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Abstract

Learning similar representations for spoken ut-
terances and their written text involves under-
standing both forms in a shared manner. This
process of developing similar representations
for semantically related speech and text is es-
sential, particularly for tasks like speech-to-text
(S2T) translation. To that end, we propose a
SimSiam-based S2T (S3T) model that lever-
ages the SimSiam network, a state-of-the-art
unsupervised learning architecture, to bridge
the modality gap between speech and text. The
proposed model does not require negative sam-
ple mining. The comparative study using four
directions of the standard MuST-C (Di Gangi
et al., 2019) dataset demonstrates that the pro-
posed S3T translation model beats all the exist-
ing methods, and achieves an average metric of
30.02 BLEU score. Our analysis affirms that
S3T effectively bridges the representation gap
between the two modalities.

1 Introduction

Speech-to-text (S2T) translation is to map speech
input in a given language to text output in another
language. It has applications in video subtitling,
facilitating communication across different demo-
graphics, education, etc. Traditional approaches for
solving S2T tasks cascade two models: machine
translation (MT) and automatic speech recogni-
tion (ASR). Cascade models suffer from high la-
tency, error propagation, and memory cost. There-
fore, recent works addressing S2T use end-to-end
(E2E) models based on pre-trained models such as
(Inaguma et al., 2020; Bérard et al., 2018; Wang
et al., 2020b; Bansal et al., 2019; Le et al., 2021)
or multi-task learning (joint-training) approaches
(Chuang et al., 2020; Anastasopoulos and Chiang,
2018; Wang et al., 2019; Ye et al., 2022; Sperber
et al., 2019; Le et al., 2020; Tang et al., 2021b).
A very recent work (Ye et al., 2022) hypothesizes
that the low performance of E2E models is due to

"How are you?" How are you?
[Text]

"How are you?" How are you?
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"How are you?" Thank You!
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"How are you?" Thank You!
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Figure 1: Depiction of representations for speech and
textual transcripts. An ideal representation is where two
different modalities with the same meaning (positive
pair) should be close to each other as shown in (a) and
it’s the opposite for negative pairs in (b).

the modality gap between speech and text repre-
sentations. Building on the same hypothesis, we
present a novel methodology based on the Sim-
Siam (Chen and He, 2021) network, leveraging the
cosine similarity (CS) loss, to mitigate the modal-
ity gap between speech and textual representations.
Unlike (Ye et al., 2022), the proposed model learns
joint representations in an unsupervised way and
does not need negative sample mining. Our major
contributions are given as follows: (a) We utilize
SimSiam architecture to reduce the modality gap
between textual and speech representation for the
first time. As per our knowledge, such a study has
not been done before, and (b) Empirical results
on benchmark MuST-C data show the superiority
of our approach where it outperforms the baseline
by 0.17 BLEU score. Analysis indicates that the
proposed approach is able to fill the modality gap.

2 Related Work

Our work jointly studies end-to-end (E2E) S2T
tasks and methods to counter the modality gap be-
tween speech and text.

2.1 Speech-to-Text
The traditional approach to solve S2T problem con-
sists of cascaded systems using an ASR followed



Figure 2: Proposed model architecture.

by an MT module. This method still has some lim-
itations such as being susceptible to error propaga-
tion and having high latency (Anastasopoulos and
Chiang, 2018). Recently, various authors have ex-
plored the end-to-end S2T models (Le et al., 2020;
Weiss et al., 2017; Tang et al., 2022a; Di Gangi
et al., 2019; Inaguma et al., 2020). Earlier, major
work in this domain only produced modest results
for S2T data (Tang et al., 2022a; Weiss et al., 2017),
whereas the current work approached the results of
the cascaded S2T models closely (Ye et al., 2022,
2021; Bentivogli et al., 2021; Xu et al., 2021; Tang
et al., 2021a).

2.2 Speech and Text Alignment

The previous S2T models have worked on aligning
text and speech embeddings, e.g., using an adver-
sarial loss (Alinejad and Sarkar, 2020) in super-
vised pre-training, in self-supervised pre-training
(Ao et al., 2022; Chen et al., 2022; Bapna et al.,
2021), and using Euclidean distance (Dong et al.,
2021; Liu et al., 2020; Tang et al., 2021a), cosine
distance (Chuang et al., 2020), Kullback–Leibler
divergence (Tang et al., 2022b), and contrastive loss
(Han et al., 2021; Ye et al., 2022; Ouyang et al.,
2022) in multi-task learning. All these methods
require negative samples from the corpus to train
the model, whereas our approach works without
the need for any negative sample.

3 Problem Definition

The problem of S2T is defined as follows. Given
the sequence of input audio features x =
(x1, . . . , x|x|) and its transcript t = (t1, . . . , t|t|),
the goal is to learn a representation as shown in
Figure 1. More formally, the cosine similarity (CS)
between positive pairs of speech and text represen-
tations (xp, tp) is less than the CS between negative
pairs (xn, tn) in the embedding space.

CS(f(xp), f(tp)) < CS(f(xn), f(tn)) (1)

Where f is the representation learning function.
The new representations are used for the down-
stream S2T task, where the S2T model seeks to
optimize the following objective function:

θ∗ = argmax
θ

L(f(x, t), y) (2)

Where L(·) denotes the loss function of the S2T
model and y = (y1, . . . , y|y|) is the sequence of
target text translations.

4 Method

The S2T baseline used to optimize the objec-
tive function (2) is a transformer-based encoder-
decoder model. The core idea behind our ap-
proach is to use CS to align the source speech
and transcript pairs and use it for downstream S2T
tasks. The hypothesis is that source speech and
corresponding transcript representations should be
closer in the embedding space since they represent
the same semantics. To that end, we seek to em-
ploy the approach originally proposed for visual
recognition task handling similarity learning using
SimSiam (Chen and He, 2021). Motivated by its
recent application, we ask the following research
question: Will the same approach be able to learn
similar representations in an S2T setting? We con-
firm that using Siamese-like encoders for speech
and transcript in an earlier stage can yield better re-
sults for the S2T task and help bridge the modality
gap without negative sample mining.

4.1 SimSiam Network

Our main goal is to reduce the modality gap in S2T,
which arises due to the distance between speech
and textual representations. To propose a solution
for this issue, we introduce an architecture influ-
enced by (Chen and He, 2021) comprising two
encoders as shown in Figure 2: One for speech and



the other for text input.

H =∆ (h1, . . . , h|x|) =
∆ ENCODE(x; θm)

K =∆ (k1, . . . , k|t|) =
∆ ENCODE(t; θn)

where H and K are the hidden feature vectors of
audio speech sequences and their transcripts, and
θm and θn are the parameters of the text and speech
encoders respectively. We use Wav2Vec (Baevski
et al., 2020) followed by CNN as speech encoder
and as the text encoder we use a BERT base un-
cased (Devlin et al., 2019) model. The input pair
of speech x and its parallel text t are fed to the
corresponding encoders as shown in Figure 2. The
SimSiam network is trained by minimizing nega-
tive cosine similarity in an unsupervised manner
to generate features that are close to each other in
the embedding space. The gradients from the text
encoder’s contribution to the loss are not used to
update the speech encoder’s parameters in (3) and
vice versa, and this is achieved by applying the
stop-gradient (SG) operation. We utilize SG with
symmetric CS loss defined as follows:

LCS =
1

2
D(H, SG(K)) +

1

2
D(K, SG(H)) (3)

This allows the model to learn more meaningful
features from the input data.

4.2 S2T Transformer
The S2T Transformer model is a variant of the
Transformer architecture adapted for processing
the aligned speech-text representation as input.
These features are passed through the S2T encoder
containing multiple layers of self-attention mech-
anisms that allow the model to process different
parts of the input sequence and effectively capture
long-range dependencies. A self-attention mecha-
nism computes attention weights to emphasize im-
portant features while decoding the output. During
training, the model is typically tuned to a ground
truth target transcript of the spoken audio by opti-
mizing the following loss function:

L = LCS + LST (4)

where
LST = −

∑
n

logP (xn|yn)

LST is the label-smoothed-cross-entropy loss on
<speech, target text> pairs. The output of the S2T
transformer is a sequence of predicted tokens rep-
resenting the translated text.

Methods
BLEU

De Fr Nl It Avg
NeurST 22.8 33.3 27.2 22.9 26.55
ESPnet-
ST

22.9 32.7 27.4 23.8 26.7

Dual-
decoder

23.6 33.5 27.6 24.2 27.22

FAIRSEQ
S2T

24.5 34.9 28.6 24.6 28.15

XSTNet 25.5 36 30 25.5 29.25

ConST 25.7 36.8 30.6 26.3 29.85
S3T 26.8 37 30.2 26.1 30.02

Table 1: Performance of baselines and proposed model
on MuST-C test split.

5 Experiment

In this section, we explain the (a) datasets, (b) base-
lines, (c) training and testbed followed by (d) met-
rics used during the evaluation.

5.1 Dataset

We conduct experiments on four pairs of transla-
tion directions available in MuST-C1 (Di Gangi
et al., 2019) dataset: English (En) to German (De),
French (Fr), Dutch (Nl) and Italian (It). It contains
audio, transcript and translation from TED talks
for each direction.

5.2 Baselines

We compare our model with two kinds of base-
line: (1) standard E2E S2T models, and (2) E2E
S2T models with modality bridging techniques. In
the first category, we compare performance with
NeurST (Zhao et al., 2021), ESPNet-ST, S2T with
Dual Decoder, FAIRSEQ-S2T, and XSTNet (Ye
et al., 2021). For the second category, we compare
with ConST which uses contrastive loss to attract
positive pairs and repel negative pairs. Note that
such a scheme requires negative sample mining
which is costly.

5.3 Training and Testbed

The method in this work is implemented using
FAIRSEQ S2T toolkit (Wang et al., 2020a). The
backbone framework consists of an S2T Trans-
former encoder-decoder model as shown in Figure
2. The number of self-attention layers for both the
encoder and decoder is set to 6, with 8 attention

1We use v1.0. https://ict.fbk.eu/must-c/
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Figure 3: Scatter plot showing distances between pos-
itive and negative speech-text pairs (a) before, and (b)
after training. The positive and negative pairs form
separate clusters.

heads in each layer. Due to training resource con-
straints, the encoder and decoder architecture is
medium and consists of 512 hidden units. The
training is halted when the performance is not im-
proved for 15 consecutive epochs. The SpecAug-
ment (Park et al., 2019) is used for data augmenta-
tion, and the GELU activation function is used to
shift normalization and improve convergence and
training stability. The S2T model is trained using
label-smoothed-cross-entropy loss with a value of
0.1 as the label smoothing factor. Adam optimizer
with a learning rate of 1e-4, and the learning rate
schedule using an inverse square root scheduler
was used.

5.4 Performance Metric

Case-sensitive detokenized BLEU using sacre-
BLEU is used to report the performance of the
model. We average the ten best checkpoints and
predict the output using a beam size of five. All
experiments are repeated with three different ran-
dom seeds, and we report the average BLEU on the
MuST-C tst-COMMON set.

6 Results

This section presents the results of the comparative
evaluation followed by an analysis of our proposed
method.

6.1 Comparative Evaluation

Table 1 shows the main results. We compare our
method with several S2T baselines. Many existing
works utilize external data, such as ASR/MT data,
to boost their model performance. We include mod-
els without external MT data for fair comparison
and compare results with the model’s medium ar-
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0.4

0.8 Speech
Transcript

(a)

-1.8 -1.2 -0.6 0.0 0.6-2.4

Speech
Transcript

(b)

Figure 4: Bivariate KDE contour plot for the embed-
dings of English speech and text(a) before and (b) after
training. The red lines denote the text and the blue lines
denote the speech representations.

chitecture due to computational constraints. Com-
parison with standard E2E S2T models shows that
our method consistently outperforms in all direc-
tions with an average BLEU of 30.02. Compared
to ConST, the proposed method outperforms in
two directions (De and Fr) and achieves a gain in
average BLEU score of 0.17. Additionally, our ap-
proach does not need to mine any negative samples
as ConST does.

6.2 Analysis

The effectiveness of our approach is shown in Fig-
ure 3. Although our method works without any
positive or negative sample mining, we aim to de-
termine its capacity to distinguish between posi-
tive and negative pairs without requiring explicit
labeling. We plot the distance between pairs of
speech and text samples (positive pairs with the
same meaning and negative ones with different
meanings) before and after the model is trained.
It shows a reduction in the distance between the
positive pair of samples and an increase in the dis-
tance between the negative pair of samples. To look
more into it, the bivariate kernel density estimation
(Parzen, 1962) (KDE) contour of the features are
plotted as shown in Figure 4. If the speech and its
parallel text embeddings are similar, their contour
lines will overlap as much as possible. As shown
in Figure 4(b), the proposed method is able to align
the two representations and close the gap.

7 Conclusion

We propose S3T, a S2T framework bridging the
speech-text modality gap in an unsupervised way.
Results on MuST-C indicate the effectiveness of the
proposed method compared to baselines. Future
works may explore designing even better modality
bridging techniques leveraging external data.



Limitations

Although our proposed method outperforms most
baselines on the S2T benchmark, it still has some
limitations: (1) the choice of hyperparameters such
as learning rates, batch sizes, and the length of
the projection network can significantly impact the
training process and the quality of learned repre-
sentations, so we need to make careful choices
about it’s settings; (2) with a smaller dataset, this
approach might not work as effectively, because
there is less variety and fewer examples for the
model to learn from during training; (3) how to
apply our method to other tasks also needs to be
studied further.
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