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Abstract

Label noise refers to errors in training labels
caused by cheap data annotation methods, such
as web scraping or crowd-sourcing, which can
be detrimental to the performance of super-
vised classifiers. Several methods have been
proposed to counteract the effect of random la-
bel noise in supervised classification, and some
studies have shown that BERT is already robust
against high rates of randomly injected label
noise. However, real label noise is not random;
rather, it is often correlated with input features
or other annotator-specific factors. In this pa-
per, we evaluate BERT in the presence of two
types of realistic label noise: feature-dependent
label noise, and synthetic label noise from an-
notator disagreements. We show that the pres-
ence of these types of noise significantly de-
grades BERT classification performance. To
improve robustness, we evaluate different types
of ensembles and noise-cleaning methods and
compare their effectiveness against label noise
across different datasets.

1 Introduction

Deep learning algorithms have been shown to per-
form extremely well in supervised classification
tasks given high-quality datasets. Unfortunately,
obtaining gold-standard labels is often prohibitively
expensive with large-scale datasets, leading practi-
tioners to resort to cheaper data collection methods
such as crowd-sourcing or automatic annotation
methods (Yan et al., 2014). These techniques are
known to impart a substantial amount of label noise
in the data, which can degrade classification perfor-
mance (Ji et al., 2021). Label noise refers to errors
or inconsistencies within the data labels, such that
the prescribed labels do not match the gold labels
assigned by experts. Datasets obtained through
web scraping often contain label noise given the ab-
sence of expert-verified gold labels (Li et al., 2017).
Due to a meteoric rise in social media usage, more
and more datasets are automatically acquired from

online social platforms, and such datasets are likely
to contain label noise. Small-scale datasets can
also suffer from the same problem if the annota-
tion process is challenging or the annotators have
divergent opinions (Ma et al., 2019).

Some prior works have been dedicated to devel-
oping and deploying algorithms that combat the
effects of label noise in text classification (Han
et al., 2018; Sukhbaatar et al.; Zhang and Sabuncu,
2018; Jiang et al., 2018). However, most previous
studies simulated label noise by random substitu-
tion, and recent research has shown empirically
that many methods that successfully handle ran-
dom noise are ineffective against real-world label
noise (Jiang et al., 2020). In the text classification
domain, Zhu et al. (2022) explored the robustness
of previously proposed methods for handling la-
bel noise, including noise matrix with regulariza-
tion (Jindal et al., 2019), co-teaching (Han et al.,
2018), and label smoothing (Szegedy et al., 2016).
They concluded that BERT (Devlin et al., 2019)
is already robust against randomly injected label
noise and these approaches obtain no additional
performance gains. On the other hand, they find
that feature-dependent label noise, which realisti-
cally arises from automatic annotation techniques,
degrades BERT performance and these noise han-
dling techniques add little to no robustness at all.
This creates a need for a comprehensive evalua-
tion of noise-robust methods in the domain of text
classification, considering the presence of realistic
labeling errors.

In this paper, we describe methods and experi-
ments for handling realistic label noise in BERT
text classification. We use two datasets that contain
feature-dependent label noise from automatic anno-
tation, namely Yorùbá and Hausa (Hedderich et al.).
These two datasets have been manually cleaned, so
a clean version of each exists for evaluation. In
addition, we use tweetNLP (Gimpel et al., 2011)
and SNLI (Bowman et al., 2015) datasets with syn-



thetic noise that mimics human errors by utilizing
multiple crowd-sourced annotations (Chong et al.,
2022). This collection of datasets provides a range
of noise types and levels that more closely reflect
realistic label noise compared to random noise in-
jection. We evaluate the performance of vanilla
BERT compared with a subset of noise-handling
approaches, namely co-teaching (Han et al., 2018),
Consensus Enhanced Training Approach (CETA)
(Liu et al., 2022), different types of ensembles
(Ganaie et al., 2022), and noise cleaning (Chong
et al., 2022; Sluban et al., 2014). We summarize
our findings as follows:

1. For datasets with feature-dependent label
noise, we find that CETA, some types of en-
sembles, and noise cleaning, all provide pos-
itive performance gains compared to vanilla
BERT.

2. For synthetic label noise from multiple anno-
tations, we do not observe significant gains
using these approaches. We surmise that this
type of noise is more challenging or may even
reflect inherently ambiguous labels.

It is worth noting that the noise is qualitatively
different in these two categories of label noise as
the latter arises from human rather than automatic
processes, which could be due to either errors or
genuine disagreements. Some recent works attempt
to include multiple labels in the training process
rather than rely on a single gold label to account
for the inherent uncertainty from human disagree-
ments. This may be justified given the nature of
some tasks, and the noising scheme performed on
tweetNLP and SNLI may warrant that kind of treat-
ment or further scrutiny to identify clear-cut errors.
However, as we focus on noise robustness as the
scope of this work, we treat the synthetic noise
int these datasets as labeling errors and leave any
further analysis of this sort for future work.

2 Background & Related Works

2.1 Types of Label Noise

Label noise refers to irregularities or inconsisten-
cies within the data labels, where the prescribed
label of a data point does not correspond to the
true expert label. In other words, noisy instances
in this context specifically pertain to inaccuracies
or errors in the labeling of the data, rather than any
distortions or imperfections in the input data itself.

When observing the effect of label noise, the
majority of existing literature in text classification
assumes random injection of label noise (Han et al.,
2018; Sukhbaatar et al.; Zhang and Sabuncu, 2018).
This type of synthetic noising involves randomly
permuting a fixed number of labels according to a
pre-defined noise level and noise type. Because the
process of simulating such noise is entirely random
and does not depend on the input data features in
any way, this type of noise is also known as feature-
independent label noise.

In contrast, feature-dependent label noise is cor-
related with input features (Algan and Ulusoy,
2020). Datasets that use distantly or weakly su-
pervised methods to generate labels are prone to
this type of label noise. These approaches are often
used in low-resource applications where it is im-
practical or expensive to manually annotate large
amounts of data. Relation extraction is one such
application that heavily relies on automatic data
generation methods as supervised relation extrac-
tion methods necessitate an extensive amount of
labeled training data (Mintz et al., 2009). In this
area, denoising methods such as the ones proposed
in Jia et al. (2019), Qin et al. (2018), Liu et al.
(2022) and Ma et al. (2021) are specifically devel-
oped to address feature-dependent label noise in
relation extraction datasets.

Recently, Chong et al. (2022) developed realis-
tic noising methods that mimic how humans make
labeling errors by taking advantage of the multi-
ple rounds of annotation that some datasets un-
dergo. During the annotation process, certain sub-
sets of the data are subjected to rigorous valida-
tion schemes, such as gold labels assigned by ex-
perts, while others are annotated using less strin-
gent methods, such as crowdsourced evaluations.
By incorporating varying annotations generated
during this process, their approach produces real-
istic label noise that reflects how humans make
errors. We refer to this noising scheme as pseudo-
real-world label noise.

2.2 Noise-robust methods

Noise-robust methods in the literature include
model enhancements such as robust loss functions.
Robust loss functions are a class of loss functions
used to train models in a way that is more resistant
to label noise. One such loss function is the family
of generalized cross-entropy loss functions (Zhang
and Sabuncu, 2018), which are designed to be more



robust to label noise by penalizing the model less
for incorrect predictions that are consistent with
noisy labels.

Another class of noise-robust approaches is what
we refer to as multi-netowrk training. This sub-
category of methods introduces multiple networks
that learn from each other and as such make more
informed decisions regarding which data to use
to update the model parameters. For instance,
co-teaching (Han et al., 2018) includes two mod-
els that are trained in parallel, and each model is
presented with examples that incur low loss by
the other model. Intuitively, correct labels pro-
duce small losses in earlier training epochs and
noisy labels produce higher losses. Similarly, the
Consensus-Enhanced Training Approach (CETA)
proposed in Liu et al. (2022) is a methodology for
robust sentence-level relation extraction that em-
phasizes the selection of clean data points during
the training process. The denoising technique is
applied to establish a robust boundary for classifi-
cation, preventing inaccurately labeled data from
being assigned to the wrong classification space,
and the consensus between two divergent classifiers
is used to select clean instances for training.

2.3 Noise cleaning approaches

Noise-cleaning aims to automatically segregate
clean data from noisy data in order to train the
final classifier using a cleaned subset of the orig-
inal training set. The “small loss trick" is com-
monly used to identify potentially noisy or misla-
beled data. The intuition behind this approach is
that noisy data have comparatively higher loss than
clean data (Takeda et al., 2021; Han et al., 2018;
Jiang et al., 2018; Ji et al., 2021).

Several approaches have been proposed for auto-
matic noise detection, which can be a first step to-
wards noise-cleaning before training a robust classi-
fier. Wheway (2001) used boosting to detect noisy
data instances. The approach involves iteratively
re-weighing the data points to emphasize those that
are most difficult to classify correctly. The result-
ing model is then used to identify the noisy data
points by measuring their contribution to the final
model. Sluban et al. (2014) trained multiple classi-
fiers (ensemble) on different subsets of the data and
combined their outputs to obtain a noise ranking
for each instance. Similarly, Chong et al. (2022)
assessed the performance of pre-trained language
models as error detectors using clean held-out data.

They experiment with the error detection capabil-
ities of individual pre-trained models and an en-
semble of pre-trained language models. They find
that an ensemble of pre-trained model losses out-
performs individual model loss in error detection.

2.4 Label noise & BERT

BERT (Devlin et al., 2019) is a popular pre-trained
language model that is frequently used for text clas-
sification by fine-tuning on target labels. Some
recent studies have shown that BERT is already
robust against randomly injected label noise (Zhu
et al., 2022), and early stopping is sufficient to pre-
vent overfitting on noisy labels. Zhu et al. (2022)
evaluates popular noise robust approaches in BERT
text classification such as appending noise transi-
tion matrix after BERT’s predictions (Sukhbaatar
et al.), acquiring the noise transition matrix with
l2 regularization (Jindal et al., 2019), and multi-
network training via co-teaching (Han et al., 2018).
They conclude that while BERT appears to be in-
herently robust to feature-independent noise, none
of the above approaches improves BERT’s peak
performance in the presence of feature-dependent
label nose.

3 Methodology

In this work, we evaluate BERT text classifica-
tion on datasets containing pseudo-real-world label
noise and feature-dependent label noise. We do
not consider randomly injected label noise as Zhu
et al. (2022) have shown BERT to be already robust
to this type of synthetic noise. The scope of this
work is limited to text classification with BERT
following the baselines established by Zhu et al.
(2022).

3.1 Datasets

To study feature-dependent label noise, we use two
news-topic categorization datasets from two low-
resource African languages: Hausa and Yorùbá
(Hedderich et al.). These languages are spoken by
large populations in Africa, with Hausa being the
second most spoken indigenous language, with 40
million native speakers, and Yorùbá being the third
most spoken, with 35 million native speakers1. For
these datasets, gazetteers were used for automatic
labeling, which results in feature-dependent label
noise. For instance, when identifying texts for the
“Africa" class, a labeling rule based on a list of

1https://en.wikipedia.org/wiki/Languages_of_Africa



Dataset Yorùbá Hausa TweetNLP SNLI
Number of classes 7 5 15 3
Average sentence length 13 10 12 21
Train Samples 1340 2045 11565 363043
Validation Samples 189 290 2874 9831
Test Samples 379 582 - 9815
Train Noise Level 33.28% 50.37% Various Various

Table 1: Dataset statistics

African countries and their capitals was employed.
These datasets were chosen specifically as they
contain automatic annotation label noise i.e., weak-
supervision/feature-dependent noise in addition to
clean versions of the splits, making it possible to
establish ground truth. Note that the amount of
label noise in Hausa and Yorùbá is fixed.

Furthermore, we use the noising schemes pro-
posed by Chong et al. (2022) to simulate real-world
label noise produced by crowd-sourced labeling.
Pseudo-real-world label noise is injected in two
benchmark datasets: TweetNLP (Gimpel et al.,
2011) and Stanford Natural Language Inference
(SNLI) dataset (Bowman et al., 2015). TweetNLP
is a part-of-speech tagging dataset developed by
scraping Twitter posts. While TweetNLP already
contained crowd-sourced labels, it later received
separate crowdsource evaluations, allowing access
to multiple annotations from separate annotators.
The SNLI dataset is a large Natural Language In-
ference corpus developed at Stanford. The original
corpus consists of 570K sentence pairs, manually
labeled by experts. Like TweetNLP, a subset of
SNLI later received extensive crowdsource eval-
uation. We noise both TweetNLP and SNLI to
three label noise levels: 10%, 20%, and 30%. Data
statistics for all datasets are shown in Table 1.

3.2 Baselines
Zhu et al. (2022) already evaluated the noise ma-
trix approach (Sukhbaatar et al.), label smoothing
(Szegedy et al., 2016), and co-teaching (Han et al.,
2018) on the feature-dependent datasets, Hausa and
Yorùbá, and concluded that no gains are observed
using these methods. We use the following as base-
lines to benchmark our experiments using other
approaches:

1. Vanilla BERT: BERT trained on noisy train-
ing data without a noise-handling mechanism,
except early stopping on a noisy validation set,
as done in Zhu et al. (2022).

2. Co-teaching (Han et al., 2018), which simul-
taneously trains two networks, with each net-
work independently ranking data points based
on their loss to guide the other network on
which points to be included for training. In
other words, each network independently per-
forms noise-cleaning for the other network.

4 Approaches

We experiment with the following approaches as
potential methods for improving performance un-
der realistic label noise conditions:

4.1 Consensus-Enhanced Training Approach
(CETA)

CETA (Liu et al., 2022) has been proposed as a
noise-robust model for relation extraction and has
shown promising results. CETA contains two dis-
crepant classifiers that share a single encoder. The
focus of CETA is to train the classifiers only in
instances where both classifiers have reached a con-
sensus. Such instances are supposedly deemed
clean. To achieve consensus, CETA augments the
standard cross entropy loss to include predictions
from both classifiers and uses the Wasserstein dis-
tance (Kantorovich, 2006) as a secondary criterion.
In this manner, CETA can also be considered an
ensemble learning approach.

4.2 Deep Ensembles

Deep ensembles have been shown to generally ex-
hibit robustness as compared to singular models
and reduce overfitting (Ganaie et al., 2022). To
that end, we hypothesize that ensembles may excel
in noisy classification tasks due to the presence of
label noise in the training data, which can cause in-
dividual models to learn false correlations between
features and labels. By training multiple classifiers
and combining their predictions, each model can
develop a unique representation of the input data
and filter out spurious information, leading to a



more robust classification boundary. While ensem-
bles have been previously proposed for data and
label noise detection (Wheway, 2001; Sluban et al.,
2014; Chong et al., 2022), their performance as
a method of robust text classification with noisy
labels has not been established.

We formally define ensembles as follows: Given
m classifiers C1, C2, ..., Cm, each classifier pro-
duces probabilities Pci on a clean test set T , an en-
semble of the predictors averages the probabilities
of each predictor such that Pensemble =

∑m
i=1

PCi
m .

It should be noted that each ensemble member is
trained on either the same noisy training set or a
randomly selected subset of the noisy training set,
depending on the employed technique, which is de-
scribed below. Nevertheless, in all scenarios, each
member is evaluated on the same clean test set. We
experiment with three types of ensembles:

1. Homogeneous Ensembles Ensembles that ag-
gregate predictions from the same type of clas-
sifier (i.e. vanilla BERT with early stopping),
trained with different initializations and hy-
perparameters.

2. Heterogeneous Ensembles Ensembles that
aggregate predictions from different types of
classifiers. In our experiments, we use vanilla
BERT, co-teaching, and CETA as the hetero-
geneous classifiers in the ensemble.

3. Boosting Ensembles that aggregate predic-
tions from the same type of classifier (i.e.
vanilla BERT with early stopping), but each
classifier is trained on a different subset of the
training data.

4.3 Noise Cleaning Based on Fine-Tuned
Model Loss

We use the pre-trained language model’s ability to
identify noisy labels as a way to clean the train-
ing set by removing instances with potential label
noise. This involves fine-tuning BERT on noisy
task-specific training data and evaluating model
loss on each instance. Training instances that have
a loss higher than the selected threshold are ex-
cluded from the training set used to train the final
classifier. We tune the loss threshold on a noisy
validation set.

To avoid biasing or overfitting the model when
computing loss on the same set used for fine-tuning,
we employ an N-fold process to calculate the loss

only on held-out data points2. The process is out-
lined in Algorithm 1. In summary, we fine-tune the
model using a subset of the noisy training set and
use the model to identify and remove noisy sam-
ples from the held-out validation set using a fixed
loss threshold3. The process is repeated separately
N times using disjoint validation sets to clean the
complete training set.

Algorithm 1 Noise Cleaning Algorithm

1: Input: Noisy train set T , loss threshold t, num-
ber of folds f

2: Output: Cleaned train set Tclean
3: Divide T into f validation subsets: V1, . . . , Vf

4: for i = 1 to f do
5: Ti = T \ Vi

6: Train a fine-tuned model Mi on Ti

7: Evaluate the model loss LVi on Vi

8: Tclean,i = Vi[LVi < t]
9: end for

10: Tclean =
⋃f

i=1 Tclean,i

11: return Tclean

5 Experiments and Results

All of the methods evaluated in these experiments
incorporate early stopping on noisy validation set
as done by Zhu et al. (2022). We use a noisy valida-
tion set because obtaining a clean validation set is
often not feasible in practice. Moreover, Zhu et al.
(2022) show that using a noisy validation set for
early stopping is more or less as effective as using
a clean validation set.

5.1 Hyperparameters

The number of training steps is optimally set to
30004 unless we are required to vary hyperparame-
ter settings for homogeneous ensembles. For homo-
geneous ensembles, we cycle through a combina-
tion of the following hyperparameters: the number
of training steps = [2000, 3000, 4000, 5000, 6000],
learning rate = [0.0002, 0.0004, 0.0005, 0.00001,
0.00002, 0.00003, 0.00004, 0.00005], patience (for
early stopping) = [25, 30, 40, 50], warm-up steps =

2A similar approach is briefly described in (Northcutt et al.,
2021) for estimating noise characterization in the confident
learning framework.

3The loss threshold is a hyperparameter that we tune be-
forehand.

4If the validation accuracy does not improve beyond a cer-
tain patience level, we employ early stopping to prematurely
halt the training process for all experiments.



Hausa Yorùbá
Clean Data

Vanilla BERT 82.67± 0.73 76.23± 0.28

Noisy Data
Vanilla BERT 46.98± 1.01 64.72± 1.45
Co-Teaching 48.11 ± 1.71 64.38± 0.98

CETA ∗49.31 ± 0.31 ∗68.07 ± 0.18

HME 46.39± 0.21 67.28 ± 0.81
HTE 48.28 ± 0.19 67.81 ± 0.73

Boosting 47.13 ± 0.42 67.63 ± 1.26

NC 47.18 ± 0.22 62.17± 0.54

Table 2: A comparison of proposed methods against
baselines on datasets with feature-dependent label noise.
HME: Homogeneous ensembles HTE: Heterogeneous
ensembles. Boosting: Ensembles of different random
subsets from the train set. NC: Noise Cleaning. Average
accuracy is reported with a standard deviation from 5
runs of each experiment.

[0, 1, 5, 7, 10], weight decay = [0.1, 0.001, 0.0001],
and drop rate = [0.1, 0.25, 0.5, 0.8].

For other experiments that do not explicitly re-
quire us to vary hyperparameters, we fix the fol-
lowing hyperparameters for the African language
datasets, training steps = 3000, learning rate =
0.00005, patience = 25, drop rate = 0.1, warm-up
steps = 0, weight decay = 0.1. We fix the following
hyperparameters for the English language datasets,
training steps = 3000, learning rate = 0.00002, pa-
tience = 25, drop rate = 0.25, warm-up steps = 0,
weight decay = 0.1. For boosting related experi-
ments, we experiment with two training data subset
sizes: 50% of the total training data and 80% of the
total training data. For heterogeneous ensembles,
we aggregate predictions from the following three
classifiers: vanilla BERT, co-teaching, and CETA.

5.2 BERT Models

We use bert-base-uncased5 as the backbone for
our English language datasets: TweetNLP and
SNLI. We use bert-base-multilingual-cased6 for
our African language datasets: Yorùbá and Hausa.

5.3 Loss threshold

To select a loss threshold for noise-cleaning as de-
scribed in section 4.3, we experiment with different
cut-off points in the following interval [6.0, 8.0].
We use only a noisy validation set to select the
loss threshold. Data points whose loss exceeds the
fixed loss threshold are excluded from the training

5https://huggingface.co/bert-base-uncased
6https://huggingface.co/bert-base-multilingual-cased

(a) Hausa: before (b) Hausa: after

(c) Yorùbá: before (d) Yorùbá: after

Figure 1: Noise matrices for Hausa and Yorùbá showing
noise distribution before and after noise cleaning.

set, effectively ‘cleaning’ the noisy training set to a
certain extent. Note that we only report results on
the loss threshold that produces the most optimal
accuracy on the noisy validation set. The cleaned
training set is once again used to train a vanilla
BERT model, at which point we can evaluate how
well the noising scheme performed.

5.4 Results

5.5 Feature-dependent label noise

Table 2 shows the results of baseline models and
the proposed approaches on datasets containing
feature-dependent label noise: Hausa and Yorùbá.

First, we observe that co-teaching and noise
cleaning do not consistently improve performance
compared to vanilla BERT. CETA, on the other
hand, improves performance by around 3 absolute
percentage points on both datasets. The homo-
geneous ensemble method does not consistently
improve either, but we do observe consistent gains
using heterogeneous ensembles and boosting.

Figure 1 show the noise distribution in the train-
ing set before and after applying the noise cleaning
procedure in both datasets. Note that the noise-
cleaning method results in the removal of both
noisy and clean instances, which leads to the total
noise level not being considerably reduced. Overall,
we we do not observe a larger reduction in noise
level in either dataset. After noise cleaning, we



TweetNLP SNLI
Noise Level 10% 20% 30% 10% 20% 30%

Clean Data
Vanilla BERT 91.03± 0.81 85.03± 0.16

Noisy Data
Vanilla BERT 82.08± 0.03 74.45± 0.65 72.96± 1.42 84.79± 0.87 83.83 ± 1.01 82.01± 0.21
Co-Teaching 81.31± 0.11 73.68± 0.04 72.41± 0.71 84.27± 0.15 83.10± 1.20 80.99± 0.04

CETA 81.00± 1.81 72.40± 1.01 72.13± 0.71 84.24± 0.01 82.67± 0.21 81.02± 0.27

HME 81.81± 0.05 74.08± 0.03 72.53± 0.01 85.02± 0.12 83.76± 0.10 81.99± 0.26
HTE 79.13± 0.32 74.90 ± 0.51 72.32± 0.97 84.75± 0.34 83.64± 1.11 81.16± 0.97

Boosting 82.53 ± 0.01 74.27± 0.15 73.52 ± 3.32 85.38 ± 0.45 83.80± 0.81 82.06 ± 0.41

NC 80.94± 0.09 74.55± 0.45 72.65± 0.19 85.13± 0.05 84.00 ± 0.01 82.97 ± 1.09

Table 3: A comparison of proposed methods against baselines on TweetNLP and SNLI datasets noised to various
levels. HME: Homogeneous ensembles HTE: Heterogeneous ensembles. Boosting: Ensembles of different random
subsets from the training set. Average accuracy is reported with the standard deviation from 5 runs of each
experiment.

have 31% label noise in Yorùbá compared to 33%
before noise cleaning, with only a 2% reduction in
noise. For Hausa, the noise level after cleaning is
similarly reduced by 3% (47% compared to 50%
before cleaning). In summary, we do not find the
noise-cleaning method to be an efficient error detec-
tor for feature-dependent label noise, as compared
to the other noise-robust we use. This is inconsis-
tent with the result in Chong et al. (2022), where
they show that language models are suitable for la-
bel error detection. However, they also report that
an ensemble of large pre-trained language models
is a better error detector than a smaller individual
pre-trained model, and in both cases, while models
may have good error detection performance, the
performance in the underlying task is not necessar-
ily improved.

5.6 Pseudo-real-world label noise

Table 3 shows the results on datasets contain-
ing pseudo-real-world label noise, TweetNLP, and
SNLI, with three levels: 10%, 20%, and 30%.
In these datasets, we observe that performance
drops significantly with increased noise levels in
TweetNLP, but only small drops in performance are
observed in SNLI. We hypothesize that this poten-
tially reflects the inherent difficulty in the natural
language inference task, and the gold labels may
already be ambiguous even before applying the
noising scheme. Table 4 shows samples from both
SNLI and TweetNLP datasets before and after in-
jecting noisy labels. In many cases, particularly in
SNLI, the given example is rather ambiguous and
both labels can be suitable. These are also cases
where there are high inter-annotator disagreements.

In terms of noise handling techniques, we ob-
serve that all approaches generally do not produce
large gains in performance compared to vanilla
BERT. Furthermore, many approaches result in
slightly worse performance compared to the base-
line. Boosting seems like the most robust technique,
as it maintains baseline performance at least, while
also being effective against feature-dependent la-
bel noise. Noise cleaning in this category obtained
mixed results. Surprisingly, CETA does not ex-
cel over other methods in this particular category.
Although it was specifically designed to address
feature-dependent label noise, its performance is
somewhat inferior to the vanilla BERT baseline
when dealing with realistic label noise. We sur-
mise that this type of artificial noise is more chal-
lenging as it’s based on actual human errors, and
may even reflect intrinsic ambiguities in the task,
which makes it harder to detect through automatic
approaches.

6 Conclusions

In this paper, we described experiments for evaluat-
ing different label noise handling techniques within
the framework of BERT text classification. We eval-
uated some multi-network training approaches (i.e.
co-teaching and CETA), different types of ensem-
bles (homogeneous, heterogeneous, and boosting),
and a noise cleaning technique and compared them
with a vanilla BERT fine-tuned model with early
stopping. We used two datasets that contain feature-
dependent label noise from automatic labeling, as
well as two datasets with synthetic pseudo-real-
world label noise obtained by considering multiple



Dataset Text Noisy Label Actual Label
SNLI (1) Young man wearing a blue jacket, green shirt and denim jeans is pho-

tographed by person in beige jacket and burgundy pants while four onlookers
watch on an expanse of sand.<!SEP!> The people are ignoring the man
getting photographed.

No Relationship Contradiction

SNLI (2) A man wearing a black t-shirt is playing seven string bass a
stage.<!SEP!> The man is playing an old guitar.

Contradiction No Relationship

SNLI (3) Many children are sitting in a classroom watching a woman in the
front.<!SEP!>The woman is teaching the children

Entailment No Relationship

TweetNLP (1) Reading harry potter in bed! waiting for the new south park to come on ADJ NOUN
TweetNLP (2) @USER: I’m not insulted, at all, trust me. I’m seeking to understand

you and your video. :)
DET ADP

TweetNLP (3) Chicagoan early voters in Uptown even get brownies and entertainment
while waiting for a dozen people to do number page ballots.

ADJ NOUN

Table 4: Samples from SNLI and TweetNLP with pseudo-real-world noise injection, highlighting the complexity
and potential ambiguity of these tasks.

annotations.
For feature-dependent label noise, the recently

proposed Consensus Enhanced Training Approach
(CETA) shows the most promising results com-
pared to the baselines. Some ensembling tech-
niques, such as boosting, can also improve per-
formance compared to the baselines but do not
provide the level of robustness achieved via CETA.

While pre-trained language models have been
shown previously to have the potential to detect
label errors through out-of-sample loss, our results
indicate that using this technique to automatically
clean the data does not result in improved perfor-
mance compared to using the noisy set. This may
suggest that removing label errors is not necessarily
a good approach for handling label noise; rather,
error detection can be used to identify noisy labels
for manual correction.

The synthetic pseudo-real-world category of la-
bel noise appears to be more challenging as the
noise represents actual human errors, which could
be an indication of inherent ambiguities in the task
itself. Our experiments show that most techniques
do not improve performance compared to the base-
lines. Furthermore, for a dataset like SNLI, which
is known to be challenging even for human anno-
tators, the presence of label noise does not reduce
the performance to a great extent compared to the
other datasets. This may suggest that the noising
scheme is compatible with the inherent difficulty
or label ambiguity of the task, and any attempts to
detect or discard the noise will not necessarily im-
prove the performance using stringent metrics such
as accuracy. Recent efforts to embrace annotator
disagreements and incorporate them in the training
process (Zhang et al., 2021) rather than relying on

a single gold label may be more suitable to handle
this kind of labeling inconsistencies.

Overall, the results indicate that handling realis-
tic label noise in text classification remains a chal-
lenging task, and none of the noise-handling tech-
niques examined so far has shown consistent per-
formance improvements across multiple datasets.

Limitations

The work described in this paper is limited by the
small number of datasets that contain both noisy
and clean versions in the text classification domain,
which are needed for evaluating noise-handling
methods. While we observed positive results from
at least two approaches, any conclusions we make
about their effectiveness are drawn from a sample
of two datasets, and may not necessarily general-
ize to other cases. For the pseudo-real-world label
noise category, it is unclear whether the noise rep-
resents true errors or inherent ambiguity in the task.
The mixed results we observe could also be a result
of ambiguities in the presumed ‘clean’ test set.
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