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Abstract

Many knowledge-based solutions were pro-
posed to solve Word Sense Disambiguation
(WSD) problem with limited annotated re-
sources. Such WSD algorithms are able to
cover very large sense repositories, but still be-
ing outperformed by supervised ones on bench-
mark data. In this paper, we start with anal-
ysis identifying key properties and issues in
application of spreading activation algorithms
in knowledge-based WSD, e.g. influence of the
network local structures, interaction with con-
text information and sense frequency. Taking
our observations as a point of departure, we
introduce a novel solution with new context-
to-sense matching using BERT embeddings,
iterative parallel spreading activation function
and selective sense alignment using contextual
BERT embeddings. The proposed solution ob-
tains performance beyond the state-of-the-art
for the contemporary knowledge-based WSD
approaches for both English and Polish data.

1 Introduction

Contextual neural embeddings have strongly in-
fluenced Word Sense Disambiguation (henceforth
WSD), and resulted in extraordinary improvement
on benchmark WSD datasets. However, the vast
majority of such approaches follow the supervised
learning scheme. Thus, they suffer from the lack
of annotated data, especially sparse for WSD, and
their coverage, i.e. practical applicability, is limited
only to a subset of word senses. Moreover, they
express bias towards most frequent senses.

Many knowledge-based solutions (i.e. weakly
supervised) were proposed to solve the problem of
limited sense annotated corpora. They are able to
cover very large sense repositories, but still being
outperformed by supervised ones on benchmark
data. Knowledge-based WSD algorithms were ini-
tially based on spreading activation scheme, most
on Personalised PageRank algorithm (PPR) (Agirre
and Soroa, 2009). PageRank (Brin and Page, 1998)

was originally proposed for modelling the Web,
a highly connected network with many hubs and
loops.As we show in Figure 1, PPR scores are often
strangely biased by some local wordnet structures.
Knowledge-based WSD approaches interact with
the contextual information in a rather shallow way
and also are biased by sense frequencies. That is
why, we wanted to develop a version spreading
activation for WSD which better reflects wordnet
structures and more deeply explores context rep-
resentation by using contextual text embeddings.
Our goal was to develop a novel knowledge-based
WSD algorithm which combines context-to-sense
matching informed by BERT embeddings (Devlin
et al., 2019) with a new iterative parallel spreading
activation to process the wordnet.

The main contributions of our paper are:

1. a novel iterative parallel spreading activation
algorithm for knowledge-based WSD,

2. enhancing spreading activation with context-
to-sense matching using BERT embeddings,

3. and promotion of activations that are more
central or salient for the given context.

The proposed solution expressed performance
beyond the state-of-the-art of the knowledge-based
WSD approaches in the all-words tasks for En-
glish. In addition, we performed also tests on WSD
test data for Polish, a language that is significantly
different from English, equiped with a very large
wordnet – plWordNet (Dziob et al., 2019). Our so-
lution showed superior performance in comparison
to the previous approaches on the Polish data.

2 Related Work

Lesk-like (Lesk, 1986) methods use information
about wordnet graph structures to a very little ex-
tent, e.g. (Banerjee and Pedersen, 2003; Navigli
and Ponzetto, 2012), while local subgraphs are



the primary tool for sense description, distinguish-
ing senses in a wordnet, cf (Maziarz et al., 2013).
The idea of better exploration of wordnet graphs
for WSD appeared in several works, e.g. in (Mi-
halcea et al., 2004). (Agirre and Soroa, 2009)
proposed Personalised PageRank (PPR) algorithm
which uses the Princeton WordNet graph (Fell-
baum, 1998) with the initial activation limited to
nodes (synsets) correspond to the words from a tex-
tual context. The initial activation depends on con-
textual word frequencies. PPR became the core part
of the UKB WSD system (Agirre et al., 2014) with
WordNet enhanced by several semantic resources,
including sense links derived from Princeton Word-
Net Gloss Corpus (Wor, 2021). UKB refers to
sense frequency twice: in initial activation values
(normalised together with the word frequency in
the context) and finally as a kind of weights to the
synset scores. UKB is freely available, but is sen-
sitive to proper setting and selection of knowledge
resources. (Agirre et al., 2018) showed that UKB if
properly used is still a state-of-the-art knowledge-
based WSD system. UKB achieves the best results
in a mode called “W2W” (word-to-word), in which
the WSD is restarted for each text word separately.
This results in several times slower processing, than
the standard mode in which all words in the context
are disambiguated in one go.

Babelfy (Moro et al., 2014) utilised spreading ac-
tivation in a indirect way. It was entirely based on
BabelNet (Navigli and Ponzetto, 2012) – a complex
semantic resource originating from the automated
merging WordNet and Wikipedia1. Due to the Ba-
belNet content, Babelfy was able to disambiguate
words and perform Entity Linking at the same time.
Semantic signatures introduce some generalisation,
and the extraction of a “dense subgraph” results in
a kind of topic related clustering.

(Scozzafava et al., 2020) applied PPR on Word-
Net structure, but significantly expanded it with
SyntagNet (Maru et al., 2019) – a large, manu-
ally constructed resource of semantic sense collo-
cations. The main limitation of WordNet-based
spreading activation is the lack of topical relations
between senses. Adding SemCor-derived sense
links and connections from wordnet glosses par-
tially resolves this issue. On the other hand the
structure of the network becomes more complex.
Some solutions solve approach the problem by join-
ing topic modelling with knowledge-based tech-

1https://en.wikipedia.org/

niques. For instance, (Wang et al., 2020) collected a
corpus related to words from the WSD test data sets
and obtained Latent Dirichlet Allocation (LDA)
topic model (Blei et al., 2003). The graph was ex-
panded with eXtended WordNet. Finally PPR was
applied to the graph, where the initialisation was
informed by the similarity of a node to the context.
This complex approach requires construction of
semantic resources focused on the datasets to be
disambiguated.

(Chaplot and Salakhutdinov) adapted LDA topic
modelling to represent a text document as derived
from synsets (modelled by synset probabilities) and
synsets as corresponding to word probability distri-
butions. Prior synset distribution was constrained
by wordnet-based synset similarity. This approach
depends on the knowledge base to a minimal ex-
tent, but it is not clear how it can be expanded to
more complex and richer knowledge bases.

The idea of restricting disambiguation context to
sense semantically related to the disambiguated
words is also central for (O et al., 2018). The
authors proposed a distributional representation
of senses based on generating pseudo-documents
from BabelNet. For each sense, other sense nodes
in short distance are retrieved and paths linking
senses of the same lemma are searched for and
used as pseudo-sentences of pseudo-documents for
lemmas, next transformed by Doc2vec (Le and
Mikolov, 2014) into a distributional space. Local
disambiguation graphs are built sequentially from
related sense nodes and next processed by PPR.

Local disambiguation graphs of related senses
indirectly address topical homogeneity of word
senses in a broader context. (Tripodi and Pelillo,
2017) perceived the WSD problem as a constraint
satisfaction problem and model it on the basis
of evolutionary game theory. Influence of words
on senses by other words is weighted by distribu-
tional information. Semantic similarity informa-
tion is used to calculate the amount of compatibility
among the selected senses. Sense frequency from
SemCor is indirectly used during disambiguation.

Concerning Polish language, the early work was
built upon PageRank-based solutions such as UKB
and its variations focused on wordnet expansions
(Piasecki et al., 2016; Janz and Piasecki, 2019a,b).
However, the frequency distribution of senses was
unrepresentative as the large-scale sense-annotated
corpora were not available.

https://en.wikipedia.org/


Figure 1: PPR scores computed for artificial data. The
graph has been initialized with two seed nodes (v0, v17).
The local structures have a great impact on score distri-
bution.

3 PageRank in Knowledge-based WSD

A wordnet is a mixture of synset and sense rela-
tions: some of them directed, other not. Many
directed relations exist in one way, but other are in
symmetric pairs. Density of a wordnet graph is very
diversified – it is not a densely connected graph in
general, and many regions may be very sparse. For
WSD, a wordnet is typically transformed into a
graph with all relations being directed and symmet-
ric and defined on the synset level, e.g. in UKB.

A wordnet has generally a tree-like shape. Its
sparseness and shape change after adding links
from external resources, e.g. sense links from the
gloss corpus. Nevertheless, the final expanded
graph for WSD still is not as recursively connected
as the Web for which PageRank was designed.

In the case of WSD we assume that from sense
nodes activated for a given context activation
should evenly spread along the links to senses
that are likely to co-occur with them. Activation
amount passed to the next nodes should depend
mainly on their semantic distance correlated with
the number and types of links to be traversed. How-
ever, PageRank, modelling of a random walker,
seems to work according to a different philosophy.
In Fig.1 we have visualised activation scores (be-
low the nodes) obtained with PPR in a simple graph
resembling some local wordnet subgraph. The two
initial nodes end with the very different final scores.
Moreover, we can observe increased activations of
nodes located in the same distance from both seeds.
This is in contradiction to our above assumptions
and results from the recursive character of PPR, e.g.

the v0 high degree and its star-shape local subgraph
influence the scoring. In wordnet-based networks
such specific local subgraphs, e.g. hub nodes, result
from hierarchical categorisation or network editing
practices, and do not express node importance due
to being ‘cited’.

Some of post-processing PPR scoring may de-
crease such negative bias. However, we decided
to completely change the way in which spreading
activation is performed. In the following section
we propose a non-recursive spreading scheme in
which every source node independently broadcast
activation that is gradually transmitted along the
network paths. It is the path characteristic that mat-
ters for activation strength. The final activation of
the nodes is the result of overlapping of indepen-
dent waves crossing the network.

4 Fast Spreading Activation and
Contextual Matching

Learning from the PPR analysis, but also litera-
ture, two aspects seem especially important for
knowledge-based WSD. First, spreading activation
should transmit support from contextually related
senses to the senses of a disambiguated word. Sec-
ond, not all context words are equally informative
for WSD – a good measure for contextual informa-
tiveness is needed. Thus, we proposed a redesigned
WSD process based on three main components:

1. Use of contextual embeddings (a neural lan-
guage model) to express similarity of senses
and the context.

2. Iterative, parallel spreading of sense support
across the network.

3. Identification of contextually salient senses as
markers of context semantic dimensions.

A knowledge-base is a graph G = (V,E), where
the vertices V are senses, and the edges E – seman-
tic links encoded in an adjacency matrix AN×N :
Asn,sn′ = 1 if (sn, ss′) ∈ E, otherwise 0.

A typical WSD knowledge graph is quite sparse.
Several fast graph traversal algorithms (Yang et al.,
2015) were proposed for sparse adjacency matri-
ces. A simple sparse–matrix dense–vector or even
sparse–matrix sparse–vector multiplications can be
interpreted as a single traversal step over graph.
This property was used in parallel versions of well
known graph algorithms e.g. Breadth First Search
(BFS) and quick graph traversal algorithms using



GPUs (Gilbert et al., 2006). More specifically, to
design a parallel BFS with multiple independent
searches one can use sparse–matrix sparse–matrix
multiplication (SpMSpM) where the second matrix
represents an initial seed of starting nodes. In this
work we adapt SpMSpM to design a fast spreading
activation algorithm for WSD.

4.1 Parallel Spreading Activation with
Contextual Sense Matching

We define spreading activation as a sequence of
SpMSpM steps. The process starts from a set of
initial seed nodes T : (t1, t2, ..., tM ) with sense
specific activation weights w = (w1, w2, ..., wM ).
The decay factor d dampens the impact of initial
nodes on their neighborhood in propagation proce-
dure. In SpMSpM graph traversal framework the
seed nodes are encoded as sparse matrix PN×M us-
ing one-hot encoding where P n,m = 1, n ∈ [1, N ],
m ∈ [1,M ] if sn ∈ T and sn = tm. SpMSpM
allows us to quickly compute consecutive steps of
graph traversal process starting independently from
different seed nodes.

P ′ = AP (1)

As we will show in the next section, with a single
multiplication we can generate the output QN×M

and select M columns from the adjacency matrix
A in the first step. Each column Q⋆,m represents in
fact a set of visited nodes reached from the initial
node tm. Thus, we obtain independent outputs for
every single seed node separately.

Parallel Spreading Activation defined in this
way is an iterative process. We can easily reuse the
outputs of the first multiplication step to generate
the K new traversals starting from them.

P (0)
n,m =

{
1, if sn ∈ T ∧ sn = tm

0, otherwise

P (k) = AP (k−1), k = 0, 1, . . . ,K

(2)

To enforce that the consecutive P matrices en-
code only 0 and 1 where 1 represent visited nodes
in k-th traversal step, we apply a simple clipping
step using sign function, if non-negative values are
greater than one. The clipping should counteract
the results of multiple matrix multiplications. Since
the multiplication steps accumulate visited nodes
in the P matrices we also add subtraction step to
ensure that the k-th output matrix contains only

newly visited nodes. The final traversal matrix Q
for the k-th step with only newly visited nodes is:

P̃
(k)

= sign(P (k))

Q(0) = P̃
(0)

Q(1) = max{0, P̃
(1)

− P̃
(0)

}

Q(k) = max{0, P̃
(k)

− P̃
(k−1)

− P̃
(k−2)

}

(3)

The values of P matrices are manipulated in a
way that allows us to prevent backward traversals
since AP multiplication does not prevent it. Only
two-step subtractions are necessary to completely
exclude them from the traversal procedure. The

matrix Q(k)
n,m = max{0, P̃

(k)

n,m−P̃
(k−1)

n,m −P̃
(k−2)

n,m }
contains 1 if a node sn has been discovered starting
from node tm, otherwise 0.

By repeating this process we obtain a sequence
of (Q(1),Q(2), ...,Q(K)) matrices where K is the
total number of traversal steps. The final matrix
RN×M represents accumulated activations com-
puted M times for all nodes in the graph starting
from each initial seed node tm ∈ T independently.

R =
( K∑

k=0

dkQ(k)
)

(4)

Contextual Sense Matching The activation
scores resulting from the parallel spreading rep-
resent support coming from different input nodes.
We could immediately combine different activa-
tions coming to a node into one scoring value, but
signals coming from different input senses may be
of different informativeness for the context and a
word to be disambiguated. To effectively disam-
biguate words in the context we need to incorporate
only the most relevant signals. To do this, we in-
troduce below a context-sensitive weighting w for
activations coming from different seed nodes.

Two strategies can be applied to compute a con-
textually sensitive scoring from raw activations.
The first one mixes all coming in activations with a
dot product of the R rows and weight factors. The
second is focused only on the most informative
activations by applying maximum function.

zsn = Rn,⋆ ·w (5)

z̃sn = max{Rn,⋆ ⊙w} (6)

(7)



To implement Word-to-Word-like mode of WSD
(W2W), known from UKB, we can use a binary
masking matrix UN×M excluding all senses of the
same lemma from weight factors w and traversal-
based scoring function zsn . The output of masking
R′ can be obtained by applying Hadamard product
of the R matrix entries with U :

R′ = R⊙U

z′
sn = R′

n,⋆ ·w
z̃′
sn = max{R′

n,⋆ ⊙w}

On-path logit tracking Knowledge-bases are
noisy, just like the text data. The lexico-semantic
structure of wordnet and its extensions is non-
uniform which implies one can find some areas
that might be semantically incoherent. On the other
hand, lexico-semantic structure usually extends be-
yond statistical disambiguation context. Additional
supervision might be disastrous to model’s gen-
eralisation ability and decrease its performance
on unseen senses. However, by measuring se-
mantic coherence of traversal paths one can re-
duce underlying noise and filter out unnecessary
signals reaching target nodes representing disam-
biguated senses. For this reason, we propose an
on-path-logit-tracking mechanism such that it uses
sense embeddings (see section 4.3) of the interme-
diate nodes on traversal paths by utilising traversal
matrices (Q(1),Q(2), ...,Q(K)) context-dependent
scores. For a given seed node tm, we analyse the
nodes visited on its paths encoded by a sequence
(Q

(1)
∗,m,Q

(2)
∗,m, . . .Q

(K)
∗,m) of columns in traversal

matrices Q. Let (H(1)
m , H

(2)
m , . . . ,H

(K)
m ) represent

the sets of visited nodes discovered in each traver-
sal step, starting from the node tm. We compute a
score representing a degree of contextual matching
between the seed node tm and the disambiguated
word wc, by measuring the contextual match of the
embeddings of nodes visited during the traversal
and contextual embedding of disambiguated word.

G
(
H(k)

m

)
= max

v∈H(k)
m

G′(v)

G′(v) = max {e(v) · e(wc|C), e(v) · e(wc′ |C)}

where wc and wc′ represent, respectively, the dis-
ambiguated word itself and another content word
in the given disambiguation context. This allows

us to incorporate out-of-context senses existing in a
wordnet into the final score. The procedure is com-
puted for every seed node from the disambigua-
tion context. We use the scores G

(
H

(k)
m

)
as a

replacement for plain reduction model from Equa-
tion 4 and plug them into Equation 5. Before we
will finally describe the disambiguation model in
Sec. 4.4, we introduce the contextual embedding
models used for generating weight factors and sim-
ilarities in contextual sense matching and on-path
logit tracking procedures.

4.2 Sense Encoder
To encode wordnet senses for contextual sense se-
lection we use pre-trained BERT model in a similar
way to (Du et al., 2019). We modified this archi-
tecture by dropping additional MLP layers as our
approach is not supervised, see Fig. 2. Sense vec-
tor space is generated as follows: for each synset
sn ∈ V its definition and examples are obtained
from Princeton WordNet Gloss Corpus and BERT
embeddings are generated for all their tokens. As
BERT uses its own tokenizer based on WordPiece
(Wu et al., 2016) words are segmented into subto-
kens and from the sequence of subtoken embed-
dings we generate a synset embedding by averag-
ing only the embeddings of subtokens being a part
of the synset’s lemmas in its context (definition or
example, see Figure 2). If a synset sn has both a
definition and an example, we generate separate
contextual embeddings ed(sn) and es(sn) and av-
erage them into a single synset embedding e(sn).

4.3 Context Encoder
Context size is a significant factor in WSD. To ver-
ify the impact of this factor on WSD performance
we decided to test two context generation meth-
ods. First, the context generation heuristic from the
UKB implementation (Agirre et al., 2018) takes
30 distinct content words around a target word to
be disambiguated. It assumes that the location of
target words is known in advance and a specific
number of content words can be pre-selected to
form the disambiguation context. As we rely on
BERT embeddings in our method, not a bag of con-
tent words as, e.g. in UKB, we take a sequence of
sentences the words belong to as a context. To con-
vert the context to its vector space representation
we apply BERT model on concatenation of input
sentences and we store output token embeddings
for further usage during disambiguation process.



beachhead : an initial accomplishment that opens the way
for further developments 

The town  became a beachhead in the campaign to ban
smoking outdoors.

[CLS] 'beach', '##head', ':', 'an', 'initial', 'accomplishment', ... , [SEP] [CLS] 'the', 'town', 'became', 'a', 'beach', '##head', 'in', 'the', ... , [SEP] 

e1 e2 e3 em... ek-1 ek en...e1 ...

avg

ed(00036299-n)

avg

es(00036299-n)

Figure 2: Transformer-based sense encoder used to encode wordnet senses. We modified the architecture proposed
by (Du et al., 2019) and adapted it to our setting by dropping MLP layers originally being used to tune the model
for supervised setting.

The second method uses a sliding window of
three sentences and disambiguating content words
in the middle one. In this case, we use BERT to
obtain contextual embeddings of all content words.
As both context and sense encoders work in the
same vector space the fit between sense candidates
and context words corresponds to vector similar-
ity. With the context embedding model we generate
contextual word embeddings e(wc|C) for each con-
tent word wc ∈ C being a part of input context C
using the same sub-token embedding averaging
model, see Fig. 2).

4.4 Sense Selection
Spreading activation scores are an input to the
word sense selection. For the seed senses T ex-
tracted from the context C we initialise weight
factors w for weighting the outputs of spread-
ing activation function. Sense-specific activations
in w, cf Sec. 4.1, are based on cosine similarity
sim(e(wc|C), e(tm)) between the embeddings of
the input seed senses tm ∈ T (Sec. 4.2) and the
contextual embedding of the disambiguated word
wc (Sec. 4.3), where tm ̸∈ S(wc).

Word-to-word masking The nodes tm ∈ S(wc)
representing the senses of the lemma wc are ex-
cluded. Technically, the obtained w factors are
directly plugged into scoring function z̃′sn =
max{R′

n,⋆ ⊙w} where we take the maximum and
the masking matrix U simulates W2W behaviour
(see Sec. 4.1). The z̃′sn values are used as the first
factor in our disambiguation function.

Disambiguation The disambiguation model
merges two aforementioned factors. The first factor
zs is based on spreading activation with contextual

sense matching and on-path logit tracking. The
second factor gs is computed simply as a dot prod-
uct between a candidate sense embedding and the
contextual embedding of a disambiguated word.
For a set of sense candidates s ∈ S(wc) of the
disambiguated word wc, the final score is:

score(s) =
z′s + gs

2

ŝ = argmax
s∈S(wc)

{score(s)} (8)

This model does not use word or sense frequen-
cies yet. However, we can easily include them by
changing the weight factors w or by multiplying
the output scoring osn with the frequency factor of
a specific sense. We have chosen the latter.

5 Experiments

In this section we report the setup and the results
of our experimental part.

5.1 Setting
We focused on comparison with several other
knowledge-based solutions (see Sec.2) as well as
analysis of the impact of sense frequency and an
underlying knowledge graph on the performance
of the proposed method. We tested two knowledge
graphs: a graph based on Princeton WordNet ex-
panded with eXtended WordNet (WN), and next it
further expanded with syntagmatic links (SGN) as
in (Maru et al., 2019; Scozzafava et al., 2020). We
also evaluated the proposed model with two differ-
ent context generation heuristics (see Sec. 4.3).
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C : The United States is the home of basketball.
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Figure 3: A general view on the proposed WSD model. The spreading activation model is provided with sense-to-
context similarity scores computed with contextual embeddings. The scores from spreading activation model are
combined with candidate sense score, excluding the incoming activations from the nodes representing disambiguated
word (UKB’s word-to-word heuristic). To avoid biasing towards frequent senses, we use k-max selection (k = 3) of
incoming activation scores.

As a text encoder we used a pre-trained
BERTBASE (Devlin et al., 2019) uncased model
with hidden 12 layers, 12 attention heads and the
hidden layer size of 768. For the Polish dataset we
used PolBERT uncased model which is pre-trained
on Polish corpora and has the same BERTBASE

2

architecture. For Polish data we present only the
results of the model without sense frequency factor
since a large sense-annotated corpora do not exist
for the Polish language, so we could not compute
frequency scores for senses.

5.2 Evaluation Corpora
The performance of our method was measured
using English all-words WSD framework (Ra-
ganato et al., 2017) built upon Senseval-2 (Palmer
et al., 2001), Senseval-3 (Snyder and Palmer, 2004),
SemEval-2007 (Pradhan et al., 2007), SemEval-
2013 (Navigli et al., 2013) and SemEval-2015
(Moro and Navigli, 2015) datasets. To compute
performance metrics we used a standard scorer pro-
vided with this framework. We also conducted
the evaluation on the Polish annotated corpora pre-
pared for PolEval’2020 competition (Ogrodniczuk
and Łukasz Kobyliński, 2020) in a similar way.

2https://github.com/kldarek/polbert

5.3 Parameter Tuning
To tune the parameters of the activation spreading
algorithm and the sense selection function we de-
cided to utilise available wordnet data and glosses
from Princeton WordNet Gloss Corpus.

5.4 Results and Discussion
Sense frequency We compare the results from
literature with the performance of our method mea-
suring the impact of SemCor-based sense frequen-
cies. The WSD models without prior information
of sense frequencies showed lower performance on
almost every dataset. Still, our model performed
quite well in comparison with PageRank-based
model implemented in UKB and WoSeDon, even
if we compare the model without prior sense fre-
quency information with the models using this prior
during the disambiguation (see Table 1).

Knowledge graph We can also notice that the
knowledge graph itself has a great impact on WSD
performance. The methods proposed in the lit-
erature usually utilise eXtended WordNet (e.g.
UKB) which introduces additional semantic links
extracted from Princeton WordNet Gloss Corpus as
a basis for disambiguation process. However, the
resources like BabelNet or SyntagNet have been
showed to increase the performance even more.



Table 1: F1-scores computed for different evaluation datasets in all–words WSD competition. The methods using
sense frequencies from SemCor (SF) were marked with!symbol. We also mentioned the knowledge bases used
in cited methods (KB column). The (Wang et al., 2020) approach has used a knowledge base augmented with
additional documents retrieved from external corpora (WN†).

Method KB SF Test set
S2 S3 S7 S13 S15 All

(Agirre et al., 2018) WN ✓ 68.8 66.1 53.0 68.6 70.3 67.3
(Moro et al., 2014) BN ? 67.0 63.5 51.6 66.4 70.3 65.5
(Maru et al., 2019) SGN ✓ 71.2 71.6 59.6 72.4 75.6 69.3
(Janz and Piasecki, 2019a) WN ✓ 69.6 66.5 52.8 68.6 70.2 67.7
(Chaplot and Salakhutdinov) WN ? 69.0 66.9 55.6 65.3 69.6 66.9
(Tripodi and Pelillo, 2017) BN ? 61.2 59.1 43.3 70.8 – –
(Scozzafava et al., 2020) SGN ✓ 71.6 72.0 59.3 72.2 75.8 71.7
(Wang et al., 2020) WN† ? 72.7 71.5 61.5 76.4 79.5 73.5
(Wang et al., 2020)∗ WN† ? 71.9 69,9 60,5 75,7 79,0 72,5

The proposed model

Parallel Spreading Activation WN ✓ 72.9 71.0 61.8 74.9 78.9 73.1
Parallel Spreading Activation X-WN ✓ 75.3 72.2 63.9 76.2 81.0 74.8

Table 2: F1-scores computed for different models on
test in Polish language. We used the test data prepared
for PolEval’s Task 3: All-words WSD competition (Janz
et al., 2020).

Method Test set
SPEC KPWr-100

(Kłeczek, 2020) 58.40 59.40
(Janz et al., 2020) 62.28 64.65
Parallel Spreading Activation 65.79 66.12

In this work we analysed the performance of our
model working with SyntagNet knowledge-graph
as it appeared to be very effective for WSD. We
noticed that the model has obtained the best results
among other knowledge-based solutions. We did
not test BabelNet, as it is not open and we could
not get access to this resource. When we compare
the methods based on WordNet+eXtended Word-
Net, our model has obtained better results than
PageRank solutions which suggests that selective
approach is indeed more effective.

6 Conclusions

We propose the Parallel Spreading Activation with
Contextual Sense Matching (PSA) method for
knowledge-based, weakly supervised WSD. Its
core is a novel spreading activation algorithm that
is based on the idea of iterative spreading of support
from the context seed senses across the network.
The activation comes to the candidate senses from
different directions and can be combined into the
final score according to a selected scheme. This
spreading scheme seems to fit better to the charac-

ter of the wordnet-based semantic networks. More-
over, it allows for efficient implementation based
on the multiplication of sparse matrices. The con-
textual sense matching function uses contextual
embeddings for more accurate and selective infor-
mation processing to avoid unnecessary mixing
of all input signals from disambiguation context
and reduce the impact of knowledge-base imper-
fections. We showed that two kinds of contex-
tual information, namely informativeness of seed
senses for the disambiguated word and association
of the seed senses with the semantic dimensions
of the context can be introduced into our spread-
ing activation model on the basis of contextual
embeddings, in our case we used BERT for this
purpose. It is worth to notice that our approach
uses versatile, general neural language models,
and does not require construction of any further
WSD-specific text models. We provide the code
and the data at https://gitlab.clarin-pl.eu/
knowledge-extraction/prototypes/wsd-psa.
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