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Abstract
Numerous approaches for the implementation
of automated fact-checking pipelines have been
proposed and reviewed recently (Guo et al.,
2022). A key part in these pipelines is a claim
matching module that seeks to match new in-
coming claims with potentially existing, ver-
ified claims in a database of completed fact
checks. To that end, we propose a modifi-
cation of the two-stage deep learning-based
approach for claim matching which won the
CLEF CheckThat! 2022 Subtask 2A Challenge
(Shliselberg and Dori-Hacohen, 2022). With
our modification, we were able to reduce the er-
ror rate of the winning algorithm by more than
20%. This was accomplished by employing a
loss function that fuses information from not
only a single, but from multiple non-matching
(i.e. negative) examples into the training pro-
cess at each iteration.

1 Introduction

Fact-checking became an increasingly important
step in journalistic work in response to the prolifer-
ation of fake news online. Misinformation on the
internet spreads at a speed and scale that makes it
more and more difficult for human fact-checkers
to react in a timely manner. It is therefore a desir-
able goal to automate parts of the process. Claim
matching is one portion of this process, in which
an incoming claim is checked against a database of
human-verified claims. The automation of claim
matching has received a considerable amount of in-
terest in recent years (Shaar et al., 2022a,b; Kazemi
et al., 2021; Nakov et al., 2021).

For the CLEF CheckThat! 2022 Subtask 2A
Challenge, Shliselberg and Dori-Hacohen (2022)
proposed a two-step pipeline as the winning entry.
First, a deep pre-trained language model based on
BERT (Devlin et al., 2019) is fine-tuned to generate
a selection of candidates of relevant claims from
the database. Second, the candidates are re-ranked
by fine-tuning a generative language model.

The contribution of this paper is an expan-
sion of the winning method of Shliselberg and
Dori-Hacohen (2022) by (1) including additionally
mined negative examples into the training objec-
tive, (2) investigating a Ranked List Loss (RLL)
as an alternative cost function, and (3) expanding
the analysis of the proposed scheme by including
Mean Average Recall (MAR).

2 Methods

We begin by introducing the employed dataset and
the statistical benchmark used for the mining of
negative examples. Then, we present the different
training objectives for the two stages of the ap-
proach. Lastly, we discuss the evaluation metrics.

2.1 Data and Statistical Benchmark

For the dataset, we used the English portion (Sub-
task 2A) of the dataset provided for the CLEF
CheckThat! 2022 Challenge (Nakov et al., 2022)
based on verified claims from Snopes.com. The
dataset consists of 13,835 verified claims, denoted
with c for claim, and 1,400 input claims, denoted
with t for tweet. The input claims are divided into
999 tweets for training, 199 tweets for development
and 202 tweets for testing. For neural network train-
ing, the body of each fact-checked article is tok-
enized before it is fed into the respective networks.

For our statistical benchmark, we applied a stan-
dard BM251 ranking algorithm (Robertson and
Zaragoza, 2009). The preprocessing for this step
includes concatenating the title, subtitle and body
of the claim, transforming everything into lower-
case, followed by Porter stemming (Porter, 1980).
BM25 provides a ranked list of claims for each
input tweet. Each non-matching claim is defined as
a ‘negative’ and the matching claim is defined as
the ‘positive’. The five highest-ranking negatives
are mined for our experiments.

1BM is an abbreviation for best matching.

Snopes.com


2.2 Candidate Selection
As suggested by Shliselberg and Dori-Hacohen
(2022), we use Sentence-T5 (Ni et al., 2022) for the
initial candidate selection. It is part of the family
of sentence transformers (Reimers and Gurevych,
2019), i.e. deep neural language models based on
self-attention mechanisms (Vaswani et al., 2017). It
produces sentence embeddings projected on the Eu-
clidean unit circle, which makes the angle between
the embeddings a measure of contextual dissim-
ilarity. We use the Multiple Negatives Ranking
(MNR) Loss (Henderson et al., 2017), which mini-
mizes the distance between the input and positive
example and maximizes the distance to all other
examples in the batch. Using batches B ∈ D of
sets D = {(ti, c+i , c

−
i )} with a tweet ti, a positive

c+i and a negative claim c−i , the dot product scoring
Sθ(ti, ci) by the specific neural network θ, and a
fixed temperature τ , the loss function becomes

LMNR(B, θ) = − 1

|B|
∑
i∈B

log
exp

(
Sθ(ti, c

+
i )/τ

)
Qθ,i

with Qθ,i =
∑

j∈B exp(Sθ(ti, c
+
j )/τ)+ (1)

exp(Sθ(ti, c
−
j )/τ).

As we will see in Section 3, the minimization of
the MNR loss can lead to significant performance
improvements of the overall system when it is ex-
panded by mining not one but multiple negatives
for every paired example. This gives the model
potentially even more context, as the tweet is com-
pared to every claim in the batch. We used up to
five negatives that ranked highest in the BM25 run.
For sets D = {(ti, c+i , c

−
i,1, c

−
i,2, c

−
i,3, c

−
i,4, c

−
i,5)} the

expanded loss is defined by

LMNR(B, θ) = − 1

|B|
∑
i∈B

log
exp(Sθ(ti, c

+
i )/τ)∑

j∈B Mθ,i,j

with Mθ,i,j = exp(Sθ(ti, c
+
j )/τ)+ (2)∑5

k=1 exp(Sθ(ti, c
−
j,k)/τ).

2.3 Generative Re-Ranking
For the second step, we, again, follow closely the
setup proposed by Shliselberg and Dori-Hacohen
(2022). The fine-tuned S-T5 network from the first
step is used to generate ranked lists of the five most
similar claims to each input tweet. The combina-
tion of the claim and each input tweet is then em-
ployed separately to fine-tune the generative deep
language model GPTNeo2 (Black et al., 2022). The

2GPTNeo contains on the order of 1.3 billion parameters.

generative model has the capacity to calculate the
conditional probability p(t|c) for tweet and claim
pairs, which, in turn, can be utilized to re-rank the
given list of five tweet/claim pairs provided by the
preceding stage. The tweets and claims therefore
have to be converted into prompts with beginning-
of-sentence < bos > and end-of-sentence < eos >
tokens: < bos > c < eos >< bos > t < eos >.

For the fine-tuning of GPTNeo, we considered a
number of loss functions, primarily motivated by
the loss types recommended in the commensurate
literature. We expanded on the list of losses consid-
ered by Shliselberg and Dori-Hacohen (2022) by
also including the standard ranked list loss (RLL)
into our analysis. The RLL (Nogueira dos Santos
et al., 2020) is defined by

LRLL(B, θ) =
∑
i∈B

max{0, λ− log pθ(ti|c+i )

+ log pθ(ti|c−i )}, (3)

in which the notation pθ denotes the dependence
of the probability estimate on the network parame-
ters θ. The hinge margin λ is a hyperparameter of
the training procedure. The also employed NL3U
loss (Nogueira dos Santos et al., 2020) is based
on the negative log-likelihood loss (Lesota et al.,
2021). It incorporates the unlikelihood probability3

of the negative claim:

LNL3U (B, θ) = (4)

−
∑
i∈B

log pθ(ti|c+i ) + log(1− pθ(ti|c−i )).

Shliselberg and Dori-Hacohen (2022) also intro-
duced the mixed objective

LMix = LMI1 + LMI2 + LNL3U , (5)

which utilizes a hinged prior mutual information
loss (LMI1) and a posterior-based hinged mutual
information loss (LMI2). The loss LMI1 maxi-
mizes mutual information but reverts back to the
maximum likelihood estimate above a threshold λ:

LMI1 =

{
KMI

θ if − log pθ(t|c)
pθ(t)

< λ

KMLE
θ otherwise

(6)

with

KMI
θ = ET,C [− log pθ(t|c) + log pθ(t)]

KMLE
θ = ET,C [− log pθ(t|c)]

3The unlikelihood probability is defined as one minus the
probability.



To also model the posterior, the input order is
flipped and LMI2 is defined as:

LMI2 = EC,T [max(0, λ−
log pθ(c|t) + log pθ(c))] (7)

We utilize LRLL, LNL3U , LMix and a sum of both
mutual information losses, i.e.

LMutInf = LMI1 + LMI2 , (8)
as training objectives to fine-tune the generative
model.

2.4 Evaluation Metrics

The CheckThat! Challenge uses Mean Average Pre-
cision (MAP) for evaluation. In addition to MAP
scores, we also considered the Mean Average Re-
call (MAR) in our analysis. Average Recall at length
k is defined as

AR@k{R, g} =
k∑

i=1

1[R[i] == g] (9)

for a ranked list R with one gold label g, using 1
as an indicator function. MAR is the mean over all
ranked lists and label pairs denoted as Ω:

MAR@k{Ω} =
1

|Ω|
∑

R,g∈Ω
AR@k{R, g} (10)

We are using the standard definition of MAP@k
as the mean value over the average precision
AP@k{R, g} =

∑k
i=1 1[R[i] == g]1i . MAP and

MAR values are bounded between zero and one.
MAP@1 equals MAR@1 by definition. We there-
fore only report MAP@1 scores.

3 Experiments
In our experiments we generated five S-T5 models
through fine-tuning: One with an MNR loss with
one negative, one with an MNR loss with two neg-
atives, and so forth, up to one with an MNR loss
with five negatives. Each S-T5 model is then paired
with four GPTNeo models, one for each of the four
loss functions described in Section 2.3, to create a
total number of 20 systems. The ranked lists gener-
ated by the S-T5 models are used to fine-tune the
respectively paired GPTNeo models. All training
was performed on a server with two NVIDIA RTX
A6000 GPUs with 48 GB memory each. We report
MAP@1, MAP@5, and MAR@5 scores in all our
cases. All evaluations are performed on the test
set defined by the CheckThat! Challenge. Finally,
we compare top performing methods to the BM25
benchmark.

3.1 Candidate Selection

S-T5 is fine-tuned using a batch size of 3, the
AdamW optimizer with a constant learning rate
of 5e-6, an MNR loss temperature τ of 0.1 and a
maximum of 128 tokens for each input for a sin-
gle epoch. Results are presented in Table 1. The
respective highest values in each column are high-
lighted in bold face.

#Neg MAP@1 MAP@5 MAR@5
1 0.896 0.932 0.975
2 0.896 0.933 0.980
3 0.901 0.936 0.980
4 0.896 0.934 0.980
5 0.891 0.931 0.980

Table 1: Evaluation of the S-T5 MNR Fine-Tuning.

Both, MAP@1 and MAP@5, peak for a training
with three negatives and then both decline again
for a training with four and five negatives. The
improvement that a training with three negatives
affords over a training with one negative is on
the order of 0.5 percentage points in both cases.
This finding supports our hypothesis that training
with more negatives provides better context for the
model. Yet, training with too many negatives ap-
pears to put too much weight on the rejection of
negatives and too little weight on the support of
positives. The MAR@5 values increase slightly for
two negatives and then stay constant at 0.980.

3.2 Generative Re-Ranking

Fine-tuning the re-rankers for one epoch includes
a batch size of 1, a maximum of 256 input tokens
for padded prompts, a hinge margin λ = 2 and the
AdamW optimizer with a learning rate of 2e-5. Our
system with one-negative-training is essentially the
system proposed by Shliselberg and Dori-Hacohen
(2022). The MAP@5 score we obtained for the one-
negative/mixed case matches the result reported by
them closely. We attribute slight deviations to dif-
ferences in random initialization, differing batch
sizes due to computational limits and batch shuf-
fling. We omitted the MAR@5 results, since these
did not change and stayed constant at 0.980 for ev-
ery number of negatives above one. The MAR@5
results for one negative all came out to 0.975. The
best-performing loss for each base model in each
column is highlighted in bold. It is apparent that
the mixed approach performed best for all candi-
date selection models and that the RLL approach



#Neg Loss MAP@1 MAP@5

1

Mixed 0.921 0.947
NL3U 0.911 0.941
MutInf 0.896 0.935
RLL 0.658 0.778

2

Mixed 0.936 0.958
NL3U 0.901 0.938
MutInf 0.891 0.933
RLL 0.757 0.850

3

Mixed 0.926 0.953
NL3U 0.921 0.949
MutInf 0.891 0.933
RLL 0.223 0.475

4

Mixed 0.926 0.953
NL3U 0.921 0.947
MutInf 0.886 0.931
RLL 0.871 0.925

5

Mixed 0.926 0.953
NL3U 0.916 0.945
MutInf 0.906 0.942
RLL 0.183 0.421

Table 2: Evaluations over the test set of the CLEF
CheckThat! 2022 Subtask 2A Challenge with GPTNeo
re-ranking for four training objectives.

performed the worst. The NL3U loss alone per-
forms significantly better than RLL and achieves
a peak performance in MAP@1 and MAP@5 for
three negatives. The mutual information loss con-
sistently performs a bit worse than NL3U alone
and achieves its best performance for five nega-
tives. The mixed loss consistently outperforms
other losses and peaks for two negatives with a
MAP@1 value of 0.936 and a MAP@5 value of
0.958. When compared to the MAP@5 value of
0.947 for the training with a single negative, it can
be seen that the error rate, when defined as one
minus MAP@5, is reduced by over 20% with the
proposed multiple negatives training. We attribute
the superior performance of the mixed loss training
to the fact that it incorporates different aspects of
text similarity, measuring mutual information on
the one side and contrasting it with information
about negative examples on the other side.

3.3 Discussion

We present the BM25 evaluation, the best-per-
forming candidate selection model and the best-
performing generative re-ranking model in Table 3.
The BM25 method already provided comparatively

Model MAP@1 MAP@5 MAR@5
BM25 0.797 0.852 0.936

S-T53N 0.901 0.936 0.980
GPTMix,2N 0.936 0.958 0.980

Table 3: Performance summary for experiments over
the test set from the CLEF CheckThat! 2022 Subtask
2A Challenge.

high scores with a MAP@5 value of 0.852 and a
MAR@5 value of 0.936. The best-performing S-
T5 network, fine-tuned with a three-negatives MNR
loss, outperforms the BM25 baseline by more than
eight percentage points with a MAP@5 of 0.936.
The MAP@1 value increases by over ten points and
the MAR@5 value by over four points. The fine-
tuned GPTNeo system based on a two-negatives
S-T5 model with a mixed objective yields the best
performance with a MAP@5 value of 0.958. It
outperforms the reference model with mixed loss
and one-negative-training by about one percentage
point and the best candidate selection model by
over two percentage points.

4 Conclusions and Future Work
The winning algorithm of the CLEF Check-
That! 2022 Challenge for claim matching (Subtask
2A) consists of a two step process: (1) candidate
selection and (2) generative re-ranking. Both steps
are achieved with fine-tuned deep neutral networks.
We generalized the loss function used in the fine-
tuning of the candidate selection network by in-
cluding not just one negative example but multiple
negative examples. Through experimentation with
various configurations and loss functions we were
able to create an overall system that improves the
MAP@1 and MAP@5 scores by over one percent-
age points each, leading to an effective reduction
in error rate of around 20%. Future work may
include an incorporation of other, more powerful
large language models (LLMs) in lieu of GPTNeo.
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