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Abstract
We proposed a framework and its implemen-
tation as a Python library for converting En-
glish utterances into higher-order logic (HOL)
formulas. HOL extends first-order logic and
provides flexibility for representing natural lan-
guage semantics. Our library uses a broad-
coverage and robust HPSG grammar for En-
glish to produce minimal recursive semantics
(MRS) structures. These open-source technolo-
gies from the DELPH-IN Consortium balance a
rigorous linguistic grounding and composition-
ality with practical aspects for natural language
processing applications. Finally, we evaluated
our approach over SICK, a popular dataset for
text entailment.

1 Introduction

Over the last decades of research on natural lan-
guage processing (NLP) and computational linguis-
tics (CL), many approaches were proposed for ex-
tracting the meaning of linguistic utterances into
machine-understandable and unambiguous struc-
tures called meaning representations, a task called
semantic parsing or semantic analysis (Jurafsky
and Martin, 2023). More broadly, the construc-
tion and reasoning with meaning representations of
natural language expressions are in the context of
computational semantics.

This article presents MRS Logic, a library to
translate English sentences into logical formulas.
MRS Logic is based on methods and tools already
extensively studied in the literature and presented
in Section 2. Still, it presents some novelty in
integrating these resources, our representation lan-
guage, and how sizeable existing knowledge bases
can be easily reused for language understanding.

Consider the ambiguous sentence from Exam-
ple (1). MRS Logic elucidates all possible inter-
pretations for it, formalizing them in higher-order
logic (HOL) expressions. Figure 1 presents two
interpretations. Section 3 describes our transforma-
tion.

(1) The oil company ensured no chemicals poi-
soned the river.

From the last paragraph, we can highlight one as-
pect of our approach: we embrace the ambiguity of
natural language. Example (1) has 52 possible inter-
pretations, each representable by a logical expres-
sion. Dealing with all possible interpretations and
postponing pruning as much as possible may be re-
quired by knowledge-intense applications. In many
cases, only after linking the linguistic elements to
the non-linguistic knowledge of the world can one
effectively establish the pragmatics or the speaker’s
meaning (Quine, 1960; Bender et al., 2015).

Our proposal contrasts with the dominant ap-
proach in NLP, where tools shift from explicit sym-
bolic semantic representation to non-compositional
and opaque representations such as vector embed-
dings. Avoiding any strong claim about the re-
quirements for any system that aims at language
understanding, we shared some concerns reported
in (Mitchell, 2023; Bender et al., 2021) with purely
language-model-based tools. Nevertheless, we en-
vision combining large language models (LLM)
with symbolic methods in NLP. For instance, ex-
tracting relevant common-sense facts from a vast
collection of texts.

A well-known problem in the NLP/CL literature
is the appropriate metrics for evaluating text un-
derstanding and, consequently, the adequacy of the
semantic representation formalisms. (Condoravdi
et al., 2003) made a case for considering the recog-
nition of text entailment (RTE) between natural
language utterances, now broadly considered not
a sufficient criterion for language understanding.
Still, it remains accepted as a minimal necessary
criterion. With that in mind, we evaluate the pro-
posals for semantic representations by measuring
their performance on supporting entailment and
contradiction detection between pairs of sentences.
Section 4 discusses the performance of our system
in a balanced subset of a well-known RTE dataset.



∃ x10, _oil_n_1 x10 ∧ (∃ x23, _river_n_of x23 ∧ (∃ x6, (∃ e9, compound e9 x6 x10 ∧ _company_n_of x6)∧
(∃ e3, _ensure_v_1 e3 x6 (∀x19, _chemical_n_1 x19 → ¬(∃ e24, _poison_v_1 e24 x19 x23)))))

(1)

∃ x10, _oil_n_1 x10 ∧ (∀x19, _chemical_n_1 x19 → ¬(∃ x23, _river_n_of x23 ∧ (∃ x6, (∃ e9,

compound e8 x6 x10 ∧ _company_n_of x6) ∧ (∃ e24 e3, _ensure_v_1 e3 x6 (_poison_v_1 e24 x19 x23)))))
(2)

Figure 1: Two possible logical formulas expressing the possible interpretations for Example (1).

In Section 5, we make some final remarks.
To sum up, our contributions are (1) a frame-

work to produce logical expressions in HOL from
English sentences, leveraging ERG grammar and
related technologies from the DELPH-IN Consor-
tium; 1 (2) a balanced subset of SICK corpus, shar-
ing our results on the evaluation of our tool on that
and some findings.

2 Background

Our library will be described in Section 3, but first,
we must describe the technologies we reused and
integrated.

The main component of MRS Logic is the En-
glish Resource Grammar (ERG) (Flickinger, 2000;
Flickinger et al., 2000; Copestake and Flickinger,
2000). The English Resource Grammar is a broad-
coverage, linguistically precise, general-purpose
computational grammar under continuous devel-
opment since 1994. It is implemented in the theo-
retical framework of Head-driven Phrase Structure
Grammar (Pollard and Sag, 1994) where both mor-
phosyntactic and semantic properties of English are
expressed in a declarative format. Combined with
specialized processing tools, it can map running
English text to highly normalized representations
of meaning called Minimal Recursion Semantics
(MRS) (Copestake et al., 2005). ERG is devel-
oped as part of the international Deep Linguistic
Processing with HPSG Initiative (DELPH-IN). It
can be processed by several parsing and realiza-
tion systems, including the LKB grammar engi-
neering environment (Copestake, 2002), as well as
more efficient parsers such as ACE (Crysmann and
Packard, 2012).2

MRS structures are expressive and have a direct
interface with syntax. It can be underspecified in
many ways; here, we will describe the underspecifi-
cation of fine-grained senses and quantifiers’ scope.
Underspecification allows a single MRS to capture
a set of interpretations. Figure 2 shows one among

1https://github.com/delph-in/docs/wiki
2http://sweaglesw.org/linguistics/ace/

the five possible MRSs for Example (1). It consists
of a multiset of relations called elementary predi-
cations (EPs). An EP usually corresponds to a sin-
gle lexeme but can represent grammatical features
(e.g., compound and udef_q, called abstract predi-
cates). Each EP has a label or handle, a predicate
symbol, which, in the case of lexical predicates,
encodes information about lemma, part-of-speech,
and coarse-grained sense distinctions, and a list of
numbered arguments: ARG0, ARG1, etc. The value
of an argument can be either a scopal variable (a
hole representing the places where alternative la-
bels could fill) or a non-scopal variable (events,
states, or entities). The ARG0 argument has the EP’s
distinguished variable. This variable denotes an
event, state, or referential or abstract entity (ei or
xi, respectively). Each non-quantifier EP has its
unique distinguished variable. Finally, an MRS has
a set of handle constraints describing how the EPs’
scopal arguments can be nested with EP labels. A
constraint hi =q hj denotes equality modulo quan-
tifier insertion. In addition to the indirect linking
through handle constraints, EPs are directly linked
by sharing the same variable as argument values,
capturing the predicate-argument structure of the
sentence. Finally, MRS also records properties
on variables indicating morpho-syntactic marks of
person, number, tense, aspect, etc.

In Figure 2, we see the MRS of the Exam-
ple (1) where the topmost relation is _ensure_v_1,
which has the non-empty arguments x6 and h16.
The x6 is the distinguished variable of the rela-
tion _company_n_of. A handle constraint equates
the sentential variable h16 with h22, the label of
_poison_v_1. The rest of the EPs can be explained
similarly. Note that h5 does not appear in the han-
dle constraints, suggesting that we have more than
one possible way to equate this hole with the avail-
able labels.

The underspecification of scopes in the MRS
of Figure 2 can be represented as the dominance
graph (Koller and Thater, 2005) in Figure 3, a di-
rected graph with two kinds of edges: tree edges
and dominance edges (in red). Dominance graphs

https://github.com/delph-in/docs/wiki
http://sweaglesw.org/linguistics/ace/


⟨ h1, e3,
h4:_the_q⟨0:3⟩(ARG0 x6{PERS 3,NUM sg}, RSTR h7, BODY h5),
h8:compound⟨4:15⟩(ARG0 e9{SF prop, TENSE untensed,MOOD indicative, PROG -, PERF -}, ARG1 x6, ARG2 x10),
h11:udef_q⟨4:7⟩(ARG0 x10, RSTR h13, BODY h12),
h14:_oil_n_1⟨4:7⟩(ARG0 x10),
h8:_company_n_of⟨8:15⟩(ARG0 x6, ARG1 i15),
h2:_ensure_v_1⟨16:23⟩(ARG0 e3{SF prop, TENSE past,MOOD indicative, PROG -, PERF -}, ARG1 x6, ARG2 h16),
h17:_no_q⟨24:26⟩(ARG0 x19{PERS 3,NUM pl, IND +}, RSTR h20, BODY h18),
h21:_chemical_n_1⟨27:36⟩(ARG0 x19),
h22:_poison_v_1⟨37:45⟩(ARG0 e24{SF prop, TENSE past,MOOD indicative, PROG -, PERF -}, ARG1 x19, ARG2 x23),
h25:_the_q⟨46:49⟩(ARG0 x23{PERS 3,NUM sg, IND +}, RSTR h27, BODY h26),
h28:_river_n_of⟨50:55⟩(ARG0 x23, ARG1 i29)

{ h1 =q h2, h7 =q h8, h13 =q h14, h16 =q h22, h20 =q h21, h27 =q h28 } ⟩

Figure 2: The first MRS return by ERG for the Example (1).

h4: _the_q

(h7) (h5)

h8: compound & _company_n_of h2: _ensure_v_1

h11: udef_q

(h13) (h12)

h14: _oil_n_1

(h16)

h22: _poison_v_1

h17: _no_q

(h20) (h18)

h21: _chemical_n_1

h25: _the_q

(h27)(h26)

h28: _river_n_of

Figure 3: A dominance graph of the MRS from Figure 2.

are used as underspecified descriptions that can be
solved to sets of scope trees 3 that later can be real-
ized as formulas in some formal language. Figure 4
shows one of the 32 possible scope trees for the
dominance graph from Figure 3. For computing the
dominance graph and all possible scope trees for
an MRS, we use Utool (Koller and Thater, 2005,
2006, 2010), a GUI and library written in Java.4.

The scope trees are not directly useful for rea-
soning, and the CL literature has many proposals
for representing NL utterance semantics. One of
the most fundamental issues about which logic to
use is whether one assumes any structure on the
individuals. Other issues are the complexity, decid-
ability, and tools for reasoning in a particular logic.
So far, it is reasonable to accept that no existing
logic is adequate for all the phenomena of natural
language – although we acknowledge different log-
ics individually capture some of the phenomena
already studied.

Type theories are widely used in formal theories
of the semantics of natural languages (Chatzikyri-
akidis and Luo, 2020; Ranta, 1994; Winter, 2016).

3We are adopting the term suggested by (Emerson, 2020).
4https://github.com/coli-saar/utool/

h4: _the_q

h8: compound & _company_n_of h2: _ensure_v_1

h11: udef_q

h14: _oil_n_1 h25: _the_q

h17: _no_q

h21: _chemical_n_1 h22: _poison_v_1

h28: _river_n_of

Figure 4: One possible scope tree resolved from the
dominance graph from Figure 3.

https://github.com/coli-saar/utool/


A subset of that, simple type theory, also called
higher-order logic (HOL), is a natural extension
of first-order logic, which is elegant, highly ex-
pressive, and practical (Farmer, 2008). Inspired
by modern implementations of simple type the-
ory, such as HOL Light (Harrison, 2009) and Is-
abelle/HOL (Nipkow et al., 2002), and also by in-
teractive proof assistants based on dependent type
theory, such as Lean (Moura and Ullrich, 2021)
and Coq (The Coq Development Team, 2021),
we implemented the ULKB Logic (Lima et al.,
2023). The formulas presented in Figure 1 are
HOL formulas encoded in ULKB Logic. ULKB
is an open-source framework written in Python
for logical reasoning over knowledge graphs. It
provides an interactive theorem prover-like envi-
ronment that can interact with external provers like
the E prover (Schulz et al., 2019) and the Z3 SMT
solver (de Moura and Björner, 2008).

Finally, consider the possible senses for the word
‘company.’ ERG only distinguishes senses that are
morphosyntactically marked. Since further sense
distinctions could never be disambiguated based
on grammatical structure alone, the ERG predicate
symbol _company_n_of intended to be an under-
specified representation of all the specific word
senses. Wordnet 3.0 (Miller, 1995) contains nine
possible nominal senses for this word. We use
UKB (Agirre and Soroa, 2009) for Word Sense
Disambiguation (WSD), the ERG predicates. It
is a collection of programs for performing graph-
based and lexical similarity using a pre-existing
knowledge base.

3 MRS to Logic

MRS Logic is a library built on top of PyDel-
phin (Goodman, 2019) and ULKB.5 It uses Py-
Delphin to coordinate the call to ERG and iterate
over all possible MRS. An MRS is transformed
into a scope tree using Utool and finally translated
to ULKB formulas. MRS-Logic integrates all tech-
nologies described in Section 2. This section de-
scribes the translation of scope trees into ULKB
formulas, skipping the implementation details of
data structures and some design decisions.

At the high level, the translation starts from the
topmost node of the scope tree, the handle in the
higher position, usually a quantifier. The trans-
formation sketched out in Figure 5 considered the

5The code is available at https://github.com/ibm/
mrs-logic.

scope tree from Figure 4 as input, and it works
recursively.

The node h11 is the implicit quantifier udef_q,6,
as all other ERG quantifiers, it is modeled as a gen-
eralized (binary) quantifier (Westerståhl, 2019). We
interpret this predicate as an existential quantifier
in HOL. Nodes h4 and h25 have the same inter-
pretation but are surface predicates.7 Node h17 is
another quantifier; our current interpretation is as a
universally quantified implication of the restriction
to the negation of the body.

Note that variable x10 is instantiated, and further
transformations of nodes h14 and h25 will be under
the scope of this existential quantifier. Nodes h14,
h21 are trivial; ERG predicates are transformed
into HOL predicates with the same arity. Node
h28 has one uninstantiated parameter; the lexical
entry for _river_n_of in ERG expects one optional
complement.8 Since the parameter was not sup-
plied in the sentence, we decreased the cardinality
of the generated HOL predicate. This behavior is
configurable in our transformation and may be dis-
abled if needed. The same simplification happens
in transforming the predicate _company_n_of in
h8.

Node h22 has a verbal predicate with an event
variable as its distinguished variable, ARG0 . Event
variables are not explicitly quantified in MRS, so
we must decide when to introduce them in the HOL
formula. The problem is that the existential quan-
tifier for the event should not get a broad scope if
negation is involved. Consider the sentence ‘No
man is walking’ and a problematic translation to
∃ e2,∀ x3, _man_n_1 x3 → ¬_walk_v_1 e2 x3.
We don’t want to instantiate e2 to say later that it
didn’t exist. The correct approach is to instantiate
the event variables as close as possible to the predi-
cate with this variable as its distinguished variable.

Node h2 is where HOL stands out. The verb
‘ensure’ can be taken as a factive verb (Hazlett,
2010) introducing a presupposition; that is, the
HOL predicate gets a HOL formula as an argument,
a higher-order construction not permitted in FOL.9

In this example, this is the only case where T is
applied recursively in a predicate argument.

6https://github.com/delph-in/docs/wiki/
ErgSemantics_ImplicitQuantifiers

7https://github.com/delph-in/docs/wiki/
ErgSemantics_Basics

8Consider ‘the river of Colorado.’
9We acknowledge that FOL translations for the same phe-

nomena are possible (Bos, 2014).

https://github.com/ibm/mrs-logic
https://github.com/ibm/mrs-logic
https://github.com/delph-in/docs/wiki/ErgSemantics_ImplicitQuantifiers
https://github.com/delph-in/docs/wiki/ErgSemantics_ImplicitQuantifiers
https://github.com/delph-in/docs/wiki/ErgSemantics_Basics
https://github.com/delph-in/docs/wiki/ErgSemantics_Basics


We haven’t yet introduced in the system extra
axioms to impose the presupposition reading when
needed. Still, the translation presented here would
not be affected by such additional axioms once we
have a complete understanding of them.10

Finally, node h8 is the only one with more than
one EP; the transformation considers all EP with
the same label as a coordination of the transla-
tions of each EP. We notice the ERG predicate
compound; it can be considered an underspecified
preposition. ERG analyses noun-noun compounds
so that compound has the same structure as other ex-
plicit prepositions, e.g., ‘boxes on tables are blue’,
‘boxes for tables are blue,’ and ‘table boxes are
blue.’

The transformation creates the HOL predicates
inline, but it could also pre-declared them as poly-
morphic predicates, such as _oil_n_1 : a → bool
where a is a type variable in ULKB.11

The translation covers some additional phenom-
ena not illustrated in the example we used. Never-
theless, presenting it in the way we did gives the
reader better intuition about its general ideas. We
plan to extend our translation to all other ERG ab-
stract predicates that model additional NL phenom-
ena like normalization, disjunctions, conjunctions,
etc.

4 SICK Experiment

The SICK dataset includes 9,840 sentence pairs
taken from images and video captions. A selection
of sentences from each source was used to produce
pairs of sentences in 3 steps detailed reported in
(Marelli et al., 2014; Bentivogli et al., 2016). The
pairs were manually annotated regarding semantic
similarity and logical relation: entailment, contra-
diction, or neutral.12 The sentence pairs are rich in
lexical, syntactic, and semantic phenomena. Still,
the entailment test of the sentences was expected
to be supported by common sense and grammat-
ical knowledge and not to require encyclopedic
knowledge about entities of the world.

Given the sentence’s intended simplicity com-
pared to previous datasets for Recognising Textual

10Note that presuppositions are one of many NL phenomena
where the deep language processing with ERG, with a curated
lexicon, and the kind of semantic analysis we are carrying on
here makes the difference. For instance, if we take ‘ensure’ as
a factive verb, we can adequately formalize its meaning. If an
entity X ensures Y, Y should be taken as a true statement?

11A configuration can also specify a single type for all
predicate parameters.

12We are only interested in the logical relations.

Entailment (RTE), SICK is excellent for testing our
tool. Suppose our translation effectively captures
the meaning of the sentences in HOL expressions.
If sentences A and B are classified as an entailment,
we should be able to prove ∆ ⊢ T(A) → T(B)
where ∆ is a background theory.13 If they are clas-
sified as a contradiction, we should be able to prove
∆ ⊢ ¬(T(A) ∧ T(B)); otherwise, we consider
them as neutral. This is a very simple approach
compared to other logical-based RTE reports (Bos,
2014), but our goal here is to have a preliminary test
of our transformation, not to improve the results on
the SICK leaderboard.14

We start pre-parsing all sentences with ERG, ask-
ing for at most ten readings for each sentence. Of
the 6,077 unique sentences, 3,435 sentences have
the maximum number of readings we requested.
2,055 sentences had less than five readings, 564
between 5 and 9 readings, and only 23 sentences
were not parsed by ERG, some of them by being un-
grammatical (Kalouli et al., 2017a,b). This shows
that we have a high degree of ambiguity, even for
a collection of relatively simple sentences. Given
that, during the main loop of the experiment, when
we test each pair for logical entailment, we check
at most four combinations of interpretations (HOL
formulas) in a breath-first search strategy.

Unfortunately, SICK is very unbalanced regard-
ing the entailment test, as we can see in Table 1,
and the corpus contains a lot of repeated sentences.
To overcome these limitations, we created a sub-
set of SICK, called SB-SICK (small and balanced
SICK), with 330 pairs for each label and no sen-
tence repetition.

# label
1424 CONTRADICTION
2822 ENTAILMENT
5596 NEUTRAL

Table 1: distribution of SICK sentences for each entail-
ment label.

Table 2 summarizes the results we obtained.
In this experiment, we did not use the WSD
module, relying on the ERG predicates and its
coarse-grained senses. The ∆ is a small theory
of 24 axioms we added incrementally during the
tests, experimenting with the system’s adaptabil-

13The T(a) means the transformation of the NL sentence
A into HOL formulas as described in Section 3.

14https://paperswithcode.com/dataset/sick

https://paperswithcode.com/dataset/sick


T[h11] = T[udef_q ARG0 x10 RSTR h14 BODY h25] = (∃ x10,T[h14] ∧T[h25])

T[h14] = T[_oil_n_1 ARG0 x10] = _oil_n_1(x10)

T[h28] = T[_river_n_of ARG0 x23 ARG1 i29] = _river_n_of(x23)

T[h21] = T[_chemical_n_1 ARG0 x19] = _chemical(x19)

T[h22] = T[_poison_v_1 ARG0 e24 ARG1 x19 ARG2 x23] = ∃ e24, _poison_v_1(e24, x19, x23)

T[h25] = T[_the_q ARG0 x23 RSTR h4 BODY h28] = (∃ x23,T[h4] ∧T[h28])

T[h4] = T[_the_q ARG0 x6 RSTR h8 BODY h2] = (∃ x6,T[h8] ∧T[h2])

T[h8] = T[compound ARG0 e9 ARG1 x6 ARG2 x10, _company_n_of ARG0 x6 ARG1 i15]

= (T[compound ARG0 e9 ARG1 x6 ARG2 x10] ∧T[_company_n_of ARG0 x6 ARG1 i15])

= (∃ e9, compound(e9, x6, x10) ∧ _company_n_of(x6))

T[h2] = T[_ensure_v_1 ARG0 e3 ARG1 x6 ARG2 h17] = (∃ e3, _ensure_v_1(e3, x6,T[h17]))

T[h17] = T[_no_q ARG0 x19 RSTR h21 BODY h22] = (∀ x19,T[h21] → ¬T[h22])

Figure 5: The transformations of the MRS from Figure 4.

ity to incremental addition of background knowl-
edge. The axioms cover simple lexical seman-
tics gaps such as ∀x,man x → person x and
∀x, empty x → ¬full x that can be easily de-
rived from resources like Wordnet. We also have
some axioms related to the ERG abstract pred-
icates, such as ∀ e x y, compound e x y →
for e x y15 and an axiom to deal with the null
contribution to the semantics of expletive construc-
tions, ∀ x y, _be_v_there x y.

label true false %
CONTRADICTION 117 213 35
ENTAILMENT 132 198 40
NEUTRAL 330 - 100

Table 2: The results in the SB-SICK. The ‘true’ means
that using MRS Logic, we proved the expected logi-
cal relation, and ‘false’ otherwise. Since neutral is a
fallback in our method, we had no error for the neutral
label.

We analyzed the cases where we could not prove
the expected result, looking for possible translation
failures. We summarized some relevant cases we
found next, but none were related to problems with
translating the MRSs to HOL.

As reported in (Kalouli et al., 2017a,b), we also
found that some pairs have wrong labels. For in-
stance, Examples (2) and (3) were annotated as
entailment and contradiction, respectively. Exam-
ple (2) is far from a logical entailment, although
somehow related pragmatically. The SICK authors
acknowledge these cases as inconsistencies in their

15Remember that compound means an underspecified
preposition in the noun-noun compounds. This would be
one of many axioms for each possible preposition in English.

dataset.16

(2) a. “People are walking outside the build-
ing that has several murals on it.”

b. “Several people are in front of a color-
ful building.”

(3) a. “The black and white dog is running
indoors.”

b. “The black and white dog is running
in a green yard.”

Errors in logical reasoning were also expected
since we submitted the HOL formulas to FOL
provers, relying on their ability to reduce them
to FOL when possible.17 We also have not imple-
mented axioms to handle all ERG abstract predi-
cates, e.g., nominalization. Some additional back-
ground knowledge is undoubtedly necessary and
can eventually be induced (Ihsani, 2012), consider
formalizing that a guitar player is a guitarist in
Example (4).

(4) a. “A person has blonde and flyaway hair
and is playing a guitar.”

b. “A guitarist has blonde and flyaway
hair.”

We stressed our transformation rules without find-
ing errors. Second, aligned (Bos, 2014), we vali-
dated that the lack of a systematic way to produce
relevant background knowledge is the bottleneck
of logical inference in RTE.

16Notice that nothing blocks an interpretation of a situation
with two distinct dogs or groups.

17Some high-order predicates, in the absence of explicit
types, can be taken as functions.



5 Conclusion

We presented an open-source library to trans-
late English sentences into HOL formulas. The
code is available at http://github.com/ibm/
mrs-logic. We tested the library in a dataset of
pairs of sentences classified as entailment, contra-
diction, and neutral. Despite the results, we have
collected the necessary insights to refine the RTE
procedure and learned that a lot depends on the
precise RTE task definition. Fine-grained deep lin-
guistic analyses reveal inconsistencies invisible for
purely statistical methods, hiding the real challenge
of language understanding.

Considering the most popular approaches for
RTE, we differ in using multiple interpretations
for each sentence (although limited to four combi-
nations) provided by the grammar-based analyses.
We suspect that background knowledge is crucial
for selecting the most plausible reading of the sen-
tences when a pair is being tested. Many cases
were not proved just because the expected readings
of each sentence were not among the tested combi-
nations limited by the computational resources we
had.

The literature on computational semantics is vast.
We are aware of the range of possibilities from non-
compositional representations such as AMR (Ba-
narescu et al., 2013) to inferences directly over
surface forms such as Natural Logic (MacCartney
and Manning, 2007). We focused on MRS, related
to (Lien, 2014), although using logic inference in-
stead of graph matching.
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