@inproceedings{kallini-fellbaum-2023-make,
title = "What to Make of make? Sense Distinctions for Light Verbs",
author = "Kallini, Julie and
Fellbaum, Christiane",
editor = "Rigau, German and
Bond, Francis and
Rademaker, Alexandre",
booktitle = "Proceedings of the 12th Global Wordnet Conference",
month = jan,
year = "2023",
address = "University of the Basque Country, Donostia - San Sebastian, Basque Country",
publisher = "Global Wordnet Association",
url = "https://aclanthology.org/2023.gwc-1.3/",
pages = "25--30",
abstract = "Verbs like make, have and get present challenges for applications requiring automatic word sense discrimination. These verbs are both highly frequent and polysemous, with semantically {\textquotedblleft}full{\textquotedblright} readings, as in make dinner, and {\textquotedblleft}light{\textquotedblright} readings, as in make a request. Lexical resources like WordNet encode dozens of senses, making discrimination difficult and inviting proposals for reducing the number of entries or grouping them into coarser-grained supersenses. We propose a data-driven, linguistically-based approach to establishing a motivated sense inventory, focusing on make to establish a proof of concept. From several large, syntactically annotated corpora, we extract nouns that are complements of the verb make, and group them into clusters based on their Word2Vec semantic vectors. We manually inspect, for each cluster, the words with vectors closest to the centroid as well as a random sample of words within the cluster. The results show that the clusters reflect an intuitively plausible sense discrimination of make. As an evaluation, we test whether words within a given cluster cooccur in coordination phrases, such as apples and oranges, as prior work has shown that such conjoined nouns are semantically related. Conversely, noun complements from different clusters are less likely to be conjoined. Thus, coordination provides a similarity metric independent of the contextual embeddings used for clustering. Our results pave the way for a WordNet sense inventory that, while not inconsistent with the present one, would reduce it significantly and hold promise for improved automatic word sense discrimination."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kallini-fellbaum-2023-make">
<titleInfo>
<title>What to Make of make? Sense Distinctions for Light Verbs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Julie</namePart>
<namePart type="family">Kallini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christiane</namePart>
<namePart type="family">Fellbaum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Global Wordnet Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">German</namePart>
<namePart type="family">Rigau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandre</namePart>
<namePart type="family">Rademaker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Global Wordnet Association</publisher>
<place>
<placeTerm type="text">University of the Basque Country, Donostia - San Sebastian, Basque Country</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Verbs like make, have and get present challenges for applications requiring automatic word sense discrimination. These verbs are both highly frequent and polysemous, with semantically “full” readings, as in make dinner, and “light” readings, as in make a request. Lexical resources like WordNet encode dozens of senses, making discrimination difficult and inviting proposals for reducing the number of entries or grouping them into coarser-grained supersenses. We propose a data-driven, linguistically-based approach to establishing a motivated sense inventory, focusing on make to establish a proof of concept. From several large, syntactically annotated corpora, we extract nouns that are complements of the verb make, and group them into clusters based on their Word2Vec semantic vectors. We manually inspect, for each cluster, the words with vectors closest to the centroid as well as a random sample of words within the cluster. The results show that the clusters reflect an intuitively plausible sense discrimination of make. As an evaluation, we test whether words within a given cluster cooccur in coordination phrases, such as apples and oranges, as prior work has shown that such conjoined nouns are semantically related. Conversely, noun complements from different clusters are less likely to be conjoined. Thus, coordination provides a similarity metric independent of the contextual embeddings used for clustering. Our results pave the way for a WordNet sense inventory that, while not inconsistent with the present one, would reduce it significantly and hold promise for improved automatic word sense discrimination.</abstract>
<identifier type="citekey">kallini-fellbaum-2023-make</identifier>
<location>
<url>https://aclanthology.org/2023.gwc-1.3/</url>
</location>
<part>
<date>2023-01</date>
<extent unit="page">
<start>25</start>
<end>30</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T What to Make of make? Sense Distinctions for Light Verbs
%A Kallini, Julie
%A Fellbaum, Christiane
%Y Rigau, German
%Y Bond, Francis
%Y Rademaker, Alexandre
%S Proceedings of the 12th Global Wordnet Conference
%D 2023
%8 January
%I Global Wordnet Association
%C University of the Basque Country, Donostia - San Sebastian, Basque Country
%F kallini-fellbaum-2023-make
%X Verbs like make, have and get present challenges for applications requiring automatic word sense discrimination. These verbs are both highly frequent and polysemous, with semantically “full” readings, as in make dinner, and “light” readings, as in make a request. Lexical resources like WordNet encode dozens of senses, making discrimination difficult and inviting proposals for reducing the number of entries or grouping them into coarser-grained supersenses. We propose a data-driven, linguistically-based approach to establishing a motivated sense inventory, focusing on make to establish a proof of concept. From several large, syntactically annotated corpora, we extract nouns that are complements of the verb make, and group them into clusters based on their Word2Vec semantic vectors. We manually inspect, for each cluster, the words with vectors closest to the centroid as well as a random sample of words within the cluster. The results show that the clusters reflect an intuitively plausible sense discrimination of make. As an evaluation, we test whether words within a given cluster cooccur in coordination phrases, such as apples and oranges, as prior work has shown that such conjoined nouns are semantically related. Conversely, noun complements from different clusters are less likely to be conjoined. Thus, coordination provides a similarity metric independent of the contextual embeddings used for clustering. Our results pave the way for a WordNet sense inventory that, while not inconsistent with the present one, would reduce it significantly and hold promise for improved automatic word sense discrimination.
%U https://aclanthology.org/2023.gwc-1.3/
%P 25-30
Markdown (Informal)
[What to Make of make? Sense Distinctions for Light Verbs](https://aclanthology.org/2023.gwc-1.3/) (Kallini & Fellbaum, GWC 2023)
ACL