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Abstract

In the present article, five neural networks mod-
els for prediction of the number of elliptical
nodes in Ancient Greek sentences are com-
pared. The models are trained on dependency
treebank data, where elliptical nodes are intro-
duced if and only if they govern nodes that
would otherwise become orphans. As exact
word forms of elliptical nodes cannot often be
identified (and therefore be annotated) in An-
cient Greek, the task is modeled as a multiclass
classification one, where each sentence is asso-
ciated with zero, one, two, or more than two el-
liptical nodes. The study shows that pretrained
BERT token embeddings allow achievement of
the best performance. A model, which is the
first of its kind, is made available for further
research.

1 Introduction

In linguistics, “ellipsis” can be broadly defined as
the phenomenon whereby a sentence lacks one or
more constituents that are left implied, but can be
inferred from the linguistic context.

Depending on the language analyzed and the
theoretical framework, different descriptions and
definitions of ellipsis have been proposed in the
theoretical linguistics literature (see, for example,
Van Craenenbroeck and Temmerman, 2019 for a
general overview).

Ellipsis in Ancient Greek has often been asso-
ciated with, or treated as, a stylistic device in the
older literature (see, for example, Kühner et al.,
1965, pp. 558–571, who provide a long list of ex-
amples, and Schwyzer, 1971, pp. 707–710). In the
more recent literature, however, the phenomenon
has been investigated in word order studies. Gaeta
and Luraghi (2001), for example, distinguish three
different types of ellipsis: gapping, split coordina-
tion, and coordination reduction. Gapping occurs
when there are at least two contrasted constituents:

(1) ὥσπερ ᾿Εμπεδοκλῆς φησὶi φιλίαν, ἄλλος
δέ τις Øi πῦρ, ὁ δὲ Øi ὕδωρ ἢ ἀέρα

‘as Empedocles holds of Love, another
thinker of fire, and another of water or air’1

(Arist. Metaph. 996a 8)

In Example (1), the contrasted constituents are,
on the one hand, “᾿Εμπεδοκλῆς,” “ἄλλος (δέ) τις,”
and “ὁ (δὲ),” and, on the other, “φιλίαν,” “πῦρ,” and
“ὕδωρ ἢ ἀέρα,” the elliptical constituent being the
verb “φησὶ.” This sentence is an example of right-
ward gapping, because the elliptical verbs refer
back to “φησὶ.” This is not the only type of gapping
in Ancient Greek, in that an elliptical constituent
could also refer to a following constituent (leftward
gapping).

Examples of split coordination and coordination
reduction are given by Examples (2) and (3) , re-
spectively:

(2) ἕπεσθαιi δέ οἱz τῶν μαχίμων μὲν οὐδένα

ἀνδρῶν, καπήλους δὲ καὶ χειρώνακτας καὶ
ἀγοραίους ἀνθρώπους Øiz

‘and none of the warriors would go with
him, but only merchants and craftsmen and
traders’ (Hdt. 2.141.4)

(3) ἱστίαi μὲν στείλαντο, θέσαν δ᾿ Øi ἐν νηῒ

μελαίνῃ

‘they furled the sail, and stowed it in the
black ship’ (Hom. Il. 1.433)

In Example (2), the verb and its second argument
“οἱ” are omitted, while in Example (3) only the
object is.2 Ellipsis of direct object (and some other
second arguments)3 often occurs also in complex

1Translations in the article derive from the Perseus Digital
Library at http://www.perseus.tufts.edu/hopper/.

2As Ancient Greek has a rather free, information structure-
based word order, indication of the position of the ellipsis in
the examples is to be considered approximate.

3I leave aside the question of the relationship between
ellipsis and verb valency in Ancient Greek, which has not yet
been investigated satisfactorily. Indeed, in some examples,

http://www.perseus.tufts.edu/hopper/


sentences, as in Example (4) (Luraghi, 2003, p.
170) :

(4) ὁ δὲ ἐμπιμπλὰς ἁπάντωνi τὴν γνώμην,
ἀπέπεμπε Øi

‘having satisfied the expectation of all, he
dismissed them’ (Xen. Anab. 1.7.8)

The variety of ellipsis types, of which Example (1)–
(4) just offer a meager glimpse, is clearly dependent
on information structure, which has been proved
to determine the high configurational complexity
of Ancient Greek word order (Celano, 2013; Dick,
1995). As can be expected, therefore, it is not
only challenging to describe and explain ellipsis in
Ancient Greek, but also to annotate it.

In the following sections, I present five models
built to predict the number of elliptical nodes in An-
cient Greek sentences. More precisely, an overview
of related work is given in Section 2. Section 3 pro-
vides details on the data used for the present study,
while Section 4 describes ellipsis annotation. Five
models to predict ellipsis are compared in Section 5.
A few concluding remarks are contained in Section
6.

2 Related Work

Most of the previous ellipsis-related work con-
ducted in computational linguistics/NLP has so far
focused on verb phrase ellipsis (VPE) in English.4

Hardt (1997) describes a rule-based system to
resolve ellipsis in 644 examples from the Penn
Treebank and, more recently, Hardt (2023) tests the
ability of a number of Large Language Models to
understand ellipsis. Nielsen (2004) tests a variety
of machine learning algorithms for VPE detection
using the British National Corpus and the Penn
Treebank. Bos and Spenader (2011) provide an
account for the creation of a new VPE corpus, by
detailing the annotation process of the 25 sections
of the Wall Street Journal contained in the Penn
Treebank. Bos and Spenader’s (2011) corpus has
also been used by Zhang et al. (2019), which seems
to be the first neural networks-based study on VPE.

In the above-mentioned literature, VPE process-
ing for English is divided into two main related
tasks: (i) VPE detection and (ii) VPE resolution.

one might posit one-argument verbs instead of two-argument
verbs with ellipsis of an object.

4Noun ellipsis detection, which is less relevant for the
present study, has recently been investigated by Khullar
(2020).

Codepoint F RF
Greek Coronis (U+1FBD) 7,224 0.16

Combining Comma Above (U+0313) 28,581 0.63

Apostrophe (U+0027) 11 0.00

Right Single Quotation Mark (U+2019) 4,481 0.10

Modifier Letter Apostrophe (U+02BC) 5,269 0.12

45,566 1

Table 1: Unicode characters used to encode the apostrophe
in the original treebank data with their (relative) frequencies.

VPE detection is modeled as a binary classifi-
cation task outputting whether or not auxiliaries,
such as “do,” “be,” or “have,” are used as triggers,
i.e., they replace a preceding VP. On the other hand,
VPE resolution aims to identify the antecedent a
given trigger refers to: more precisely, the task in-
volves identification of candidate antecedents, over
each of which a binary classification task is per-
formed (Zhang et al., 2019).

As will be shown in the following sections, the
task at hand to predict ellipsis in Ancient Greek
differs from the above-mentioned studies because
it only concerns detection of the number of ellip-
tical nodes in a sentence, without identification of
its word form or resolution. This task indeed de-
pends on the nature of the Ancient Greek language,
where, typically, there is no trigger constituent for
an elliptical node, and its exact form and position
are often unclear.

3 The Data

There exist two major related data sets contain-
ing morphosyntactic annotations of Ancient Greek
texts, which also include annotation for ellipsis:
the Ancient Greek Dependency Treebank5 and the
Dependency Treebanks of Ancient Greek Prose
(Gorman, 2020).6 7

The two treebanks, which have been annotated
using the same annotation scheme, have been
merged together (for convenience, I henceforth
refer to this data set as “Ancient Greek Depen-
dency Treebank”): the data set comprises 187 files,

5https://github.com/PerseusDL/treebank_data/
releases/tag/v2.1_IGDS.

6I downloaded the data from the main branch of https://
github.com/vgorman1/Greek-Dependency-Trees, which
contains more recent data than the released one at https:
//zenodo.org/record/3596076#.XlZ7CxP7Su4.

7I limited the study to the above-mentioned data sets.
There exist, however, a few others: in particular, Pedalion,
which is available in a beta version, is worthy of note (Keers-
maekers et al., 2019).

https://github.com/PerseusDL/treebank_data/releases/tag/v2.1_IGDS
https://github.com/PerseusDL/treebank_data/releases/tag/v2.1_IGDS
https://github.com/vgorman1/Greek-Dependency-Trees
https://github.com/vgorman1/Greek-Dependency-Trees
https://zenodo.org/record/3596076#.XlZ7CxP7Su4
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Model Class Weights Accuracy Precision Recall F1
M w M w M w

FeedforwardBaseline

0.77 0.42 0.70 0.27 0.77 0.27 0.71

✓ 0.67*** 0.33 0.70 0.34 0.67 0.33 0.68

FeedforwardDBBE−BERT

0.85*** 0.64 0.84 0.50 0.85 0.55 0.84
✓ 0.80*** 0.58 0.81 0.53 0.80 0.52 0.80

TransformerDBBE−BERT

0.85*** 0.61 0.83 0.50 0.85 0.54 0.84
✓ 0.79*** 0.54 0.81 0.53 0.79 0.51 0.79

TransformerWordPiece35000

0.78** 0.44 0.71 0.28 0.78 0.29 0.71

✓ 0.54*** 0.31 0.69 0.39 0.54 0.26 0.59

LSTMDBBE−BERT

0.85*** 0.61 0.83 0.49 0.85 0.53 0.83

✓ 0.81*** 0.57 0.81 0.53 0.81 0.53 0.81

Table 2: Model metrics calculated on the test set (M = macro, w = weighted). Statistical differences from
FeedforwardBaseline are calculated using Stuart-Maxwell tests and reported in the accuracy column (p < 0.05 (*), p
< 0.01 (**), and p < 0.001 (***)). The highest values are indicated in bold.

amounting to 54,925 sentences and 1,063,984 to-
kens.8 In order to facilitate further processing, the
data set has been normalized with respect to (i)
Unicode form and characters and (ii) tokenization
scheme.

The texts have been NFC normalized, and there
has been an attempt to make the encoding of the
apostrophe uniform. There are at least five different
Unicode characters with indistinguishable glyphs
that are interchangeably used in the treebank texts
(see Table 1): they have all been converted into
Modifier Letter Apostrophe (U+02BC).

There has also been an attempt to normalize the
data with respect to the tokenization scheme: in-
deed, while most Ancient Greek graphic words co-
incide with morphosyntactic words (and therefore
with the tokens found in the Ancient Greek Depen-
dency Treebank), there are two main cases where
this does not hold true: (i) (negative) conjunctions
and (ii) words contracted by crasis.

Conjunctions include examples such as “οὐδὲ”
(“and/but not”), which is split into “οὐ” (“not”)
and “δὲ” (“and/but”): there are 12 such conjunc-
tions9 and, in the final data set, they have all been
segmented.

The words contracted by crasis are words that
are univerbated for phonological reasons: an ex-
ample is “κἀγὼ,” which consists of the word “καὶ”
(“and”) and “ἐγὼ” (“I”). In the original treebank

8The data set is made available at https:
//git.informatik.uni-leipzig.de/celano/ellipsis_
Ancient_Greek.

9The full list is available at https://git.informatik.
uni-leipzig.de/celano/ancientgreeknlp/-/blob/
master/tokenize/texts/to-tokenize.xml.

data, about half of all crases are split: it has been
found heuristically that 1,371 cases of crasis are
split, while 1,110 are not.10 Since identification,
segmentation, and morphosyntactic analysis of
crases is challenging, they have not been modified
in the final data set. The data and the best model
(Feedforward-DBBE-BERT) are made available
online11 for further research.

4 Ellipsis annotation

There are two main challenges with reference to
ellipsis annotation in treebanks: (i) identification
of ellipsis and (ii) its formal representation.

In Ancient Greek, ellipsis is typically not sig-
naled by a trigger such as auxiliaries in English.
On the contrary, its presence can be inferred from
linguistic context, as the following example shows:

(5) κρατουμένων μὲν γὰρ ἐπίστασθε ὅτι

πάντα ἀλλότρια

‘for when men are conquered, you are
aware that all their possessions become the
property of others’ (Xen. Anab. 3.2.28)

In Example (5), the object clause can be properly
annotated only by positing existence of an elliptical
verb connecting “πάντα” and “ἀλλότρια,” as Fig-
ure 1 shows. Indeed, there is only one annotation
rule for ellipsis annotation in the Ancient Greek
Dependency Treebank: an elliptical node is recog-

10According to this calculation, crases would amount to
about 0.23% of all treebank tokens.

11https://git.informatik.uni-leipzig.de/celano/
ellipsis_Ancient_Greek.

https://git.informatik.uni-leipzig.de/celano/ellipsis_Ancient_Greek
https://git.informatik.uni-leipzig.de/celano/ellipsis_Ancient_Greek
https://git.informatik.uni-leipzig.de/celano/ellipsis_Ancient_Greek
https://git.informatik.uni-leipzig.de/celano/ancientgreeknlp/-/blob/master/tokenize/texts/to-tokenize.xml
https://git.informatik.uni-leipzig.de/celano/ancientgreeknlp/-/blob/master/tokenize/texts/to-tokenize.xml
https://git.informatik.uni-leipzig.de/celano/ancientgreeknlp/-/blob/master/tokenize/texts/to-tokenize.xml
https://git.informatik.uni-leipzig.de/celano/ellipsis_Ancient_Greek
https://git.informatik.uni-leipzig.de/celano/ellipsis_Ancient_Greek


nized if and only if it is necessary to build a correct
syntactic tree, i.e., the posited elliptical node has
syntactic dependents.

ἐπίστασθε ὅτι πάντα ἀλλότρια Ø
you know that all of others become

AuxC

OBJ

PNOM

SUBJ

Figure 1: (Partial) linguistic tree for Xen. Anab. 3.2.28.

If an elliptical node, as in Example (5), meets
this condition, a new token is added at the end
of the relevant sentence: such formalization has
the advantage of allowing for the elliptical node to
function as any other node, and therefore receive
annotation for its head and its syntactic function.
A disadvantage of this annotation is however that
the number of original sentence tokens changes un-
predictably, and therefore comparison of different
annotations, as well as further machine learning
processing, presents an added layer of complex-
ity.12

In Example (5), the elliptical verb is likely to be
“γίγνομαι,” to be added after “ἀλλότρια”: however,
both form and position of an elliptical constituent
are often ambiguous in practice. For this reason,
ellipsis representation has been normalized in the
data set, so that its form always corresponds, con-
ventionally, to a number in squared brackets (e.g.,
[0])13, and its position is always at the end of a
sentence, after any other non-elliptical node.

5 Experiment

Prediction of the number of elliptical nodes in An-
cient Greek sentences has been modeled as a mul-
ticlass classification task, with 4 class labels for
(i) none, (ii) 1, (iii) 2, and (iv) 3 or more elliptical
nodes per sentence, respectively.

As Figure 2 shows, sentences with no ellipsis
and up to 3 elliptical nodes represent about 99.5%
of all sentences: for better model performance,
therefore, rare sentences with more than 3 elliptical

12This is probably the reason why, in Universal Depen-
dencies, ellipsis is annotated at the level of syntactic la-
bel (https://universaldependencies.org/u/overview/
specific-syntax.html#ellipsis): this solution, however,
suffers from the disadvantage of rendering syntactic annota-
tion rather obscure.

13[0] means one elliptical node, [1] two elliptical nodes,
and so on and so forth.

Figure 2: Key statistics for elliptical nodes in the whole
data set.

nodes have been included in the class representing
3 elliptical nodes.

In the following sections, I compare five ma-
chine learning models. Each of them has also been
trained with class weights14 because of the class-
unbalanced data set. The data set has been divided
into training (∼80%), development (∼10%), and
test (∼10%) data sets.15 Accuracy, macro- and
weighted-average precision, recall, and F1 are the
metrics used for evaluation. To evaluate statistical
significance, Stuart-Maxwell marginal homogene-
ity tests are used.

5.1 Model Architectures

A feedforward neural network has been cho-
sen as a baseline model (Feedforward-Baseline),
and its output has been compared to those
of four different models: (i) a feedforward
model with pretrained BERT token embeddings
(Feedforward-DBBE-BERT); (ii) an encoder-only
transformer with pretrained BERT token embed-
dings (Transformer-DBBE-BERT); (iii) an encoder-
only transformer with randomly initialized token
embeddings (Transformer-WordPiece35000); (iv)
an LSTM neural network with pretrained BERT

14Weights are calculated using the method
compute_class_weight of sklearn.utils.class_weight
(with balanced argument).

15Because of unbalancedness, the development and test data
sets have been selected through stratified sampling, with strata
being the classes of the dependent variable.

https://universaldependencies.org/u/overview/specific-syntax.html#ellipsis
https://universaldependencies.org/u/overview/specific-syntax.html#ellipsis


token embeddings (LSTM-DBBE-BERT).16

As Figure 3 shows, the baseline model con-
sists of 3 ReLU-activated linear layers (with 5,000,
2,000, and 1,000 units, respectively), a 0.2 dropout
layer, and a final linear layer with softmax activa-
tion. Sentences are vectorized using TF-IDF scores
calculated using the sentences themselves as docu-
ments.

An already existing BERT model (DBBE-BERT)
(Singh et al., 2021)17 has been fine-tuned for the
Feedforward-DBBE-BERT model. The DBBE-
BERT model is a Masked Language Model that has
been trained on Modern and Ancient Greek data.
The tokenizer vocabulary of the model consists of
35,000 tokens and each token embedding has 768
dimensions. The DBBE-BERT token embeddings
have been fed into a global average pooling layer
followed by a 0.2 dropout layer, two linear layers
with 500 and 100 units respectively, a 0.2 dropout
layer, and the final softmax-activated linear layer
outputting probabilities (the model architecture is
the same as that of the LSTM model shown in Fig-
ure 6, except for the LSTM layer, which is replaced
by a global average pooling layer).

Since sentences are composed of words, an
encoder-only transformer has been tested to lever-
age relationships between them. Two variants of
the encoder-only transformer have been tested.

The first variant (see Figure 4) aims to test
whether a transformer layer can improve the per-
formance of the DBBE-BERT token embeddings,
which also rely on a transformer-based architec-
ture.

The DBBE-BERT token embeddings are fed into
an encoder-only transformer based on Vaswani et al.
(2017), mainly consisting of a 2-head attention
layer and a feedforward network with two 768-
unit linear layers. The output of the transformer
is then fed into a further feedforward component,
with two linear layers with 500 and 100 units, re-
spectively. All dropout and layer normalization
layers have arguments 0.2 (rate) and 1e-6 (epsilon),
respectively.

The second variant of the encoder-only trans-
former aims to assess the contribution of pretrained
DBBE-BERT token embeddings. The model archi-

16These token embeddings, as emerges in the following
paragraphs, are the DBBE-BERT ones.

17The model is called by the authors “Extended Ancient
Greek BERT” and, in this paper, “DBBE-BERT” for brevity’s
sake (DBBE is the acronym of the project “Database of Byzan-
tine Book Epigrams,” within which the model was developed).

tecture is the same as the one described above (see
Figure 4), except for token embeddings, which are
not pretrained, but randomly initialized.

The tokens for the latter model are identified
by a WordPiece algorithm with a vocabulary of
35,000 based on the texts of Opera Graeca Adno-
tata (Celano, 2023), a 34,172,140 token standoff
annotation corpus. The texts in Opera Graeca Ad-
notata come from the Perseus Digital Library and
First1KGreek projects,18 and therefore coincide,
for the most part, with those used to calculate the
DBBE-BERT token embeddings. Each randomly
initialized token embedding has 2,000 dimensions,
with the transformer encoder’s feedforward net-
work consisting of two linear layers with 2,000
(and not 768) units each.

The last tested model is a LSTM neural network
(see Figure 6), with a LSTM layer of 1,000 units,
followed by two linear layers with 500 and 100
units, respectively, and ReLU activation (the rate
of both dropout layers is 0.2). Token embeddings
are calculated by the same pretrained DBBE-BERT
model used for the Transformer-DBBE-BERT and
Feedforward-DBBE-BERT models.

All models have been trained with the Adam op-
timizer with a learning rate of 1e-6. Early stopping
has been determined by monitoring validation loss
with a patience of 2 epochs.

5.2 Results

As Table 2 shows, the baseline model without class
weights seems to achieve a good accuracy score:
however, this score is misleading, in that it is the
same as that of a dummy classifier always predict-
ing the most frequent class label (i.e., the none
label, which means absence of elliptical nodes).

Notably, Transformer-WordPiece35000 without
class weights provides results very similar to the
baseline ones (see also Figure 5 and 7). The
model performance turns out to be statistically
different from the baseline’s one according to a
Stuart-Maxwell test, whose probability value is
greater than 0.001, but lower than 0.01. The feed-
forward model, the transformer, and the LSTM
model trained with the DBBE-BERT token embed-
dings (without class weights) show the best results,
with accuracy scores that are 8% higher than the
baseline’s one.19

18https://github.com/PerseusDL/
canonical-greekLit; https://github.com/
OpenGreekAndLatin/First1KGreek.

19The Feedforward-DBBE-BERT model is made available

https://github.com/PerseusDL/canonical-greekLit
https://github.com/PerseusDL/canonical-greekLit
https://github.com/OpenGreekAndLatin/First1KGreek
https://github.com/OpenGreekAndLatin/First1KGreek


Figure 3: Baseline model architecture.

Figure 4: Encoder-only transformer architecture.

Figure 5: Confusion matrix for the baseline model show-
ing false negative rates and recall (test data set).

The performances of models with class weights
are worse than those of the corresponding mod-
els without weigths, and the their differences are
statistically significant (p < 0.001).

Feedforward-DBBE-BERT’s, Transformer-
DBBE-BERT’s, and LSTM-DBBE-BERT’s
performances are comparable: however, when
their outputs are tested with Stuart-Maxwell tests
(pairwise), only Feedforward-DBBE-BERT’s and
LSTM-DBBE-BERT’s results turn out to be not
statistically different (p > 0.05).

The results suggest that the pretrained DBBE-
BERT token embeddings play a crucial role.
The transformer architecture of Transformer-
WordPiece35000 guarantees a context-aware token
representation, but this seems to be not enough for

at https://git.informatik.uni-leipzig.de/celano/
ellipsis_Ancient_Greek.

the task at hand, if token embeddings are randomly
initialized.

5.3 Error Analysis
As Figure 5 shows, the baseline model without
class weights can almost exclusively classify sen-
tences as belonging to class none and 1. Most sen-
tences of class none are classified correctly (recall
0.97), even if the classifier also tends to incorrectly
label as none most sentences with classes 1, 2, and
>2. 12% of the sentences with label 1 are classified
correctly, but most of the sentences the classifier
labels as 1 are misclassified (see also Table 3). The
baseline model with class weights identifies more
sentences of class 2 and >2, but precision and re-
call scores for these classes are very low (0.08, 0.1
and 0.13 and 0.11, respectively), and, more in gen-
eral, its overall performance, as shown by Table 2,
is worse than that of the baseline model without
weights.

Figure 7 shows that the confusion matrix for
Transformer-WordPiece35000 is surprisingly com-
parable to the baseline’s one (without weights), in
that there are almost no predicted sentences of class
2 or >2, and the classifiers’ scores for class 1 and
none are also very similar.

Analysis of the confusion matrices for
Feedforward-DBBE-BERT, Transformer-DBBE-
BERT, and LSTM-DBBE-BERT in Figure 7
reveals that they are very similar. Most sentences
with no or one elliptical node are correctly
classified. Classification of sentences with 2 or
more than 2 elliptical nodes remains a challenge,
since most of them are misclassified. There
is however an improvement in comparison to

https://git.informatik.uni-leipzig.de/celano/ellipsis_Ancient_Greek
https://git.informatik.uni-leipzig.de/celano/ellipsis_Ancient_Greek


Figure 6: LSTM architecture.

Figure 7: Confusion matrices for the models (without
class weights) showing false negative rates and recall
(test data set).

the baseline model: Feedforward-DBBE-BERT,
for example, correctly classify 24% of 2-class
sentences and 25% of >2-class sentences. The
improvement of the models trained with the
pretrained DBBE-BERT token embeddings is also
confirmed by the precision, recall, and F1 scores
per class reported in Table 3. I hypothesize that the
bad performance in identifying sentences with two
or more than two elliptical nodes much depends on
the data set being highly unbalanced.

6 Conclusion

The present study compared five neural network
models for prediction of the number of elliptical
nodes in Ancient Greek sentences. The compar-
ison showed that models with pretrained BERT
token embeddings fine-tuned for the task at hand
achieved the best results, with a good accuracy
score (0.84), but a not very high macro-averaged
F1 score (0.55 for Feedforward-DBBE-BERT). In
comparison, the transformer architecture with ran-
domly initialized token embeddings (Transformer-
WordPiece35000) scored significantly worse, with
a performance comparable to that of the baseline
feedforward network with TF-IDF sentence vector-
ization (without class weights).

Model Class Precision Recall F1

BASELINE

1 0.38 0.12 0.18

2 0.50 0.00 0.01

>2 0 0 0

none 0.80 0.97 0.88

FF-BERT

1 0.67 0.56 0.61

2 0.47 0.24 0.32

>2 0.52 0.25 0.34

none 0.90 0.96 0.93

TR-BERT

1 0.64 0.56 0.59

2 0.40 0.20 0.27

>2 0.48 0.30 0.37

none 0.90 0.95 0.93

LSTM-BERT

1 0.65 0.53 0.59

2 0.43 0.20 0.28

>2 0.46 0.25 0.32

none 0.89 0.96 0.92

Table 3: Precision, recall, and F1 scores per class for
the models Baseline, Feedforward-DBBE-BERT (FF-
BERT), Transformer-DBBE-BERT (TR-BERT), and
LSTM-DBBE-BERT (LSTM-BERT) (test data set).

The study also showed that performances of
model architectures of different complexity fed
with the same pretrained BERT token embeddings
(i.e., Feedforward-DBBE-BERT, Transformer-
DBBE-BERT, and LSTM-DBBE-BERT without
class weights) proved to be comparable.

Limitations

Since annotation was performed by single annota-
tors, some variability in ellipsis identification has
to be expected in the original data.
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