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Abstract
The state-of-the-art for various speech tasks
is a sequence-to-sequence model based on
a self-attention mechanism known as Trans-
former. The broadly used Wav2vec 2.0 is a
self-supervised transformer model pre-trained
on large unlabeled datasets and subsequently
fine-tuned for a particular task. The data, along
with the size of the transformer model, play a
crucial role in both these training steps. In this
paper, we utilize Wav2vec 2.0 models for find-
ing the speaker change in a speech signal. Our
goal is to compare different model sizes with
different training datasets to show that data sim-
ilar to the task domain bring better performance
than larger models. The speaker change detec-
tion task was tested on four real conversation
corpora with consistent top results.

1 Introduction

Speaker change detection (SCD) is the task of find-
ing the point in a conversation where the speaker is
changing. It is a basic speech-processing task that
is relevant to various speech applications such as
speaker diarization (Bullock et al., 2020; Kunešová
et al., 2017; Zajíc et al., 2016), automatic speech
recognition (Wu et al., 2023), and other tasks re-
lated to processing multi-speaker audio (Aronowitz
and Zhu, 2020; Zajíc et al., 2018).

Legacy approaches for the SCD task include
computing a distance between two sliding win-
dows (Rouvier et al., 2013), detecting differences
in pitch (Hogg et al., 2019), or using precom-
puted features based on i/x-vectors (Aronowitz and
Zhu, 2020), Mel-frequency cepstral coefficients
(MFCCs) (Hogg et al., 2019), spectrograms (Hrúz
and Zajíc, 2017), and combinations of multiple
types of features (Su et al., 2022), even including
lexical information gained from automated tran-
scripts (Anidjar et al., 2021; Zajíc et al., 2018)
or word embeddings (weon Jung et al., 2023) for
speaker change detection. Different neural net-
work model architectures have been applied, such

as LSTM (Hrúz and Hlaváč, 2018), CNN (Hrúz
and Zajíc, 2017), or sequence-level modeling meth-
ods (Fan et al., 2022). Nowadays, the transformer
network concept uses the attention mechanism of
deep learning (Vaswani et al., 2017), which has
recently seen great success on a variety of tasks,
including but not limited to speech processing (Liu
et al., 2021). The main benefit is self-supervised
learning on unlabeled data.

In this paper, we investigate the wav2vec
2.0 (Baevski et al., 2020) framework in an end-
to-end approach for SCD, first proposed in our
previous paper (Kunešová and Zajíc, 2023), where
it was shown to achieve state-of-the-art results. The
main focus of this paper is to explore the capabil-
ities of different pre-trained wav2vec 2.0 models
of various sizes. The results are evaluated on four
conversational speech corpora broadly used in the
SCD task.

Figure 1: Illustration of the multitask wav2vec 2.0 de-
tector of speaker changes. The model outputs a label for
each audio frame (every 20 ms).

2 Wav2vec 2.0 models

Self-supervised audio transformers are known
to scale well with the size of pre-training data.
Wav2vec 2.0 (hereafter referred to as “wav2vec2”)
is a transformer-based self-supervised framework
for speech representation, which has been used
for a wide range of speech processing tasks,
such as automatic speech recognition (Lehečka



Table 1: Pre-trained wav2vec2 models used in this paper.

Model #Trans. #Param. Datasets Hours Lang.

wav2vec2-base (Baevski et al., 2020) 12 ∼ 95M Librispeech 960 English
wav2vec2-large (Baevski et al., 2020) 24 ∼ 317M Librispeech 960 English
wav2vec2-large-xlsr-53 (Conneau et al., 2021) 24 ∼ 317M MLS, CV, BABEL ∼ 56k 53 lang.
wav2vec2-base-cs-80k-ClTRUS (Lehečka et al., 2022) 12 ∼ 95M various ∼ 80k Czech

et al., 2022) and many others (Yang et al.,
2021). There is a huge family of these mod-
els with different numbers of parameters trained
on different datasets. From this zoo, we pick
four models1 for our evaluation: two that were
used in (Kunešová and Zajíc, 2023) – the base
model wav2vec2-base and the large cross-lingual
(XLSR) model wav2vec2-large-xlsr-53, plus
two others. We added the English large model
wav2vec2-large and, to show the efficiency of
models trained on different than clean data, also the
Czech model wav2vec2-base-cs-80k-ClTRUS,
which is trained on data from a greater variety of
different domains (Lehečka et al., 2022). Their
parameters are summarized in Table 1.

3 Speaker Change Detection (SCD) task

Speaker change in the SCD task is defined as a
point in the audio signal where the speaker changes
to another speaker, silence, or overlapping speech.
The point where a speaker starts to speak after a
silence is also a speaker change.

SCD is generally language-independent because
language can be seen as one part of the speaker’s
characteristics. We try to discriminate these speak-
ers from each other (to find their change). On the
other hand, the discrepancy in the train and test
acoustic domains plays a significant role in the
speech representation by the end-to-end model.

The absence of a large quantity of labeled data
needed for the deep learning approach forces us to
use a self-supervised model as wav2vec2.

3.1 SCD model

As described in our previous paper (Kunešová and
Zajíc, 2023), we treat the SCD problem as an audio
frame classification task. We use the wav2vec2
model to get a contextual representation of the in-
put signal, with an additional last decision layer
as a speaker change detector. The outputs from

1Downloaded from https://huggingface.co/
facebook/wav2vec2-base, .../wav2vec2-large, .../wav2vec2-
large-xlsr-53 and https://huggingface.co/fav-kky/
wav2vec2-base-cs-80k-ClTRUS

the transformer are fully connected to the decision
layer (one neuron with a linear activation func-
tion), which outputs information about the speaker
changes in each audio frame every 20 ms, as per
the pre-trained wav2vec2 model. Due to the char-
acter of the labeling function (see Section 3.2), the
model is trained for regression (with mean square
error loss) rather than a simple binary classification.
The AdamW algorithm was used as an optimizer
except for the wav2vec2-large model, where an
Adamax provided more stable training behavior.

For the fine-tuning on SCD-labeled data, only
the first CNN layer is frozen. For this step, we are
using the HuggingFace Transformers (Wolf et al.,
2020) library, as in our aforementioned previous
paper2. The system’s architecture is in Figure 1.

Because of the high memory requirements of the
wav2vec2 models, the 16 kHz input signal is given
in segments of 20 seconds, with a 10-second over-
lap between segments. Then when the resulting
predictions are joined back together for evaluation,
we use the middle part of each segment and discard
the duplicate 5 s intervals at the edges. This ensures
that there is always sufficient context on both sides
of a potential speaker change point.

3.2 Reference labels for SCD

Reference labels for the SCD task are based on
the annotation files in the Rich Transcription Time
Marked (RTTM) format (i.e., the standard annota-
tion format for speaker diarization). Each line in an
RTTM file specifies the time interval and speaker
ID of one unbroken speaker turn. In our work, we
consider the beginnings and ends of all these in-
tervals as speaker change points, with one minor
adjustment: during fine-tuning, if two turns of the
same speaker have only a small gap (less than one
second) between them, we merge the two turns,
ignoring the gap. This helps to prevent the model
from becoming too sensitive and reporting “speaker
changes” even in brief pauses between words.

Additionally, in order to deal with time inaccu-
2Our code is available at https://github.com/mkunes/

w2v2_audioFrameClassification.
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Table 2: Our results (%) for SCD task with models fine-tuned either on in-domain data or on an artificial dataset.

Evaluated Feature In-domain train data Artificial train data

corpus model Cov Pur F1 Cov Pur F1

AMI wav2vec2-base 90.94 90.06 90.50 83.45 81.34 82.38
wav2vec2-large 91.52 90.31 90.91 80.25 82.77 81.49
wav2vec2-large-xlsr-53 92.20 90.39 91.28 83.45 83.76 83.61
wav2vec2-base-cs-80k-ClTRUS 92.41 89.97 91.18 85.02 79.61 82.22

DH-I wav2vec2-base 93.74 89.65 91.65 92.93 86.09 89.38
wav2vec2-large 94.98 89.25 92.03 91.29 87.32 89.26
wav2vec2-large-xlsr-53 95.56 89.00 92.16 89.43 89.79 89.61
wav2vec2-base-cs-80k-ClTRUS 94.61 89.17 91.81 91.04 88.31 89.65

DH-II wav2vec2-base 92.93 92.09 92.51 95.00 85.90 90.22
wav2vec2-large 94.75 91.04 92.86 93.67 87.24 90.34
wav2vec2-large-xlsr-53 95.59 91.19 93.33 92.46 89.51 90.96
wav2vec2-base-cs-80k-ClTRUS 94.88 91.45 93.13 95.29 86.75 90.82

CallHome wav2vec2-base 93.48 92.70 93.09 92.83 86.38 89.49
wav2vec2-large 92.62 93.36 92.99 89.62 89.40 89.51
wav2vec2-large-xlsr-53 93.51 93.49 93.50 93.79 88.47 91.05
wav2vec2-base-cs-80k-ClTRUS 94.51 92.54 93.51 94.51 84.55 89.25

racies in the human-annotated references, we also
use a fuzzy labeling strategy, which we first devel-
oped in (Hrúz and Zajíc, 2017): speaker change
points are given a reference label with a value of 1,
which linearly decreases to zero over an interval of
±0.2 s around each boundary. Audio frames more
than 0.2 s away from the nearest speaker change
point are labeled as 0.

During evaluation, we detect speaker change
points by first finding peaks (local maxima) in the
predicted labels and then applying a threshold –
peaks above the threshold are considered speaker
change points. In this paper, unlike (Kunešová and
Zajíc, 2023), we also set a minimum distance be-
tween detected peaks as 0.25 s – if there are multi-
ple peaks within 0.25 s, only the highest one is kept
(this brings a very minor but consistent improve-
ment in F1-score). However, the fine-tuned “base”
and “xlsr-53” models themselves were identical to
the previous work. No other post-processing of the
model outputs is performed.

4 Datasets

To evaluate the effectiveness of different wav2vec2
models, we tested our system on several widely
used English-language conversational speech cor-
pora, which have annotated speaker turns for SCD
evaluation.

The tested corpora were the following: AMI
Meetings Corpus (AMI) (Carletta, 2007), the
American English subset of the CallHome
(CallHome) (Canavan et al., 1997), and the

First and Second DIHARD Challenge data (DH-
I) (Ryant et al., 2018; Bergelson, 2016) and (DH-
II) (Ryant et al., 2019; Bergelson, 2016).

To also compare the effectiveness of the individ-
ual wav2vec2 models on out-of-domain data, we
designed a synthetic training dataset in (Kunešová
et al., 2019; Kunešová and Zajíc, 2023), made from
the LibriSpeech corpus. This way, we can control
the speaker change points and also ensure that ref-
erence labels are accurate.

5 Results and discussion

Predicted speaker change points were evaluated
in terms of audio segmentation, as segment pu-
rity (Pur), coverage (Cov), and F1-score, using
the Python library pyannote.metrics3 (Bredin,
2017). Purity measures how homogeneous the seg-
ments are, and coverage expresses whether each
speaker turn is fully contained within one segment.
F1-score is the harmonic mean of the two.

Results4 for individual corpora can be seen in Ta-
ble 2. We used identical settings for all our models
and corpora. We set these values in such a way as
to obtain high F1 scores on the AMI development
set across all models that were trained or evaluated
on AMI – as five training epochs and a threshold of
0.35. The consistency of our tested models is evi-
dent from the Coverage vs. Purity graph in Figure 2
for all four corpora.

3Downloaded from: https://pyannote.github.io/
4Unlike our results in (Kunešová and Zajíc, 2023), a mini-

mum distance between peaks (0.25 s) is applied in this study.

https://pyannote.github.io/
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Figure 2: Cov vs. Pur for different thresholds with mod-
els fine-tuned on in-domain or artificial data.

Table 3: Previously reported SCD results (%) on differ-
ent corpora, with models fine-tuned on in-domain data.

Corpus and SCD method Cov Pur F1

AMI (Su et al., 2022) 91.75 85.68 88.61
AMI (Fan et al., 2022) 89.81 83.92 86.76
AMI (Bredin et al., 2020) 84.2 90.4 –

DH-I (Fan et al., 2022) 92.56 86.24 89.29

DH-II (Bredin et al., 2020) 93.7 86.8 –

CallH. (Hrúz and Hlaváč, 2018) 72.57 72.57 –

In comparing the base and large models, where
the number of parameters and the amount of pre-
training data are substantially different, the larger
models (three times more parameters), especially
“xlsr-53”, expectedly outperform the base model.
The results for the “ClTRUS“ model are more inter-
esting. The better-trained “ClTRUS“ model with
the same architectural size as the base model also
consistently brings better results, and is mostly bet-
ter than the larger models on in-domain data.

The base and large models were trained mainly
on clean Librispeech data and are unfamiliar with
real wild acoustics conditions in tested data. On the
other hand, the “ClTRUS” model saw “wild” data
during the pre-training phase, and the fine-tuning
on in-domain data can benefit from this. Similarly,
the larger “xlsr-53” model, which was trained on
more variable data from a few different datasets,
also supports this trend.

For a comparison with other systems from dif-
ferent state-of-the-art articles, we present Table 3,
showing the best results on the selected corpora we
could find in the literature.

6 Conclusion

In this paper, we tested four different wav2vec2
models with an additional decision layer for the
SCD task. Wav2vec2 is a relatively complex model
with a high computation cost, but we want to use
this approach in a transcription system in combi-
nation with existing ASR (Lehečka et al., 2022),
where the first wav2vec2 layers can be shared. The
results of our system with all the tested models
surpass all previous results on the same datasets.
A comparison of these models shows us the im-
portance of in-domain data not only in fine-tuning
phase but also in the self-supervised pre-training
phase. According to the results, we believe that
richer data for pre-training the models brings more
gain than bigger models.
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