
Mapping Wordnets on the Fly with Permanent Sense Keys

Eric Kafe
MegaDoc

Charlottenlund, Denmark
kafe@megadoc.net

Abstract

Most of the major databases on the semantic
web have links to Princeton WordNet (PWN)
synonym set (synset) identifiers, which differ
for each PWN release, and are thus incompati-
ble between versions. On the other hand, both
PWN and the more recent Open English Word-
net (OEWN) provide permanent word sense
identifiers (the sense keys), which can solve
this interoperability problem.

We present an algorithm that runs in linear time,
to automatically derive a synset mapping be-
tween any pair of Wordnet versions that use
PWN sense keys. This allows to update old
WordNet links, and seamlessly interoperate
with newer English Wordnet versions for which
no prior mapping exists.

By applying the proposed algorithm on the fly,
at load time, we combine the Open Multilin-
gual Wordnet (OMW 1.4, which uses old PWN
3.0 identifiers) with OEWN Edition 2021, and
obtain almost perfect precision and recall. We
compare the results of our approach using re-
spectively synset offsets, versus the Collabora-
tive InterLingual Index (CILI version 1.0) as
synset identifiers, and find that the synset off-
sets perform better than CILI 1.0 in all cases,
except a few ties.

1 Introduction

All the available multilingual wordnets (Bond et al.,
2014) and important knowledge bases on the se-
mantic web (Navigli and Ponzetto, 2010; Niles
and Pease, 2003; Suchanek et al., 2008; Nielsen,
2018) were originally linked to different versions
of Princeton WordNet (PWN) (Fellbaum, 1998), us-
ing version-specific synset offsets (WordNet-team,
2010, Wndb), which differ between releases, so
mappings are necessary for interoperation, and for
updating to a later English Wordnet versions.

Many of these resources have been remapped
to Wordnet 3.0 or Wordnet 3.1, using offset to
offset mappings obtained by relaxation labelling

(Daudé et al., 2000), offset to ILI (InterLingual
Index) mappings (Vossen, 2002; Vossen et al.,
2016; Bond et al., 2016), sensekey to sensekey map-
pings (WordNet-team, 2010, Sensemap), and off-
set to offset mappings relying on sense key per-
sistence (Kafe, 2018). Contrary to synset off-
sets, the sensekeys persist across database versions
(WordNet-team, 2010, Senseidx), and can thus sup-
port the derivation of mappings with high precision
and recall.

PWN sensekeys (WordNet-team, 2010, Sen-
seidx) are composite database keys representing
one particular word sense. They consist in the con-
catenation of the identifiers for the corresponding
lemma and its lexfile, lex_id, and eventually head
adjective (see examples in sections 2.1, 3.2 and
4.2). Each PWN version includes an index.sense
file, linking the sense keys to their corresponding
synset offsets.

However, the necessary mappings between
synsets linked to different PWN versions are not
always available, either because a resource is too
new, or has too few users to justify the production
of a mapping. This causes potentially long delays
for interoperability, which may remain impossible
as long as no relevant mapping exists. For exam-
ple, Edition 2022 of the Open English Wordnet
(OEWN1) (McCrae et al., 2020) was released re-
cently, and the wndb2 project has also published
the same data in a PWN-compatible format (includ-
ing the relevant index.sense). These two variants
of the OEWN 2022 Edition use different, mutually
incompatible synset offsets; no mapping exists for
neither yet, and no known project currently aims to
produce such mappings.

On the other hand, OEWN has adopted PWN
sensekeys as its main sense identifier, so it is easy to

1https://github.com/globalwordnet/
english-wordnet

2https://github.com/x-englishwordnet/
wndb

https://github.com/globalwordnet/english-wordnet
https://github.com/globalwordnet/english-wordnet
https://github.com/x-englishwordnet/wndb
https://github.com/x-englishwordnet/wndb

extract a sense index from the database, and almost
instantly produce a sensekey-based mapping, since
this only requires joining the index.sense of the
relevant wordnet versions. Therefore, we propose
to carry out the mapping process on the fly, when-
ever loading wordnets that are linked to different
English Wordnet (PWN or OEWN) versions.

2 Methods

2.1 Mapping Strategy

Between two Wordnet versions, word senses can
be either added or removed, and the same applies to
synonym sets, in the case where all their elements
are respectively completely new or entirely deleted.
In addition to that, synonym sets can also be split
and/or merged, when one or more of their elements
are moved to another (existing or new) synset.

For example, between versions 3.0 and 3.1 of
PWN, Pluto was moved from the god of the un-
derworld in Greek mythology, to the synset with
the names of the corresponding Roman "god of the
underworld":

Sense Key PWN3.0 CILI3.0 CILI3.1 PWN3.1

aides%1:18:00:: 09570298-n i86957 i86957 09593427-n
aidoneus%1:18:00:: 09570298-n i86957 i86957 09593427-n
hades%1:18:00:: 09570298-n i86957 i86957 09593427-n

pluto%1:18:00:: 09570298-n i86957 i86958 09593643-n

dis%1:18:00:: 09570522-n i86958 i86958 09593643-n
orcus%1:18:00:: 09570522-n i86958 i86958 09593643-n
dis_pater%1:18:00:: @ @ i86958 09593643-n

The problem is that foreign language translations
of the involved synsets cannot deal with this change
by simply applying a concept to offset mapping like
the Collaborative Interlingual index (CILI3). In the
French Wordnet, for example, Pluton is a synonym
of Hadès and Aides, and thus a member of the
Greek gods, and remains so, even after applying
the CILI mapping. Unlike the English Pluto, the
French Pluton keeps the CILI i86957 identifier, and
still translates to Hades in later English Wordnet
versions. Conversely, the French translation of the
PWN 3.1 synset with CILI i86958 does not include
Pluton. To adequately deal with this situation, the
French Pluton would need a link to the correspond-
ing English sense key, instead of being linked at
the synset level.

Here, where both gods are the same and the name
Plouton actually exists in the Greek mythology, it
would make sense to apply the map-to-all strategy,
and insert Pluto in both target synsets, as in the

3https://github.com/globalwordnet/cili

mappings from the Sense Key Index (SKI)4. But
mapping to all possible targets is not guaranteed to
be adequate in all cases, so it is always preferable
to review all the synset splits manually.

We aim to support wordnet interoperability in the
general-purpose natural language toolkit NLTK5

(Bird et al., 2009), which is increasingly used in
very diverse Machine Learning projects, without
specialized lexicographic knowledge. So a one-
to-many synset mapping strategy would not be an
adequate default, because users would not know
how to choose the most adequate target synset from
a list of mapping candidates. In such cases, it is
more convenient that the system only picks one
target synset for each source synset.

Mapping the wordnets on the fly, at load time,
requires an algorithm that performs as close to in-
stantly as possible, so we prefer a simple frequency-
based approach, rather than a more complex analy-
sis of relation links. Therefore, we map each source
synset to the target that retains most of the source
lemmas and, in the case of equality, to the synset
with the highest offset. In most cases, though, the
choice is limited to one single target synset, since
choosing between synsets is only relevant in the
cases where a source synset is split into two (or
eventually three) synsets. These cases are rare
(Kafe, 2018), so candidates with an equal number
of lemmas are even rarer.

So we apply a many-to-one mapping strategy,
where potentially many (though most often only
one) source synsets are merged into a single target
synset. This is the only difference between this
work and the many-to-many mappings from the
Sense Key Index (SKI), resulting in slightly dif-
ferent numbers of False Positives (fp) and False
Negatives (fn), and only tiny differences in overall
performance.

2.2 Linear Time Algorithm

Algorithm 1 constructs a mapping between two
English Wordnet (PWN or OEWN) versions (re-
spectively source and target), using intermediate
mappings, implemented here as Python dictionar-
ies (see the NLTK listing in Appendix A).

First, we construct a mapping from the sensekeys
to the corresponding synset identifier (synset_id)
for each of the source and target Wordnet ver-
sions. For this, we use either the index.sense file

4https://github.com/ekaf/ski
5https://www.nltk.org

https://github.com/globalwordnet/cili
https://github.com/ekaf/ski
https://www.nltk.org

Algorithm 1 Map synsets from source to target Wordnet version using sense keys
SENSE_INDEXsource ← {∀ sense ∈ source : sensekey → synset_idsource }
SENSE_INDEXtarget ←

{
∀ sense ∈ target : sensekey → synset_idtarget

}
MAP_TO_MANY ← {∀ synset_idsource ∈ values(SENSE_INDEXsource) : synset_idsource → ∅}
for sensekey ∈ SENSE_INDEXsource ∩ SENSE_INDEXtarget do

MAP_TO_MANY[synset_idsource].append(synset_idtarget)
end for
MAP_TO_ONE ←

{
∀ synset_idsource ∈ MAP_TO_MANY : synset_idsource → argmax(count(synset_idtarget))

}
return MAP_TO_ONE

included in each PWN release, or the sense id at-
tribute of the OEWN senses, since OEWN now
uses sensekeys directly as its main sense identifier.
NLTK does not yet support ILI identifiers, so the
current NLTK implementation can only use offset-
part_of_speech synset identifiers, but it is straight-
forward to replace these by ILI concept identifiers.
Each sensekey is linked to at most one synset in
each version, but may be absent from either the
source or target version (in the cases where a sense
was added or removed). This step does one pass
over the index.sense, which consists in one record
per sensekey, so its complexity is obviously linear.

Then the MAP_TO_MANY step joins the two
INDEX_SENSE maps in order to produce a
synset_to_many mapping from the source synset
identifiers to lists of corresponding synset identi-
fiers in target. Python sets are implemented as
hash tables, with O(1) lookup, so the intersection
of both versions’ sense keys is computed in O(n)
time. Then we do one pass over the sources’ off-
sets, to initialize empty candidate bags, and one
pass over the common sense keys, to populate the
MAP_TO_MANY mapping, which is identical to the
corresponding SKI mapping (Kafe, 2018).

Finally, a MAP_TO_ONE step chooses the most
adequate target synset for each source synset,
among a bag of candidates provided by the
MAP_TO_MANY mapping. This step is optional for
use cases where we want to retain all the candidate
targets. Here, we use the max6 function to pick
the target synset that retains most lemmas from the
source synset, but we also discuss using sort as
an alternative in section 4.3. We do one pass over
each of the candidate bags, where we use the O(n)
max function to pick the target synset, so this step
also runs in linear time.

6Thanks to Steven Bird, who reviewed the initial imple-
mentation, and pointed out that max is quicker than sort.

2.3 Complexity
Since each of its steps runs in linear time, the total
complexity of this mapping algorithm is also O(n),
where n corresponds to the numbers of sense keys
and synset offsets in the involved wordnets. To our
knowledge, this is the simplest mapping algorithm
yet proposed for wordnets, and considerably less
complex than the deep relation analysis in Daudé
et al. (2000) and Daudé et al. (2001), although
both approaches have similar performance, but also
complementary strengths and weaknesses (Kafe,
2018).

2.4 Implementation
We first integrated this mapping process in the
wordnet library of NLTK version 3.6.6, and used it
to map the multilingual wordnets from OMW 1.4
(Bond et al., 2020) at load time, converting their
PWN 3.0 synset identifiers to those used in any
of the more recent English Wordnets, in order to
support the seamless interoperation of the involved
databases.

NLTK is developed on an open software develop-
ment platform7, which provides free access for all,
to not only the software code, but also its various
incarnations, and the corresponding discussions
before and after its release. Everyone is free to
modify the source code, and welcome to contribute
improvements back to the community.

When using synset offsets, the implementation
differs from algorithm 1 by adding a supplemen-
tary mapping link from adjectives, when the source
synset is an adjective satellite. This is necessary
for handling OMW data, where most languages ig-
nore the satellite category. But this step does not
apply to ILI identifiers, since these don’t include
any part-of-speech reference.

We rewrote the implementation for NLTK ver-
sion 3.8, in order to closely follow algorithm 1. In
the initial implementation, the source wordnet was
hard-coded to PWN version 3.0, for handling the

7https://github.com/nltk/nltk

https://github.com/nltk/nltk

OMW data. An optional version parameter has
been added in the forthcoming NLTK 3.8.2, which
allows to produce mappings for any pair of En-
glish Wordnet versions. Appendix A includes the
listing of this slightly more elaborated implemen-
tation, which additionally collects the split or lost
synsets in structures called respectively splits and
nomap, which should be useful for further improv-
ing the mappings. We also adapted the functions
in the appendix for the Wn8 library (Goodman and
Bond, 2021), in order to compare the performance
of algorithm 1 using respectively synset offsets ver-
sus ILIs as synset identifiers. We thus used Wn to
produce the MapCILI results in table 1, while we
computed the MapOffset results in table 1 using
both NLTK and Wn, and verified that both libraries
yield identical outputs.

3 Results

3.1 Multilingual Coverage

Table 1 displays the number of synsets and lem-
mas in NLTK’s data package for OMW 1.4, when
loaded with respectively the default PWN 3.0, and
OEWN Edition 2021. The languages are listed by
their number of synsets in decreasing order, and
we report the number of synsets lost, as well as per-
centages, when mapping between the two English
Wordnet versions, using either synset offsets or the
CILI 1.0 synset identifiers currently included in the
Wn library.

All the multilingual wordnets suffer a loss in the
mapping, but this loss is almost negligible with
either type of synset identifier: at most 0.19% (cor-
responding to 99.81% recall) for Standard Arabic
with synset offsets, and 0.21% using CILI with
Lithuanian. Except a small number of ties with
the smallest wordnets, the synset offset mappings
perform better than the CILI 1.0 mappings in all
cases. This is surprising since the CILI mappings
were partially curated manually, so we expected
them to provide an advantage over the completely
automatic offset mappings. However, the differ-
ence is small, and might be attributed to known
issues 9 with the CILI 1.0 mappings, which could
be remedied in a future version.

With PWN 3.0, some numbers are identical to
those reported by Bond et al. (2014). These con-
cern wordnets that have not been updated since

8https://github.com/goodmami/wn
9CILI issue #16, https://github.com/

globalwordnet/cili/issues/16

OMW 1.0. On the other hand, some wordnets in
OMW 1.4 are not current, as for ex. the Basque,
Catalan, Galician and Spanish wordnets date back
to the 2012 edition of the Multilingual Core Repos-
itory (MCR) described by Gonzalez-Agirre et al.
(2012), although the coverage of these wordnets
was greatly expanded in the 2016 edition of MCR.

NLTK also has a PWN 3.1 data package, where
the mapping loss is usually less than half, com-
pared to OEWN 2021, and for ex. only 0.09% for
Standard Arabic, corresponding to 99.91% recall.
We also mapped two variants of OEWN Edition
2022: the official release 10, and an alternative
version provided by the XEWN11 project. Their
databases have different sizes, and hence different
synset offsets, but both yielded identical mapping
losses, which were slightly better than OEWN 2021
in all cases, for ex. 0.17% synset lost with Stan-
dard Arabic. Standard mappings are not likely to
become available for different variants of the same
Wordnet version, so an advantage of our method is
that it nevertheless allows a downstream compari-
son of these variants, which would not be possible
otherwise.

3.2 Splits and Merges
As a consequence of our mapping strategy, where
we only pick one target for each source synset, the
synsets are never split. On the contrary, all lemmas
belonging to a source synset, that would be split
according to a many-to-many strategy, are mapped
to the same target synset, and synonymy persists.

With the example from section 2.1, since Pluto
is not split out of its source synset, it is not merged
into its target synset, but remains a synonym of the
other Greek gods:

Sense Key PWN3.0 CILI3.0 CILI3.1 PWN3.1

aides%1:18:00:: 09570298-n i86957 i86957 09593427-n
aidoneus%1:18:00:: 09570298-n i86957 i86957 09593427-n
hades%1:18:00:: 09570298-n i86957 i86957 09593427-n
pluto%1:18:00:: 09570298-n i86957 i86957 09593427-n

dis%1:18:00:: 09570522-n i86958 i86958 09593643-n
orcus%1:18:00:: 09570522-n i86958 i86958 09593643-n
dis_pater%1:18:00:: @ @ i86958 09593643-n

The result is mostly a one-to-one mapping, with
only 44 many-to-one cases occurring, when differ-
ent source synsets are merged into the same target
synset. Our method maps all the merged foreign
language synsets to their correct target, as for ex.
with the baseball example below. This contrasts

10https://en-word.net/static/
english-wordnet-2022.zip

11https://github.com/x-englishwordnet

https://github.com/goodmami/wn
https://github.com/globalwordnet/cili/issues/16
https://github.com/globalwordnet/cili/issues/16
https://en-word.net/static/english-wordnet-2022.zip
https://en-word.net/static/english-wordnet-2022.zip
https://github.com/x-englishwordnet

Table 1: Multilingual synsets in OMW 1.4 mapped to OEWN 2021 using synset offsets vs. CILI 1.0

Synsets MapOffset MapCILI

Language PWN 3.0 OEWN 2021 Lost % OEWN 2021 Lost %

English 117659 117454 205 0.17 117427 232 0.20
Finnish 116763 116562 201 0.17 116535 228 0.20
Thai 73350 73240 110 0.15 73223 127 0.17
French 59091 59015 76 0.13 59005 86 0.15
Japanese 57184 57086 98 0.17 57080 104 0.18
Romanian 56026 55941 85 0.15 55931 95 0.17
Catalan 45826 45773 53 0.12 45769 57 0.12
Portuguese 43895 43844 51 0.12 43840 55 0.13
Slovenian 42583 42520 63 0.15 42513 70 0.16
Mandarin Chinese 42300 42249 51 0.12 42240 60 0.14
Spanish 38512 38431 81 0.21 38418 94 0.24
Indonesian 38085 38018 67 0.18 38011 74 0.19
Standard Malay 36911 36843 68 0.18 36836 75 0.20
Italian 35001 34964 37 0.11 34960 41 0.12
Polish 33826 33798 28 0.08 33794 32 0.09
Dutch 30177 30154 23 0.08 30151 26 0.09
Basque 29413 29387 26 0.09 29386 27 0.09
Croatian 23115 23081 34 0.15 23077 38 0.16
Galician 19311 19290 21 0.11 19283 28 0.14
Slovak 18507 18478 29 0.16 18472 35 0.19
Modern Greek (1453-) 18049 18025 24 0.13 18023 26 0.14
Italian (iwn) 15563 15553 10 0.06 15553 10 0.06
Standard Arabic 9916 9897 19 0.19 9896 20 0.20
Lithuanian 9462 9446 16 0.17 9442 20 0.21
Swedish 6796 6784 12 0.18 6784 12 0.18
Hebrew 5448 5441 7 0.13 5439 9 0.17
Bulgarian 4959 4950 9 0.18 4950 9 0.18
Icelandic 4951 4942 9 0.18 4942 9 0.18
Albanian 4675 4668 7 0.15 4668 7 0.15
Danish 4476 4468 8 0.18 4468 8 0.18
Norwegian Bokmål 4455 4447 8 0.18 4447 8 0.18
Norwegian Nynorsk 3671 3666 5 0.14 3666 5 0.14

Average 32811.12 32762.97 48.16 0.15 32757.16 53.97 0.16

We computed the MapOffset results using both the NLTK and Wn software libraries, and the MapCILI results with
only Wn, since NLTK does not yet support ILI identifiers.

with the current implementation of the Wn library’s
standard translate function, which finds no transla-
tion for the first PWN3.0 synset (i37881) in PWN3.1.
Conversely, translating i37882 back from PWN3.1

to PWN3.0, Wn does not find the i37881 lemmas.

Sense Key PWN3.0 CILI3.0 CILI3.1 PWN3.1

baseball%1:04:00:: 00471613-n: i37881 i37882 00472688-n
baseball_game%1:04:00:: 00471613-n: i37881 i37882 00472688-n

ball%1:04:01:: 00474568-n i37882 i37882 00472688-n

The problem is that Wn only knows the corre-
spondence between ILIs and offsets within each
involved Wordnet version, but has no mapping be-
tween these versions. Merged synsets disappear
in translation12, because only one of the merged
CILI identifiers is available in the target, so the
synsets with the other ILIs are no longer reach-
able. This problem with merged ILIs in Wn only
concerns a small number of synsets, since each
foreign language wordnet covers only a fraction of
the 44 merged English synsets. It does not affect
the MapCILI results in Table 1, since we computed
these using our mapping algorithm, instead of Wn’s
standard translate function.

3.3 Performance

We found that our method could not map 205 En-
glish synset offsets from PWN 3.0 to an OEWN
2021 target. The small mapping losses in table 1
correspond to the subset of these 205 synsets in-
cluded in each multilingual wordnet. These losses
represent all the negatives in a confusion matrix,
amounting to the addition of the True Negatives
(tn), which were truly removed in the target Word-
net, and the False Negatives (fn), which we ideally
should be able to map. So among the mapping
losses, only the fn are fallacies.

The minority lemmas in the split English synsets,
which are induly mapped to the same synset as
in the source, constitute the False Positives (fp).
These only amount to the 44 splits between PWN
3.0 and OEWN 2021, so their number is small,
compared to the True Positives (117454 minus
eventual sense key violations).

Synsets Mapped Not Mapped
True PWN3.0 ∩OEWN2021 ∅

tp = 117454 tn = 0

False Splits {PWN3.0
OEWN2021

fp = 44 fn = 205

12https://github.com/goodmami/wn/
issues/179

We evaluate the performance of our algorithm
using the values above, and obtain almost perfect
performance results:

precision =
tp

tp+ fp
= 0.9996 (1)

recall =
tp

tp+ fn
= 0.9983 (2)

f1 =
2 ∗ precision ∗ recall
precision+ recall

= 0.9989 (3)

Thus, the overall performance of the English
mapping is 99.89%, which compares favorably
with more complex mapping strategies like Daudé
et al. (2000).

Comparing the lost English synsets between the
two types of synset identifiers (offsets vs. ILIs), we
found that 143 were lost using both types, while 62
were only lost with offsets (always due to satellite
adjectives becoming standard adjectives), and 89
were only lost with CILI 1.0. The respective addi-
tions of these losses yield the total loss reported for
English in table 1 (205 with offsets vs. 232 with
the ILI).

4 Discussion

We have shown that mapping between different En-
glish Wordnet versions is feasible in linear time, by
relying on the stability of PWN sense keys. Our
method allows to transparently update the database
links on-the-fly, to another English Wordnet ver-
sion, even though no prior mapping exists yet. This
can benefit any database linked with an English
Wordnet, and enhance any downstream task that
uses such a database.

4.1 Coverage and Integrity
Our results show that almost all the vocabulary of
the multilingual wordnets in OMW 1.4 persisted
after the mapping.

Some doubts remain necessarily, though, con-
cerning the referential integrity of the sensekeys, on
which the mappings rely. Sensekeys are meant to
always refer to the same wordsense across wordnet
versions, but Kafe (2018) reported a few violations
of sensekeys’ referential integrity. The number
of these violations seems negligible in PWN, but
their impact has not yet been studied in OEWN.
However, the fact that OEWN now uses the PWN
sensekeys as principal wordsense identifier, is a

https://github.com/goodmami/wn/issues/179
https://github.com/goodmami/wn/issues/179

reason for considering that the sensekeys are in-
deed persistent in OEWN, and that we can rely on
their referential integrity in theory. Still, it would
be helpful to investigate in practice, whether the
addition of a new wordsense in OEWN could entail
a modification of the sensekeys for other existing
senses of the same word.

4.2 Challenges and Opportunities

In the mapping between PWN 3.0 and OEWN
2021, which we investigated here, our method
displayed two shortcomings: 205 English synsets
were completely lost in the mapping, and 44 split
synsets were somewhat arbitrarily mapped to one
single target. It is questionable, to which extent any
automatic mapping can provide linguistically satis-
fying targets for each of these cases. Fortunately,
their number is sufficiently small to allow a manual
review, of which we can already attempt to sketch
some outlines.

It is possible, for ex., to identify genuinely lost
synsets, which do not have any plausible target.
This happens when all the words included in the
source synset are completely absent from the tar-
get Wordnet version. Here, it occurred in particu-
lar with a number of racially tainted expressions,
like the synset {darky, darkie, darkey}, defined
as "(ethnic slur) offensive term for Black people".
In these cases, relaxing the equivalence criteria,
and mapping the synset to for ex. a superordinate,
would entail losing an essential nuance, and might
often not be adequate. So these losses may be un-
avoidable, unless choosing to retain the synset with
its original meaning.

On the other hand, many losses are relatively
easy to avoid. For example, out of the 205 English
synsets that our algorithm doesn’t map, 62 concern
adjective satellites which were changed to plain ad-
jectives. These have an obvious mapping through
the ILI, where both Wordnet versions share the
same concept identifier.

In other cases, we can identify changes in a part
of the sense key, for words that keep identical defi-
nitions. This reveals that unfortunate changes can
occur in any sense key part between two wordnet
versions. For example, Table 2 shows how the
lex_id of a sense of "sequoia" changed from 00 to
01 between PWN 3.0 and OEWN 2021, while the
lexfile of a sense of "stub out" changed from 30 to
35, the adjective category of "obtrusive" changed
from 3 to 5, and the satellites’ head adjective of

Table 2: Changed Sense Key Parts (Examples)

Sense Key PWN 3.0 OEWN 2021

sequoia%1:20:00:: either of two huge
coniferous California
trees that reach a
height of 300 feet;
sometimes placed in
the Taxodiaceae

@

sequoia%1:20:01:: @ either of two huge
coniferous California
trees that reach a
height of 300 feet;
sometimes placed in
the Taxodiaceae

stub_out%2:30:00:: extinguish by crush-
ing

@

stub_out%2:35:01:: @ extinguish by crush-
ing

obtrusive%3:00:00:: undesirably notice-
able

@

obtrusive%5:00:00-
:noticeable:00

@ undesirably notice-
able

newfangled%5:00:00-
:original:00

(of a new kind or fash-
ion) gratuitously new

@

newfangled%5:00:00-
:new:00

@ (of a new kind or fash-
ion) gratuitously new

"newfangled" changed from original to new.
In all these cases, we see different sense keys

pointing to the same word sense, and this is dif-
ferent from key violations (one sense key pointing
to different word senses). In some cases, the En-
glish lexicographers could prevent this problem,
but it can also be remedied downstream, by an ad-
ditional mapping link between the few changed
sense keys, which would allow even higher quality
mappings. Our implementation (see Appendix A)
supports eventual further improvements of the map-
pings through the map_to_many function, and by
providing the splits and nomap lists of problematic
cases to study in greater depth.

4.3 Variants of the mapping algorithm

Applying our mapping algorithm to other synset
identifiers than the offsets only requires a simple
modification of the initial IndexSense function,
while our two other functions remain unchanged.
So we extended our approach, to also map ILI
concept identifiers instead of synset offsets. This is
not always practical yet though, because of inherent
delays in the current attribution process for new ILI
identifiers13.

We applied max to a list of candidate

13CILI issue #9, https://github.com/
globalwordnet/cili/issues/9

https://github.com/globalwordnet/cili/issues/9
https://github.com/globalwordnet/cili/issues/9

(count, offset) pairs, in order to pick the target
synset that retains most lemmas from the source
synset. As a consequence, in the case of equal
counts, the max function picks the target synset
with the highest offset. But instead of the highest
offset, it would be possible to use the min func-
tion, and pick the lowest offset instead when the
counts are equal. Alternatively, this strategy can
be implemented by taking the first pair in a sorted
list, eventually sorting the counts in decreasing or-
der and the offsets in increasing order. Generally,
the lowest offset corresponds to a synset that was
included in the PWN databases before those with
higher offsets, so the choice between using min or
max often induces a preference for older versus
newer synsets. More research could be useful, in
order to assess which difference this choice makes
in practice.

Concerning the complexity of max, which is
O(n) versus sort, which is O(n.logn), their dif-
ference is not substantial here, where n represents
the number of target (count, offset) pairs, which
is normally one, and only two or three in the rare
cases where the source synset is split.

5 Conclusion

We presented an algorithm for mapping wordnets,
that runs in linear time, thus moving the frontier
of wordnet interoperability by allowing to almost
instantly combine different database versions, for
which no prior mapping exists. We illustrated this
capability by combining the OMW with OEWN.
Other potential uses include seamlessly updating
existing PWN links in any Wordnet-linked seman-
tic web database, to newer OEWN versions.

We saw how our mappings only lose tiny
amounts of data when mapping multilingual word-
nets, which indicates that the performance of this
approach is comparable to the best results obtained
with alternative strategies.

Now that OEWN has adopted the original PWN
sensekeys as main wordense identifier, we may
expect that the proposed algorithm remains rel-
evant with future OEWN versions. However, if
more wordnet resources start to use a common set
of persistent identifiers like the PWN sensekeys,
mappings could become unnecesary between these
resources, as they would be natively interoperable.

Acknowledgments

Thanks to Tom Aarsen and Steven Bird for their
useful review of the NLTK implementation, and
to the anonymous GWC 2023 reviewers for their
many detailed and accurate suggestions. The final
version of this article also benefited from helpful
comments by participants at the GWC 2023 presen-
tation, in particular Francis Bond and Piek Vossen.

References
Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-

ural language processing with Python: analyzing text
with the natural language toolkit. O’Reilly Media,
Inc.

Francis Bond, Christiane Fellbaum, Shu-Kai Hsieh,
Chu-Ren Huang, Adam Pease, and Piek Vossen. 2014.
A multilingual lexico-semantic database and ontol-
ogy. In Towards the Multilingual Semantic Web,
pages 243–258. Springer.

Francis Bond, Luis Morgado da Costa, Michael Wayne
Goodman, John Philip McCrae, and Ahti Lohk. 2020.
Some issues with building a multilingual Wordnet.
In Proceedings of the 12th Language Resources and
Evaluation Conference, pages 3189–3197, Marseille,
France. European Language Resources Association.

Francis Bond, Piek Vossen, John McCrae, and Chris-
tiane Fellbaum. 2016. CILI: the collaborative in-
terlingual index. In Proceedings of the 8th Global
WordNet Conference (GWC), pages 50–57, Bucharest,
Romania. Global Wordnet Association.

J. Daudé, L. Padró, and G. Rigau. 2000. Mapping Word-
Nets using structural information. In Proceedings of
the 38th Annual Meeting of the Association for Com-
putational Linguistics, pages 504–511, Hong Kong.
Association for Computational Linguistics.

J. Daudé, L. Padró, and G. Rigau. 2001. A complete
wn1.5 to wn1.6 mapping. In Proceedings of the
NAACL Workshop ’WordNet and Other Lexical Re-
sources: Applications, Extensions and Customiza-
tions’ (NAACL’2001)., Pittsburg, PA, USA.

Christiane Fellbaum. 1998. WordNet, An Electronic
Lexical Database. MIT Press, Cambridge.

A. Gonzalez-Agirre, E. Laparra, and G. Rigau. 2012.
Multilingual central repository version 3.0: upgrad-
ing a very large lexical knowledge base. In Pro-
ceedings of the Sixth International Global WordNet
Conference (GWC2012). Matsue, Japan.

Michael Wayne Goodman and Francis Bond. 2021. In-
trinsically interlingual: The wn python library for
wordnets. In Proceedings of the 11th Global Word-
net Conference, pages 100–107, University of South
Africa (UNISA). Global Wordnet Association.

https://aclanthology.org/2020.lrec-1.390
https://aclanthology.org/2016.gwc-1.9
https://aclanthology.org/2016.gwc-1.9
https://doi.org/10.3115/1075218.1075282
https://doi.org/10.3115/1075218.1075282
https://aclanthology.org/2021.gwc-1.12
https://aclanthology.org/2021.gwc-1.12
https://aclanthology.org/2021.gwc-1.12

Eric Kafe. 2018. Persistent semantic identity in wordnet.
Cognitive Studies | Études cognitives, 18.

John Philip McCrae, Alexandre Rademaker, Ewa Rud-
nicka, and Francis Bond. 2020. English WordNet
2020: Improving and extending a WordNet for En-
glish using an open-source methodology. In Pro-
ceedings of the LREC 2020 Workshop on Multi-
modal Wordnets (MMW2020), pages 14–19, Mar-
seille, France. The European Language Resources
Association (ELRA).

Roberto Navigli and Simone Paolo Ponzetto. 2010. Ba-
belnet: Building a very large multilingual semantic
network. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics,
Uppsala, Sweden, 11-16 July 2010, pages 216–225.

Finn Årup Nielsen. 2018. Linking imagenet wordnet
synsets with wikidata. In Proceedings of The 2018
Web Conference Companion (WWW’18 Companion).
ACM, New York, USA.

Ian Niles and Adam Pease. 2003. Linking lexicons and
ontologies: Mapping wordnet to the suggested upper
merged ontology. In Ike, pages 412–416.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2008. Yago: A large ontology from
wikipedia and wordnet. Web Semantics: Science, Ser-
vices and Agents on the World Wide Web, 6(3):203–
217.

Piek Vossen. 2002. EuroWordnet General Document.
EWN.

Piek Vossen, Francis Bond, and John McCrae. 2016.
Toward a truly multilingual GlobalWordnet grid. In
Proceedings of the 8th Global WordNet Conference
(GWC), pages 424–431, Bucharest, Romania. Global
Wordnet Association.

WordNet-team. 2010. Wordnet 3.0 reference manual.
In WordNet Documentation. Princeton Univer-
sity, https://wordnet.princeton.edu/
documentation.

https://doi.org/10.11649/cs.1717
https://aclanthology.org/2020.mmw-1.3
https://aclanthology.org/2020.mmw-1.3
https://aclanthology.org/2020.mmw-1.3
https://aclanthology.org/2016.gwc-1.59
https://wordnet.princeton.edu/documentation
https://wordnet.princeton.edu/documentation

A Appendix: Implementation in NLTK (Python)

1 def i n d e x _ s e n s e (s e l f , v e r s i o n =None) :
2 " " " Read s e n s e key t o s y n s e t i d mapping from i n d e x . s e n s e f i l e i n c o r p u s d i r e c t o r y " " "
3 fn = " i n d e x . s e n s e "
4 i f v e r s i o n :
5 from n l t k . c o r p u s import CorpusReader , LazyCorpusLoader
6
7 i x r e a d e r = LazyCorpusLoader (v e r s i o n , CorpusReader , r " . * / " + fn)
8 e l s e :
9 i x r e a d e r = s e l f

10 wi th i x r e a d e r . open (fn) a s fp :
11 sensekey_map = {}
12 f o r l i n e in fp :
13 f i e l d s = l i n e . s t r i p () . s p l i t ()
14 s e n s e k e y = f i e l d s [0]
15 pos = s e l f . _pos_names [i n t (s e n s e k e y . s p l i t ("%") [1] . s p l i t (" : ") [0])]
16 sensekey_map [s e n s e k e y] = f " { f i e l d s [1]} −{ pos } "
17 re turn sensekey_map
18
19 def map_to_many (s e l f , v e r s i o n =" wordne t ") :
20 sensekey_map1 = s e l f . i n d e x _ s e n s e (v e r s i o n)
21 sensekey_map2 = s e l f . i n d e x _ s e n s e ()
22 s y n s e t _ t o _ m a n y = {}
23 f o r s y n s e t i d in s e t (sensekey_map1 . v a l u e s ()) :
24 s y n s e t _ t o _ m a n y [s y n s e t i d] = []
25 f o r s e n s e k e y in s e t (sensekey_map1 . keys ()) . i n t e r s e c t i o n (
26 s e t (sensekey_map2 . keys ())
27) :
28 s o u r c e = sensekey_map1 [s e n s e k e y]
29 t a r g e t = sensekey_map2 [s e n s e k e y]
30 s y n s e t _ t o _ m a n y [s o u r c e] . append (t a r g e t)
31 re turn s y n s e t _ t o _ m a n y
32
33 def map_to_one (s e l f , v e r s i o n =" wordne t ") :
34 s e l f . nomap [v e r s i o n] = s e t ()
35 s e l f . s p l i t s [v e r s i o n] = {}
36 s y n s e t _ t o _ m a n y = s e l f . map_to_many (v e r s i o n)
37 s y n s e t _ t o _ o n e = {}
38 f o r s o u r c e in s y n s e t _ t o _ m a n y :
39 c a n d i d a t e s _ b a g = s y n s e t _ t o _ m a n y [s o u r c e]
40 i f c a n d i d a t e s _ b a g :
41 c a n d i d a t e s _ s e t = s e t (c a n d i d a t e s _ b a g)
42 i f l e n (c a n d i d a t e s _ s e t) == 1 :
43 t a r g e t = c a n d i d a t e s _ b a g [0]
44 e l s e :
45 c o u n t s = []
46 f o r c a n d i d a t e in c a n d i d a t e s _ s e t :
47 c o u n t s . append ((c a n d i d a t e s _ b a g . c o u n t (c a n d i d a t e) , c a n d i d a t e))
48 s e l f . s p l i t s [v e r s i o n] [s o u r c e] = c o u n t s
49 t a r g e t = max (c o u n t s) [1]
50 s y n s e t _ t o _ o n e [s o u r c e] = t a r g e t
51 i f s o u r c e [−1] == " s " :
52 # Add a mapping from " a " t o t a r g e t f o r a p p l i c a t i o n s l i k e omw ,
53 # where o n l y L i t h u a n i a n and S l o v a k use t h e " s " s s _ t y p e .
54 s y n s e t _ t o _ o n e [f " { s o u r c e [: − 1] } a "] = t a r g e t
55 e l s e :
56 s e l f . nomap [v e r s i o n] . add (s o u r c e)
57 re turn s y n s e t _ t o _ o n e
58
59 def map_wn (s e l f , v e r s i o n =" wordne t ") :
60 " " " Mapping from Wordnet ’ v e r s i o n ’ t o c u r r e n t l y l o ade d Wordnet v e r s i o n " " "
61 i f s e l f . g e t _ v e r s i o n () == v e r s i o n :
62 re turn None
63 e l s e :
64 re turn s e l f . map_to_one (v e r s i o n)

	Introduction
	Methods
	Mapping Strategy
	Linear Time Algorithm
	Complexity
	Implementation

	Results
	Multilingual Coverage
	Splits and Merges
	Performance

	Discussion
	Coverage and Integrity
	Challenges and Opportunities
	Variants of the mapping algorithm

	Conclusion
	Appendix: Implementation in NLTK (Python)

