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Abstract

In this work, we study the features extracted
by English self-supervised learning (SSL) mod-
els in cross-lingual contexts and propose a new
metric to predict the quality of feature repre-
sentations. Using automatic speech recogni-
tion (ASR) as a downstream task, we analyze
the effect of model size, training objectives, and
model architecture on the models’ performance
as a feature extractor for a set of topologically
diverse corpora. We develop a novel metric, the
Phonetic-Syntax Ratio (PSR), to measure the
phonetic and synthetic information in the ex-
tracted representations using deep generalized
canonical correlation analysis. Results show
the contrastive loss in the wav2vec2.0 objec-
tive facilitates more effective cross-lingual fea-
ture extraction. There is a positive correlation
between PSR scores and ASR performance,
suggesting that phonetic information extracted
by monolingual SSL models can be used for
downstream tasks in cross-lingual settings. The
proposed metric is an effective indicator of the
quality of the representations and can be useful
for model selection.1

1 Introduction

Self-Supervised Learning (SSL) has become a
paradigm for learning feature representations from
unlabeled data (Liu et al., 2023). In speech process-
ing, self-supervised approaches for learning speech
representation are often used to extract features for
downstream tasks. These representations can re-
place the handcrafted feature such as Mel Spectrum
or MFCC in many tasks as they are able to extract
high-level properties in the speech data (Mohamed
et al., 2022; Chung et al., 2019).

English SSL Models take advantage of the high
availability of English data and outperform tradi-
tional feature extraction methods on a range of
downstream tasks in English (Chen et al., 2022;

1We make our work open-source for further explorations:
https://github.com/stellali7/SSL_PSR

Figure 1: Speech data of English (in-domain) and other
languages (out-of-domain) are passed through the SSL
models to extract speech representations. All informa-
tion is expected to aid downstream tasks in English
while phonetic content is expected to be useful for out-
of-domain downstream tasks; “other" content may in-
clude speaker information, etc.

Hsu et al., 2021; Liu et al., 2020). Since the acous-
tic and phonetic information of human speakers
across languages share a level of similarity, it is
crucial to study the cross-lingual transfer perfor-
mance of English SSL models as a feature extrac-
tor for non-English audio data (Li et al., 2020; Cho
et al., 2018). This will enhance our understanding
of the composition of knowledge learned during
pre-training, allowing more efficient use of data
during model selection. Furthermore, if we are
able to use English monolingual models effectively
in multilingual downstream tasks, the high cost of
training massive multilingual speech models such
as XLSR (Babu et al., 2021; Conneau et al., 2021)
and mSLAM (Bapna et al., 2022) can be reduced
by explicitly incorporating architectural designs
promoting cross-lingual transfer. Therefore, the
first purpose of this paper is to investigate the fac-
tors that improve the ability of monolingual SSL
models to extract useful speech representations for
ASR tasks in typologically diverse languages.

https://github.com/stellali7/SSL_PSR


The second objective of our study is to analyze
the amount of phonetic information versus syntac-
tic information learned by the model during train-
ing, and how the phonetic-syntax composition in
the model impacts the extracted features. Phonetic
content directly impacts the learned phonological
structure in the representations. Explicit integra-
tion of phonological knowledge has proven to be
extremely successful in speech processing (Zhan
et al., 2021). On the other hand, semantic and syn-
tactic knowledge learning in the target language
during fine-tuning is needed for ASR tasks so that
the SSL models do not retain source language se-
mantics and syntax, implying syntactic information
might be harmful for cross-lingual feature extrac-
tion (Li et al., 2020).

As shown in Figure 1, we expect the pre-trained
SSL models to efficiently extract phonetic, syntac-
tic, and other contents to help downstream tasks in
English (Chung et al., 2021). At the same time, the
extracted phonetic information in out-of-domain
and multilingual situations should also aid down-
stream performance. Therefore, we propose a novel
metric to quantify the amount of helpful phonetic
information. To the best of our knowledge, this
study is the first to quantitatively understand the
capabilities and limits of SSL models from a lin-
guistic perspective. Our contributions include:
• We examine five SSL models with different sizes,

data preparation methods, and training objectives
by analyzing their cross-lingual generalizability
as feature extractors on the ASR task.

• We propose a new metric, Phonology-Syntax Ra-
tio (PSR), to measure the phonetic and syntactic
content extracted by an SSL model on any given
out-of-domain/language dataset. A higher PSR
score correlates to a better ASR performance.

• We localize the phonetic content in the SSL
model to specific layers using the trained layer-
wise weights for the feature representations.

2 Related Work

2.1 Self-Supervised Models

Self-supervised learning (SSL) (Liu et al., 2023;
Bengio et al., 2013; Raina et al., 2007) takes ad-
vantage of easily accessible unlabeled data to learn
a model and then produces universal representa-
tions by solving upstream tasks (Liu et al., 2022b).
Then, the pre-trained SSL model can be used to
process unseen data based on its previous knowl-
edge and handle multiple downstream tasks. SSL

models have achieved superior performance in nat-
ural language processing (Devlin et al., 2019; Pe-
ters et al., 2018), computer vision (Chen et al.,
2020; Misra and van der Maaten, 2020), speech
processing (Chen et al., 2019; Chi et al., 2021), and
especially ASR (Baevski and Mohamed, 2020; Ra-
vanelli et al., 2020; Jiang et al., 2021). In our work,
we study a number of SSL models and their feature
extraction ability when presented with input from
other languages.

2.2 Audio Feature Extraction

Before any downstream speech processing tasks,
the audio data is converted to high-dimensional
feature vectors through an audio feature extrac-
tion system (Moffat et al., 2015). Classic meth-
ods, such as Mel-Frequency Cepstral Coefficients
(MFCCs), Linear Predictive Coding (LPC), and
Perceptual Linear Prediction (PLP) extract cep-
stral coefficients that contain low-level acoustic fea-
tures (Dave, 2013; Shanthi and Lingam, 2013). Re-
searchers have also delved into neural-based mod-
els, leveraging pre-trained models on large-scale
datasets to boost performance (Chi et al., 2021).
While progress has been remarkable, challenges
such as robustness to noise variations and inter-
pretability of learned features continue to stimulate
further research in this domain (Mohamed et al.,
2022). In our work, we explore the robustness of
the monolingual SSL models when generalized to
multilingual settings, from which we interpret the
features extracted by these models.

2.3 Automatic Speech Recognition (ASR)

ASR transcribes given audio to text in the script of
the spoken language (Malik et al., 2021; Yu and
Deng, 2016). Deep neural network (DNN) based
techniques (Hinton et al., 2012) have boosted the
accuracy of ASR by replacing the traditional Gaus-
sian Mixture Model in cascaded systems involving
separate acoustic, language, and lexicon compo-
nents (Li et al., 2022). End-to-end models (Graves
and Jaitly, 2014; Chorowski et al., 2014; Bahdanau
et al., 2016; Collobert et al., 2016) have recently
become a breakthrough in the speech community,
directly translating an input speech sequence into
an output text sequence with a single model. Some
publicly available and commonly used toolkits in-
clude Kaldi (Povey et al., 2011), CMU Sphinx (Lee
et al., 1990), SpeechBrain (Ravanelli et al., 2021)
and ESPNet (Watanabe et al., 2018).



Figure 2: The pipeline to measure the performance of SSL model on different languages. We first use each SSL
model as a feature extractor for data in each language and compute a WER score for the ASR task. Then, we
calculate the PSR of the representations to analyze the correlation between the ASR performance and the PSR score.

2.4 Analysis Methods of SSL Models

There has been extensive research on analyzing
supervised speech models (Belinkov and Glass,
2019; Palaskar et al., 2019; Prasad and Jyothi,
2020). However, research on SSL models, es-
pecially in the speech domain, is still relevantly
under-explored. Some recent work in this field
includes a similarity analysis of self-supervised
speech representations, in which they only looked
into simpler models such as APA, CPC, and MPC
(Chung et al., 2021). Liu et al. (2022a) attempted
to distinguish useful representations in SSL mod-
els for spoken language identification and reduce
spurious information in the representations, but
was limited to a specific task. Pasad et al. (2021)
and Pasad et al. (2023) analyzed the layer-wise
acoustic-linguistic content of pre-trained models
by performing layer-independent Canonical Corre-
lation Analysis (CCA) (Hardoon et al., 2004) on
English data. However, since the features extracted
by DNN models often have high dimensionality
(Georgiou et al., 2020), CCA is limited in its ability
to freely model complex nonlinear relationships.

2.5 Cross-lingual Knowledge Transfer

Cross-lingual transfer learning has gained atten-
tion in the field as it effectively mitigates resource
constraints and language-specific challenges, but
most importantly to our work, it requires the model
to be able to adapt to unseen situations such as a
new language (Khurana et al., 2023; Conneau et al.,
2020). Effective cross-lingual transfer for speech
processing requires the model to have a high-level
understanding of both text linguistics and phonet-
ics. Previous work has shown that multilingual
models generalize well to target languages (Con-

neau et al., 2021; Singh et al., 2019; Radford et al.,
2023). Lauscher et al. (2020) shows that the qual-
ity of the cross-lingual transfer is correlated with
the linguistic similarity between the source and tar-
get languages. Inspired by this, we use English
monolingual models in our work to better compare
the linguistic distance between the pre-train data
and the target data. Studying the generalization
ability of monolingual models to unseen languages
allows us to better analyze the learned representa-
tions and localize the factors that facilitate cross-
lingual transfer for more efficient model design.

3 Analysis Methods

As shown in Figure 2, we first use the SSL models
trained on English to extract speech representations
on audio data from German (de), French (fr), Span-
ish (es), Russian (ru), and Chinese (zh). Then, we
use the ASR task to evaluate the quality of the ex-
tracted features against a Mel Spectrum baseline in
Section 3.1. We correlate the WER scores to tradi-
tional measures of linguistic distance in Section 3.2.
Finally, we quantitatively evaluate the phonetic and
syntactic content in the extracted features for each
language, as described in Section 3.3.

3.1 Measuring Multilingual Generalizability
We use the standard ASR task on 5 genealogically
and typographically diverse languages to evaluate
the generalizability of the English SSL models as
a cross-lingual feature extractor. To fairly compare
the models, we freeze the parameters of the models
and use the same downstream architecture (Con-
former + Transformer) for all SSL models and the
Mel Spectrum baseline feature extractor. We also
use the same language model setup and beam size
during decoding.



Our pipeline is shown in Figure 2. We se-
lect SSL models based on their training methods.
These upstream SSL models can be categorized
into masked reconstruction model: Tera (Liu
et al., 2021b) and NPC (Liu et al., 2021a);
masked prediction model: HuBERT (Hsu et al.,
2021); auto-regressive reconstruction model:
VQ-APC (Chung et al., 2020); and contrastive
model: wav2vec2.0 (Baevski et al., 2020). In-
spired by the setup in SUPERB (wen Yang et al.,
2021) and ELMO (Peters et al., 2018), we take the
weighted sum from all layers as the extracted repre-
sentation, and the weight vector is updated during
training.

For the downstream model, we use the Con-
former (Gulati et al., 2020) as the encoder and
the Transformer (Vaswani et al., 2017), which has
achieved state-of-the-art (SOTA) results in many
speech recognition tasks (Ma et al., 2021). Dur-
ing data analysis, we isolate the effect of the SSL
model as a feature extractor by taking the differ-
ence (∆) between the SSL feature extractor and the
Mel Spectrum baseline performance. This elimi-
nates any potential noise introduced by data size
differences, speech formality levels, and other lin-
guistic differences between languages, allowing
a fair comparison between different SSL models.
When decoding, we use a simple RNN as a lan-
guage model and keep the parameters consistent
across all tasks.
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de en

Romance
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Slavic
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Figure 3: Phylogenetic Tree of Target Langauges

3.2 Measuring Linguistic Distance

We examine the performance of self-supervised
models on languages across a diverse range of fam-
ilies and groups in order to investigate the rela-
tionship between model performance and linguistic
distance. In our analysis, we employ the phyloge-
netic tree in Figure 3 derived from the theory of
language evolution with genetic distance equaling
the Levenshtein distance (Serva and Petroni, 2008)
as a measure of linguistic distance. Since languages
evolve with both their written and spoken forms,

the phylogenetic tree will contain the most compre-
hensive information about the language.

3.3 Measuring Phonetic & Syntactic Content

In this section, we describe approaches to quan-
tify phonetic and syntactic content in the extracted
speech representations of SSL models.

Figure 4: DGCCA pipeline. The model aims to compare
the representation extracted by the SSL model to the
pure acoustic representation (from Mel Spectrum) and
pure syntactic/semantic representation (from BERT).

3.3.1 DGCCA
In order to better analyze the phonetic and syn-
tactic content of the features, we use a tool called
Deep Generalized Canonical Correlation Analy-
sis (DGCCA), which is a deep learning technique
that measures the nonlinear relationship between
arbitrarily many views of the data and learns a view-
independent representation (Benton et al., 2019).
DGCCA effectively quantifies the phonetic and
syntactic content of SSL models when treating the
features extracted with different models as different
views of the same data.

As shown in Figure 4, DGCCA takes N pairs
of data vectors across J views as input and re-
turns a correlation score as a measure of the sim-
ilarity between the vectors. Using standard back-
propagation to optimize the weight matrices Wj =

{W j
1 , . . . ,W

j
Kj

}, we try to find the linear transfor-
mation Uj ∈ Rdj×N of fi(Xj) ∈ Roj constrained
by GGT = Ir such that:



minimize
Uj∈Rdj×N ,G∈Rr×N

J∑
j=1

∥G− UT
j fj(Xj)∥2F , (1)

where Xj ∈ Rdj×N is the input feature vectors
of the jth view; fj is the function learned using
a multilayer perceptron of Kj layers; dj is the di-
mension of the jth view and r is the dimension of
the learned representation G.

In our case, N is the number of utterances in
the test data, where we have the SSL features and
Mel Spectrum features of each utterance, as well
as the BERT representations of its transcript. The
monolingual BERT model in each target language
is used when extracting the textual representations.

Features extracted by the SSL models, pure pho-
netic features (Mel Spectrum), and pure textual
features (BERT representations) can be considered
as different views (fi) of the data. The correla-
tion scores between different views are the loss of
the converged DGCCA network. We compute the
correlation scores between each of the latter two
views and the SSL features. The correlation scores
between the SSL features and the Mel Spectrum
measure the Phonetic Content in the extracted
features; the correlation scores between the SSL
features and the BERT representations measure the
Syntactic Content in the extracted features.

3.3.2 Phonetic-Syntax Ratio (PSR)

We introduce a new metric: the Phonetic-Syntax
Ratio (PSR) in order to quantitatively investigate
the phonetic and syntactic content on SSL represen-
tation. As described in Section 3.3.1, the similarity
to phonetic features and the similarity to syntactic
features of the SSL representations are both opti-
mized and quantified as correlation scores when
training the DGCCA network. We define the PSR
as the ratio between the phonetic correlation score
and syntactic correlation score, weighted equally
among all data points:

PSR = (
1

n

n∑
i=1

phonetic scorei
syntax scorei

−1)·100%, (2)

where phonetic scores and syntax scores are the
output of DGCCA when the SSL representations
are fed in with the Mel Spectrum and BERT contex-
tualized embedding, respectively. The PSR score is
model-agnostic and language-agnostic, and can be
used for a range of contrastive analysis for inferring
cross-lingual transferability.

4 Experimental Setup

4.1 Datasets

We investigate the cross-lingual adaptation capa-
bility of English SSL models in five languages.
For training the ASR models, we use the Mozilla
Common Voice 5.1 dataset (Ardila et al., 2020) for
German, French, Spanish, and Russian, and we use
the OpenSLR ST-CMDS-20170001_1 Free ST Chi-
nese Mandarin Corpus2 for Chinese. The Common
Voice English test set is used for DGCCA analysis.
More details about the datasets are in Table 1.

Lang hr voices train dev test
de 751 11,731 196,464 15,341 15,341
fr 605 11,960 254,863 15,621 15,621
es 522 18,906 138,878 14,860 14,860
ru 117 927 13,189 7,242 7,307
zh - - 92,280 4,299 4,483
en 1933 61528 435,947 16,029 16,029

Table 1: Dataset description; the number of hours,
voices, and utterances for each split. Hour and voice
statistics for the Chinese corpus are not available as it is
distributed after preprocessing. The number of speakers
for the Chinese dataset is 855. Train and dev splits of
English were not used.

4.2 Multilingual Generalizability Setup

We use the ASR performance on a range of ty-
pologically diverse languages as a metric to infer
the models’ multilingual generalizability. In or-
der to fairly compare the performance of each SSL
model in different language datasets, we use the
same downstream model for all languages and fea-
tures and focus on the within-language difference
between the SSL model and the baseline model.

Self-supervised feature extractors We examine
a number of English SSL speech models including
HuBERT (Hsu et al., 2021), wav2vec 2.0 (Col-
lobert et al., 2016), NPC (Liu et al., 2021a), TERA
(Liu et al., 2021b), and VQ-APC (Chung et al.,
2020) with model details shown in Table 2. Unlike
the baseline model, we use a smaller learning rate
considering that self-supervised training usually
uses a small learning rate. We use a learning rate
of 0.0025 with 40000 warmup steps.

Model architectures After multilingual features
are extracted, we use a standard Conformer encoder
and a Transformer decoder in our downstream ASR
model and a stacked RNN as the language model

2http://www.openslr.org/38



Model architecture train objective model size pre-train input stride
HuBERT-BASE

CNN + Transformer Predictive
95m LS-960

wav 20ms
HuBERT-LARGE 317m LL-60k
wav2vec2-BASE

CNN + Transformer
Contrastive 95m LS-960

wav 20ms
wav2vec2-LARGE + Diversity 317m LV-53.2k

NPC Masked Conv Block L1 Reconstruction 19.4m LS-C-360 Mel 10ms

TERA-BASE
Unidirectional LSTM

L1 Reconstruction 21.3m LS-C-100 Mel 10ms
+ Prediction Network

VQ-APC Unidirectional LSTM L1 Reconstruction 4.63m LS-C-360 Mel 10ms

Table 2: SSL Model Summary. For the pre-training data description, LS = Librispeech, LS-C = Librispeech-clean,
LL = Libri-light, and LV = Libri-vox.

during decoding. More details on the ASR model
architecture and training are in Appendix A.

4.3 PSR Computation
We use the DGCCA pipeline shown in Figure 4 to
compute the PSR scores for each langauge. The
DGCCA model used consists of an MLP network
with a Linear layer, a Sigmoid function, and a Batch
Norm layer. Each group of tensors has one MLP
network, and its output is passed into the DGCCA
loss. We used SGD to optimize the network with a
learning rate of 1e-6. We use features extracted by
the HuBERT model from five different languages
(German, French, Spanish, Russian, and English)
and also extract its corresponding Mel Spectrum
and BERT features. Chinese PSR is not reported
because CER was used to evaluate the ASR per-
formance, hence the comparison across languages
would not be fair (more details in Section 5.2).
When calculating the correlation scores, we use
the test set in each target language as input to the
DGCCA model with a batch size of 32. Details
on the implementation and hardware of the SSL
models and the DGCCA model can be found in
Appendix B.

5 Results and Analysis
5.1 Multilingual Generalizability
Results from the multilingual ASR tasks are shown
in Table 3, with both WER scores and the differ-
ence from the Mel Spectrum baseline (∆).

In the zero-shot setting, it is generally expected
that the SSL feature extractor trained on English,
without any domain adaptation, performs poorly on
the cross-lingual ASR tasks compared to the Mel
spectrum baseline. Although it can extract higher-
dimensional features, additional English syntactic
information in the SSL model can be projected onto
the new language (Georgiou et al., 2020). There-
fore, the purpose of this experiment is not to im-

prove the SOTA results but rather to probe the SSL
models for further phonetic-syntactic analysis.

There are five SSL models being evaluated in
this experiment in five languages. The column Avg
on the right marginal of Table 3 shows the overall
performance of each SSL model in all languages.
In general, wav2vec2.0-LARGE significantly out-
performs other feature extractors and has a con-
sistent result across languages. There are two in-
stances in which wav2vec2.0-LARGE outperforms
the pure acoustic Mel Spectrum baseline. This can
be attributed to the cross-lingual phonetic informa-
tion transfer that the model learned from English
pre-training.

5.1.1 Effect of Training Objectives

The HuBERT and wav2vec2.0 models consistently
perform better than NPC, TERA, and VQ-APC.
HuBERT and wav2vec2.0 both effectively combine
CNN encoders with Transformers in their architec-
ture. The attention mechanism allows the models
to effectively encode speech features into the latent
embedding space and learn contextualized repre-
sentations. Both HuBERT and wav2vec2.0 use
similar architectures and identical pre-training data
and setups. However, HuBERT as a cross-lingual
feature extractor does not perform as well due to
its predictive loss compared to the contrastive loss
of wav2vec2.0. The masked prediction task during
HuBERT pre-training forces the model to learn the
language model as well as the acoustic model from
continuous English speech inputs (Hsu et al., 2021),
so the model might be overfitted to English syntax.

Now we discuss the performance of NPC, TERA,
and VQ-APC, which are significantly smaller than
wav2vec2.0 and HuBERT both in model and data
size. TERA and NPC have comparable model sizes,
training objectives, input format, and stride dur-
ing pre-training, but TERA outperforms NPC with
less than one-third of the training data. This is



Model/Lang de ∆ fr ∆ es ∆ ru ∆ zh ∆ Avg. ∆

Mel (Baseline) 10.0 - 15.8 - 11.5 - 7.9 - 9.4 - 10.92 -
HuBERT-BASE 11.3 1.3 16.5 0.7 13.1 1.6 7.8 -0.1 9.8 0.4 11.70 0.78

HuBERT-LARGE 12.4 2.4 16.6 0.8 12.0 0.5 8.3 0.4 9.1 -0.3 11.68 0.76
wav2vec2-BASE 11.8 1.8 16.7 0.9 13.4 1.9 8.5 0.6 9.8 0.4 12.04 1.12

wav2vec2-LARGE 9.2 -0.8 16.6 0.8 12.3 0.8 7.6 -0.3 9.4 0 11.04 0.10
NPC 16.2 6.2 18.1 2.3 16.1 4.6 11.0 3.1 10.7 1.3 14.42 3.5

TERA-BASE 15.6 5.6 17.1 1.3 14.8 3.3 10.3 2.4 10.0 0.6 13.56 2.64
VQ-APC 13.5 3.5 17.2 1.4 17.3 5.8 12.1 4.2 10.8 1.4 14.18 3.26

Avg. 12.86 2.86 16.97 1.17 14.14 2.64 9.37 1.47 9.94 0.54 - -

Table 3: Word Error Rate (WER) of German (de), French (fr), Spanish (es), and Russian (ru). For Chinese (zh), we
apply Character Error Rate (CER) as the evaluation metric. ∆ is the difference from Baseline, the lower the better.
wav2vec2.0-LARGE achieves the best performance and the Transformer-based models generally perform better.

due to the alterations in the time, frequency, and
magnitude axes of the data during pre-training,
which increases data diversity and enforces accu-
rate phoneme prediction (Liu et al., 2021b). On the
other hand, VQ-APC achieves comparable results
as NPC with a much smaller model size. With
all the other setups identical, this suggests that
the sequential structure learned by the Unidirec-
tional LSTM (APC) and the quantization layers
are more effective at capturing speech representa-
tions than convolutional blocks in NPC, implying
that speech should be treated as sequential data.

5.1.2 Effect of Model Size
Comparing the HuBERT-BASE / HuBERT-LARGE

and wav2vec2.0-BASE / wav2vec2.0-LARGE pairs
gives insight into the effect of model size on down-
stream ASR tasks. The LARGE models generally
perform better than the BASE models. This is con-
sistent with a previous study by Pu et al. (2021),
in which they empirically showed that scaling SSL
models results in improvements in both L1 loss
and accuracy on downstream tasks consistent with
the power law. Larger models are also more data-
efficient when labeled data is scarce. The advan-
tage of the LARGE model over the BASE model
is especially apparent on the wav2vec2.0 pair, as
wav2vec2.0-LARGE consistently performs better
across all languages. As discussed in Section 5.1.1,
the more efficient use of data in HuBERT-LARGE

may have caused it to learn even more syntactic
and semantic representation, which does not benefit
cross-lingual speech feature extraction.

5.2 Linguistic Analysis
Now we discuss the performances of all five lan-
guages based on their average scores. Smaller ∆
indicates better generalizability. According to the
phylogenetic tree shown in Figure 3, both Ger-
man and English belong to the Germanic branch;

French, Spanish, and Russian are in different lan-
guage groups as English; Chinese belongs to an-
other language family. As shown in Table 3, En-
glish SSL models have better generalizability in
French than in German. This is because French
has a profound phonological influence on the de-
velopment of English (Roth, 2010), and the latter
not only borrows some French pronunciation rules,
but also shares contextual phonetic similarities of
pitch contours (So and Best, 2014). For German,
although it appears to have poor SSL performance
with high ∆ values, the absolute WER is the lowest
among German, French, and Spanish, which have
similar training sizes. From this, it can be observed
that SSL representations has diminishing returns in
high-resource situations.

Features extracted by the SSL models also per-
form well in Russian and Chinese ASR tasks. This
might seem surprising, but it is because both Rus-
sian and Chinese are low-resource with less than
100k utterances. This demonstrates the robustness
of SSL models in low-resource settings and estab-
lishes promising directions to generalize to other
low-resource languages. Moreover, although Chi-
nese is in the Sino-Tibetan language family, it actu-
ally has some phonotactic similarities with English
(Ann Burchfield and Bradlow, 2014; Yang, 2021).
It is important to note that the CER was used as the
metric for Chinese ASR to avoid additional noise
introduced by a word segmentation model, so the
Chinese results should only be compared across
models rather than across languages.

Analysis by linguistic distance can provide some
plausible explanations for the results, but there still
exist some inconsistencies. These inconsistencies
motivate our next section, PSR Analysis, in which
we use our novel metric to explain the model perfor-
mance by categorizing and quantifying linguistic
information in the extracted representations.



5.3 PSR Analysis
PSR scores of HuBERT-BASE on English and the
target languages are shown in Table 4. As described
in Equation 2, the larger the PSR, the more pho-
netic content in the feature set. First, to validate
the PSR scale, we test the SSL features extracted
from an English corpus by the SSL model. The
PSR value from the English corpus is close to zero,
which conforms with the intuition that the English-
trained HuBERT model is able to extract useful in-
formation in both the phonetic and syntactic fields.

Lang en de fr es ru
PSR .01 .15 .16 .13 .23

WER ∆ - 1.3 0.7 1.6 -0.1

Table 4: PSR Results for Target Languages. A positive
PSR means that the phonetic content in the extracted
representations is stronger than the syntactic content.

Combined with the information in Table 3, we
show that there is a positive correlation between
the PSR scores of the feature group and the ASR
performance of the model in that language. For ex-
ample, the ∆ value of HuBERT-BASE on German
is higher (worse) than that of French and lower
(better) than that of Spanish as shown in Table
3, and we see the corresponding relationship of
their PSR values in Table 4: German PSR is lower
(worse, less phonetic info) than French and higher
(better, more phonetic info) than Spanish. This
phenomenon indicates that the more phonetic infor-
mation contained in a set of features, the better the
performance of that set of features on cross-lingual
or out-of-domain downstream tasks. Therefore,
when the SSL model trained with English mod-
els is applied to the non-English corpus, phonetic
features are the main contributors to effective in-
formation compared with syntactic features.

5.4 Layer Weights Analysis
All PSR scores shown in Table 4 are positive, sug-
gesting that the features extracted by speech SSL
models tend to have more phonetic information
than syntactic information. This is partially due
to the fact that the weighted sum of layers is used
as input features to the ASR model and that the
weights are optimized during training to put more
emphasis on the phonetic information. Figure 5
shows the magnitude of the weights across all lay-
ers of HuBERT-BASE.

First, the layer-wise trend is consistent across all
languages, suggesting each layer contains similar
information even when trained on different datasets,

Figure 5: Layer-wise Weight Analysis.

i.e., the weights get updated similarly given the
same task. The optimized weights gravitate toward
layers that are crucial for the ASR task. The posi-
tive correlation between the ASR and PSR scores
implies that the layers with large weights contribute
to the high PSR scores, i.e. have denser phonetic
than syntactic information. From Figure 5, Layers
4, 11, and 12 contribute significantly to the ex-
tracted features. Since lower layers contain lower-
level information and vise versa, Layer 4 (and its
adjacent layers) contain low or intermediate-level
information on acoustic and phonetics important
for the ASR task. The last two layers are the most
salient because they contain high-level informa-
tion related to human phonetics. Additionally, the
weight for Layer 4 is larger in German and French,
which are closer to English. This shows that when
the pre-training and target languages are highly sim-
ilar, the low-level phonetic features become more
helpful. Our work to localize the phonetic content
encoded in specific layers of HuBERT draws simi-
lar conclusions with Pasad et al. (2021) and Pasad
et al. (2023), which localized various acoustic and
linguistic properties in SSL models using CCA.

6 Conclusion
In this work, we studied English self-supervised
speech models and probed for the phonetic and syn-
tactic content in the extracted speech representa-
tions. We accomplished this using the SSL models
as a feature extractor for downstream ASR task in
multiple languages. Higher multilingual adaptabil-
ity of a model is found to be positively correlated to
the amount of phonetic information in the extracted
representations. Most importantly, we propose a
novel metric - the Phonetic-Syntax Ratio (PSR) - to
quantify the phonetic and syntactic composition in
the representations. PSR can serve as an effective
indicator during model selection. We were also
able to localize the phonetic information to certain
layers in the SSL model. This is a call to other
researchers to design smarter objectives when pre-
training large models (such as focusing more on
phonetic information learning) rather than simply
increasing the model size.



Limitations

There are several limitations to our work. First,
the value of our PSR was only tested on HuBERT
due to limited computing resources. Although the
scores reflect the ratio of acoustic and linguistic
information in the features extracted by the SSL
model, the performance of the corresponding down-
stream ASR task is not yet empirically shown in
every SSL model. Second, the parameters in the
SSL models are frozen during ASR training. Multi-
lingual adaptability might be evaluated differently
by unfreezing some or all layers of the SSL feature
extractor. Finally, we did not calculate the PSR
value for Chinese, as we did not find it to be a valu-
able data point given the Chinese ASR results are
reported in CER only. Our choice to evaluate En-
glish SSL models is motivated by the abundance or
English data, but other monolingual or multilingual
models could be used given the abundance of data
in the chosen langauge(s). For future directions, we
believe that exploring spurious correlations among
language pairs (e.g. phonotactical similarities be-
tween Chinese and English) is a fruitful direction
that might shed light on language selection during
cross-lingual transfer in speech models.
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A ASR Model Architecture and Training

The downstream ASR model is composed of a Con-
former encoder and a Transformer decoder. The
encoder consists of 12 blocks and 4 attention heads
with an output size of 256, and the decoder consists
of 6 blocks. We use an Adam optimizer with 25000
warmup steps. The model is initialized with Xavier
Uniform distribution and trained for 50 epochs with
early stopping. We take the average of the best 10
models as the prediction model in the ASR task.
To focus on the performance of the SSL feature
extractor, we used a simple stacked RNN as the
language model during decoding. The RNN lan-
guage model has 2 layers and each layer has 650
units optimized by the SGD algorithm. We train
this language model for 20 epochs and only keep
the best one as our language model. During de-
coding, we use 0.3 as the weight of the language
model and decode data with a beam size of 10.

B Implementation and Hardware

We obtain the upstream SSL models and DGCCA
model from the S3PRL Speech Toolkit (wen Yang
et al., 2021). The ASR training and DGCCA com-
putation were both done on NVIDIA Tesla V100
for all model-language pairs. The average time of
each experiment depends on the dataset size but
cost about one week to complete on two GPUs for
ASR and one day for DGCCA.
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