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Abstract

WordNet is a database that represents relations
between words and concepts as an abstraction
of the contexts in which words are used. Con-
textualized language models represent words
in contexts but leave the underlying concepts
implicit. In this paper, we investigate how dif-
ferent layers of a pre-trained language model
shape the abstract lexical relationship toward
the actual contextual concept. Can we define
the amount of contextualized concept forming
needed given the abstracted representation of
a word? Specifically, we consider samples of
words with different polysemy profiles shared
across three languages, assuming that words
with a different polysemy profile require a dif-
ferent degree of concept shaping by context.
We conduct probing experiments to investigate
the impact of prior polysemy profiles on the
representation in different layers. We analyze
how contextualized models can approximate
meaning through context and examine cross-
lingual interference effects.

1 Introduction

WordNet (Fellbaum, 1998) is a manually created
database that relates the words of a language to con-
cepts. Concepts are represented through synsets,
based on a weak synonymy relation, whereas ex-
plicit semantic relations between synsets place
these concepts in a semantic space. Words of a lan-
guage can be positioned in that same space but this
can become complex when they are ambiguous. A
polysemous word such as ”star” can be represented
in several positions of this space depending on its
meaning.

Word embeddings (Mikolov et al., 2013) place
words in a semantic space as well based on the
dimensions of the vector that was derived when
learning to predict their context words. Static
word embeddings can be interpreted as an average

across contexts, even when words occur with dif-
ferent meanings. For our example, this means that
”star” would be positioned somewhere in between
celebrity and synonyms for the concept celestial
body as a compromise across contexts.

More recent pre-trained Transformer-based Lan-
guage Models (PTLM) such as BERT (Devlin et al.,
2018) and RoBERTa (Liu et al., 2019b) capture
a more nuanced relationship between words and
concepts by not only representing the vocabulary
through embeddings but also distinguishing con-
texts: the word ”star” will be represented differ-
ently depending on the context in which it oc-
curs. From an abstract point of view, these context-
sensitive representations approximate a relation be-
tween words and concepts. Ethayarajh (2019) in-
vestigates this relationship by measuring the impact
of contextualization on the representation of mean-
ing through the layers of PTLMs, showing that
representations of tokens in contextualized models
deviate from their static initialization. The research
by (Ethayarajh, 2019) is limited to monolingual
models, which leaves open what relationship be-
tween tokens or words and concepts is captured in
cross-lingual models where words and concepts are
shared across languages.

In cross-lingual language models (XPTLMs)
such as XLM-RoBERTa (Conneau and Lample,
2019), the challenge of contextualizing concepts
is even more complex because of the additional
cross-lingual ambiguity. The same word can be
mapped to the same or to different concepts across
languages. For example, the Dutch word ”star” is
an adjective meaning inflexible whereas the trans-
lation for the English ”star” corresponds to ”ster”
in both meanings. The Dutch language, therefore,
adds ambiguity to the word-concept relationship of
”star”. As most XPTLMs use a shared vocabulary
for all languages, the variation in meaning across
languages can simply be interpreted as different



contexts for a word that needs to be encoded in the
representations of the model.

In most multi-lingual wordnet databases, cross-
lingual ambiguity is underrepresented because they
are commonly build using the expand-method
(Vossen, 1998). This means that the English rep-
resentation of concepts is maintained and cross-
lingual links are established by mapping the vocab-
ulary of the new language onto the existing concept
taxonomy. This approach hampers research to the
universality of concepts in wordnet models (Vossen
and Fellbaum, 2009) but it has been applied widely
because of its clear practical advantages over the
alternative merge-method that requires intense man-
ual labor. XPTLMs can be constructed in different
ways as well, which partially mimics the difference
between the expand and the merge approach: 1)
expanding a monolingual PTML with static lexical
embeddings for target languages while freezing the
other layers (Artetxe et al., 2019) or 2) training
a model from texts from all languages (Conneau
and Lample, 2019) so that all languages contribute
conceptual representations as contexts (a merged
approach).

In this paper, we argue that XPTLMs provide
new opportunities to move beyond the conceptual
limitations of multilingual wordnet databases built
through the expand method. We provide empirical
evidence for the impact of languages on a shared
conceptual XPTLM for both the lexical and concep-
tual levels by measuring to what extent sharing to-
kens in XPTLMs has a positive or negative impact
on representing concepts and to what extent the
contexts in which these words occur compensate
for any disturbances in the token representation.
In other words: to what extent is the representa-
tion of ”star” a compromise across all language
meanings and to what extent is it defined by the
cross-lingual contexts in which it occurs? XPTLMs
use a shared vocabulary for all languages to exploit
semantic commonalities across languages (cognate
effects). However, cross-lingual differences caused
by semantic drift (Beinborn and Choenni, 2020)
can contribute to semantic interference (Lauscher
et al., 2020).

More specifically, we will address the following
questions in our experiments:

• How consistent is the relationship between
words and concepts with and without the in-
fluence of context for polysemous words?

• What are the effects of sharing vocabulary and

contexts across languages on the representa-
tion of cross-lingual ambiguity?

In order to investigate the above questions, ide-
ally a large sense-tagged parallel corpus would be
required to identify a representative set of con-
cepts shared across languages. Existing corpora
(Bond et al., 2013) are however small and have
skewed sense distributions. Another problem is
that it is hard to determine the best level of granular-
ity for identifying concepts associated with a word
in contexts and they may not be distinguishable
empirically through existing models (Ethayarajh,
2019). Instead of multilingual corpora with Word-
Net senses or all contextualized contexts, we, there-
fore use a controlled set of semantic classes as the
representation of concepts following the work of
(Zhao et al., 2020). Entity types such as PERSON,
ORGANIZATION, and LOCATION can be seen as
coarse-grained concepts for which large datasets
exist. We use the XLEnt dataset (El-Kishky et al.,
2021) which contains 160 million aligned entity
pairs in 120 languages paired with English. We
investigate how well the entity in this data are dis-
tinguished by contextualized models in contextual-
ized layers.

Our contributions are:

• A probing method for measuring the lexical
(token) and contextual (model) effects of lan-
guages within various cross-lingual models.

• Pilot results on cross-lingual interference and
support effects for the typologically related
languages English, German and Dutch.

• Pilot results for cross-lingual zero-shot prob-
ing for German, Dutch, Arabic, and Amharic.

The paper is further structured as follows. In the
next section 2, we describe related work, especially
on semantic probing of distributional models. After
that, we describe in Section 3 our methodology,
which is based on (Zhao et al., 2020) but applied
to multilingual models. The dataset that we use is
described in Section 4 and our experimental results
are described in Section 5. We discuss the results
and conclude in Section 6.

2 Related work

Analyzing the representational structure of contex-
tualized models has become an essential means



towards developing more transparent and inter-
pretable AI models, for example in the Black-
boxNLP workshop which is reaching its 5th edition
this year (Bastings et al., 2021). However, only a
limited amount of research has been done to inves-
tigate the relationship between the vocabulary of
such models and the degree of context dependency
of the concepts that are associated with the words
in the vocabulary. In Ethayarajh (2019), this rela-
tionship is investigated by measuring the impact of
contextualization on the representation of meaning
through the layers of language models. This study
indicates that 1) contextualized models do enhance
the meaning compared to the static initialization of
the token and 2) there is no finite and discrete set
of representations (thus concepts) for single tokens
across concepts.

Artetxe et al. (2019) show that it is possible to
transfer an English transformer to a new language
by freezing all the inner parameters of the network
and learning a new set of embeddings for the new
language through masked language modeling. This
works because the frozen transformer parameters
constrain the resulting representations to become
aligned with English. This approach does not adapt
the concept representation established for the orig-
inal language English. It only learns the token
embedding using the English concept model and
is thus comparable to the multilingual wordnet ex-
pand model (which uses a single English concept
space and learns token mappings to another lan-
guage). It is not possible to learn new concepts
from another language nor adapt biases learned
from the English data. Phenomena of semantic drift
across languages (Beinborn and Choenni, 2020)
can therefore not be captured and it remains un-
clear how the addition of languages affects the con-
ceptual distribution beyond the performance on the
downstream tasks.

For analyzing how a contextual language model
captures the relationship between a word and a con-
cept, we can use word sense disambiguation as a
proxy task. The task evaluates model performance
in associating an ambiguous word with the cor-
rect concept from the possible concept inventory.
For example, the word ”state” could represent a
‘government’ or the concept corresponding to the
WordNet synset called ”a way something is”. One
limitation of using such an approach is the granular-
ity of the sense category. WSD categories are often
too fine-grained and allow only limited abstraction

(Izquierdo et al., 2009).
We opt for a task on a higher abstraction level

and apply semantic class-based probing to quan-
tify the contextualization capability of a language
model using Wiki-PSE in line with Zhao et al.
(2020). Wiki-PSE contains tokens used in con-
texts corresponding to different semantic classes.
For example, the word ‘apple’ can refer to a tech-
nology company corresponding to the ‘Organiza-
tion’ class or it can refer to a fruit belonging to
the ‘Food’ class (Yaghoobzadeh et al., 2019). A
concept-tagged dataset can be used to investigate
relationships between a word form and a concept
in a language model in a simplified setup: word
forms are limited to entity names and their seman-
tic classes define the concept inventory.

Probing has been established as a tool to test
whether linguistics information is encoded in lan-
guage model representations (Adi et al., 2016; Be-
linkov et al., 2017b; Tenney et al., 2019). Adi
et al. (2016) train a classifier to predict sentence
characteristics such as length, semantic informa-
tion, and word order from sentence representation.
Higher performance in the classification task indi-
cates that information about the measured property
is encoded in the embedding. Liu et al. (2019a) ex-
tend the probing tasks to a wider range of linguistic
phenomena such as coreference, semantic relations,
and entity information. Tenney et al. (2019) intro-
duced edge probing and establish a standard format
to quantify the availability of linguistic structure
in pre-trained language models using various NLP
benchmark tasks.

Our work follows Zhao et al. (2020) in that we
use sentence probing to measure the relationship
between a word, its context, and the correspond-
ing concept. We extend this approach to various
multilingual models instead of English BERT. We
present pilot experiments to explore the utility of
using semantic class probing with these multilin-
gual models.

3 Methodology

To analyze how language models capture the rela-
tionship between words and concepts, we identify
words that illustrate edge cases for the relation be-
tween concepts and contexts: 1) a monosemous
(mono) relation between a word and a single con-
cept, 2) balanced polysemous relations between a
word and multiple concepts, and 3) skewed poly-
semous relations where one concept is dominant



in language use. We expect that the patterns in
concept distribution are reflected in the probing
performance of the cross-lingual models.

Our approach represents only a rough approx-
imation of the set of concepts related to a word
as well as the distribution of concepts in language
use. The actual range of concepts is unknown and
is the result of the pretraining of the model. Our
pilot experiments, therefore, explore whether the
large-scale annotations of XLEnt can serve as a
proxy for probing word-concept relationships in
multilingual models. We assume that such data
provide sufficient information on the relation be-
tween words and concepts to measure the degree of
ambiguity and the capability of models to identify
concept relations from contexts. We hypothesize
that our observations for a selected set of words can
be generalized to a larger sample, which should be
tested in future research.

In the probing setup, the model representation
built during pretraining is not changed and can be
tested for its capacity to represent a concept in tar-
get contexts at different layers. We assume that the
lexical initialization in the first layer will reflect the
prior ambiguity of the word in the pretraining data
and that the integration of context will adjust the
representation toward the target concept in higher
layers. We expect the following observations for
the respective profiles:

1. mono: only minor differences between the lex-
ical initialization level and higher contextual
levels

2. skewed:

(a) matching distribution for test cases:
same as mono

(b) diverging distribution for test cases: low
probing accuracy on the lexical level,
strong indications of concept sensitivity
in higher levels

3. balanced: low probing accuracy at the lexical
level, improved concept knowledge in higher
levels in all cases but not as strong as for di-
verging

In our experiments below, we report on
the results for skewed and balanced ambigu-
ous words in English and across the language
English, Dutch, and German. Our code is
publicly available at https://github.com/cltl/
probing-cross-linqual-model.

4 Data set and Experiment

For our experiments, we use entities and their re-
spective semantic class as a proxy for a more gen-
eral notion of words and concepts due to data avail-
able for many languages with a controlled number
of concepts in the form of entity types as seman-
tic classes. Specifically, we select a sample from
XLEnt which contains 160 million entity mentions
annotated with 10 classes in 120 languages (El-
Kishky et al., 2021). We describe the selection
procedure in the following subsections.

4.1 Pre-processing and Sampling

We include English, German, and Dutch in our
analysis.1 Table 1 shows the statistical summary of
the total available data.

EN NL DE

Sentences 17,942,551 12,429,622 5,512,929
Entities 4,219,046 6,737,100 2,917,688
Unique Entities 59,054 60,777 38,930
LOC 512,219 744,024 329,030
ORG 1,690,244 3,282,967 1,580,477
PER 2,016,583 2,710,109 1,008,181

Table 1: Statistics of entities distribution in XLEnt for
English, Dutch, and German.

For each of these languages, we selected sen-
tences from one of the three semantic classes: Loca-
tion, Organization, or Person. We selected these se-
mantic classes because they correspond to clearly-
distinct classes which cannot easily be used inter-
changeably in the same sentence, as opposed to
clear metonymically-related classes such as Orga-
nization and Product.

The distribution across language and semantic
classes in XLEnt varies. To maintain similar distri-
bution across our target languages, we, therefore,
sampled an equal number of sentences for each
semantic class.

From the total set of entity names, we selected
a sample of clear cases with monosemous, bal-
anced polysemous, and skewed polysemous rela-
tions. Furthermore, the selected names should oc-
cur as tokens in the English, Dutch, and German
data set. This results in a subset of 21 names related
to the concepts of Person, Organisation, and Loca-
tion. In the appendix B, the complete list of names

1The main reason for choosing these three languages is that
we have native and up-to-native knowledge of these languages.
In future research, we will also apply the same tests to other
languages.

https://github.com/cltl/probing-cross-linqual-model
https://github.com/cltl/probing-cross-linqual-model


is given with the distributions and the division over
the three polysemy profiles: mono, skewed and
balanced. Table 2 shows a few examples of entities
that are shared across languages. From these exam-
ples, Tasman and Aquarias are skewed towards a
location interpretation, whereas Chimera is skewed
towards an organization and Prana is balanced. Sir-
ius is underrepresented towards Person.

To classify the distribution of an entity as bal-
anced or skewed, we first normalized the frequency
distribution between 0 and 1 using the total fre-
quency across all types. We then applied a thresh-
old value to categorize it into balanced and skewed.
For a threshold value of 0.95 (95%) or higher, we
classified an entity as skewed to a particular se-
mantic class. If an entity occurs in more than one
semantic class in a comparative way (at 0.35 or
higher), we classify it as a balanced case.

Shared Entity LOC ORG PER

Tasman 13 5 5
Prana 12 19 16
Sirius 391 481 42
Chimera 10 85 17
Aquarius 124 11 59

Table 2: Sample of names for entities with sufficient
coverage and different polysemy profiles in English,
Dutch, and German.

Using the same threshold, we further distinguish
between cases where Dutch and German have sim-
ilar distributions as English and cases with differ-
ent distributions. We applied a similar approach
to compare the distribution of entities across lan-
guages by comparing the normalized frequency
distribution of entities. We assume that similar
cross-lingual distributions result in better represen-
tation for a target language, whereas diverging dis-
tributions confuse the model and result in poorer
representations. Note that the words are shared
across these languages and get the same lexical
initialization.

Our predictions should generalize over the sam-
pled names per polysemy profile. Our probing
framework can be used to test any language model
that covers these words and the languages from the
dataset. The results tell us to what extent pretrain-
ing resulted in a bias for the lexical initialization
and to what extent the model can correct for this
using the context. Below, we apply our probing
methodology to XLM-RoBERTa and mBERT as a
cross-lingual model to capture the relation between

a word and concepts. We also apply the test to
English BERT itself for comparison. We can easily
extend the test to others models that include the
probing words in the vocabulary.

4.2 Probing Experiment

For our probing experiment, we use a simple one-
layer perceptron (MLP) similar to (Zhao et al.,
2020). We designed a three-class classifier by tak-
ing each of the three distinct semantic classes. Fig-
ure 1 shows the architecture of our probing classi-
fier.

For the experiments, we use the list of entities, a
set of context sentences where these entities occur,
and the semantic class associated with the entity
for each context. In our probing, we first take the
target sentence and pass it through a cross-lingual
language model to generate the contextual repre-
sentation associated with the target entity and the
sentence which contains the entity word. From
the language model output, we use the representa-
tion from the input layer (layer-0), the middle layer
(layer-3), and the last layer(layer-12) as input for
our classifier.2 We use layer-0 as the baseline since
it is initialized with the lexical token representation
of the language model and should exhibit a prior
ambiguity profile. In the middle and last layers,
we get representations of our target words that are
modified by the context. We train and test our prob-
ing model with these representations to detect the
semantic class for the names in context.

4.3 Baseline

One of the core challenges of a probing method is
how to interpret the results of a probing classifier.
Previous works compare the result of the classi-
fier with different approaches including majority
baselines (Belinkov et al., 2017a; Conneau et al.,
2018), static word embeddings (Belinkov, 2022;
Tenney et al., 2019) and a random baseline by train-
ing the probing classifier on a randomized version
of the input feature (Zhang and Bowman, 2018;
Tenney et al., 2019). In our work, we include three
baselines to compare and interpret the result of our
probing model.

5 Results

We first examine our probing setup for resolving
conceptual ambiguity in English entities and next

2We choose the third layer because it gave the best perfor-
mance in most of our experiments



Figure 1: Architecture of our probing classifier

conduct additional analyses to examine the effect
of shared tokens across multiple languages on con-
ceptual ambiguity. Lastly, we conduct tests across
typologically related and distant languages to check
if a relationship learned between context and con-
cept in one language is relevant for another lan-
guage.

5.1 Probing Ambiguous Entities in English

In the first experiment, we focus on ambiguous
entities in English and their representation in XML-
RoBERTa. Entities are ambiguous if they have
annotations for all three semantic classes in the
data, either balanced or skewed towards one type
as explained above. Table 3 shows the details of the
distributions and the experimental results for the
balanced and skewed cases respectively. Note that
the train and test cases are randomly selected from
the data and exhibit a similar distribution of bal-
anced and skewed distribution. However, the test
results are differentiated among them. For the bal-
anced cases in Table 3, we see that layer-0 results
are lowest, layer-3 are highest and layer-12 results
are in between for all three concepts. Furthermore,
location performs slightly better than organization
and person. Looking at the skewed cases in Table
3, we see a similar pattern that results are lowest
in layer-0, best in layer-3, and go down in layer-
12. Overall, the results are better for skewed cases
than for balanced cases at all levels, except for lo-
cation. Remarkably, location performs lower than
organization and person for the skewed cases.

The first conclusion we can draw here is that
layers do correct for confusion at the lexical level
by the context but some of this is lost in the higher
levels. We can only partially confirm the prediction
that balanced distributions are harder than skewed

distributions. The prediction holds for organiza-
tions and persons, which perform lower for bal-
anced than for skewed at all levels but not for lo-
cation at layer-0 and layer-12. Apparently, the
skewed cases are poorly represented for location
at layer-0, which is correct in layer-3 (outperform-
ing the balanced cases) but drops considerably in
layer-12.

LOC ORG PER

#Train 1506 1490 1504
#Test 494 510 496
#Single-Token Entity 252 779 1088
#Multi-Token Entity 1748 1221 912

Balanced
#Test 417 334 314
Layer-0 0.65 0.58 0.52
Layer-3 0.81 0.78 0.79
Layer-12 0.78 0.75 0.75

Skewed
#Test 77 176 182
Layer 0 0.61 0.75 0.76
Layer 3 0.86 0.87 0.9
Layer 12 0.78 0.82 0.86

Table 3: F1 scores for probing the different layers of
XLM-RoBERTa on ambiguous entities. We run the ex-
periment five times with seed from (0,1,2,3,4) Results
are averaged over five runs. We observe a standard de-
viation between 0.003 and 0.009 For entities that are
split into sub-tokens during tokenization, we took the
mean of each of the vector embeddings

To investigate the impact of dominance on a con-
cept at the lexical level, we differentiate the results
for the skewed names into test cases that match the
bias and cases that do not match. The results are
shown in Table 4. We perform targeted analysis
of the quantitative performance by explicitly dis-
tinguishing the dominant semantic classes. As can
be expected, the probing performance for detecting



the location concept for names that predominantly
occur with this concept is already very high al-
ready at layer-0 and increases further at layer-3
and layer-12. We observe the same pattern for the
other two classes. We also see that the layer-0 per-
formances for the non-dominant concepts are very
low (from 0 to max .38), while the probing perfor-
mance increases slightly in layer-3 and layer-12.
The integration of context in the higher layers thus
balances out the bias towards the dominant concept
during initialization but not completely. The fact
that the final scores are significantly lower shows
that the lexical layer initialization does matter for
obtaining optimal results. This also implies that
confusion in a cross-lingual model created by shar-
ing tokens across languages could result in poorer
initialization in layer-0 that needs more repairing
in the context-sensitive layers. We investigate the
impact of such token or vocabulary sharing in the
next subsection.

LOC ORG PER

Skewed to LOC

Layer-0 0.82 0.38 0.25
Layer-3 0.9 0.63 0.73
Layer-12 0.9 0.53 0.67

Skewed to ORG

Layer-0 0.24 0.81 0.34
Layer-3 0.85 0.93 0.75
Layer-12 0.59 0.85 0.5

Skewed to PER

Layer-0 0 0 0.97
Layer-3 0.67 0.29 0.97
Layer-12 0.67 0.25 0.97

Table 4: Result of probing the different layers of XLM-
RoBERTa on entities that are skewed toward a specific
semantic class. Result evaluated on F1-Score averaged
over five runs

5.2 Probing Shared Entities across English,
Dutch, and German

In the second experiment, we specifically probe en-
tity names that are shared across the English, Dutch,
and German data. We first select names that occur
in all three languages. In the second step, we filter
entities that are ambiguous across the three target
classes. From these shared ambiguous entities, we
identify two subcategories: 1) entities that have
a similar type distribution in all three languages,
and 2) entities that clearly exhibit a deviating dis-
tribution in both Dutch and German compared to

English. For the first category, we expect that the
shared distribution should improve the probing ac-
curacy for English, and in the second category, we
expect cross-lingual interference. Table 5 shows
the details of the distribution and the experimental
results. We observe the same consistent pattern of
lowest probing performance on the lexical layer,
highest performance for layer-3, and intermediate
performance on layer-12. Our analyses indicate an
impact of sharing tokens across languages. When
Dutch and German have similar type distributions
the results are substantially higher than when they
have a different distribution. This holds for most
results except for the organization class in layer-3
and layer-12.

Table 5 also shows that we can apply the same
probing to other models such as BERT and mBERT,
in this case only testing on English target sentences.
We observe exactly the same patterns as for XLM-
RoBERTa and even the scores are very similar,
even for the BERT which was pre-trained on En-
glish data only.

Our results confirm that the representation in
contextualized language models varies across lay-
ers. Concepts can be identified less well at the lexi-
cal level (layer-0) unless they match the dominant
meaning, while higher levels integrate contextual
information for further disambiguation. This indi-
cates that lexical biases get repaired and that we can
measure the degree to which this happens in line
with the findings by Ethayarajh (2019). Our pilot
experiment provides a proof of concept for analyz-
ing the effect of the shared vocabulary on concep-
tual representations in cross-lingual contextualized
language models. In future work, we hope to use
this insight to improve such models for languages
that are most affected by sharing vocabulary.

5.3 Cross-Lingual Evaluation

In this part of the experiment, we evaluated a prob-
ing model trained on an English dataset with test
data from German, Dutch, Amharic, and Arabic.
We first select monosemous and polysemous words
by using the frequency distribution of entities and
their types. Based on these distributions, we clas-
sify a word as monosemous if it belongs to one
semantic class frequently. We applied a threshold
value in such a way that if a word occurs 90% of
the time as a single semantic class, we consider it
a monosemous word. If a word occurs in two or
more classes, we consider it a polysemous word.



LOC ORG PER

#Train 589 600 611
#Test 199 212 189

XLM-RoBERTa BERT mBERT

Similar LOC ORG PER LOC ORG PER LOC ORG PER
Layer-0 0.76 0.67 0.78 0.75 0.66 0.77 0.74 0.59 0.79
Layer-3 0.83 0.83 0.84 0.84 0.85 0.86 0.82 0.83 0.84
Layer-12 0.81 0.78 0.85 0.82 0.83 0.86 0.85 0.83 0.87

Diverging
Layer-0 0.57 0.53 0.42 0.53 0.51 0.4 0.54 0.51 0.45
Layer-3 0.78 0.82 0.68 0.82 0.84 0.71 0.76 0.81 0.72
Layer-12 0.75 0.78 0.66 0.8 0.81 0.77 0.81 0.79 0.78

Table 5: Result of probing the different layers of XLM-RoBERTa, BERT, and mBERT on entities that are shared
between English, Dutch, and German with similar/diverging distribution across types. Results are evaluated in
F1-Score and are averaged over five runs.

We then applied three filtering criteria: (a) We fo-
cus on single-word entities instead of multi-word
entities to control ambiguity that might be intro-
duced by multi-word entities. (b) We only include
sentences with a single target entity to control con-
textual information that might be associated with
an additional entity. (c) We restrict our selection to
entities that are labeled as one of the four semantic
classes LOCATION, ORG, PERSON, and EVENT
since these can barely be used interchangeably.

Zero-shot probing We train a multi-class prob-
ing classifier using the English dataset and the set-
ting discussed in Section 4.2 and test it on ran-
domly sampled sentences from each of the four se-
mantic classes that adhere to the specified criteria.
We distinguish two categories of target languages.
In the first category, we sampled test sentences
from Dutch and German which are typologically
related to English and share the same script. In the
second category, we sampled test data from Arabic
and Amharic which are typologically distant from
English and use a different script.

We distinguish between the following conditions:
the model can be trained on English monosemous
data or on English polysemous data. The test data is
sampled from Dutch and German (category 1) and
from Amharic and Arabic (category 2). For each
language, we further distinguish between monose-
mous and polysemous test data. Figure 2 shows
the result of evaluating the English probing model.

Results In the monosemous condition, we ob-
serve higher results for German and Dutch than for
Arabic and Amharic. In a standard Zero-shot eval-
uation where a pre-trained language model is fine-
tuned in a downstream task in a source language

and evaluated on a target language, it has been
widely reported that cross-lingual transfer yields
better results for related languages (Pires et al.,
2019; Wu and Dredze, 2019). As we probe the
cross-lingual representation directly, we show that
transfer occurs even before a pre-trained model is
fine-tuned on a downstream task. Our results show
that to a smaller extent transfer effects can even
be observed for Arabic and Amharic although they
are typologically different from English and use
another script.

In the more difficult case of the polysemous con-
dition, the performance of the classifier on correctly
labeling the ambiguous semantic class is lower in
comparison to the monosemous condition across all
languages but outperforms a lexical baseline. With
a closer look at the result per layer, we observe
that the performance improves for representations
extracted from higher layers. Remarkably, the dif-
ferences across the related and unrelated languages
got smaller in the polysemous condition. Appar-
ently, there is a lower bound of performance at
which the performances clutter together as a result
of the complexity of the task and there are less
differences for the languages.

6 Conclusions

In this paper, we investigated to what extent pol-
ysemous profiles play a role in establishing a re-
lation between words and concepts. We focused
on English but we also investigated words shared
across languages in cross-lingual pre-trained lan-
guage models. We selected representative cases
for concept distributions from a large dataset of
entity mentions as ambiguity profiles. Our prob-
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Figure 2: F1-scores for the different conditions macro-averaged across four classes. Mono refers to monosemous
test data in the corresponding language. Poly refers to polysemous test data in the corresponding language. The
result of the baseline experiment and detailed results per layer are presented in Appendix A.

ing experiments indicate that prior probabilities of
polysemy profiles are reflected in the lexical ini-
tialization and that context is integrated for disam-
biguation in higher layers. Our cross-lingual results
indicate that sharing of tokens and contexts across
languages has an influence on probing accuracy.

Our experiments are restricted to five languages:
English, Dutch, German, Arabic, and Amharic. In
future work, we will extend our experiments to
more languages. We plan to investigate the im-
pact of optimizing the probing classifier with cross-
lingual training data. Training on the data of other
languages extends the fund of concepts in the clas-
sifier, which is comparable to an expand model for
multilingual wordnets.

Our method is limited by the annotations in con-
texts. It is therefore difficult to extend it to other
words and concepts than entity names. Neverthe-
less, the entity results can be seen as a proof of
concept to develop more sophisticated methods for
analyzing concept relations in multilingual models.
When more sense-tagged data becomes available,
this method can also be applied to other words and
concepts.
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A Result of English Monosemous and
Polysemous Model With Baseline

EN-Mono DE-Mono NL-Mono AM-Mono AR-Mono EN-Poly DE-Poly NL-Poly AR-Poly

Majority-Vote 0.13 0.12 0.11 0.16 0.12 0.15 0.15 0.15 0.15
Word Embeddings 0.87 0.13 0.10 NA NA 0.30 0.19 0.21 NA
Tf-Idf 0.53 0.28 0.28 0.21 0.16 0.46 0.28 0.29 0.18
Layer-0 0.92 0.76 0.85 0.36 0.44 0.22 0.22 0.23 0.23
Layer-1 0.92 0.79 0.86 0.38 0.47 0.27 0.26 0.26 0.2
Layer-2 0.93 0.78 0.84 0.47 0.53 0.31 0.33 0.33 0.25
Layer-3 0.94 0.84 0.87 0.5 0.6 0.33 0.35 0.37 0.31
Layer-4 0.92 0.83 0.88 0.46 0.67 0.35 0.35 0.37 0.33
Layer-5 0.92 0.83 0.87 0.49 0.67 0.35 0.35 0.36 0.31
Layer-6 0.91 0.81 0.85 0.49 0.67 0.36 0.37 0.39 0.33
Layer-7 0.9 0.8 0.85 0.46 0.66 0.34 0.36 0.37 0.32
Layer-8 0.88 0.78 0.84 0.45 0.65 0.36 0.35 0.35 0.33
Layer-9 0.86 0.78 0.83 0.44 0.62 0.35 0.35 0.35 0.31
Layer-10 0.85 0.77 0.83 0.41 0.63 0.35 0.36 0.36 0.32
Layer-11 0.84 0.75 0.83 0.41 0.61 0.35 0.34 0.35 0.29
Layer-12 0.82 0.71 0.79 0.41 0.59 0.36 0.33 0.34 0.31

Majority-Vote 0.13 0.12 0.11 0.16 0.12 0.15 0.15 0.15 0.15
Word Embeddings 0.87 0.13 0.10 NA NA 0.30 0.19 0.21 NA
Tf-Idf 0.53 0.28 0.28 0.21 0.16 0.46 0.28 0.29 0.18
Layer-0 0.92 0.76 0.85 0.36 0.44 0.22 0.22 0.23 0.23
Layer-1 0.92 0.79 0.86 0.38 0.47 0.27 0.26 0.26 0.2
Layer-2 0.93 0.78 0.84 0.47 0.53 0.31 0.33 0.33 0.25
Layer-3 0.94 0.84 0.87 0.5 0.6 0.33 0.35 0.37 0.31
Layer-4 0.92 0.83 0.88 0.46 0.67 0.35 0.35 0.37 0.33
Layer-5 0.92 0.83 0.87 0.49 0.67 0.35 0.35 0.36 0.31
Layer-6 0.91 0.81 0.85 0.49 0.67 0.36 0.37 0.39 0.33
Layer-7 0.9 0.8 0.85 0.46 0.66 0.34 0.36 0.37 0.32
Layer-8 0.88 0.78 0.84 0.45 0.65 0.36 0.35 0.35 0.33
Layer-9 0.86 0.78 0.83 0.44 0.62 0.35 0.35 0.35 0.31
Layer-10 0.85 0.77 0.83 0.41 0.63 0.35 0.36 0.36 0.32
Layer-11 0.84 0.75 0.83 0.41 0.61 0.35 0.34 0.35 0.29
Layer-12 0.82 0.71 0.79 0.41 0.59 0.36 0.33 0.34 0.31

B Distribution of Selected Ambiguous
Entities

Entity LOC ORG PER

Mercury 562 215 26
Sirius 391 481 42
Olympus 177 3 11
Uranus 385 7 169
Reich 12 16 266
Cloud 22 63
Ceres 191 49 21
Aquarius 124 11 59
Chimera 85 17
Vesta 75 9 29
Quartz 12 73 7
Regulus 8 23 67
Terra 42 21 66
Sol 26 64 56
Lab 16 58 7
Triton 16 51 12
Solaris 9 24
Tyre 7 28
Electra 9 28 17
Beguinage 23 7 8
Prana 12 19 16


