through the nodes in the successive lay-
ers.

The CNN baseline consists of three convolu-
tional steps, followed by a linear layer to compress
the output to the desired dimensions. The input
consists of a stack of context sentence representa-
tions. This setup finds localized patterns within
sentence representation and across the sequence of
sentences.

The output of the two networks is the same – a
vector representing the sentence embedding of the
correct answer. The learning objective is to max-
imize the probability of the correct answer from
the candidate answer set. Because the incorrect an-
swers in the answer set are specifically designed to
be minimally different from the correct answer, we
implement the objective through the max-margin
loss function. This function combines the distances
between the predicted answer and the correct and
erroneous ones. We first compute a score for the
embedding ej of each candidate answer aj in the
answer set A with respect to the predicted sentence
embedding epred as the cosine of the angle between
the respective vectors:

score(ej , epred) = cos(ej , epred)

The loss uses the max-margin between the score
for the correct answer ec and for each of the incor-
rect answers ei:

loss =
∑

ei

[1−score(ec, epred)+score(ei, epred)]
+

At prediction time, we take the answer with the
highest score value from a candidate set as the
correct answer.

4 Results and Error Analysis

The train/test data splits are presented in Table 1.
As the task is set-up as multiple choice, we mea-
sure the results in terms of F1 scores for identifying
the correct answer. The results below also show

Baseline
(CNN /
 FFNN)

Sentence sequence Candidate answers

X

PredictionSentence
representation

Figure 6: Illustration of the baseline setup experiments.

Datasets type I type III
BLM-AgrF 2073/3840 34650/3840

ALT-ATL 3375/1500 13500/1500BLM-s/lE
ATL-ALT 3375/1500 13500/1500

Table 1: Datasets statistics in terms of train/test counts.

the performance on the test set for varying amounts
of training data to show their impact, and com-
pares two types of pretrained sentence embeddings
– RoBERTa (Liu et al., 2019) and Electra (Clark
et al., 2020).

4.1 Varying the training data

The results below show the performance on the
test set in terms of F1 averages over five runs for
each of the two datasets, for RoBERTa and Electra
sentence embeddings.5 The plots in Figure 7 show
the results for the type III dataset variations (with
train and test data sampled from the same popula-
tion with maximal lexical variation), and the results
for the type I dataset variations (with training data
with minimal lexical variation within an instance).
The results obtained with the overall baseline sys-
tem (FFNN with Electra sentence embeddings) are
shown in the tables in the left column.

The results shown in Figure 7 reveal interesting
distinguishing properties of the two tasks. For the
subject-verb agreement, which is a syntactic task,
both types of sentence embeddings lead to similar
results when using the FFNN system. Instead, a
difference arises across architectures. The fact that
the CNN leads to lower performance indicates that
it finds more localised patterns and it also indicates
that patterns capturing subject-verb agreement are
more spread throughout the sentence embeddings.
For the verb alternation task, which has a strong
semantic component, the embedding type makes
more of a difference than the system used to detect
patterns. Electra seems to encode verb semantics
better for this task, as Yi et al. (2022) also note.
Because both the FFNN and the CNN detect suc-
cessfully these patterns, this indicates that patterns

5For all sets of five runs the standard deviation was less
than 1e− 10, so it is not included in the tables.
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Results for best base-
line (Electra + FFNN)

type I type III

tr+dev
(80:20)

type I type III

50 0.293 0.332
100 0.345 0.374
200 0.451 0.402
500 0.607 0.468
1000 0.661 0.622
1500 0.676 0.711
2000 0.702 0.741

tr+dev
(80:20)

type I type III

50 0.601 0.795
100 0.676 0.801
200 0.732 0.814
500 0.729 0.882
1000 0.795 0.896
1500 0.795 0.943
2000 0.798 0.938
3000 0.803 0.929

tr+dev
(80:20)

type I type III

50 0.600 0.731
100 0.665 0.806
200 0.726 0.848
500 0.809 0.876
1000 0.793 0.887
1500 0.800 0.915
2000 0.809 0.903
3000 0.794 0.914

Figure 7: Result plots in terms of F1 averages over five runs, when using the two baselines and RoBERTa and
Electra sentence embeddings, and numeric results in the tables for the best combination: Electra with FFNN baseline
system

encoding verb alternations are more localised.

Having training data with minimal lexical varia-
tion makes the targeted pattern more obvious. On
the other hand, it may provide shallow indicators
that can confound the system. Comparing the re-
sults on type I and type III, we note that there is a
drop of about 0.1 in the F-score for all settings, al-
though for the subject-verb agreement this is lower
(0.04). This is probably not surprising and under-
lines the more structural nature of the subject-verb
agreement problem, where lexical variation does
not detract from the number agreement pattern. For
the verb alternation the drop is higher. This may
suggest that since the task is more semantic in na-
ture, variation in the lexical material of the sentence
shifts the underlying patterns. Some transformation

of the sentence representations may make such pat-
terns more obvious, and separate them from the lex-
ical signal. However, the performance is still high,
even with a smaller amount of training data, indi-
cating that the signal that encodes the spray-load
alternation is strong in the sentence embeddings.

4.2 Error Analysis

Error analysis on the best baseline – RoBERTa
sentence embeddings with the CNN system – is
given in Figure 8. The upper panel refers to BLM-
AgrF, the lower panel provides information about
the errors within the ALT-ATL dataset BLM-s/lE.

In both datasets, we observe clear trends. First,
more data reduces errors roughly uniformly. Min-
imal variation is observed in BLM-AgrF, where
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Figure 8: Error analysis (averages over 5 runs) for varying amounts of training data, for the best performing baseline:
RoBERTa sentence embeddings with the CNN system.

WN2 (wrong number for 2nd attractor noun) re-
mains the most frequent error across size of the
training data. This error has two interesting char-
acteristics: it is the most frequent error also for
human speakers, and also it is exhibited by sen-
tences that are grammatical, but do not respect the
global pattern of the matrix.

Conversely, a conspicuous trend is distinctly ob-
servable within the BLM-s/lE dataset (ALT-ATL).
The distribution of mistake types concentrates on
lexical mistakes of functional elements (preposi-
tions) with small training sets. However, as the
dataset size increases, the SSM error increases pro-
portionally. This error is associated with the se-
mantic properties of the alternation, specifically
the semantic roles of the arguments of the verb.

5 Related work

The GenBench taxonomy differs sometimes from
the meaning of some existing terms elsewhere re-
ferring to generalisation. In situating our work in
comparison to other related work, we reason based
on the actual nature of the generalisation being
sought rather than the terminology.

Our closest related dataset in spirit, in terms of

motivation and goals, is the COGS dataset (Kim
and Linzen, 2020). It is also different from our
dataset in implementation. The COGS dataset aims
at providing out-of-distribution test cases to test
compositionality of structure and meaning. To this
goal, a training set is generated with a CFG and
parallel lambda-expressions and a test set with a
different CFG, specifically designed to exhibit test-
ing constructions that are previously unseen as such
and whose solution requires compositional gener-
alisation of components seen at training.

These unseen constructions comprise both struc-
tural and lexical generalisation: the former aiming
to test the ability to create new structures from ex-
isting parts, the latter to test ability to adapt existing
structures to novel content.

While our dataset strives for similar goals, the
way to go about it is different in one relevant re-
spect. The COGS dataset determines by design
the combinatorics that the network needs to find,
imposing therefore preexisting hard independence
assumptions generated by a CFG in the test set.
These pre-existing discrete rules of combination
must be discovered to find a correct parsing solu-
tion.

Our approach is more in the spirit of hidden rep-
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resentation learning. We do not require that the
network has explicitly learnt new generative ways
of combining elements. But we encourage repre-
sentations that learn soft constraints, in the form of
disentangled representations that correspond to the
generative underlying factors. Beside testing soft
constraints on structural generalisation, we also
provide tests of lexical generalisation (through the
different types of lexical variability in the matrix).

In this respect, the datasets provided here are
related to those used in the literature on disentan-
glement in computer vision. For example, van
Steenkiste et al. (2020) developed a dataset for
computer vision similar to RPMs. They evaluate
the usefulness of the representations learned for
abstract reasoning. They note that learning dis-
entangled representations leads to faster few-shot
learning. Also, recently Zheng and Lapata (2022)
propose a different method for disentangling re-
lations expressed in a sentence which may share
arguments. This is implemented as an extension to
sequence-to-sequence (seq2seq) models, where at
each decoding step the source input is re-encoded
by conditioning the source representations on the
newly decoded target context. These specialized
representations make it easier for the encoder to ex-
ploit relevant-only information for each prediction.

With the appropriate dataset, such approaches
can be used to probe the abilities of pretrained
LLMs. The datasets we propose in this paper have
the necessary properties: they focus on specific lin-
guistic phenomena, they display lexical and struc-
tural variation, and include known confounding
factors for the targered phenomena. They are, then,
close to the work that investigates network repre-
sentations. For example, Lasri et al. (2022) focus
on how BERT encodes grammatical number in En-
glish and how this information is used for perform-
ing number agreement. The focus is on word em-
beddings and quantifying how much number infor-
mation they encode at various layers of the BERT
architecture. Using a combination of probing ap-
proaches, they discover that subjects and predicates
embeddings do encode number information, but at
different layers. Further investigations into where
and how the number information is shared reveals
that number information is not directly shared, but
rather passed through intermediate tokens. The
study of the argument-structure properties of verbs
and semantic role assignments is also a test-bed
for the core syntactic and semantic abilities of neu-

ral networks (Kann et al., 2019; Yi et al., 2022).
In particular, Yi et al. (2022) demonstrates that
transformers can encode information on the two
alternants of the spray-load alternation.

6 Conclusions

In this paper, we describe an approach to generate
compositional, structured data, inspired from vi-
sual intelligence tests. We presented two datasets,
each focused on a different linguistic phenomenon,
and in a different language. Solving each prob-
lem instance depends on the system detecting the
relevant linguistic objects, and their absolute and
relative properties. These datasets can be used to
investigate whether this type of information can be
detected in, and whether it is used by, pretrained
LLMs. Because the datasets are formatted in the
same way, they can be used separately, or in various
combinations, to test cross-task and cross-language
model properties. Additional such datasets are un-
der development, thus potentially expanding the
scope of the exploration.

Further experiments are also ongoing. One of
our goals is to understand how information is en-
coded in pretrained transformer-based sentence em-
beddings. We investigate whether there are patterns
within sentence representations that reveal specific
linguistic phenomena. Towards this end, we have
developed architectures designed to discover such
patterns that can be applied successfully, without
adaptation (in terms of architecture or hyperparam-
eters) to different problems in different languages.
This provides insight into how transformers encode
sentence-level information.

Limitations

The approach is evaluated on a limited range of
syntactic phenomena and models. Expanding the
scope could better demonstrate the general utility.
In particular, we would like to expand in many
directions: (i) the structures that are tried in the dif-
ferent test sets; (ii) the different phenomena under
study; (iii) the complexity of the matrices, which
can be made progressively harder by combining
linguistic phenomena in a single matrix. Finally,
we need to tackle the complex problem of how
to generate more naturally structured data, while
retaining the controllable nature of synthetic, ex-
perimental data.
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Abstract
In-context learning (ICL) using large language
models for tasks with many labels is challeng-
ing due to the limited context window, which
makes it difficult to fit a sufficient number of
examples in the prompt. In this paper, we use
a pre-trained dense retrieval model to bypass
this limitation, giving the model only a partial
view of the full label space for each inference
call. Testing with recent open-source LLMs
(OPT, LLaMA), we set new state of the art
performance in few-shot settings for three com-
mon intent classification datasets, with no fine-
tuning. We also surpass fine-tuned performance
on fine-grained sentiment classification in cer-
tain cases. We analyze the performance across
number of in-context examples and different
model scales, showing that larger models are
necessary to effectively and consistently make
use of larger context lengths for ICL. By run-
ning several ablations, we analyze the model’s
use of: a) the similarity of the in-context ex-
amples to the current input, b) the semantic
content of the class names, and c) the correct
correspondence between examples and labels.
We demonstrate that all three are needed to
varying degrees depending on the domain, con-
trary to certain recent works.

1 Introduction

In-context learning (ICL) using large language
models (LLMs) has recently exploded in popularity.
Models pre-trained on massive amounts of textual
data are able to reach reasonable performance on
a wide variety of tasks with only a few examples
of input and output for a given task provided in the
model’s input prompt in natural language (Brown
et al., 2020; Rae et al., 2021; Chowdhery et al.,
2023). In this work, we study whether ICL can
handle challenging classification tasks with many
possible labels, by augmenting the LM with a sec-
ondary pre-trained retrieval model.

The main problem with applying ICL to tasks
involving classification with many labels is the lim-

ited context window these models have. Ordinarily
with ICL, at minimum one example from each class
is provided in-context to allow the model to make
a choice between all the labels of the task. Be-
cause of this limitation, ICL has not been directly
applied to these sorts of problems. In this work
we relax this requirement, allowing the model to
see only a subset of the most relevant labels for
the given datapoint we are performing inference
on. By testing on intent classification (upwards
of 50 classes) and fine-grained sentiment analy-
sis (upwards of 25 classes), we demonstrate that
the resulting performance with this method can
reach SoTA. By coupling the LLM with an exter-
nal pre-trained dense retriever model (Reimers and
Gurevych, 2019a; Karpukhin et al., 2020), we can
dynamically retrieve a set of examples to provide
to the LM in-context, that reflects only the most
relevant labels to the current example in the label
space. Most existing work on augmenting LMs
with retrieval models (Ram et al., 2023; Shi et al.,
2023) focuses on tuning the retrieval and/or LM.
We demonstrate that even without tuning either,
when the pre-trained models are strong enough we
can still achieve SoTA across various tasks using
ICL.

We evaluate LLMs in this setting with
three intent classification datasets: BANKING77
(Casanueva et al., 2020), HWU64 (Liu et al.,
2019), and CLINC150 (Larson et al., 2019), as
well as one fine-grained sentiment classification
dataset: GoEmotions (Demszky et al., 2020). Ex-
periments are done using the LLaMA models (Tou-
vron et al., 2023) and the OPT models (Zhang
et al., 2022) as LLMs. We compare the perfor-
mance achieved against adapter-based fine-tuning
of MLM models (DeBERTa-v2-XXLarge with the
“Pfeiffer” bottleneck-style adapter (Pfeiffer et al.,
2020b) implemented with AdapterHub (Pfeiffer
et al., 2020a)) and the previous SoTA for intent
detection (ConvFit; Vulić et al. 2021), as well as
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Figure 1: Complete pipeline for intent detection with retrieval-augmented in-context learning

comparing against SetFit (Tunstall et al., 2022),
a recent lightweight method involving contrastive
training of small MLM models.

The contributions of this work are:

1. We show that retrieval-augmented ICL is an
effective way to tackle text classification tasks
with many labels without additional tuning of
either the retriever or the LM, either match-
ing or outperforming fine-tuned adapter-based
and contrastive-pre-training-based methods.
Notably, truncating the dataset by showing
only a subset to the LM at a time does not
prevent us from achieving SoTA performance,
and allows us to apply LLMs to problems that
they have not been applied to before,

2. We analyze ICL performance over different
numbers of examples and demonstrate that
larger models better are able to take advan-
tage of more examples in-context than smaller
models, which mostly plateau and/or see de-
creasing performance,

3. We perform several ablation studies to deter-
mine what aspects of the inputs and outputs
the model is using for ICL. Certain recent
works investigating ICL (Min et al., 2022;
Razeghi et al., 2022) have recently called into
question how much models are actually “learn-
ing” with ICL and what they are learning from.
We ablate three different elements (semantic
label names, correct input-output correspon-
dences, and semantically similar demonstra-
tions to the current input). Contrary to this
emerging literature, our experiments demon-
strate that they are all used to varying degrees,
depending on the dataset and domain.

2 Method

Retrieval-Augmented ICL: Our setup assumes
N classes (unique labels) with K examples in each
class. Each example is composed of an (input,
label) tuple. We assume that we have a limited
number of examples M to fit in the prompt, based
on the model’s context length. M can be fixed
or based on “saturating” the prompt greedily by
selecting examples until we run out of room in the
context window. From our total pool of examples
of size N ×K, we retrieve the M examples using
the cosine similarity values given by our retrieval
model. Having retrieved our M examples, we then
produce the prompt by concatenating the (input,
label) tuples in a set prompt format (see Figure
1), similar to existing in-context learning setups.
The final prediction is then taken from the LM
by having it produce a continuation based on our
prompt. A full visual description of the retrieval
process is visible in Figure 1.

Retrieval model: The retrieval model used is a
Sentence-BERT model trained in a Siamese dual-
network setup to be able to retrieve text based on
cosine similarity of the embedding vectors it pro-
duces, described in Reimers and Gurevych (2019b).
The model we use is a contrastively trained model
which has been pre-trained on a massive generic
dataset of text pairs. We use the retrieval model
as-is in all experiments. Cosine similarity is used
to retrieve examples from the retrieval pool of ex-
amples (tested in 5-shot and 10-shot scenarios, sig-
nifying the number of examples from each class in
the retrieval pool).
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3 Experimental Setup

Specific retrieval model: For our sentence en-
coder/retriever, we use the SentenceTransformers
library (Reimers and Gurevych, 2019a), and use the
pre-trained “all-mpnet-base-v2” model (a 110M pa-
rameter model pre-trained on over 1 billion training
pairs). The SetFit results are based on contrastively
tuning the same pre-trained model trained by Mi-
crosoft through the Setfit library1.

Prompt saturation: The number of examples
that fit in-context when greedily filling the context
window depends on the specific dataset. For the
intent detection datasets, this number was around
110 examples. For GoEmotions, this number was
around 70 (140 using the full 4K context length of
the LLaMA-2 models).

Splits: For the intent detection experiments, to
allow for direct comparison with previous works,
we use the same 5-shot and 10-shot sets as Di-
aloGLUE (Mehri et al., 2020). Experiments are
run 3 times and the accuracies are averaged, except
the zero-training LLM setups, which are determin-
istic. For the GoEmotions experiments we average
the results across 3 different random 10 and 5-shot
splits, as no pre-existing few-shot splits exist. The
GoEmotions experiments are composed of the sub-
set of GoEmotions data (84% of training set, 85%
of testing set) where the there is only one emotion
label, to avoid issues of enforcing an ordering on
a linearized version of multiple labels in sequence,
as well as to mimic the single-label intent detec-
tion datasets setup more closely. Default library
parameters were used.

Computing Hardware and model differences:
All experiments were performed on a single A100
80GB GPU, except those with OPT 175B, which
were performed with 8 A100 GPUs. For LLaMA
65B and 70B 8-bit quantization was used. The
main difference between the OPT and LLaMA
models is the amount of pre-training data used.
The LLaMA models were trained on 1T-1.4T to-
kens, while the OPT models were only trained on
180B tokens (see (Zhang et al., 2022) and (Touvron
et al., 2023) for more details). LLaMA-2 models
were trained on 2T tokens.

Restricting model output: To reduce compu-
tational load and make inference easier, instead

1https://github.com/huggingface/setfit

of using the logits of the LLM to rank our many
classes (requiring multiple forward passes, as class
names consist of multiple tokens), we let the LLM
generate freely. Having generated an output text,
we then use the retrieval model (SBERT) to retrieve
the most similar class label from our set of classes.
This allows us to restrict the model output to the
set of classes we want without incurring additional
inference cost. Instances of generated predictions
that do not match our class list are few regardless,
and shrink proportionately to the number of exam-
ples provided in-context.

Baselines: Several baselines are provided. The
baseline “Pre-trained SBERT 1-NN” refers to using
the SBERT retrieval model to retrieve the most sim-
ilar example in the retrieval pool and use its label
directly as the prediction (1-nearest-neighbor). The
ConvFit baseline is taken from the reported num-
bers in the ConvFit paper directly. The baseline
“DeBERTa (Pfeiffer)“ is the DeBERTa-XXL model
released by Microsoft, trained via AdapterHub with
the Pfeiffer-style bottleneck adapters (Pfeiffer et al.,
2020b,a). Preliminary results with other adapter
types (LoRA, IA3, etc.) showed that the Pfeiffer-
style adapters were the most effective in this partic-
ular use-case. The DeBERTa-XXL model was fine-
tuned until performance saturation (early stopping).
SetFit (Tunstall et al., 2022) results are also pro-
vided, a method involving contrastive fine-tuning
of a retriever model with a classification head, as
it is also a competitive and lightweight baseline
in this setup. The selection of baselines was done
based on recent strong progress on few-shot clas-
sification using parameter-efficient fine-tuning, in
certain cases having been shown to perform better
than full fine-tuning (Liu et al., 2022a).

4 Results

Example ordering: We provide a brief study re-
garding how to order examples in-prompt by simi-
larity, since previous work has been inconclusive
on this front, suggesting that the ideal ordering
is dataset dependent (Liu et al., 2022b). As seen
from Table 3, least-to-most (LTM) similar was the
most effective ordering across all datasets. Larger
models are significantly less sensitive to ordering.

SoTA performance: Tables 1 and 2 shows the
performance comparison of all methods. Perfor-
mance of the retrieval+ICL pipeline on BANKING,
HWU and CLINC is state of the art in both the 5
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Table 1: Intent classification accuracy for retrieval+ICL and baseline methods. All retrieval+ICL results are with 20
in-prompt examples unless otherwise specified. The retrieval/training dataset size is given by the second row of the
header (10-shot is 10 examples per class, 5-shot is 5).

Model BANKING 77 HWU 64 CLINC 150

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

Pre-trained SBERT 1-NN 78.41 85.39 69.89 75.46 82.51 84.84
ConvFit (reported) - 87.38 - 85.32 - 92.89
SetFit 79.89 ± 0.14 84.51 ± 0.60 78.38 ± 0.73 83.35 ± 0.57 88.68 ± 0.20 90.67 ± 0.29

DeBERTa (Pfeiffer) 81.47 ± 1.6 88.41 ± 0.19 79.80 ± 0.81 86.93 ± 0.052 91.86 ± 0.66 95.05 ± 0.33

OPT 13B 81.23 85.65 78.90 83.64 85.27 89.24
OPT 175B 81.30 86.14 83.74 84.94 90.96 93.09
LLaMA 7B 84.42 87.63 85.87 87.55 88.58 91.73
LLaMA 65B 87.73 90.71 89.03 90.06 91.89 94.47
LLaMA 2 7B 86.40 89.45 87.55 87.82 94.13 95.20
LLaMA 2 7B 4K 85.91 89.48 87.17 90.33 95.35 96.02
LLaMA 2 70B 87.56 90.58 88.20 89.77 96.42 97.13
LLaMA 2 70B 4K 88.96 92.11 90.61 91.73 97.56 98.18

Table 2: Sentiment classification macro F1 score (following prior work) over 3 random splits for retrieval+ICL
and baseline methods. All retrieval+ICL results are from saturating the prompt with in-prompt examples (with a
2K prompt length unless otherwise specified). The retrieval/training dataset size is given by the second row of the
header (10-shot is 10 examples per class, 5-shot is 5). +Neut refers to the case where the “neutral” class (lack of
emotion) is included in the dataset.

Model GoEmotions

5-shot 10-shot 5-shot +Neut 10-shot +Neut

Pre-trained SBERT 1-NN 9.48 ± 0.58 11.02 ± 1.0 7.55 ± 0.79 8.38 ± 0.48

SetFit 25.44 ± 4.5 34.69 ± 3.6 21.40 ± 3.18 27.78 ± 0.73

DeBERTa (Pfeiffer) 18.43 ± 2.9 32.33 ± 0.77 13.86 ± 1.49 25.42 ± 1.9

LLaMA 7B - - 22.99 ± 0.64 24.61 ± 0.47

LLaMA 65B - - 24.31 ± 0.73 25.63 ± 0.86

LLaMA 2 7B 29.60 ± 1.5 31.40 ± 0.83 23.78 ± 1.1 24.75 ± 0.43

LLaMA 2 7B 4K 28.01 ± 1.2 30.33 ± 1.64 23.79 ± 1.9 23.57 ± 0.52

LLaMA 2 70B 36.14 ± 1.7 37.81 ± 1.3 24.20 ± 0.13 25.29 ± 0.42

LLaMA 2 70B 4K - 37.17 ± 0.37 28.26 ± 0.19 29.10 ± 0.68

LLaMA 2 70B 4K Retrieval w/o Neutral - - - 28.95 ± 0.52

and 10-shot settings. Not only this, but to signifi-
cantly surpass the previous state of the art for all
three intent classification datasets only LLaMA-2
7B is necessary, which with 8-bit quantization can
be run on consumer hardware. In the most chal-
lenging evaluation setting (the highly-specialized
intent classes of the BANKING dataset in the most
data-scarce 5-shot setting), the margin between De-
BERTa and LLaMA-2 70B is 7.49%. In general the
DeBERTa model showed lower performance in the
5-shot scenarios, likely due to the extremely limited
data. In the case of GoEmotions (Table 2), when us-
ing the neutral category, the Retrieval+ICL pipeline
manages to clearly win against the strongest base-
line (SetFit) only in the 5-shot case. In the 10-

shot case, we can see that Retrieval+ICL performs
at least on par, but more likely better than SetFit.
Table 4 shows the difficulty of the GoEmotions
task, specifically with regards to how granular the
classes are.

Performance degredation: We also provide a
study of how performance changes given the num-
ber of examples provided in-context. Figure 2
shows this variation for the HWU64 dataset. The x-
axis value of 110 indicates a fully saturated context
window, which is on average this number of exam-
ples. In the case of LLaMA-7B, performance some-
what degrades after a certain number of demon-
strations. Looking at Tables 1 and 2, comparing
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Table 3: Comparison of LLaMA 7B and OPT 13B model prompt orderings on intent detection datasets (20 examples
in prompt, 10-shot), random split. MTL is most-to-least similar and LTM is the inverse.

Model BANKING HWU CLINC GoEmotions

MTL LTM MTL LTM MTL LTM MTL Random LTM

OPT 13B 73.64 85.65 76.39 83.64 81.11 89.24 - - -
LLaMA 7B 83.64 87.63 86.99 87.55 90.20 91.73 15.91 20.89 ± 0.85 23.58
LLaMA 65B 88.08 90.71 89.03 90.06 93.47 94.47 - - -

Figure 2: HWU performance as a function of the num-
ber of examples in prompt. The x-axis scale is non-
linear, meaning that there are diminishing returns with
more examples. “Sat” (saturated) indicates filling the
prompt greedily until the max length is reached.

LLaMA-2-7B and LLaMA-2-70B in the regular
and 4K context window scenarios, we see very
clearly that only the 70B model is able to contin-
ually improve with the full 4K context. The 7B
model instead sees matching (no improvement) or
degraded performance in most cases.

Impact of “Neutral” on GoEmotions: From the
results in Table 2, by comparing the results with
and without the “neutral” category, we see that the
difference between the baselines and Retrieval+ICL
grows, implying that “neutral” disproportionately
hurts the Retrieval+ICL performance. We note that
correctly predicting the neural class is challenging
for the LM. We demonstrate that removing “neutral”
from the retrieval pool does not harm performance
(“Retrieval without Neutral” in Table 2). Analyzing
the results for one of the runs, we see that out of the
1605 examples of the “neutral” class in the test set,
“neutral” only appears in the top 3 classes retrieved
by the retriever (by number of examples) only 9%
of the time (in the top 5 classes 18%). This suggests
that the retriever may be limiting the performance.

5 Ablation Studies

Several ablations studies are done to test what as-
pects of the retrieved examples the LLM is using
to make the predictions. The ablation studies were
done on a random split of the HWU dataset and the
GoEmotions dataset. Ablation results for HWU are
shown visually in Figure 3 and for GoEmotions in
Figure 4.

1. Obfuscated labels: We change all the class
names to randomly set enumerated names
(“Class 1”, “Class 2”, etc.). The intent
is to disentangle the model’s use of prior
(pre-training) knowledge to perform the task
(based on the semantic content of the label
names) from the input-output provided in the
prompt.

2. Resampled in-context examples: To test if
similarity between the demonstrations pro-
vided in the prompt and the current input ex-
ample is actually necessary for effective per-
formance. By resampling from the classes
initially retrieved by the retriever model, we
preserve the distribution of labels but change
the input demonstrations themselves so that
they are no longer the nearest in the embed-
ding space for each class.

3. Shuffled labels: Similarly to Min et al.
(2022), after the retrieval step we shuffle the
correspondence between the inputs and labels
of the retrieved examples, such that inputs
are matched randomly from the set of labels
the inputs originally belonged to. The intent
of this ablation is to examine if the model
requires correct input-label correspondences
(something that Min et al. (2022) calls into
question), or if the model is simply using struc-
tural (e.g. prompt format) and distributional
(e.g. the distribution of labels in the prompt)
elements to produce a prediction.
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Figure 3: Classification accuracy for three ablations for
HWU64: obfuscated labels (left), resampled in-context
examples (center), shuffled labels (right).

6 Discussion

6.1 Small models cannot use long contexts as
effectively as large models

One trend noticeable from the performance graph
as a function of the number of examples for HWU
(see Figure 2) is that small models seem to be un-
able to use more examples as effectively as large
models. The smaller OPT model is unable to ef-
fectively make use of the entire context window
when it is filled and remains at relatively low per-
formance. In contrast, OPT 175B shows contin-
ual improvement when more examples are added.
A similar trend is visible for the LLaMA models,
where the performance of the 7B model does not
change significantly (see 2), but the 65B model is
able to continuously improve. The smaller mod-
els either level off (OPT-13B) or lose performance
(LLaMA-7B). In the 4K full context window set-
tings for LLaMA-2, the difference between model
scales is even more apparent (Tables 1 and 2). We
see the small model showing inconsistent use of the
longer contexts; sometimes improving, but mostly
staying the same or worsening performance. Mean-
while, the large model consistently improves with
the full context in almost all cases.

6.2 Similarity to current datapoint matters
for intent classification

In the resampling ablation for HWU (see Figure
3) we see that resampling from the initial class
distribution provided by the retriever model dam-
ages the performance across both OPT 175B and

Figure 4: Classification accuracy for three ablations
for GoEmotions: obfuscated labels (left), resampled
in-context examples (center), shuffled labels (right).

LLaMA 7B. This supports the strong performance
numbers of the LLMs, showing that the similarity
between in-context demonstrations and the current
input matters. This implies that the LM is doing
more than just selecting the most common class
or just using the shortlist of class labels from the
full set of classes to select in a more zero-shot
fashion. One interesting difference to note is that
OPT 175B, the larger model, shows a larger drop
from the resampling as the number of in-context
demonstrations increases, compared to LLaMA-
7B, whose performance stays roughly constant (but
lower than non-resampled). This may indicate that
the LLaMA models with their additional training
data are more robust to the resampling process, due
to stronger pre-training knowledge and/or more
robust performance overall. In the case of GoEmo-
tions, we see almost no variation with resampling,
showing that similarity to the input example is less
influential, though the ordering of the examples rel-
ative to each other does seem to make a difference
for the 7B model (Table 3).

6.3 Semantically significant label names
matter greatly for sentiment classification

In the obfuscation ablation (see Figure 3), we see
that all models are hurt by obfuscating label names.
We see however that models are still able to learn to
perform the task effectively, and in fact show simi-
lar improvement curves with increasing number of
examples, just with a lower starting performance.
This demonstrates that the semantic content of the
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Table 4: Sample datapoints from GoEmotions

Text Prediction
LLaMA-2-
70B

Gold label

Lmao the brigading is real amusement amusement
Enjoy the void neutral neutral
I really relate to this. realization approval
This is the only viable way out of Brexit. optimism approval
want* a source on that, sorry. desire remorse
I didn’t know that, thank you for teaching me something today! gratitude gratitude
Well it obviously helps you rationalize your total unwillingness to take action to
make the world a better place. I hope that you grow past that.

sadness admiration

Damn, we need healthy PGs. sadness annoyance
Welcome to The Church of Jesus Christ of Latter Day Saints, where families can
be SEPARATED forever

sadness gratitude

labels is significantly useful to the models but si-
multaneously it is not integral to performing the
task, which can also be done without semantically
significant labels. In the case of GoEmotions, we
see that the obfuscated labels particularly hurt the
model, bringing it down significantly.It seems to be
the case that the class names are integral to perfor-
mance, but at the same time more examples are still
helpful to the model, as in the 4K context window
it still sees improved performance.

6.4 Input-label correspondence matters for all
datasets

Shuffling the input-label correspondence is the ab-
lation in which we see the performance of all the
models decrease the most in the intent detection
case (see Figure 3). Specifically, we see that the
performance drop is proportional to the number of
examples (more shuffled examples brings a larger
drop). That being said, it is noteworthy that the
performance of both models in this shuffled regime
is still significantly above random chance for every
number of demonstrations shown, implying per-
haps that the LM’s prior knowledge based on the
label names is still contributing significantly to per-
formance. In all 4 datasets (intent classification
and GoEmotions), shuffling the labels hurts the
large model more in particular. This aligns with the
results of Wei et al. (2023), whose authors show
that larger models are more able to learn perturbed
input correspondences than smaller models, which
manifests in this experiment as lower performance.
In other words, the larger model is trying to learn
the perturbed input correspondence, and thus losing
more and more performance with more examples,
while the smaller model is able to more effectively

ignore the perturbation.

7 Retriever and LM Generalization

One interesting result from our experiments is the
fact that generic retrievers seem to be able to quite
effectively generalize across domains and tasks.
Using the same exact retriever model across 3 dif-
ferent intent detection datasets (which according to
the taxonomy of Hupkes et al. (2022) constitutes
cross-task generalization) as well as a sentiment
classification dataset (according to the previous
taxonomy, a cross-domain generalization) demon-
strates SoTA or better performance in almost all
cases. The distribution shift locus, for both the
retriever and the language model generating the
final prediction, is from pretraining to testing time.
This is because they are both pre-trained on mas-
sive generic data before being tested in a zero-shot
setting.

8 Related Work

Nearest neighbor selection of in-context exam-
ples: One of the earliest studies of the role of
example selection in ICL is “KATE” (Liu et al.,
2022b). In this paper, the authors probe the perfor-
mance of GPT-3 on NLP tasks using KNN retrieval
(RoBERTa) for example selection. They compare
this method against random selection and using the
retrieval model directly (plain KNN). They also
examine the effect of example ordering on per-
formance and conclude that the most performant
ordering (least-to-most and most-to-least similar
orderings are tested) depends on the dataset. In
our work, we also experiment with example order-
ing, and conclude that least-to-most ordering is the
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most effective across all datasets tested.

Works demonstrating order instability: Sev-
eral recent works have demonstrated that the order
of in-context examples makes a larger difference in
performance, including Lu et al. (2022); Zhao et al.
(2021). These works demonstrate such order in-
stability that certain permutations bring near SoTA
performance on tasks while others perform at near
random guessing.

Fine-tuned retrieval: Several works employ the
use of fine-tuned retrievers, re-rankers, and/or LMs,
including Rubin et al. (2022); Ram et al. (2023);
Shi et al. (2023). Some, like REPLUG (Shi et al.,
2023), use LM feedback in the form of using the
LM to score documents to train the retriever. The
goal of both Ram et al. (2023) and Shi et al. (2023)
is to improve language modeling and not ICL abil-
ity. Rubin et al. (2022) uses a similar LM-score-
based feedback to train a retriever (like REPLUG)
but for ICL. The difference between all of these
works and this work is that we demonstrate that an
off-the-shelf retriever is sufficient out-of-the-box
for SoTA performance with no additional tuning.

Works calling into question efficacy of ICL:
Certain recent works have called into question
the efficacy of ICL and models’ ability to learn
tasks they were not exposed to during pre-training
(Min et al., 2022; Razeghi et al., 2022). In Min
et al. (2022) authors show that randomly perturb-
ing input-label pairings for some tasks can still
lead to reasonably good performance, calling into
question whether any “learning” is happening at all
with ICL. The work in Razeghi et al. (2022) demon-
strates that models perform better on data instances
they have seen frequently during pre-training, im-
plying that models are primarily memorizing and
that their generalization capabilities in terms of ICL
remain limited. Xie et al. (2022) suggests that ICL
ability emerges due to the specific structure of the
training data, specifically long-range dependencies.

Use of long contexts: Several works have demon-
strated that long contexts are difficult for LMs to
handle and show certain peculiarities. Kazemne-
jad et al. (2023) investigates the relationship be-
tween length generalization and positional embed-
ding types, showing that in certain cases no posi-
tional embeddings can perform better. This work
is closely related to use of long contexts for ICL,
as it demonstrates the difficulty involved in gener-

alizing to long context lengths, as well as provid-
ing an explanation for LMs’ sensitivity to ordering
(positional embeddings). In Liu et al. (2023), the
authors investigate the impact of long contexts on
document question answering, finding that the po-
sitions of the answers within the context matter
greatly for performance, and generally demonstrat-
ing that longer contexts cause lower performance.
In this work we show that larger models are needed
to effectively take advantage of long contexts for
ICL.

Few-shot intent detection: The current state of
the art in few-shot intent detection is the ConvFit
method (Vulić et al., 2021). ConvFit uses a pre-
trained LM in a dual-encoder configuration (e.g.
BERT or RoBERTa) with two training stages. The
first stage is a conversational fine-tuning stage us-
ing a generic conversational corpus with a retrieval
task (using tuples of (context, response) retrieve
the correct response for each context). The second
stage is fine-tuning on the specific intent classifi-
cation dataset with a contrastive loss, allowing the
resulting LM to be used in a KNN fashion.

9 Conclusion

In this work, we show that ICL with off-the-shelf
frozen pre-trained retriever models can provide
strong performance for text classification tasks with
many labels. We show state of the art performance
across three different intent classification datasets,
and competitive performance with fine-grained sen-
timent classification. We also show that larger mod-
els are necessary to make use of more in-context
examples, whereas small models mostly plateau or
even show decreasing performance after a point.
Through several ablation experiments, we demon-
strate that LMs make use of all aspects of the input
examples: semantically significant label names,
correct input-label correspondences, as well as the
similarity between the in-context demonstrations
and the current input point, however to varying
degrees depending on the dataset and domain.
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11 Limitations

One limitation of the research in this paper is that
the experiments of this paper use the pre-existing
DialoGLUE few-shot splits for each dataset, fol-
lowing the example of prior works and to remain
comparable to them (with the exception of the ab-
lation study, which uses a separate split). However,
since experiments were done only on this split, it
is not necessarily the case that the results/model
rankings are transferable to other splits as well (al-
though it is worth noting from Figure 3 that perfor-
mance on the random ablation split is very similar
to the DialoGLUE split, and the model ranking
remains the same). This limitation is not the case
with GoEmotions, whose results are given as aver-
ages across three random splits. Another limitation
is the relatively small number of runs/seeds (only
3) due to limitations on compute.

One further limitation is that the experiments are
all performed on English-language data.
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A GenBench Evaluation Card

Motivation
Practical Cognitive Intrinsic Fairness

□
Generalisation type

Composit. Structural Cross
Task

Cross
Lan-

guage

Cross
Do-

main
Robustness

□ □
Shift type

Covariate Label Full Assumed
□

Shift source
Naturally
occuring

Partitioned
natural

Generated shift Fully
generated

□
Shift locus

Train–test Finetune
train–test

Pretrain–train Pretrain–test

□

Taxonomy taken from Hupkes et al. (2022).

B Classical vs. Neural Retriever

In this section we compare the SentenceTransform-
ers neural BERT-based retriever against a classic
Okapi-BM25 retriever on the HWU64 and BANK-
ING77 datasets. The setup used is the same as in
the main paper, which is 20 examples in-context
with regular nearest neighbor retrieval. In Table 5
we can see that the classical BM25 retriever per-
forms measurably worse than the neural Sentence-
Transformer retriever, indicating that semantically-
aware neural retrieval provides a significant boost
in performance.

Table 5: Comparison vs. Classical (BM25) Retriever

Model BANKING HWU

10-shot 10-shot

LLaMA-2-7B (mpnet) 89.45 87.82
LLaMA-2-7B (BM25-Okapi) 84.90 84.76

C Fine-tuned Retriever

The contrastively fine-tuned retriever was trained
for one epoch to avoid overfitting, using three times
as many negative pairs as positive pairs (roughly
5-10 mins depending on the dataset).

C.1 Discussion
We note large improvements in the pure 1-NN
mode accuracy, as expected, as we are optimizing
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Table 6: Comparison of Models with Fine-tuned Re-
triever (20 examples in prompt), compared against non-
fine-tuned performance

Model BANKING HWU CLINC

10-shot 10-shot 10-shot

SBERT KNN 87.40 ± 0.21 83.05 ± 0.4791.48 ± 0.13

vs. frozen + 2.0% + 7.6% + 6.64%

OPT 13B 87.71 ± 0.18 83.83 ± 0.8391.83 ± 0.22

vs. frozen + 2.06% + 0.19% + 2.59%

LLaMA 7B 87.39 ± 0.08187.98 ± 0.7594.17 ± 0.32

vs. frozen - 0.24% + 0.43% + 2.44%

LLaMA 65B 88.93 ± 0.05690.12 ± 0.5195.62 ± 0.17

vs. frozen - 1.79% + 0.062% + 1.16%

a metric that is directly correlated with 1-NN per-
formance. With fine-tuning, the pure 1-NN setup
becomes near-competitive with ConvFit, the previ-
ous SoTA. In terms of retrieval+ICL performance,
we see mixed results. In general the performance
delta is quite small, suggesting that there is no sig-
nificant retrieval quality bottleneck. In general,
the fine-tuned CLINC retriever provides the most
boost, which is also the least data-scarce scenario
(it is reasonable to expect the retriever fine-tuning
to be more effective with more data).

D Overview of Negative Results

In this section the experiments we performed that
gave negative results are enumerated. Specifically,
we tried several retrieval strategies with the inten-
tion of improving performance above naive nearest-
neighbor retrieval.

1. We tried “balancing” the classes in the prompt,
i.e. giving a fixed N examples from each
of the nearest M classes, where “nearest M
classes” is defined by each class’s nearest ex-
ample to the input instance.

2. With CLINC150, which has a hierarchical la-
bel structure (labels are grouped into higher-
level domain categories), we tried a two-step
prediction process, where the LM would first
predict the domain, then the individual label.
The accuracy of predicting the domain was
too poor.

3. We tried clustering the datapoints and provid-
ing N examples from each of the nearest clus-
ters, again as defined by their nearest example
to the input instance.

4. We tried a “deduplicative” approach to try
a more diverse prompt, where an example
would not be added to the prompt demonstra-
tion pool if it was too similar to an existing
example in the pool.

5. We tried doing the pure nearest example ap-
proach (what is presented in the paper), but
with a restriction to a fixed M number of
classes represented in the prompt (i.e. as we
are adding examples, if we reach a certain M
number of classes represented in the prompt,
we stop adding examples of other classes, and
just fill the prompt with examples of the first
M classes, in order of similarity). This was
to see if the LM potentially was having issues
handling examples of too many classes in the
prompt.
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Abstract

We present a new dataset consisting of vari-
ous quantifier expressions to evaluate the gen-
eralization abilities of language models. The
dataset contains 18,360 prompts encompassing
diverse quantifiers, forming the basis of a new
framework for assessing semantic understand-
ing in this domain. We test the effectiveness of
our dataset using Pythia models, ranging from
410 million to 6.9 billion parameters, showing
that quantifier-based tasks can be challenging
for current language models. We make our
code and data publicly available1, such that the
dataset can be easily extended or updated based
on different evaluation needs.

1 Introduction

In recent years, the Natural Language Processing
(NLP) community has witnessed the rise of increas-
ingly larger and more sophisticated language mod-
els (LMs) capable of generating coherent texts over
extended passages. However, the ability of these
models to understand and generate human language
that aligns with the underlying semantics remains
a topic of debate (Yogatama et al., 2019). Neural
language models may rely on heuristics learned
from the training data to generate seemingly co-
herent texts, but fail to generalize to scenarios that
are more complex and cannot be solved by simple
heuristics (McCoy et al., 2019). Whether language
models can acquire meaning when trained only on
text is also a topic of ongoing debate. Bender and
Koller (2020) have argued, through thought exper-
iments, that LMs cannot learn semantics through
texts since they lack access to explicit representa-
tions of the external world. We hope to contribute
to this ongoing dicussion by releasing this dataset
on quantifiers, which will enable more research on
this direction.

In this paper, we introduce a new framework that
uses formal semantics to test the generalization

1https://github.com/lerow/llm-quantifier

capabilities of language models, by developing a
dataset that assesses LMs’ understanding of quan-
tifier semantics. We ask the question – to what
extent do language models capture the semantics
of quantifiers?

Quantifiers are well-suited for evaluating lan-
guage model generalization because compared to
other linguistics objects, their meanings are more
abstract, and can be fully specified in theoretical
terms that do not require grounding. Common
examples of quantifiers include some, all, a few,
many, etc. To construct the dataset, we use a de-
terministic algorithm to generate prompts and gold
labels automatically, covering 15 different quanti-
fiers in the English language. In each prompt, we
ask the LM to give a truth value judgment (true or
false) to a statement about a given quantifier in a
constructed scenario.

This dataset does not exhaust common quanti-
fiers in English, but is designed to enable more re-
search on evaluating LMs’ understanding of seman-
tic objects. More specifically, the dataset will allow
further investigation into different axes of general-
ization in this domain, i.e. for the same quantifier,
does using different nouns in the prompts affect
LM’s acquisition of the semantics of the quanti-
fier? And how do different number ranges or differ-
ent word orders affect LM’s understanding of the
same quantifier? The dataset presented in this paper
provides a valuable framework for researchers to
study these types of questions, grounded by rich for-
mal semantics literature on quantifiers. As demon-
strated in section 3, the data generation pipeline
can be easily extended to study new quantifiers,
nouns, and number ranges. Given initial native
speaker annotated prompts and quantifiers, the data
can also be easily extended to different languages.

This paper is structured as follows. In section
2, we discuss the literature on quantifiers in formal
semantics and demonstrate how they can be useful
for evaluating LMs. In section 3, we discuss how
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the dataset is constructed and how LMs are evalu-
ated. We discuss future work directions in section
4 and remark on limitations at the end.

2 Background

2.1 Quantifiers

Quantifiers are semantic objects expressed by de-
terminers. In formal semantics, determiners can be
considered as generalized quantifiers that describe
the relations between two subsets in a discourse
(Barwise and Cooper, 1981). Examples of quan-
tifiers include some, a few, all, most, etc. They
are useful for evaluating language models’ gener-
alization ability because their semantics is well-
defined. Unlike content words, such as common
nouns, quantifiers’ semantics is fully abstract and
can be specified in set-theoretic terms. Therefore,
when measuring the alignment between language
models and quantifier semantics, the evaluation can
be completed fully unsupervised without human
annotations while achieving high accuracy.

Based on literature in formal semantics (Bar-
wise and Cooper, 1981; Peters and Westerstl, 2006;
Szymanik, 2016; Steinert-Threlkeld and Szymanik,
2019), we define a quantifier to be a relation be-
tween two subsets A and B of a given discourse
domain M . For example:

Jat least nK = {⟨M,A,B⟩ : |A ∩B| ≥ n}
JallK = {⟨M,A,B⟩ : |A ∩B| = |A ∪B|}
Jmore than halfK = {⟨M,A,B⟩ : |A ∩B| > |A\B|}
Ja fewK = {⟨M,A,B⟩ : |A ∩B| > 1}

We use JQK to denote the semantic meaning
of quantifier Q. For the quantifier "at least n",
Jat least nK describes sentences that satisfy |A ∩
B| ≥ n when interpreted in model M .2 For ex-
ample, let set A denote the flowers, and set B
denote the red objects in a discourse. Suppose
|A| = 5, |B| = 5, |A ∩ B| = 5, then the sen-
tence “at least 5 flowers are red” would be true,
because the situation ⟨M,A,B⟩ would belong to
to Jat least 5K since it satisfies |A ∩B| ≥ 5.

Given a prompt as a way of representing a situ-
ation M,A,B in natural language, we can define
the meaning of a quantifier according to a language

2See Peters and Westerstl (2006) for a more detailed dis-
cussion.

model as:

JQKLM
prompt ={⟨M,A,B⟩ :

LM(prompt(Q,M,A,B)) = T},

We can then measure how similar JQKLM
prompt is to

the true underlying JQK. The LM and the prompt
are considered as parameters that need to be speci-
fied by the researcher.

2.2 Related Work

Benchmarks and Datasets There have been
many benchmarks and datasets developed to eval-
uate the language understanding abilities of NLP
models. Benchmarks such as SuperGLUE (Wang
et al., 2019) and WinoGrande (Sakaguchi et al.,
2021) test commonsense and logical reasoning abil-
ities of LMs. In NLI datasets such as SNLI (Bow-
man et al., 2015) and LAMBADA (Paperno et al.,
2016), designed to measure LMs’ reasoning abil-
ities through quantifiers. In AMBIENT, Liu et al.
(2023) have curated a linguist-annotated dataset
with various kinds of linguistic ambiguities, includ-
ing quantifier scope ambiguity, to measure the dis-
ambiguation abilities of LMs. Understanding the
relationships between quantifiers is important for
LMs to perform well in these NLI datasets 3, but
whether LMs can correctly acquire the semantics
of quantifiers has not been systematically tested.

LMs and Semantics Bender and Koller (2020)
have argued that LMs cannot acquire full meanings
from text data alone, since they have no access to
the explicit representations of entities in the world.
In response, Li et al. (2021) demonstrate that lan-
guage models can use contextual word representa-
tions to model changes of entities in a discourse,
which presents preliminary empirical evidence sug-
gesting that neural language models are capable of
encoding partial representations of meaning when
trained only on text data. Patel and Pavlick (2022)
show that language models can learn to map a con-
ceptual domain (such as color or direction) onto
a grounded world representation. Utilizing psy-
cholinguistic tests, Ettinger (2020) have shown that
the BERT model has difficulty acquiring generaliz-
able meanings of negation quantifiers.

3e.g. "A soccer game with multiple males playing" entails
"Some men are playing a sport." (Bowman et al., 2015), but
not vice versa
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3 Methodology

3.1 Dataset Creation

We use a deterministic algorithm to generate the
prompts in the dataset. Demonstrated in algorithm
1, we iterate through all available object and quan-
tifier combinations, and generate a prompt for each
combination. n is the number of objects in total
and i is the number of objects modified by the first
predicate (i.e. "are large" in the first example in Ta-
ble 4), or by the second predicate (i.e. "are small")
in the current iteration.

The GENERATE_PROMPT function can be fully cus-
tomized by the user. In this work, we use the
prompt template "There are 50 items. n of the
items are large. m of the items are small. Are Q
of the items small / large? Answer with only one
word, true or false." for all 18,360 prompts in the
dataset.

For the vanilla GQG dataset, we set n = 50, and
the two predicates to be “are large” and “are small”.
Researchers can use the framework to easily gen-
erate more prompts with different number ranges,
predicates, and noun objects, to test various kinds
of LM generalization.

Label Generation The gold labels in the dataset
are generated using lambda functions that represent
the exact semantics of the quantifiers – e.g. for
quantifier "at least 3", its function would be

λ n, a, b : a >= 3,

where n is the total number of objects, a is the
number of objects modified by the first predicate,
and b is the number of objects modified by the
second predicate. Using the notation presented in
section 2.1, we have n = |M |, a = |A ∩ B|, and
b = |M | − |A ∩B|.

The lambda functions are manually coded by
human experimenters, and it is the only place that
requires human labeling in this evaluation frame-
work (besides creating the prompt template).

Number of prompts The number 18,360 comes
from 18360 = 12× 15× 51× 2, where

• 12: number of objects

• 15: number of quantifers

• 51: (0 to 50) number of objects modified by
the predicate

• 2: we have 2 predicates, so for the same
quantifier, number of objects, and nouns, we
prompt for both the first predicate and for the
second predicate. For example, if n = 50,
q = {at least half} , o = {apples} , i = 5,
there will be two prompts generated, one ask-
ing "are at least half of the apples large?" with
gold label false, and the other one asking "are
at least half of the apples small?" with gold
label true.

Algorithm 1 Data Generation
Inputs: set of quantifiers Q, set of objects
O, function GENERATE_PROMPT, number range
m,n (m ≤ n)

for o in O do
for q in Q do

for i := m to n do
append
GENERATE_PROMPT (o, q, i, n)
to prompts

end for
end for

end for

return prompts

3.2 Data Statistics
We present some statistics of the vanilla GQG
dataset in this section. The dataset is consisted
of prompts describing different scenarios using var-
ious quantifiers and noun objects shown in Table 2
and Table 3. The GQG framework is highly modu-
lar, allowing researchers to easily extend the vanilla
dataset beyond the scope of the lexical items pre-
sented in this paper.

Number of prompts 18360
Average # of tokens
per prompt 31.9
# of prompts with
true label 8592 (46.8 %)
# of prompts with
false label 9768 (53.2 %)

Table 1: Data Statistics
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List of Quantifiers:

No. Quantifier
1 at least 3
2 at least 4
3 at most 5
4 at most 6
5 more than 1
6 more than 5
7 more than 10
8 all
9 none
10 between 4 and 6
11 between 2 and 10
12 at most half
13 more than half
14 less than half
15 at least half

Table 2: Quantifiers in the dataset

List of objects:

No. Object
1 tables
2 chairs
3 circles
4 squares
5 apples
6 bikes
7 pans
8 shelves
9 trees
10 birds
11 penguins
12 mountains

Table 3: Objects in the dataset

Prompt Label
There are 50 tables. 50 of the tables
are large. 0 of the tables are small
Are at least 3 of the tables
small? Answer with only one
word, true or false. false
There are 50 circles. 7 of the
circles are large. 43 of the circles
are small. Are at least 4 of the
circles small? Answer with only
one word, true or false. true
There are 50 apples. 49 of the
apples are large. 1 of the apples
is small. Are less than half of
the apples large? Answer with only
one word, true or false. false
There are 50 mountains. 24 of the
mountains are large. 26 of the mountains
are small. Are at most half of the
mountains large? Answer with only
one word, true or false. true

Table 4: Examples of prompts in the dataset

3.3 Evaluation

We use both accuracy and F1 scores to measure the
alignment between quantifier semantics and LMs’
understanding. Since the data is not perfectly bal-
anced (> 53% of prompts have false gold labels),
a language model can easily perform better than
random by always answering “false”.

During evaluation, a parser is used to process
the output from the LM. When the parser encoun-
ters a token that matches with the string “true”4, it
will consider the LM as giving a positive response.
Otherwise, the parser considers the LM as giving
a negative response to the prompt. Constrained
decoding is used during evaluation – the LM’s re-
sponse must contain either the token “true” or the
token “false”.

This approach has its limitations, since how good
the language models are at following instructions
can affect the performance. Language models may
also leak their training data when being prompted
in this manner – we have observed that instead of
answering the question, the LM will output texts
resembling multiple choice questions when given
the prompt, which may be part of its training data.
We discuss the potential issues of our evaluation

4when converted to lowercase, with punctuations and
whitespace removed
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method in Limitations.

3.4 Generalization Testing
The GQG dataset enables researchers to test LM
generalization in quantifier understanding across
different lexical items. For example, given a quan-
tifier q, does changing the noun objects o in the
prompts affect LMs’ understanding of JqK? In
other words, we can use the GQG framework to
test whether LMs’ understanding of the semantics
of a quantifier is consistent with respect to different
nouns used in the prompt.

Testing generalization with respect to different
axes is also possible, by fixing different elements
in the dataset. For instance, one can test whether
LMs have the same level of understanding across
different quantifiers by fixing the noun o and only
alternating q in the prompts. It should be noted that
the vanilla GQG dataset does not support testing
generalization in arbitrary axes; however, such data
can be easily constructed using the code framework
released in the paper.

3.5 Experimental Results

Model
size Accuracy F1 Precision Recall

410M 0.464 0.418 0.412 0.425
1B 0.503 0.289 0.216 0.437
1.4B 0.519 0.355 0.283 0.476
2.8B 0.515 0.626 0.283 0.476
6.9B 0.484 0.639 0.976 0.475

Table 5: Performance of Pythia models on vanilla GQG

Highlighted by low accuracies and F1 scores5,
the GQG dataset can be quite challenging for the
Pythia language models. It’s intriguing to observe
that the test accuracy does not increase significantly
as the model size increases – the test accuracy for
the 6.9B model is even lower than the 1B model.

We also perform a small pilot study on LM gen-
eralization across lexical items with different fre-
quencies in the corpus, using Mistral-7B (Jiang
et al., 2023) language model. As seen in Figure 1,
the test accuracy of Mistral-7B drops as the nouns
used in the prompts become less common.

For each word group, we use 10 different words
with similar frequencies to generate prompts, using
q = {at least half}, m = 0, n = 50.

5F1 scores are included during evaluation since the dataset
does not have a perfectly balanced True/False label ratio.

Com
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0.52

0.53

0.54

0.55
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ur
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y

Mistral-7B accuracy with q = “at least half”

Figure 1: Mistral-7B accuracy with respect to word
frequencies

Since The Pile dataset (Gao et al., 2020) that was
used by Pythia LMs is not publicly available at the
time of publication, we used the Leipzig Corpora
(Richter et al., 2006; Goldhahn et al., 2012) to ap-
proximate the frequencies of tokens in Pythia train-
ing data. In each word group, the authors randomly
select 10 different words with similar 6 frequencies
in the Leipzig Corpora. Words that are in a less
frequent group are guaranteed to have lower fre-
quencies7 than those in high-frequency groups. Ex-
amples of common words include “books”, “doors”,
and “reports”; examples of rarest words include
“lidars”, “medullas”, and “ornamentals”. See Ap-
pendix A for the full list of words in each group.

The result of this small-scale experiment shows
that large language models can be sensitive to the
frequency of lexical items used in the prompt in
certain scenarios. It also showcases the diverse
kinds of research and generalization testing the
GQG framework can enable.

4 Conclusion

This paper presents a new dataset to evaluate lan-
guage models’ understanding of quantifier seman-
tics. The dataset can be easily extended to different
languages and quantifiers, enabling more research
on assessing language models’ understanding of
semantic objects and investigation into different
axes of generalization. The poor performance of

6the difference between frequencies is less than 3
7in the Leipzig Corpora
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the Pythia models during evaluation shows the
dataset can be challenging for neural language
models, but more research is required to under-
stand how instruction-tuned LMs (and more sophis-
ticated prompt-engineering) will perform on this
dataset. We also note the limitations of our study,
particularly on evaluation methods, and hope that
this dataset will be a basis well-grounded in the-
oretical literature for more research on LMs and
semantics.

Future work includes developing datasets in
more diverse prompt formats, analyzing how LMs’
performance can differ based on different types of
quantifiers or linguistic objects, and investigating
how finetuning can affect model performance.

Limitations

Monolingual Dataset We note that our dataset
is curated only in English. How LMs may per-
form in low-resource languages has not been tested.
What kind of impact will languages with more com-
plex morphology/syntax have on benchmark per-
formance also has not been investigated.

Prompt Format Our data is generated using one
type of prompt format. Other types of prompt tem-
plates, including those designed in an adversarial
manner, have not been evaluated in this paper. How
the prompt is structured can also be an interesting
axis of generalization to investigate – i.e. for the
same quantifier and nouns, does different word-
ings of the prompt change how the LM acquire the
semantics?

Finetuning The LMs tested have not been fine-
tuned on the dataset. Whether finetuning can im-
prove LMs’ performance on understanding the se-
mantics of quantifiers is a promising direction of
future research.

Evaluation on LLMs The dataset has only been
tested on Pythia models (Biderman et al., 2023).
Larger and more recent language models such as
GPT-4 (OpenAI, 2023), Llama-2 (Touvron et al.,
2023), etc. have not been evaluated.

Ethics Statement

The data in this paper is artificially generated using
a deterministic algorithm and does not violate any
copyright laws. The dataset does not contain any
content that is explicitly triggering, offensive, or
toxic.
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A Appendix

Examples of LM Leaking Training Data When
given the prompt: "There are 50 tables. 28 of the
tables are large. 22 of the tables are small. Are all
of the tables small? Answer with only one word,
true or false.", Pythia LMs will sometimes generate

A. True

B. False

C. It is not possible to determine

as its response.8

Experiment Infrastructure All experiments
were run on a single NVIDIA RTX 3090 GPU.
For all Pythia models, step 143000 (the last model
checkpoint) and temperature 1.0 were used during
inference.

Constrained Decoding The constrained decod-
ing used during evaluation is implemented using

8listed example is a generated text from Pythia-2.8B given
the prompt
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Huggingface force_words_ids during generate;
beam search is used during generation with
num_beams=4.

Words in Different Frequency Group

• common = ["books", "chairs", "doors", "par-
ticipants", "activities", "systems", "wars",
"blocks", "words", "reports"]

• less common = ["crowds", "negotiations",
"cup holders", "arteries", "identifiers", "pay-
rolls", "hostages", "coupons", "remedies",
"butterflies"]

• rare = ["jaws", "turbines", "rooftops",
"hikers", "purses", "empires", "insurers",
"camels", "entitlements", "coils"]

• rarer = ["auroras", "borrowers", "fasteners",
"headscarves", "hickories", "geneticists", "cat-
apults", "blurbs", "glaciers", "eyewitnesses"]

• rarest = ["ocean basins", "jests", "lidars",
"inequalities", "microchips", "humanoids",
"philanthropies", "medullas", "ornamentals",
"jabs"]

An example prompt using a word from the rare
group:

There are 50 empires. 10 of the empires
are large. 40 of the empires are small.
Are at least half of the empires large?
Answer with only one word, true or false.

GenBench 2023 Evaluation Card The Gen-
Bench evaluation card (Hupkes et al., 2023) is at-
tached.
Shift locus: Pretrain-test.

Motivation
Practical Cognitive Intrinsic Fairness

□ □
Generalisation type

Compo-
sitional Structural Cross

Task
Cross

Language
Cross

Domain
Robust-

ness

□ □

Shift type
Covariate Label Full Assumed

□
Shift source

Naturally
occuring

Partitioned
natural

Generated shift Fully
generated

□
Shift locus

Train–test Finetune
train–test

Pretrain–train Pretrain–test

□
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Abstract

This paper presents an innovative data aug-
mentation framework with data quality control
designed to enhance the robustness of Ques-
tion Answering (QA) models in low-resource
languages, particularly Thai. Recognizing the
challenges posed by the scarcity and quality
of training data, we leverage data augmenta-
tion techniques in both monolingual and cross-
lingual settings. Our approach augments and
enriches the original dataset, thereby increas-
ing its linguistic diversity and robustness. We
evaluate the robustness of our framework on
Machine Reading Comprehension and the ex-
perimental results illustrate the potential of data
augmentation to effectively increase training
data and improve model generalization in low-
resource language settings, offering a promis-
ing direction for the data augmentation manner.

1 Introduction

Question Answering (QA) systems are algorithms
developed to answer questions posed in a natu-
ral language format accurately. A primary task in
QA is Machine Reading Comprehension (MRC),
which aims to extract answers from text passages
given a question. Previous works demonstrate that
improving the performance of MRC increases the
accuracy in real-world applications, i.e., conver-
sational chatbots (Yang et al., 2023; Jin and Lee,
2022; Hardalov et al., 2019).

While the performance of QA systems in En-
glish is largely considered to be a solved prob-
lem, it is still an open problem in low-resource
languages, i.e., Thai. Recent works in QA demon-
strate that the performance gap in QA systems for
Thai and English is wide. For example, the baseline
performance of English on the XQuAD (Artetxe
et al., 2019) dataset has an F1 score of 83.5, while
only 42.7 on Thai. Moreover, only five of the
research works (Noraset et al., 2021; Decha and
Patanukhom, 2017; Hochreiter and Schmidhuber,

1997; Wongpraomas et al., 2022; Limkonchotiwat
et al., 2022b) has been published on QA for the
Thai language within the last five years. Such dis-
parity has led to a significant gap in the capabilities
of NLP systems between high-resource languages
and low-resource ones (Artetxe et al., 2019; Lewis
et al., 2019; Wongpraomas et al., 2022). The ro-
bustness of NLP applications in low-resource lan-
guages leaves much to be desired due to the lack of
extensive and diverse language data that covers all
aspects of the language.

Existing literature offers several methods to mit-
igate the problem of robustness specifically for low
data in QA, such as transfer learning (Pandya et al.,
2021), back translation (Riabi et al., 2021), and
the use of multilingual language models (Kumar
et al., 2022). However, these techniques present
drawbacks, e.g., transfer learning’s success hinges
largely on the relatedness of the source and target
languages. In addition, multi-lingual models are
impacted by the imbalanced data distribution and
often do not perform as well as monolingual mod-
els (Artetxe et al., 2019; Lewis et al., 2019). For
example, WangchanBERTa (Lowphansirikul et al.,
2021), a monolingual RoBERTa-based (Liu et al.,
2019) model trained explicitly on the Thai Lan-
guage, outperforms multilingual models (XLM-R
(Lample and Conneau, 2019) and mBERT (Devlin
et al., 2018)). Additionally, there is a noticeable
lack of studies focusing on these methods in the
context of the Thai language, rendering the exten-
sion of such strategies unclear. The issue of ro-
bustness and generalization also remains largely
unaddressed in recent literature, thereby leaving a
significant gap in the field.

To improve performance in a low-resource set-
ting, we propose an automatic framework for im-
proving out-of-distribution robustness in QA. Our
framework integrates back translation, word re-
placement, large language model (LLM) automated
paraphrase generation, and LLM automated gram-
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mar correction to construct a 10-way parallel cor-
pus. This corpus features multiple varied sentence
formulations to encourage robustness and general-
ization. While our framework heavily leverages ma-
chine translation (MT), which allows our augmenta-
tions to leverage the vast library of English augmen-
tations thereby improving the robustness of Thai
QA, it is our quality control system that sets our
work apart. By rigorously removing noisy samples
from the data—filtering the distances between the
semantic representations of the augmented and the
original data—the system ensures that the dataset
obtained contains an optimal signal-to-noise ratio.

As shown in Figure 1, the proposed framework
works as follows. Firstly, we aggregate, clean
and normalize our datasets: TyDiQA (Clark et al.,
2020), XQuAD (Artetxe et al., 2019), Iapp Wiki
QA (Viriyayudhakorn and Polpanumas, 2021), and
Thai QA (Trakultaweekoon et al., 2019). Then,
we translate all questions into English and back-
translate to Thai using Google Translate. Next,
the gpt-3.5-turbo-0301 model is used in the third
stage for grammar correction and paraphrasing of
these translated questions. In the fourth stage, the
Quality Controlled Paraphrase Generation (QCPG)
(Bandel et al., 2022) model generates additional
paraphrases for the translated questions, which
are then translated back to Thai. In addition, we
leverage WordNet, Thai2Fit, Thai2Transformers,
and Large Thai Word2Vec (LTW2Vec) for word-
replacement on the Thai questions without back-
translation. Lastly, we utilize our quality control
mechanism to filter noisy augmented samples from
our corpora. The end corpora is a versatile, 10-way
parallel corpus, ready for use in the MRC task.

We evaluate the effectiveness of our frame-
work compared to common augmentations with-
out any cross-lingual augmentations on standard
QA datasets for the MRC task. Specifically we
test for out-of-distribution by using completely dif-
ferent MRC Datasets for evaluation. For more in-
formation please refer to our evaluation card in
the Appendix. The experimental results demon-
strate that our framework significantly enhances
the robustness and generalization of Thai QA
systems. For example, we improve the perfor-
mance (Exact Match/F1) of WangchanBERTa on
TyDiQA and XQuAD datasets from 39.46/54.87
and 34.92/48.80, to 42.76/56.51 and 35.25/49.43,
respectively. Our design analysis of the quality con-
trol mechanism demonstrates that our mechanism

Dataset       

Data Cleaning 

Translation 
to English 

Cross-lingual 
Augmentations 

Back-translation 
to Thai 

Downstream Tasks       

Monolingual 
Augmentations 

Quality Control  

Figure 1: Our proposed automatic framework for im-
proving the robustness of Thai QA systems.

removes noisy data from augmentation schemes
and decreases the training time of MRC from 80 to
50 minutes (∼38.25% faster).

We summarize the contribution of our work as
follows:
• We propose a unified framework leveraging

cross-lingual augmentations to improve Thai
QA performance. The framework consists of
10 augmentations, including monolingual and
cross-lingual settings.

• We release the first extensively cleaned, 10-way
parallel QA corpus which unifies all publicly
available QA datasets for the Thai language.

• We conduct an extensive study on large-scale
experiments: 10 augmentation schemes, two
benchmark datasets, and two ablation studies.

• We release all the datasets, code, and trained
models at this GitHub Repo.

2 Related Work

2.1 Thai Question Answering
Numerous studies have attempted to address Thai
QA systems in monolingual and multilingual set-
tings. Noraset et al. (2021) introduced Wabi QA,
a Wikipedia-based QA system that integrated both
a retrieval model and an MRC model. Their
method used a bidirectional Long Short-Term
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Memory (LSTM) (Hochreiter and Schmidhuber,
1997) model as the MRC model and surpassed
several extant methodologies in Thai QA. Simi-
larly, Decha and Patanukhom (2017) proposed an
open-domain Thai QA system that employed a
keyword extraction system in combination with
rule-based word segmentation and neural network-
based sentence segmentation. Furthermore, an al-
ternative QA system was put forward by Wong-
praomas et al. (2022), which used a rule-based
pattern-matching method relying on regular expres-
sions and cosine similarity with a SQL database.
Although these methods exhibited strong perfor-
mance within their respective benchmarks, they
fall short in providing results on any standardized
or widely-recognized datasets, thereby rendering
an accurate performance evaluation challenging.
Furthermore, it is apparent that there is a lack of
integration of Transformer-based models (Vaswani
et al., 2017), and the concerns pertaining to system
generalization and robustness are not addressed.

There are also multilingual approaches to tack-
ling Thai QA. A common technique is to train a
transformer model on multilingual QA datasets,
such as XQuAD (Artetxe et al., 2019) and Ty-
DiQA (Clark et al., 2020). Recently, there have
been multilingual QA works focused on improving
multilingual performance. Asai et al. (2021) pro-
posed CORA, a unified multilingual many-to-many
QA model. This work consisted of two QA models:
(i) a multilingual dense passage retriever (mDPR);
and (ii) an autoregressive answer generation model
(mGEN) trained on multilingual Wikpedia. No-
tably, it did not use translation and can general-
ize to languages without annotated data sources
but with large-scale training data. Limkonchotiwat
et al. (2022b) proposed CL-ReLKT, a cross-lingual
ReQA learning approach using knowledge transfer.
In particular, this work distilled the performance
of high-resource to low-resource languages, result-
ing in increased performance in a wide range of
low-resource languages, including Thai.

Despite these advances, it becomes apparent that
there are still significant gaps in the literature con-
cerning implementing multilingual models in Thai
QA. Specifically, these works do not address the
robustness aspect of the model nor the specifics
of the Thai language. Our research recognizes
and addresses these gaps within the literature. Our
approach employs a Transformer-based model, in-
troduces a novel data augmentation technique to

enhance robustness and generalization, and bench-
marks results on well-established datasets.

2.2 Improving Robustness in QA

Robustness plays a crucial role in QA systems to
perform efficiently on unseen data with varying
distributions (Hupkes et al., 2023). There are nu-
merous aspects to robustness in QA such as resis-
tance to adversarial questions, ability to generalize
to unseen domains, and capability to understand
different phrasings or expressions of the same sen-
tence. Various strategies have been proposed to im-
prove this aspect of QA models, applicable across
languages.

Bartolo et al. (2021) proposed an adversarial
QA data generation pipeline that automatically
generates question-answer pairs to bolster the QA
model’s robustness against adversarial questions.
This pipeline improved both F1 and exact match
(EM) scores of the models trained on adversarial
synthetic data. Khashabi et al. (2020) proposed us-
ing natural human-driven perturbations on a small
dataset to improve model performance instead of
constructing new large-scale datasets. Each pertur-
bation is independently verified to ensure minimal
yet meaningful changes and that the questions are
answerable. The experimental results demonstrated
that the proposed model is more generalized and
robust when dealing with small variations in a ques-
tion.

The aforementioned studies have introduced re-
markable advancements in the field of QA robust-
ness. However, there are notable gaps in the litera-
ture regarding the application of these techniques
in low-resource languages, specifically Thai. De-
spite the proven effectiveness of these strategies
in languages with abundant resources, their appli-
cability to Thai remains under-explored. This is
particularly significant given the unique challenges
presented by the Thai language, such as word and
sentence boundary issues and scarcity of resources.
Moreover, these works do not provide an estab-
lished best practice for adapting these techniques
to Thai or similar languages, presenting an addi-
tional obstacle to their application.

Despite this, we observe that many of the main
ideas in the literature apply to the Thai language.
Thus, our research aims to bridge these gaps
by creating a framework that applies robustness-
improvement techniques to Thai QA. We aim to
develop and implement an efficient cross-lingual
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data augmentation system that can help overcome
the specific challenges associated with the Thai
language. Although our framework was designed
for Thai specifically, it can easily be modified for
usage in other languages by adjusting the transla-
tion part and the monolingual embedding-based
augmentations.

3 Methodology

3.1 Overview

To increase the out-of-distribution robustness of
QA models, we introduce a data augmentation
framework (Figure 1), which employs back trans-
lation, word replacement, and the application of
Large Language Models (LLMs) for automated
paraphrase generation and grammar correction.
This also includes cross-lingual data augmentation
strategies that allow us to use high-performance
NLP tools that only perform well in high-resource
languages, such as paraphrase generation models.
Moreover, our framework also incorporates a qual-
ity control step that can remove noisy samples to
ensure the quality of the generated data.

Our framework enhances the quality of train-
ing data by synthetically adding linguistic diversity.
This allows QA models to handle a diverse array of
queries more effectively and improve their general-
ization. We detail how we formulate and augment
our training data for enhanced robustness as fol-
lows.

3.2 Data Selection and Preprocessing

We select two standard multilingual QA datasets,
such as TyDiQA (Clark et al., 2020) and XQuAD
(Artetxe et al., 2019) since both datasets had Thai
in their datasets. However, we found that there
is no Thai training data for XQuAD. Thus, we
add standard Thai QA datasets: Iapp Wiki QA
(Viriyayudhakorn and Polpanumas, 2021) and Thai
QA (Trakultaweekoon et al., 2019) into our frame-
work. Then, we perform data cleaning by first
stripping out HTML, XML, and other markup syn-
taxes inside the questions, answers, and contexts.
We also drop rows that contain invalid answers and
markup syntax that could not be removed automat-
ically. Such invalid answers include incomplete
answers and answers that start with a Thai tone
mark or syllable. Then, we dropped all the dupli-
cated questions and context sets to prevent data
leakage into the test set. We then format all the
questions to have a question mark at the end for

extra clarity. Lastly, we realign all answer start
positions (labels) to match the cleaned context with
the cleaned answers.

3.3 Data Augmentation

As discussed in Section 2.1, Thai QA systems lack
the generalization ability to handle unseen ques-
tions. The studies from previous work demon-
strated promising results to improve the general-
ization by applying data augmentation schemes.
However, previous augmentation schemes do not
apply to Thai, it is unclear how to extend those be-
yond a monolingual setting. Thus, we apply these
augmentation schemes using the back-translation
(TH→EN and EN→TH) method 1 on questions of
the training data.

We present 10 data augmentation schemes to
enhance linguistic diversity and improve the gen-
eralization of our model. We split the data aug-
mentation into two groups: cross-lingual data
augmentation and monolingual data augmenta-
tion. The first group used the back-translation pro-
cess (TH→EN→TH) with English augmentation
schemes. The second group used monolingual data
augmentation without the back-translation process.
Cross-lingual data augmentation. We employ
four off-the-shelf data augmentation schemes from
English QA to improve the robustness of Thai QA
as follows:
• Back-translation: We utilize Google Translate

to translate our Thai questions to English, then
translate those questions back to Thai again. The
Thai texts before and after the translation will
be changed, which helps enhance the model’s
robustness, as it is trained to understand and re-
spond to a broader set of phrasings. Moreover, it
boosts the model’s generalization capacity by en-
abling it to recognize and respond appropriately
to imperfect translations and improper gram-
mar (Zhang et al., 2021; Limkonchotiwat et al.,
2022a).

• LLM Grammar Error Correction (GEC): We uti-
lized the gpt-3.5-turbo-0301 model 2 to perform
GEC on English-translated data from the previ-
ous step, then used Google Translate to trans-
late the corrected dataset back to Thai. This ap-
proach not only allows the model to understand

1We employ Google NMT as the back-translation method
where the version date is 19 May 2023

2We use the version of 03.01.23. If an updated version is
used, exact results may be hard to replicate. However, results
obtained should be similar or better.
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the core meaning of questions amidst grammati-
cal inaccuracies but also enhances the model’s
robustness by expanding its exposure to a variety
of corrected syntax. Furthermore, it improves
the model’s capacity to handle diverse and com-
plex grammatical structures, thereby fostering
better generalization.

• LLM Paraphrase: We also utilized the gpt-3.5-
turbo-0301 model to generate a paraphrase of
each question on the English translation of our
questions, then used Google Translate to trans-
late the paraphrased questions back to Thai.
Prompting was done to allow GPT to assume the
meaning of ambigious grammatically incorrect
translations. For example, “You are a highly
skilled language model AI that returns only one
line of grammatically perfect text. Your task is
to evaluate the text below and correct its gram-
mar. Even if the text is incomplete or unintel-
ligible, YOU MUST make a grammatical cor-
rection, you can make assumptions about the
intended meaning. If the text is grammatically
correct, do not change it. Your output should be
presented WITH ONLY the corrected text IN
ONE LINE and without any extra dialogue from
you.” This strategy improves the QA model’s
robustness by exposing it to a wider range of
expressions and phrasing.

• QCPG Paraphrase: We utilize QCPG (Ban-
del et al., 2022), specifically the qcpg-questions
model, to generate a paraphrase of each question
on the English translation and the LLM GEC
set of our questions, then used Google Translate
to translate the paraphrased questions back to
Thai. In total, three distinct paraphrase sets were
generated by experimenting with three different
values of settings applied to each dataset. These
variations result from adjusting three QCPG set-
tings, namely lexical, syntactic, and semantic,
across the range of 0 to 1. Specifically, the cho-
sen values for these settings were 0.2, 0.5, and
0.8, leading to the creation of three separate
datasets. We select the best-performing dataset
to be included in our main corpora (the 0.8 set-
ting).

• LLM GEC + QCPG Paraphrase: We apply the
QCPG Paraphrase atop the LLM GEC augmen-
tation. This decision was driven by the hypoth-
esis that the noisy translation might influence
the QCPG model’s performance and that recti-
fying this issue would yield an improved per-

formance in paraphrasing. By employing this
method, the model’s robustness is enhanced, as
it is exposed to modified yet semantically con-
gruent expressions. Furthermore, this dataset
variation promotes the model’s generalization
capabilities, facilitating its comprehension of
the diverse manners in which a question might
be framed.

Monolingual data augmentation. All the meth-
ods below are based on synonym replacement us-
ing pre-trained word embeddings. This method
enriches the dataset and trains the model to recog-
nize and understand equivalent words, resulting in
improving the model’s generalization ability and se-
mantic understanding. These augmentations were
selected since they represent monolingual meth-
ods commonly found in text augmentation and
have been widely used. One such commonly used
method is word or token replacement.

We leverage five monolingual pre-trained mod-
els as follows: (i) the Thai WordNet (Thoong-
sup et al., 2009) is employed for embedding-based
word replacement; (ii) Thai2Fit (Polpanumas and
Phatthiyaphaibun, 2021), a Thai adaptation of
ULMFit (Howard and Ruder, 2018), which we
used in the same manner as Thai WordNet; (iii)
Thai2Transformers (Lowphansirikul et al., 2021)
which utilizes the embeddings from the Wangchan-
BERTa model to perform word-replacement; (iv)
LTW2Vec (Phatthiyaphaibun, 2022), a compre-
hensive Thai Word2Vec model; and (v) Fast-
Text (Bojanowski et al., 2017) is also utilized for
embedding-based word substitution.

3.4 Quality Control of Data Augmentation

As discussed in the data augmentation schemes, we
use back-translation as the backbone of the cross-
lingual augmentation. As the translation process is
imperfect, this will lead to a variation of sentences
with a similar meaning being produced. Despite
this, the produced translation can be nearly perfect
to almost unintelligible. Thus, we need to control
the quality of our augmentation training data to not
let low-quality paraphrases into our dataset.

One such consideration is that a good paraphrase
should have a similar meaning between the original
and augmented texts (Bandel et al., 2022). Thus,
we chose to control the quality by evaluating the
semantic score of augmentation datasets and select-
ing the best semantic score threshold (calculated
on the development dataset) to find high-quality
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data for training QA models. We calculate the se-
mantic score using the cosine distance between
the embedding of augment and original questions
obtained from Multilingual Universal Sentence En-
coder (mUSE) (Yang et al., 2020). For monolin-
gual augmentations, we can simply use the cosine
distance between it and the original questions. In
contrast, for cross-lingual augmentations, we use
the harmonic distance (HD) between two measures:
(i) the distance between the original questions and
the English augmentation and (ii) the between the
original questions and the translated English aug-
mentation. We calculate the HD score as follows:

HD =
2(1− cos(torg, ten))(1− cos(torg, tth))

(1− cos(torg, ten)) + (1− cos(torg, tth))
(1)

where cos(·) is cosine similarity, torg is the original
text before back-translation, ten is the English text
obtain from back-translation, tth is the Thai text
obtain from back-translation. While the arithmetic
mean could oversimplify and skew results by pro-
viding equal weight to both measures, we opted for
the harmonic mean, which is less sensitive to large
discrepancies and offers a more balanced represen-
tation of the data. This approach ensures that nei-
ther the translation nor back-translation distances
dominate the final score, yielding a more repre-
sentative score that appreciates the intricacies of
the multi-faceted nature of translation tasks. For
more information and examples about how we cal-
culate and select the augmentation ratio with the
HD score, please see Appendix A.1.

4 Experimental Setting

4.1 Downstream tasks: MRC

We train the MRC model based on Wangchan-
BERTa model (Lowphansirikul et al., 2021) on
iAPP QA and ThaiQA datasets with a single V100
GPU for 140 hours with hyperparameters, as shown
in Table 1. In addition, we report F1 and extract
match (EM) scores for this task. For the hypothesis
test, due to resource constraints, we were only able
to test our results with one seed. Thus, we chose
McNeMar due to its ability to work using one seed.

To incorporate our data augmentation schemes,
we supplement the original training set with the
augmented set of questions while maintaining the
original context. To perform quality control, we
benchmark each top-k% sample of the augmented
data, systematically examining increments of 10%

Hyperparameter Value

Learning rate 2e−5

Per-device train batch size 32
Per-device evaluation batch size 128
Gradient accumulation steps 2
Number of training epochs 20
Warmup ratio 0.2
Weight decay 0.01
Seed 42
Use fp16 precision True

Table 1: Hyperparameters for the MRC task.

using harmonic distance. We select the best ratio
on the validation set and show only the best score.

4.2 Datasets

• XQuAD (Artetxe et al., 2019). A cross-lingual
QA dataset consists of 240 paragraphs and 1190
question-answer pairs from the development set
of SQuAD v1.1, translated by professionals into
11 different languages, including Thai.

• iAPP QA (Viriyayudhakorn and Polpanumas,
2021). A Thai QA dataset from Thai Wikipedia
consists of 9,170 question-answer pairs across
1,961 documents.

• ThaiQA (Trakultaweekoon et al., 2019). A Thai
QA dataset from various domains of Wikipedia
consists of 4051 question-answer pairs.

• TyDiQA (Clark et al., 2020). A multilingual QA
dataset includes around 4500 questions in the
Thai language.

For the evaluation setting, we use iAPP and
ThaiQA as the training data for the MRC task while
testing our model on XQuAD and TyDiQA datasets.
Note that we use only Thai questions and context
for multilingual datasets.

5 Experimental Results

We demonstrate the experimental results of the ma-
chine reading comprehension task in out-of-domain
settings in Section 5.1. Section 5.2 demonstrates
the analysis of the harmonic distance method on
the performance and training speed efficiency. In
addition, we present error analysis by comparing
various augmentation texts with the original text in
Section 5.3.

5.1 Machine Reading Comprehension

To identify the most efficacious augmentation strat-
egy, we evaluate our MRC models with various
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Augmentation Ratio Val EM/F1 TyDiQA EM/F1 XQuAD EM/F1

Original N/A 50.75 / 62.40 39.46 / 54.87 34.92 / 48.80

Cross-lingual Augmentations
Back translation 0.4 ➡ 0.05 / 0.27 ➡ 2.55 / 1.56 † ➡

-1.02 / -0.76 †

LLM GEC 0.4 ➡ 0.31 /

➡

-0.16 ➡ 2.66 / 1.23 † ➡ 0.33 / 0.63 †

LLM Paraphrase 0.7

➡

-0.88 / -0.47 ➡ 3.28 / 1.62 † ➡

-2.55 / -1.37 †

QCPG 1.0 ➡ 0.36 / 0.22 ➡ 2.86 / 0.92 † ➡ 0.16 / 0.21 †

LLM GEC + QCPG 0.7 ➡ 0.23 / 0.22 ➡ 3.30 / 1.64 † ➡
-0.60 / ➡ 0.16 †

Monolingual Augmentations
WordNet 0.4 ➡ 1.60 / 1.32 ➡ 2.86 / 1.34 † ➡

-1.28 / ➡ 0.17 †

Thai2Fit 0.7

➡

-0.48 / ➡ 0.06 ➡ 2.26 / 1.13 † ➡

-0.77† / -0.05
Thai2Transformers 0.4 ➡ 0.58 / 0.44 ➡ 2.70 / 1.39 † ➡

-0.51 / ➡ 1.40 †

LTW2Vec 1.0 ➡ 1.38 / 1.43 ➡ 1.84 / 1.75 † ➡

-0.09 / ➡ 1.23†

FastText 0.9 ➡ 0.27 / 0.33 ➡ 1.93 / 1.29 † ➡

-2.21 / -1.13 †

Table 2: Optimal ratio for best performance in each augmentation— selected from validation scores. The ratio is
obtained by performing the quality control method. † represents a significant result calculated from McNeMar’s test.

ratios in out-of-domain settings. We discussed the
experiment setup in Section 4.1.

Results. Table 2 exhibits the performance of the
most effective models for each augmentation strat-
egy, presenting both F1 and EM scores. The table
also elucidates the optimal ratio of augmented to
real data (calculated from the harmonic distance
method). The experimental results demonstrate
that using cross-lingual augmentations improves
the performance of the original model in all test
datasets except for Back translation and LLM Para-
phrase. Moreover, we found that the performance
of cross-lingual augmentations is higher than mono-
lingual augmentations in the XQuAD dataset. For
example, the QCPG method outperforms the Fast-
Text method by 0.93 EM score and 1.34 F1 score.
While cross-lingual augmentations somewhat show
reduced performance here, the overall results still
surpass those of monolingual augmentations.

Discussion. The results in Table 2 substantiate
the nuanced benefits of data augmentation tech-
niques in MRC. While monolingual augmentations
show promise of improvement in validation and
TyDiQA datasets, their impact on the performance
of the XQuAD dataset. For example, WordNet and
Thai2Transformers increase the performance of val-
idation and TyDiQA datasets while decreasing the
performance on XQuAD compared to the original
model. It is possible that these augmentations are
too noisy, perhaps performing word replacement on
a crucial section of the question, thus changing the
semantic meaning altogether. In contrast, “LLM

GEC” and “QCPG” are the most effective, deliv-
ering statistically significant improvements. This
also implies that cross-lingual augmentations can
improve the MRC’s generalization better than the
monolingual strategy.

5.2 Harmonic Distance (HD)

As stated in Section 3.4, we benchmark the perfor-
mance of each dataset performing top-k% sampling
in increments of 10% (see more information about
top-k% in Appendix A.1). To investigate the effi-
cacy of sampling using HD score, we choose to ex-
amine the best-performing augmentations: “LLM
GEC” and “QCPG” on the TyDiQA test set.
Results. As shown in Figures 3 and 4, employing
the quality control mechanism to filter noise data
improves the MRC performance compared to the
original model. We found that the best threshold
of LLM GEC is 0.9, which improves the F1 score
from the original model by 1.41 points. In addition,
at the best ratio of QCPG, we observe the perfor-
mance improvement of 1.69 points by the F1 score.
Moreover, when comparing the whole dataset and
only the 0.3 dataset, the performance remains iden-
tical with the training time decrease from ∼80 to
∼50 minutes (∼38.25% reduction).
Discussion. The HD score demonstrates its effec-
tiveness by the compelling performance gains with
lower data ratios—in this scenario, ratios of 0.2 and
0.3 outperform even a full dataset. Generally, using
a lower ratio than 0.1 still results in equal or better
performance, however, the ratio has to be searched
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LLM GEC FastTextOriginal
โปแลนด์บอล

เป�นการ์ตูนที�สร้างขึ�นโดยใคร?
(Poland Ball is a

cartoon created by who?

ใครเป�นผู้สร้างการ์ตูนโปลันด์บอล?
(Who created Poland Ball?)

Ratio

0.20

แมน่�าไนล์ตั�งอยูใ่นทวีปใด?
(In which continent is the

Nile River located in?)

แมน่�าไนล์ตั�งอยูที่�ไหน?
(Where is the Nile River located?)

บริเวฯกึปตั�งอยูนํ่าทวีปใด?
(Boriwaekip is located

in front of which continent?)
0.40

โปแลนด์โลก2026 เป�นการ์ตูน
4ชอ่งที�สร้างมากกว่าโดยแล้ว?

(Poland World2026 is a cartoon 4
channel which created more than?)

ประเทศเลบานอนอยูใ่นภูมิภาคใด?
(The country of Lebanon
is located in which area?)

เลบานอนอยูที่�ไหน?
(Where is Lebanon?)

ประเทศ Lebanonข้อ
อยูใ่นแอฟริกาหรือ?

(The country of Lebanon
number is in Africa?)

0.60

ประพันธ์โดยใคร?
(Composed by who?)

แต่งโดยใคร?
(Produced by who?)

ป.ชื�นเชน่ใคร?
P. Cheen such who?

0.80

Figure 2: Dataset examples from the robustness augmentation (LLM GEC) compared to the original texts and poor
augmentation (FastText) with varying ratios.
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Figure 3: F1 Score of the LLM GEC dataset when fine-
tuned with different augmentation ratios on TyDiQA.
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Figure 4: F1 Score of the QCPG dataset when finetuned
with different augmentation ratios on the TyDiQA.
(see Appendix A.2). This underlines HD’s value in
reducing computational load while optimizing per-
formance, signifying its potential as a cornerstone
in future data augmentation strategies.

5.3 Error Analysis
In this study, we demonstrate error analysis from
different datasets and augmentation ratios to deci-
pher why certain augmentations and ratios perform
better and to identify the characteristics of augmen-
tations at these specific ratios. In addition, we use
the augmented datasets from the LLM GEC and
FastText augmentation schemes.

Figure 2 presents sentences from varying ratios
from the best and worst performing augmentation.
The LLM GEC augment scheme maintains better
semantic meaning than the FastText augmentation.
Sentences at around 0.1-0.2 ratios tend to produce
more conservative paraphrases, preserving the se-
mantic integrity of the original text. For the ratio
between 0.4 and 0.6, sentences lean toward more
liberal paraphrasing strategies, often omitting some
keywords and introducing higher noise levels into
the data. In addition, we observe that sentences at
0.8 replace key-specific words with more ambigu-
ous synonyms. However, the augmentation results
from FastText demonstrate that it fails to produce
robust augmentation in all cases, resulting in per-
formance degradation (Table 2). Additionally, the
results from Figures 3 and 4 also support our find-
ings, indicating that top-performing scores can be
achieved without utilizing the entire dataset.

6 Conclusion and Future Work

We present an automatic framework for improving
robustness in QA tasks. The experimental results
demonstrate that our cross-lingual augmentation
improved the performance of Thai QA more consis-
tently than monolingual augmentations. Moreover,
we present the quality control for data augmenta-
tions, which decrease the training time and main-
tain the performance with only 20% of total aug-
mented data. For future work, we would like to ex-
plore the application and task of our augmentation
and quality control approaches to improve the gen-
eralization, such as conversational chatbots (Yang
et al., 2023; Jin and Lee, 2022; Hardalov et al.,
2019) and retrieval QA (Asai et al., 2021; Limkon-
chotiwat et al., 2022b).
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A Appendix

A.1 How Ratio Was Selected

As shown in Figure 5, we demonstrate how the ratio
was selected. We calculate the HD from the LLM
GEC method and arrange the semantic distance
from lowest to highest to formulate the distance
distribution. We then select the top-k% of the dis-
tribution as the training data, the k value can be
between 0.0 (using only the original training data)
to 1.0 (using entirely augmentation and training
corpora). This technique can control the quality
of the final dataset by maintaining a good signal-
to-noise ratio of the dataset, maintaining a similar
meaning between the original and augmented texts.
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Figure 5: Example distribution of semantic score on the
LLM GEC augmentation. With top-k% = 0.7, we will
select the top 70% of the dataset that has the closest
semantic similarity to the original data. The blue distri-
bution indicates that data was selected for augmentation,
while the red line indicates unselected data for this top-
k% value.
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A.2 Effectiveness of Harmonic Distance
Scores in Reducing Augmentation Ratio
While Maintaining Performance

As shown in Figure 6, for all of our augmentation
sets, an higher or similar score can be obtained by
using a smaller ratio when compared to using the
whole augmentation dataset. While there may be
no clear pattern in what the best ratio might be for
each augmentation, it is evident that for the large
majority of the augmentations, using less than a
1.0 ratio leads to a better if not equal score— while
reducing the computational resources needed.

Figure 6: Heatmap illustrating the normalized TyDiQA
Exact Match (EM) scores across various data augmenta-
tion techniques and ratios. The color scale represents the
normalized EM score, with blue indicating lower perfor-
mance and red indicating higher performance. Each cell
displays the average normalized EM score for a specific
combination of augmentation type and ratio.
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Abstract
Compositional generalisation (CG), in NLP
and in machine learning more generally, has
been assessed mostly using artificial datasets.
It is important to develop benchmarks to assess
CG also in real-world natural language tasks
in order to understand the abilities and limita-
tions of systems deployed in the wild. To this
end, our GenBench Collaborative Benchmark-
ing Task submission utilises the distribution-
based compositionality assessment (DBCA)
framework to split the Europarl translation cor-
pus into a training and a test set in such a
way that the test set requires compositional
generalisation capacity. Specifically, the train-
ing and test sets have divergent distributions
of dependency relations, testing NMT sys-
tems’ capability of translating dependencies
that they have not been trained on. This is
a fully-automated procedure to create natural
language compositionality benchmarks, mak-
ing it simple and inexpensive to apply it fur-
ther to other datasets and languages. The code
and data for the experiments is available at
https://github.com/aalto-speech/dbca.

1 Introduction

An often-used definition, by Partee (1995), of the
concept of compositionality of language is that the
“meaning of a whole is a function of the meanings
of the parts and of the way they are syntactically
combined”. A more stringent definition adds that
the composition of meaning is systematic: each
part’s meaning is the same in all the different se-
quences it appears in, the syntactical rules work the
same way for different parts, and the same function
determines meaning for different wholes (Fodor
and Pylyshyn, 1988; Pavlick, 2022, 2023). Compo-
sitionality enables generalising to new meanings by
combining familiar parts, and to understand each
other language users need to employ common sys-
tematic rules.

A number of benchmarks have been developed
to assess systematic generalisation from different

perspectives and in different NLP tasks. Many of
these consist of artificial data, such as the popular
SCAN (Lake and Baroni, 2018) and COGS (Kim
and Linzen, 2020) benchmarks. These artificial
datasets are typically constructed to be highly sys-
tematic, to include straightforward syntactical rules.
Natural languages, however, have varied irregular-
ities, idiomatic expressions, and other exceptions
to the rules, which make composition of meaning
much more complicated than in the case of the
highly-regular artificial datasets. It’s therefore im-
portant to assess whether NLP systems are able to
generalise systematically also in the case of natural
language, where systematic rules are obscured by
exceptions (Dankers et al., 2022).

Works that aim to assess systematic generalisa-
tion in natural language tasks often still synthesise
some part of the dataset in order to create test exam-
ples where systematic generalisation is needed (for
example Li et al. (2021) and Dankers et al. (2022)).
This enables precise testing of specific systematic
rules, but comprehensive test suites that would as-
sess the use of, for example, numerous syntactical
rules can be arduous to synthesise. To sidestep the
need to synthesise examples, a natural language
dataset can be partitioned into training and test sets
in such a way that the test set includes examples
whose processing requires some systematic gen-
eralisation ability. A framework for partitioning
data in this way was developed by Keysers et al.
(2020), called distribution-based compositionality
assessment, or DBCA for short. The main idea
of DBCA is to control the distributions of atoms
(primitive elements) and compounds (combinations
of the atoms) to get approximately the same atom
distributions but divergent compound distributions
in the training and test sets.

We utilise the DBCA framework in our Gen-
Bench Collaborative Benchmarking Task submis-
sion, which consists of train-test splits of the Eu-
roparl parallel corpus with divergent distributions
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Sentence Atoms Compounds

“Our vigilance is not partisan.” nsubj, poss, our,
vigilance, partisan

(vigilance, poss, our),
(partisan, nsubj, vigilance)

“We shall now hear Mr Wurtz speaking
against this request.”

hear, aux, shall, speak,
nsubj, wurtz, hear, ccomp,
speak

(hear, aux, shall), (speak,
nsubj, wurtz), (hear, ccomp,
speak)

“This seems to me to be a workable so-
lution.”

solution, amod, workable,
seem, xcomp, solution

(solution, amod, workable),
(seem, xcomp, solution)

Table 1: Examples of what we call “atoms” and “compounds”. Atoms are the lemmas and dependency relations,
and compounds the three-element tuples of the head lemma, the relation, and the dependant lemma.

of dependency relations. These data splits can
be used to assess the ability of NMT systems to
translate novel dependency relations. In the ter-
minology of the DBCA framework, we define the
atoms as lemmas and dependency relations, and
the compounds as the three-element tuples of the
head lemma, the dependant lemma, and the re-
lation between them (see Table 1 for examples).
This method to create compositional generalisa-
tion benchmarks does not require manual test suite
construction, making it easy to extend it to other
datasets and other languages.

2 Related work

2.1 Compositional generalisation in machine
translation

Compositional generalisation has been assessed in
machine translation in a few works in recent years.
Raunak et al. (2019) partitioned a dataset into short
training sentences and longer test sentences in or-
der to assess generalisation from short sentences to
longer ones, a subtype of compositional generalisa-
tion sometimes called productivity (Hupkes et al.,
2020). Li et al. (2021) synthesised sentences for
the test set with novel constituents, such as noun
and verb phrases to create the CoGnition bench-
mark. Dankers et al. (2022) assessed three aspects
of compositionality in NMT, which they called sys-
tematicity, the ability to combine familiar parts into
novel combinations; substitutivity, the consistency
of translations when a word is replaced with its
synonym; and over-generalisation, the tendency to
follow a compositional rule even when the case is
actually an exception to the rule.

Perhaps the most similar benchmark to ours is
ReaCT by Zheng and Lapata (2023). In ReaCT,
the IWSLT 2014 German-English corpus is used
as the training set, and a test set is created by se-
lecting sentences that have a high compositionality

degree from the WMT 2014 corpus. The compo-
sitionality degree of a test set sentence is defined
as the number of training set n-grams needed to
create the sentence, divided by the length of the
sentence. The reasoning is that a test set sentence
that includes long n-grams from the training set can
be composed of fewer n-grams, having a low com-
positionality degree, whereas if we need to back
off to shorter n-grams to create a sentence, the com-
positionality degree is high. This train-test data
split has similar general characteristics as our data
splits: it is completely natural data (no synthetic
sentences) partitioned so that the test set has novel
combinations of familiar primitives. In contrast to
our work, the primitives in this scheme can be se-
quences of multiple words, whereas we assess the
ability to translate novel combinations of just two
words and their dependency relation. We also pay
attention to the relative frequency distributions of
the primitives and the combinations, following the
DBCA framework, whereas in ReaCT the compo-
sitionality score is a function of the unique n-gram
types.

In addition to word-based compositionality, mor-
phological compositional generalisation in transla-
tion has been assessed by Meyer and Buys (2023)
and Moisio et al. (2023). In these works, the atoms
are defined as the morphemes (or surface-level
morphs), and compounds as the inflected word
forms that consist of multiple morphemes. The
test set therefore includes novel combinations of
familiar morphemes, assessing NMT systems’ ca-
pacity for morphological generalisation.

2.2 Other related work

Aside from NMT tasks, Shaw et al. (2021) utilised
the DBCA framework to assess compositional gen-
eralisation in a natural language semantic parsing
task. Søgaard et al. (2021) provide a more general
discussion and review of non-random training-test
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Figure 1: The categorisation of our benchmark in the taxonomy by Hupkes et al. (2023).

data splitting.
Besides creating artificial train-test splits, an-

other option to test systematic generalisation in
NLP systems, without the need for manual test
suite design, is to leverage the fact that systematic-
ity can be seen as an inherent symmetry in the data
(Manino et al., 2022), which has also been utilised
to generate new training examples (Akyurek and
Andreas, 2023).

A study not on compositional generalisation, but
in other ways related to our work, is that by McCoy
et al. (2023), who evaluated the degree of novelty of
the text generated by language models, using both
n-grams and dependency relations. They found
that language-model-generated text tends to be less
novel than the baseline of human-generated text
in local structure (small n-grams), but more novel
than the human baseline in more global structure
(large n-grams). This finding provides a good back-
drop for our research question of how NMT models
handle a test set that includes novel local structure,
such as dependency relations.

2.3 The taxonomy

The eval card in Figure 1 shows how our bench-
mark can be categorised in the taxonomy of Hupkes
et al. (2023). The motivation is primarily intrinsic:
it is important to assess if translation models learn
the systematic rules that characterise natural lan-
guage, in order to get some understanding how the
models work. Another motivation is practical; test-
ing compositional generalisation is important for
the practical reason of knowing how robustly the
models generalise to novel dependency relations.
The type of the generalisation is compositional, and

the shift type is covariate, since the input data distri-
bution changes but the task remains otherwise the
same. Shift source is partitioned natural data, since
we do not use any artificial data, but the train-test
split is artificial. Lastly, the shift locus in our exper-
iments is train-test, but the method and benchmark
could also possibly be used as a finetune train-test
benchmark, by finetuning a pretrained model on
the training set.

3 Europarl data splits

3.1 Data partitioning process

We use the Europarl corpus (Koehn, 2005) of tran-
scribed European parliament proceedings, with the
multilingual sentence alignments from the OPUS
corpus (Tiedemann, 2012). We chose the Europarl
corpus because of the good quality of the transla-
tions and because it includes parallel sentences for
multiple languages. For our benchmark submis-
sion, we select English as the source language, and
as the target languages we use four languages that
represent different (branches of) language families:
German, French, Greek, and Finnish.

As pre-processing, duplicate sentences are re-
moved and maximum sentence length is restricted
to 30 words before tokenisation. We take a ran-
dom subsample of 300k sentences from which we
extract the data splits. This relatively small size
was chosen for convenient use as well as to al-
low comparison with previously published similar
benchmarks: CoGnition Li et al. (2021) and ReaCT
Zheng and Lapata (2023), which are similar in size.

The dependency parsing for the English source
corpus is done using the LAL-parser (Mrini et al.,
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2020). To calculate the divergences in data splitting,
we only consider the English side. Therefore, the
benchmark primarily assesses the encoder’s capac-
ity to represent novel syntactic relations. However,
presumably a high compound divergence of the
source side sentences means that the target side sen-
tences also include an increased number of novel
syntactical, or possibly morphological, structures,
assessing at the same time the decoder’s capacity
to generate these. We define the atoms as the lem-
mas and dependency relations and compounds as
the three-element-tuples of the dependant lemma,
the head lemma and their relation. To make the
number of atoms manageable, we exclude from the
distribution calculations lemmas that appear either
very frequently (the 200 most frequent lemmas,
which each appear from 387k times (most frequent
word “the”) to 3576 times (200th most frequent
word “then”)), or fewer than 10 times in total in
the corpus. After this filtering, about 8000 lemmas
remain in the atom set, which includes also the
dependency relation tags.

Following Keysers et al. (2020), we calculate
a weight for each compound so that those sub-
compounds that appear predominantly only in one
super-compound get lower weight than those ap-
pearing in many different super-compounds. In
our case, this means that if a (dependant lemma,
relation type) pair occurs for example 8/10 times
with just one head lemma, this pair gets a score of
1− (8/10) = 0.2. The idea is somewhat similar to
that behind the Kneser-Ney smoothing (Kneser and
Ney, 1995), where the number of different bigrams
a word appears in correlates with the unigram back-
off probability. We filter out compounds that get
a weight less than 0.5, after which there are about
8000 atom types and 400k compound types whose
distributions are controlled in the data splits.

Atom and compound divergences are calculated
similarly to Keysers et al. (2020): divergence D be-
tween distributions P and Q is calculated using the
Chernoff coefficient Cα(P∥Q) =

∑
k p

α
k q

1−α
k ∈

[0, 1] (Chung et al., 1989), with α = 0.5 for the
atom divergence and α = 0.1 for the compound
divergence. Keysers et al. (2020) notes about the α
values that α = 0.5 for atom divergence “reflects
the desire of making the atom distributions in train
and test as similar as possible”, and α = 0.1 for
compound divergence “reflects the intuition that
it is more important whether a certain compound
occurs in P (train) than whether the probabilities

in P (train) and Q (test) match exactly”. The di-
vergence is the complement of the Chernoff co-
efficient, since the Chernoff coefficient measures
similarity between two vectors. The atom and com-
pound divergences for training set V and test set
W are:

DA(V ∥W ) = 1 − C0.5(FA(V ) ∥FA(W ))

DC(V ∥W ) = 1 − C0.1(FC(V ) ∥FC(W )).

where FA is the atom distribution and FC is the
compound distribution of a data set.

Splitting the data is done using a greedy algo-
rithm similar to that by Moisio et al. (2023). This
algorithm places one sentence at each iteration into
either the training or test set, such that the atom
and compound divergences are as close to the re-
spective desired values as possible. Specifically, at
each iteration we try to maximise a score that is
the negated linear combination of the differences
between the desired and actual divergence values:

score(V,W ) = −|c−DC(V ∥W )| − DA(V ∥W ),

where c is the desired compound divergence, and
the desired atom divergence is 0 (minimum).

3.2 Comparison to random splits and
previous benchmarks

Table 2 lists the sizes, and atom and compound di-
vergences (DA and DC) for the Europarl data splits,
as well as for random splits, and for the CoGnition
and ReaCT benchmarks for comparison. All the
divergences are calculated after similar filtering of
the atoms and compounds as described for the Eu-
roparl splits above. From the divergences of the
random train-test splits we can notice that the size
of the test set correlates inversely with both atom
and compound distributions; when the training and
test sets are closer in size, the distributions are also
naturally closer to each other.

From the table, we can also see that CoGnition
includes relatively short sentences and, importantly,
a relatively small number of unique lemmas. Cre-
ating CoGnition, Li et al. (2021) removed some of
the complexity of natural language, such as poly-
semous words, and deliberately kept the vocabu-
lary small and excluded all low-frequency words.
This follows the design choices made by Keysers
et al. (2020) of aiming to have only few meaningful
atoms from which a large number of compounds
can be created, which was motivated by practical
concerns: this way it is easier to have a large range
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# sentences # words # unique lemmas DA DC

train test train test

Europarl random split 3k 200k 3k 3.6M 54k 29k 0.28 0.60
Europarl random split 10k 200k 10k 3.6M 180k 30k 0.18 0.55
Europarl random split 30k 200k 30k 3.6M 540k 31k 0.13 0.52

CoGnition (Li et al., 2021) 196k 10k 1.9M 96k 1.7k 0.13 0.47
ReaCT (Zheng and Lapata, 2023) 160k 3k 3.3M 45k 53k 0.32 0.90

Europarl minDC split #1 203k 37k 3.9M 650k 34k 0.01 0.10
Europarl minDC split #2 194k 36k 3.7M 625k 34k 0.01 0.10
Europarl minDC split #3 195k 35k 3.7M 625k 34k 0.01 0.10
Europarl maxDC split #1 197k 23k 3.8M 390k 34k 0.001 1.0
Europarl maxDC split #2 198k 22k 3.8M 390k 34k 0.002 1.0
Europarl maxDC split #3 198k 22k 3.8M 390k 34k 0.001 1.0

Table 2: Comparison of the Europarl splits to other translation benchmarks that aim at assessing compositional
generalisation. The number of unique lemmas includes both training and test set lemmas.

of compound divergences while keeping the atom
divergences same. However, this contrasts with the
distribution of primitives in natural language, an
issue we discuss more in Section 5. ReaCT, on
the other hand, has similarly sized vocabulary as
natural language data; in fact the vocabulary is sig-
nificantly larger than the Europarl random sample
vocabulary, possibly because the WMT and IWSLT
corpora are lexically more diverse than Europarl.

Table 2 also lists, for reference, the atom and
compound divergences, calculated for the depen-
dency relations as described in Section 3, for CoG-
nition and ReaCT, even though neither of these data
splits are designed to minimise or maximise these
values. In both of these data sets, the test set is
designed to contain novel combinations of familiar
parts, as is our test sets, but in these works the parts
are normally sequences of multiple words. In spite
of this, the ReaCT data split has a relatively high
dependency relation compound divergence.

The last rows of Table 2 show the sizes and diver-
gences of the minimum- and maximum-compound-
divergence Europarl data splits. The atom diver-
gences are significantly lower for these splits than
they are for the random splits. As noted above, the
low atom divergence follows the principles of the
DBCA framework: the compositional generalisa-
tion test set should be difficult not because of novel
primitive elements (in our case mostly lemmas) but
because of novel combinations of the known ele-
ments. The maximum-compound-divergence splits
get a DC of exactly 1, but here we note that, as

described in Section 3, the most frequent and most
infrequent lemmas are left out from the divergence
calculations, which means that only a subset of the
dependency relation compounds are novel in the
test set, even though DC = 1.0.

4 Experiments

4.1 Transformer NMT system results
We train Transformer (Vaswani et al., 2017) models
on the Europarl data splits using the OpenNMT
python library (Klein et al., 2017) and the same
hyperparameters as in the example OpenNMT-py
Transformer configuration1, including the standard
6 transformer layers with 8 heads, a hidden layer
size of 512 and feed-forward layer size of 2048.
The configuration includes around 60M parameters.
We create a BPE (Sennrich et al., 2016) vocabulary
for each language with 10k token types. We didn’t
tune any of the hyperparameters for these datasets,
and didn’t use a validation set. We trained the
models for 6000 training steps, evaluated the test
set translations at intervals of 1000 steps, and report
the best of these 6 results for each model. For
more details on training the models, see the Github
repository linked on the first page.

Figure 2 displays the chrF2++ (Popović, 2017)
scores for the minimum- and maximum-compound-
divergence splits and the four target languages: Ger-
man, French, Greek, and Finnish. We run the data
split algorithm three times using different random

1https://github.com/OpenNMT/OpenNMT-py/blob/
9d617b8b/config/config-transformer-base-1GPU.yml
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Figure 2: The chrF2++ scores for the Transformer NMT systems trained on the minimum and maximum compound
divergence splits. Source language is English and target languages are German, French, Greek, and Finnish. The
middle scores are for the random data splits, which happen to have a compound divergence of about 0.5. Each data
split setup (minDC , maxDC , and random) is run 3 times with different random seeds, creating 9 different data splits
for which NMT models are trained.

seeds. Between the minDC and maxDC split re-
sults are the results for the random splits, of which
there are also 3 random runs (with 200k sentences
in training and 30k sentences in test set). As shown
in Table 2 the random splits with 30k-sentence test
set happen to have a compound divergence of about
0.5.

Figure 2 shows a modest but statistically sig-
nificant and consistent decrease in performance
from the random data split to the maxDC split, for
all four target languages. This is expected, as the
maxDC split includes more novel dependency re-
lations than the random split. However, as shown
in Table 2, the maxDC split has a significantly
lower atom divergence than the random split, as
this is deliberately minimised in the artificial data
splits, which follows the principle of the DBCA
framework of having the same atom distribution in
training and test sets. This means that the maxDC

split should be easier than the random split in this
regard, but it still gets worse results because of the
high compound divergence.

The minDC split, on the other hand, has a similar
atom divergence as the maxDC split, so compari-
son between these two results is in that sense fairer.
There is a larger difference in the results between
these two data splits; depending on the target lan-
guage the chrF2++ drops from about 4% to 8%.
Since we use relatively large test corpora (from
about 20k to 40k sentences), even small differences
in chrF2++ are statistically significant.

4.2 Generalisation score

To assess whether one NMT system is more ca-
pable in (this dependency-relation-related type of)
compositional generalisation than some other sys-

tem, one option is simply to compare their trans-
lation performances on the maxDC split. How-
ever, to get a sense of the generalisation capac-
ity as a part of the system’s translation capac-
ity in general, it may be more meaningful to as-
sess how the performance deteriorates between the
minDC and maxDC splits. To get a generalisa-
tion score, we propose to take the ratio of the re-
sults on these two data splits. This way the gen-
eralisation scores, using the average of the three
chrF2++ scores for each experiment setup listed in
Figure 2, are: 50.12/54.23 = 0.92 for the German-
target Transformer system, 57.13/60.11 = 0.95
for French, 53.77/57.05 = 0.94 for Greek, and
48.30/50.48 = 0.96 for Finnish. Since this a rela-
tive score, the absolute chrF2++ results should be
reported in addition to this generalisation score.

5 Discussion: handling the long tail

The core of each natural language is a set of words
(a lexicon), and a set of grammar rules that de-
fine how to combine the words into meaningful
sequences. The lexicon is divided into content
words, which possess semantic content, and func-
tion words, which denote the grammatical relation-
ships between content words. The function words
belong to closed classes, for example prepositions,
that normally do not accept new words, while con-
tent words belong to open classes; new nouns, for
example, are coined regularly. The long tail of
the Zipfian distribution of word frequencies con-
sists of content words while the grammar-enforcing
function words are mostly in the head of the distri-
bution.

Recent studies suggest that the distinction be-
tween content and function words as well as the
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Zipfian distribution are important for (composi-
tional) generalisation to arise: Steinert-Threlkeld
(2020) provides empirical evidence that function
words enable robust forms of non-trivial composi-
tional communication, and Chan et al. (2022) found
that the Zipfian distribution helps language mod-
els strike a balance between memorisation and (in
context) generalisation. As shown also by Feldman
(2020), memorising some of the long tail is not
in conflict with generalisation; on the contrary, it
enables optimal generalisation.

At the same time, some studies have shown that
neural NLP system have some difficulties with han-
dling the long tail, or at least handling the tail in
a way that we as users of the models would ex-
pect and want. Wei et al. (2021) and Czarnowska
et al. (2019) found that NLP systems’ performance
is heavily influenced by word frequency in train-
ing. LeBrun et al. (2022) compared language-
model-generated text to a reference and found that
the models underestimate the long tail of well-
formed sequences; furthermore, this probability
mass didn’t go to the head of the distribution but
rather the models overestimate the probability of
ill-formed sequences.

As noted in previous sections, the desired dis-
tribution of atoms in the DBCA framework con-
trasts with the Zipfian distribution found in natural
language. As Keysers et al. (2020) explain, they
design their CFQ benchmark “so as to have few
and meaningful atoms” which means there is no
long tail of infrequent primitives. This is related
to having a close-to-zero atom divergence: if the
atom distribution had a long tail, it would not be
easy to have the same relative atom distributions
in training and test sets since at least those atoms
that appear only once would make the distributions
diverge. This harks back to the question of how
compositional generalisation could be assessed in
purely natural tasks, where every rule has an excep-
tion, and where idioms and irregularities muddle
the systematicity (as discussed by Dankers et al.
(2022)).

Our benchmark provides one answer to this ques-
tion. Although we use the principles of the DBCA
framework regarding distribution divergence, we
don’t make the corpus less natural by artificially
shrinking the vocabulary size of the corpus. Instead,
to make the divergence calculations manageable
in practice, we leave some of the vocabulary out
of the calculations. A downside of this choice is

that the test sentences in the maxDC splits don’t
contain exclusively novel dependencies. The ad-
vantage is that the vocabulary is similar to that in
the original real-world natural language dataset,
while the test set includes an increased number of
novel dependencies to test generalisation.

6 Conclusion

Our GenBench Collaborative Benchmarking Task
submission consists of train-test splits of the Eu-
roparl parallel corpus with divergent distributions
of dependency relations. These data splits can be
used to assess the ability of NMT systems to trans-
late novel dependency relations in a purely natural
language translation task. We derive the data parti-
tioning method from the distribution-based compo-
sitionality assessment framework, which provides
generalisable principles of how to assess composi-
tionality. Our application of the DBCA framework
is straightforward to extend further to new datasets
and languages, and to any other NLP task where
the training and test sets consist of sentences, such
as paraphrase detection. The DBCA framework
is useful for real-world natural language tasks too,
even though it was originally designed for a more
artificial data setting. It should be kept in mind,
however, how the principles of the DBCA frame-
work diverge from the reality of natural language
data.

7 Limitations

7.1 Applicability of the method
Nowadays, the state-of-the-art methods in many
NLP tasks are based on pretrained language models.
However, our data partitioning method, as used in
this work, requires controlling the training data, as
well as the test data, to have partitions with specific
atom and compound divergence values. Therefore,
the method is not directly applicable to a pretrain-
finetune training scheme, if the pretraining dataset
is not modifiable. However, there are no limitations,
in principle, on having a fixed training corpus and
compiling only a new test set to have specific diver-
gence values, although the divergence values might
not be so easy to minimise and maximise in this
case.

7.2 Validity of the method
We have not conclusively assessed whether the
benchmark actually tests what we assume it tests,
that is, compositional generalisation ability. To
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rule out the most obvious potential confounding
variable, we checked the sentence lengths to see
if the maxDC test sets for some reason included
longer sentences, making the test set more diffi-
cult this way. We did not find large differences:
in the minDC splits the average sentence lengths
in train/test sets are 19.3/17.6 words, and in the
maxDC splits 19.1/17.3 words. Although there
is a difference (of unknown origin) between train
and test set sentence lengths, there is no significant
difference between minDC and maxDC splits that
could confound the results. From Table 2 we can
also see that the training sets are similar in size.

7.3 Limitations of the experiments

There are multiple levels of compositionality in
language, from morphemes to words to phrases to
clauses. Our experiments focus on just one inter-
mediate level of compositionality, since we define
compounds as dependencies between two words.
This choice was based primarily on convenience:
we could define compounds as constructions of
more than just two words, but the large number of
these constructions would make the data partition-
ing heavier computationally. Focusing on just one
level of compositional constructions means that our
experiments are not exhaustive in this regard, and
we hope to assess other levels of compositionality
in future work.

Our goal was to create a benchmark that tests
generalisation to novel dependency relations in as
comprehensively as possible, not selecting some
specific types of dependency relations and leaving
out other types. However, memory requirements of
the data splitting algorithm do not permit us to use
all of the atoms and compounds in the distribution
divergence calculations, so we opted to leave out
the most frequent and the most infrequent lemmas,
and the dependency relations that include them.
This means that our set of atoms represents a mid-
dle section of the distribution, where the head turns
into a tail. Therefore, the controlled dependency
relations include lemmas both from the head of
the distribution and the tail, although neither of the
extremes. We have not been able to assess how this
particular choice affects the results.
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Abstract

Semantic parsing plays a pivotal role in advanc-
ing the accessibility of human-computer inter-
action on a large scale. Spider, a widely recog-
nized dataset for text-to-SQL, contains a wide
range of natural language (NL) questions in En-
glish and corresponding SQL queries. Original
splits of Spider and its adapted to Russian lan-
guage and improved version, PAUQ, assume
independence and identical distribution of train-
ing and testing data (i.i.d split). In this work,
we propose a target length split and multilin-
gual i.i.d split to measure compositionality and
cross-language generalization. We present ex-
perimental results of popular text-to-SQL mod-
els on original, multilingual, and target length
splits. We also construct a context-free gram-
mar for the evaluation of compositionality in
text-to-SQL in an out-of-distribution setting.
We make the splits publicly available on Hug-
gingFace hub via https://huggingface.co/
datasets/composite/pauq.

1 Introduction

In this paper, we focus on a subtask of semantic
parsing called text-to-SQL, which involves map-
ping natural language (NL) questions to Structured
Query Language (SQL). Sequence-to-sequence
(seq-to-seq) models such as RAT-SQL (Wang et al.,
2020), BRIDGE (Lin et al., 2020), and RESDSQL
(Li et al., 2023) have been widely employed for
the text-to-SQL task. However, recent studies have
highlighted the limitations of seq-to-seq models in
out-of-distribution settings (Shaw et al., 2021; Gu
et al., 2021; Chang et al., 2023).

The evaluation process for text-to-SQL mod-
els is currently a topic of active research. Yu
et al. (2018a) determined the difficulty of requests
based on the number of SQL components, result-
ing in four distinct categories: “Easy”, “Medium”,
“Hard”, and “Extra Hard”. Finegan-Dollak et al.
(2018) demonstrated that the division of the popu-
lar text-to-SQL dataset into training and test sets is

Figure 1: SQL is transformed into an SQL template via
masking technique for subsequent compositional evalua-
tion. Token compositions, referred to as compounds, are
extracted via context-free grammar and then compared
against the predicted query.

inadequate for assessing the model’s generalization
abilities. Ribeiro et al. (2020) highlighted that it is
important to access performance on functional test
sets and out-of-distribution examples, as random
train and test splits can overestimate real-world per-
formance and miss important error cases. Chang
et al. (2023) proposed a text-to-SQL specific pertur-
bation benchmark . This benchmark encompasses
17 categories for evaluation on text-to-SQL models
robustness. Shaw et al. (2021) proposed new train
and test splits of non-synthetic datasets for model-
ing out-of-distribution (OOD) setting in order to
measure compositionality in semantic parsing.

In this work, we propose three splits of the ex-
isting PAUQ dataset (Bakshandaeva et al., 2022),
an improved version of Spider (Yu et al., 2018b),
for measuring across-language generalization and
compositional generalization. The first split evalu-
ates how models benefit from training in multiple
languages of the same task. The split is constructed
by joining original splits of Russian and English
versions of PAUQ (MPAUQ). The original i.i.d
splits of Russian and English will be referred to
as RuPAUQ OS and EnPAUQ OS, respectively.
The second two splits, target length, evaluate how
the models perform if the text-to-SQL data is split
by target length characteristic. The first split is
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RuPAUQ OS EnPAUQ OS EnPAUQ TRL EnPAUQ TSL
Train Test Train Test Train Test Train Test

Split size 8800 1076 8800 1076 7890 1975 7900 1975
Avg. template length 21.04 16.79 21.1 16.8 23.74 8.27 15.28 42.06
Avg. question length 8.95 9.05 12.01 12.31 12.57 9.92 11.68 13.46

Table 1: Statistics for PAUQ original split (OS) for both Russian (RuPAUQ), English (EnPAUQ), and target length
splits (TRL and TSL). The length is calculated as the length of sequences in tokens.

when samples in the train set are longer than sam-
ples in the test set named TRL. The second split is
when samples in the test are longer than samples
in the train named TSL. TRL examines the ability
of the model to generalize to simpler SQL without
directly learning to construct them. As stated in
(Hupkes et al., 2020), TRL evaluates model sys-
tematicity, while TSL assesses its productivity.

2 Spider and PAUQ

Spider (Yu et al., 2018b) comprises a substan-
tial collection of 10,181 English questions and
5,693 unique complex SQL queries, spanning 200
databases with multiple tables that encompass 138
distinct domains. Spider was randomly split into
train, dev, and test sets. In the case of PAUQ,
the Russian version of Spider, all three compo-
nents - questions, SQL queries, and database con-
tent, have been modified and localized. PAUQ
improved the original Spider by inserting the miss-
ing values, correcting errors, and adding new sam-
ples of poorly represented types. As the Spider
test set is not publicly available, PAUQ uses the
dev set for testing. PAUQ contains 8,800 and
1,076 NL samples for training and testing, respec-
tively. In PAUQ, the total numbers of different ele-
ments of databases are: (i) Databases: 166 entities
(88.0% – train set, 12.0% – dev set); (ii) Tables:
876 entities (90.8% – train set, 9.2% – dev set);
Columns: 4503 entities (90.2% – train set, 9.8%
– dev set); Values: 531,164 and 533,751 unique
values respectively (88.4% – train set, 11.6% – dev
set). We adopt three components (NL questions,
SQL queries, database) from GitHub via https:
//github.com/ai-spiderweb/pauq, where each
query corresponds to Russian and English texts.

3 Proposed Split

We propose a target length-based split to mimic
full shift (Hupkes et al., 2020) in the text-to-SQL
task for measuring the compositional generaliza-
tion ability of NLP models. We design split in the

following way:

1. Normalize SQL by masking tables, attributes,
textual and numeric values with correspond-
ing mask token (see Figure 1) - this way,
we get an SQL template by which the tar-
get length split will be done. Text-to-SQL
solutions are expected to infer attributes, ta-
bles, and values from a given question and
schema. The ability to handle it correctly
is called substitutivity (Hupkes et al., 2020).
Since our split is purely for compositional gen-
eralization evaluation, we use that template
for splitting instead of the original query. Dur-
ing an evaluation, we also use that masking
technique and true SQL template to estimate
compositional ability of the models.

2. For both splits, we sort SQL templates in as-
cending or descending order based on tem-
plate token size. Then, we iterate by the sorted
template list in order to fill train and test splits.
We require the test size of both splits to be
20% of the original dataset.

3. Since we want to check how the model recom-
bines known tokens to form novel structures,
we clear the test set from such queries where
there is no full token intersection with train
tokens.

We make sure that there is no template intersection
in train/test for both TRL and TSL splits. TSL is
the most complicated split because the model has
to recombine known tokens to form new complex
and long queries. TRL split requires the model to
also recombine new tokens but to generate queries
of shorter length.

For measuring cross-language generalization,
we merge English and Russian train sets and eval-
uate English and Russian test sets separately. Our
motivation for the multilingual split is whether
training in two languages on the same task can
benefit one model. Table 1 shows statistics for OS
and target length English and Russian splits.

215

https://github.com/ai-spiderweb/pauq
https://github.com/ai-spiderweb/pauq


4 Baselines and Experiments

We focus our dataset on two types for generaliza-
tion evaluation - compositional generalization and
generalization across languages (see Appendix B
for the GenBench card (Hupkes et al., 2022)).

We utilized four popular Spider models:

• T5-base (Raffel et al. 2020);

• RESDSQL (Li et al. 2023);

• RAT-SQL (Wang et al. 2020);

• BRIDGE (Lin et al. 2020);

T5-base is a pre-trained encoder-decoder trans-
former with a language modeling head.

RESDSQL decouples schema linking and query
generation tasks into two stages. The first stage
selects the most relevant schema items for the ques-
tion. During the second stage, the model learns
to decode the SQL template of the actual query
concatenated with the original actual query. That
way, the model can condition generating SQL skele-
ton before the full original query. RESDSQL uses
ROBERTA-large (Zhuang et al., 2021) large for the
schema linking and T5-base for query generation.
For RuPAUQ and MPAUQ, we replace T5-base
model with MT0-base (Muennighoff et al., 2022).

RAT-SQL is an encoder-decoder model that uses
a relation-aware transformer within the encoder to
model alignments between database schema and
content and question tokens. The decoder of the
model is tree-structured and generates an abstract
syntax tree in the context-free SQL grammar.

BRIDGE, in turn, utilizes database schema and
content as input to the model. It has an encoder-
decoder architecture with the pointer-generator net-
work using beam-search. The model generates
queries in execution-guided order. Both RAT-SQL
and BRIDGE use the BERT-base (Devlin et al.,
2019) language model as an encoder. The details
on hyperparameters are presented in the Appx. A.

5 Overall results

We evaluate 4 models on our splits - T5-base, RES-
DSQL (with T5-base or MT0-base), RAT-SQL, and
BRIDGE. We trained each model on a split train set
and evaluated it on a test set with 3 random seeds
and averaged predictions. Our evaluation metrics
are Exact Matching and Execution Accuracy. Re-
sults are presented in Tab. 2, 3, 4.

EnPAUQ Exact Match Exec Match
split T5 RESDSQL T5 RESDSQL
OS 0.46 0.69 0.45 0.74

TRL 0.56 0.72 0.55 0.80
TSL 0.10 0.19 0.08 0.30

Table 2: Compositional generalization exact match and
exec match metrics for T5-base and RESDSQL. Each
model is evaluated on a corresponding test split.

Train Test T5-base RESDSQL RAT-SQL BRIDGE
En

En
0.46 0.69 0.66 0.60

M 0.48 0.66 0.66 0.68
Ru

Ru
0.42 0.39 0.51 0.52

M 0.43 0.39 0.57 0.55

Table 3: Exact match metrics for across language gener-
alization. En is EnPAUQ, Ru is RuPAUQ, and M is for
MPAUQ.

Train Test T5-base RESDSQL RAT-SQL BRIDGE
En

En
0.45 0.74 0.63 0.60

M 0.45 0.68 0.65 0.65
Ru

Ru
0.39 0.43 0.49 0.48

M 0.40 0.42 0.53 0.53

Table 4: Execution match metrics for across language
generalization. En is EnPAUQ, Ru is RuPAUQ, and M
is MPAUQ.

Target length split is our evaluation towards com-
positional generalization measurements (Table 5).
We evaluate T5-base and RESDSQL on this split.
The predictions for both models are stable across
different seed runs with standard deviation for less
than 1% for both T5-base and RESDSQL. Since
RESDSQL is a more advanced model with multi-
ple query generation stages, it tends to over-fit less
on TSL and generate novel queries - its execution
match is much higher than its exact match. On TRL
compared to the OS split, the metrics are higher.
It is not surprising because our test set for TRL
consists mostly of PAUQ question pairs from easy
category. Such evaluation shows that the model
is able to generalize from complex queries to sim-
ple ones without overcrowding the training dataset
with simple queries for text-to-SQL. In Tab. 3 and
4, we see that training simultaneously on two lan-
guages with multilingual models can give a slight
boost to some models. In our experiments, we see
an increase in execution match metric for T5-base
(Russian +1%), RAT-SQL (English +2%, Russian
+4%), and BRIDGE (English +5%, Russian +2%).
However, RESDSQL had a drop in English (-6%)
when trained in such a setting.
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EnPAUQ Syntax accuracy Compound accuracy OOD Compound accuracy
Split T5 RESDSQL T5 RESDSQL T5 RESDSQL
OS 0.75 0.81 0.81 0.82 0.54 0.48
TRL 0.75 0.91 0.93 0.94 0.65 0.66
TSL 0.73 0.57 0.71 0.68 0.47 0.42

Table 5: Compositional generalization in-depth evaluation of two models.

6 In-depth compound analysis

We wanted to explore the ability of compositional
generalization for proposed target length splits. We
have developed context-free grammar (CFG) in or-
der to parse queries. In order to analyze, we utilize
the concept of compound. For example, we have
dataset tokens SELECT, COUNT, SUM, Goals, Teams
(Goals and Teams are table attributes). Composi-
tion of these tokens such SELECT COUNT Goals
is called compounds. CFG covers compounds for
REQUEST, JOIN, CONDITION, GROUP, ORDER, LIMIT.
For evaluation, we apply the same masking tech-
nique used for split generation for generated SQL.
Then we parse it with CFG to extract compounds
(see Figure 1). For in-depth compound analysis,
we propose and evaluate three accuracy metrics
derived from our compounds:

• Syntax accuracy - this accuracy met-
ric estimates whether all expected true
SQL compounds are present in predicted
SQL. For example, if the true SQL has
REQUEST compound and CONDITION com-
pounds SELECT count(ATTRIBUTE_1) FROM
TABLE_1 WHERE ATTR_2 = TEXT_VAL_1
OR ATTR_3 = TEXT_VAL_2; and predicted
SQL has only REQUEST compound in SELECT
count(ATTRIBUTE_1) FROM TABLE_1 - the
syntax accuracy for such query will be 0.5;

• Compound accuracy - this accuracy met-
ric estimates the proportion of predicted
compounds to expected ones in the query.
For example, if true query has 1 REQUEST
compound and 2 CONDITION compounds
SELECT count(ATTRIBUTE_1) FROM TABLE_1
WHERE ATTRIBUTE_2 = TEXT_VALUE_1
OR ATTRIBUTE_3 = TEXT_VALUE_2; while
the predicted query has 1 REQUEST compound
and 1 CONDITION compounds in SELECT
count(ATTRIBUTE_1) FROM TABLE_1
WHERE ATTRIBUTE_2 = TEXT_VALUE_1
the compound accuracy will be 0.33.

• OOD Compound accuracy - compound ac-
curacy, which is only calculated on com-
pounds that were not seen during training.

We calculate the proposed metrics independently
for each sample and then average over all test set
predictions. In Tab. 5, we see that a more advanced
RESDSQL overall model increases only syntax ac-
curacy metric compared to the T5-base on OS and
TRL splits, while other two metrics are relatively
close to each other for all splits. OOD Compound
Accuracy is significantly lower then Compound
Accuracy (e.g., 0.66 vs 0.94 for RESDSQL on the
TRL split, respectively). The TRL split compound
metrics show that both models are able to gener-
ate unseen compounds in approximately 1.5 times
better than in the TSL split.

7 Discussion and Conclusion

In this work, we have explored two types of gen-
eralization - compositional generalization (TRL
and TSL splits) and across language generaliza-
tion (MPAUQ). We have evaluated 4 text-to-SQL
models on these splits. For an in-depth analysis
on compositional generalization, we have devel-
oped CFG and proposed two metrics for compound
evaluation. Our results show that TSL split is the
most challenging split for the model. TRL split
shows that the models are able to generalize to un-
seen short SQL. Multilingual split shows that some
models can benefit from learning on the translated
task to gain performance on individual language.

In future work, we plan to perform more experi-
ments to make more compositional generalization
splits (e.g., template or target maximum compound
divergence splits (Shaw et al., 2021)). We also
plan to explore different neural architectures and
training strategies to enhance the model’s ability
to handle complex queries and measure composi-
tional generalization and generalization across lan-
guages. We hope to prepare the PAUQ leaderboard
and encourage further research in this area.
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Limitations and Ethics

We note that large language models such as Codex,
a 175B GPT model further fine-tuned on code, are
out of the scope of this work.

PAUQ and Spider’s limitations First of all, the
data is still ‘artificial’, which means that it was
created by a limited number of people specifically
for training and evaluating text-to-SQL models;
thus, it lacks the diversity and complexity of natu-
ral data formed by questions that people formulate
in order to get the desired information from the
database. For instance, the real-world data contain
NL queries that require common sense knowledge
that cannot be extracted directly from the database,
ambiguous questions allowing various ways of in-
terpretation that are quite frequent, and queries with
window functions that make the process easier and
more convenient, – all of these are not included in
the Spider dataset, as well as in PAUQ.

Train and test tokens Our research explores full
shift by splitting the dataset based on target tem-
plate length. Specifically, we examine the scenario
where test template tokens are present in the train-
ing set and do not explore the more challenging
case of modeling unseen tokens.
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A Experimental Setup

For English OS, TRL, TSL splits we train
T5-base from HF checkpoint provided at

https://huggingface.co/t5-base. We trained
model for 10k iterations with a batch size of 256
and learning rate 10−4 as in Sun et al. 2023. As
optimizer we have used Adafactor.
For training RESDSQL, we used the original
implementation of RESDSQL provided at https:
//github.com/RUCKBReasoning/RESDSQL .
For training RuPAUQ OS, MPAUQ for the
first stage of schema linking in RESD-
SQL we used https://huggingface.co/
DeepPavlov/xlm-roberta-large-en-ru-mnli
and for query generation in both T5-
base and RESDSQL we used https:
//huggingface.co/bigscience/mt0-base
We used Tensor2Struct package (Wang et al., 2021)
to train RAT-SQL. The hyperparameters are taken
from the original implementation of RAT-SQL
provided at https://github.com/berlino/
tensor2struct-public. In monolingual setup,
RAT-SQL models are trained for a maximum of
25k iterations, then the best checkpoint on the
corresponding dev set in terms of exact match was
picked (in all cases it is a checkpoint obtained
after training in the range of 20k to 25k iterations).
In multilingual setup, when training data is
double-sized, the maximum number of iterations is
increased to 40k.
As for BRIDGE, in all cases it was trained
for a maximum of 20k iterations. Then the
best checkpoint according to exact-match top-1
metric on the corresponding dev set was selected.
During training, we used default hyperparameters
from the original implementation of BRIDGE
provided at https://github.com/salesforce/
TabularSemanticParsing.
To develop the context-free grammar,
we use a Yargy library provided at
https://github.com/natasha/yargy.
For training RuPAUQ OS, MPAUQ
RAT-SQL and BRIDGE encoders we
have used https://huggingface.co/
bert-base-multilingual-cased
All models were trained on one Tesla V100 32 GB.
For evaluation we have used original Spider
evaluation script https://github.com/taoyds/
test-suite-sql-eval .
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