@inproceedings{mallik-kondrak-2023-correcting,
title = "Correcting Sense Annotations Using Wordnets and Translations",
author = "Mallik, Arnob and
Kondrak, Grzegorz",
editor = "Rigau, German and
Bond, Francis and
Rademaker, Alexandre",
booktitle = "Proceedings of the 12th Global Wordnet Conference",
month = jan,
year = "2023",
address = "University of the Basque Country, Donostia - San Sebastian, Basque Country",
publisher = "Global Wordnet Association",
url = "https://aclanthology.org/2023.gwc-1.33",
pages = "269--273",
abstract = "Acquiring large amounts of high-quality annotated data is an open issue in word sense disambiguation. This problem has become more critical recently with the advent of supervised models based on neural networks, which require large amounts of annotated data. We propose two algorithms for making selective corrections on a sense-annotated parallel corpus, based on cross-lingual synset mappings. We show that, when applied to bilingual parallel corpora, these algorithms can rectify noisy sense annotations, and thereby produce multilingual sense-annotated data of improved quality.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mallik-kondrak-2023-correcting">
<titleInfo>
<title>Correcting Sense Annotations Using Wordnets and Translations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arnob</namePart>
<namePart type="family">Mallik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grzegorz</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Global Wordnet Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">German</namePart>
<namePart type="family">Rigau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandre</namePart>
<namePart type="family">Rademaker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Global Wordnet Association</publisher>
<place>
<placeTerm type="text">University of the Basque Country, Donostia - San Sebastian, Basque Country</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Acquiring large amounts of high-quality annotated data is an open issue in word sense disambiguation. This problem has become more critical recently with the advent of supervised models based on neural networks, which require large amounts of annotated data. We propose two algorithms for making selective corrections on a sense-annotated parallel corpus, based on cross-lingual synset mappings. We show that, when applied to bilingual parallel corpora, these algorithms can rectify noisy sense annotations, and thereby produce multilingual sense-annotated data of improved quality.</abstract>
<identifier type="citekey">mallik-kondrak-2023-correcting</identifier>
<location>
<url>https://aclanthology.org/2023.gwc-1.33</url>
</location>
<part>
<date>2023-01</date>
<extent unit="page">
<start>269</start>
<end>273</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Correcting Sense Annotations Using Wordnets and Translations
%A Mallik, Arnob
%A Kondrak, Grzegorz
%Y Rigau, German
%Y Bond, Francis
%Y Rademaker, Alexandre
%S Proceedings of the 12th Global Wordnet Conference
%D 2023
%8 January
%I Global Wordnet Association
%C University of the Basque Country, Donostia - San Sebastian, Basque Country
%F mallik-kondrak-2023-correcting
%X Acquiring large amounts of high-quality annotated data is an open issue in word sense disambiguation. This problem has become more critical recently with the advent of supervised models based on neural networks, which require large amounts of annotated data. We propose two algorithms for making selective corrections on a sense-annotated parallel corpus, based on cross-lingual synset mappings. We show that, when applied to bilingual parallel corpora, these algorithms can rectify noisy sense annotations, and thereby produce multilingual sense-annotated data of improved quality.
%U https://aclanthology.org/2023.gwc-1.33
%P 269-273
Markdown (Informal)
[Correcting Sense Annotations Using Wordnets and Translations](https://aclanthology.org/2023.gwc-1.33) (Mallik & Kondrak, GWC 2023)
ACL