
 
 

Abstract 

Current state-of-the-art (SOTA) Automatic 

Speech Recognition (ASR) models are 

multilingual. While these models have 

greatly improved transcription accuracy for 

high-resourced languages, under-resourced 

languages still require further language 

specific optimizations and finetuning to 

achieve acceptable levels of accuracy. In 

this work we explore ways of improving 

ASR for Dhivehi, an under-resourced 

South Asian language, by finetuning 

pretrained multilingual ASR models, Sub-

word Modelling, Language Model (LM) 

decoding and Automatic Spelling 

Correction. We finetune 5 Dhivehi ASR 

models and apply our accuracy boosting 

techniques, with one of our models 

achieving a new state-of-the-art Word Error 

Rate (WER) of 14.26% on the Dhivehi 

Common Voice ASR benchmark, which is 

a 31.93% relative WER improvement over 

the existing SOTA of 20.95%. We create a 

new Dhivehi text corpus, and train 2 new 

Dhivehi LMs to support our accuracy 

boosting techniques. 

1 Introduction 

Recent work on Automatic Speech Recognition 

(ASR) has focused on training multilingual 

models; (Zhang, et al., 2023; Hou, et al., 2020a; 

Pratap, et al., 2023; Conneau, et al., 2020; Radford, 

et al., 2022). While these multilingual models have 

produced state-of-the-art (SOTA) results for high-

resource languages, results (Hou, et al., 2020a) 

show that, especially for low-resource languages, 

there is room for improving transcription accuracy 

using language specific optimizations and fine-

tuning. In this work, we focus on improving ASR 

accuracy for Dhivehi (ިިދިވެހ), the native language of 

the Maldives. 

Modern ASR models follow all-neural 

architectures that enable End-to-End (E2E) speech 

recognition by training directly on audio recordings 

and producing text transcriptions as output 

(Prabhavalkar, et al., 2023). E2E ASR models 

either explicitly or implicitly align the output text 

to the input audio. 

Connectionist Temporal Classification (CTC) 

(Graves, et al., 2006) based E2E models use 

explicit alignment by assigning an output text 

token to each element of the input audio sequence 

(Hannun, 2017). CTC models simply learn a 

mapping from aspects of speech such as phonemes 

and diphones to output character sequences 

(Prabhavalkar, et al., 2023; Hannun, 2017). 

Therefore, CTC models can benefit from sub-word 

modelling of the output vocabulary, which better 

corresponds with the phonemes of the target 

language  (Xu, et al., 2019; Zhou, et al., 2021). 

Moreover, CTC model accuracy can be further 

improved by incorporating the probabilities from a 

Language Model (LM) into the output decoding 

process, which can implicitly model the syntax and 

semantics of the language (Baevski, et al., 2020). 

The outputs generated by LM decoding can be 

further improved by Automatic Spelling 

Correction (Zhang, et al., 2019). 

Attention-Based Encoder-Decoder (AED) ASR 

models contain an Encoder which produces context 

vectors using the input acoustic frames and a 

Decoder which uses the Attention Mechanism 

(Bahdanau, et al., 2016) to generate a text sequence 

from the context vectors, without explicitly 

aligning the text and audio (Prabhavalkar, et al., 

2023). AED models implicitly learn a language 

model over the training outputs (Prabhavalkar, et 

al., 2023). As a result, they benefit less from 

external LMs and spelling correction. 

E2E models pretrained on high-resourced 

languages can be fine-tuned on under-resourced 

languages like Dhivehi through transfer learning to 

give better results than training from scratch 
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(Baevski, et al., 2020; Conneau, et al., 2020; 

Radford, et al., 2022; Pratap, et al., 2023; Hou, et 

al., 2020b). In this work, we finetune pretrained 

XLSR (Conneau, et al., 2020), MMS (Pratap, et al., 

2023) and Whisper (Radford, et al., 2022) models 

on Dhivehi speech data from the Mozilla Common 

Voice 13.0 (CV-13) (Ardila, et al., 2019) dataset 

and experiment with applying different accuracy 

boosting techniques. 

2 Related Work  

Tyers & Meyer (2021) used the Coqui STT 1 

toolkit to train ASR models for several different 

under-resourced languages including Dhivehi. 

They used transfer learning by finetuning an 

English ASR model based on the Mozilla Deep 

Speech architecture, which is an open-source 

implementation of the Deep Speech ASR 

architecture from Baidu (Hannun, et al., 2014). 

They used hyperparameter search to optimize the 

model hyperparameters for specific languages 

(Tyers & Meyer, 2021). LM decoding was utilized 

to further boost the results. For Dhivehi, the authors 

used 3:56:12 of training data from Common Voice 

(CV) 2  for the ASR model and 6.8MB of text 

containing 419k tokens of 76k different types for 

LM training. For Dhivehi, the authors obtained a 

WER of 88.37% without LM and 66.49% with LM 

decoding (Tyers & Meyer, 2021).  

Pham, et al. (2021) trained multi-lingual ASR 

models for 27 languages (including Dhivehi) based 

on the Transformer architecture (Vaswani, et al., 

2023) and LSTM architectures (Hochreiter & 

Schmidhuber, 1997) using a novel weight 

factorization scheme for efficient multi-lingual 

training. The models contained weights shared 

across all the languages as well as language 

specific adapter layers (Pham, et al., 2021). Under 

this work, the best result obtained for Dhivehi was 

a WER of 63.72% using the weight factorized 

version of the Transformer based model (Pham, et 

al., 2021). 

Hou, et al. (2020a), trained multilingual ASR 

models for 42 languages based on a hybrid 

CTC/attention architecture using 5,000 hours of 

speech. One of these models were trained using a 

 
1 https://github.com/coqui-ai/STT 
2 https://commonvoice.mozilla.org/ 
3 
https://huggingface.co/shahukareem?so

rt_models=downloads#models 

character level output vocabulary while the other 

was trained using a sub-word vocabulary (Hou, et 

al., 2020a). It was shown that, generally the larger 

sub-word vocabulary produced better results across 

all 42 languages. After training these multilingual 

models, transfer learning was used to finetune ASR 

models for 14 different low-resource languages 

including Dhivehi. For each of these 14 languages, 

a language specific model was finetuned as well as 

a joint 14-language multilingual model. The 

authors experimented with finetuning these models 

using the pretrained models as well as training the 

models from scratch. For Dhivehi, the authors had 

used 6 hours of training data from CV. The best 

result obtained was a WER of 54.7% using the 

Dhivehi specific model with pretraining (Hou, et 

al., 2020a). 

Hassaan, et al. (2018) trained Dhivehi ASR 

models using CMUSphinx speech recognition 

toolkit. These models were Hidden Mark Model 

(HMM) based acoustic models which were boosted 

using N-gram LMs (Hassaan, et al., 2018). The 

authors had initially trained a model to recognize 

spoken numerals in Dhivehi which had a reported 

accuracy of 75%. They also trained another model 

to recognize general Dhivehi speech, which had a 

reported accuracy of 42.5%. The LM used by the 

authors was trained on 600MB of Dhivehi text 

scraped from the web and the acoustic model was 

trained on 48:33 of speech data collected through a 

web interface, mobile app, and Telegram bot that 

the authors created, which presented users with 

samples from the text corpus that were read and 

recorded. 

Apart from formal work conducted on Dhivehi 

ASR, there has been some personal work done on 

the topic by some individuals as well. The most 

notable of these works are the Dhivehi ASR models 

trained by Shahuza Abdul Kareem 3 and published 

on Hugging Face. Specifically, her Wav2Vec2-

XLS-R-1B-dv model 4 has the best reported WER 

of any Dhivehi ASR model known publicly so far. 

This model is a finetuned version of Facebook’s 

Wav2Vec2-XLS-R-1B checkpoint (Conneau, et 

al., 2020) which follows the hybrid 

CNN/Transformer/CTC architecture introduced in 

Baevski, et al. (2020). The model was trained using 

4 
https://huggingface.co/shahukareem/wa

v2vec2-xls-r-1b-dv 

https://github.com/coqui-ai/STT
https://commonvoice.mozilla.org/
https://huggingface.co/shahukareem?sort_models=downloads#models
https://huggingface.co/shahukareem?sort_models=downloads#models
https://huggingface.co/shahukareem/wav2vec2-xls-r-1b-dv
https://huggingface.co/shahukareem/wav2vec2-xls-r-1b-dv


 
 

around 25 hours of speech from Common Voice 

(Ardila, et al., 2019) version 8.0 with a character-

based output vocabulary. The reported WER was 

21.23% on Common Voice 8.0 evaluation set, 

which can be considered as the state-of-the-art for 

Dhivehi ASR. 

3 Design 

3.1 Pretrained ASR Models 

Based on the results from previous works, a 

transfer learning approach of finetuning pretrained 

models was chosen instead of training models from 

scratch. The models chosen for finetuning were 

pretrained multilingual models from recent works 

that had claimed state-of-the-art performance 

results on common English ASR benchmarks. Here 

we will list and discuss the architectures of these 

models. 

XLSR: XLSR (Conneau, et al., 2020) is a 

model pretrained on 53 languages following the 

Hybrid CTC architecture of (Baevski, et al., 2020). 

This architecture consists of a Convolution Neural 

Network (CNN) based feature extractor which 

extracts log-mel features from the input audio 

which are quantized through product quantization 

(Baevski, et al., 2020). The feature vectors are then 

passed into a Transformer based encoder network, 

which learns context vectors from these feature 

vectors using Contrastive Loss (Baevski, et al., 

2020). For fine tuning of the model, the CNN 

layers can be frozen and a linear output layer 

corresponding to the desired output vocabulary can 

be initialized on top of the encoder network and 

trained using CTC loss (Baevski, et al., 2020). For 

the XLSR model, the authors were able to 

demonstrate that pretraining the encoder on a large 

number of languages produced improved 

performance when finetuning on low-resource 

languages (Conneau, et al., 2020). The authors had 

publicly released different sizes of the pretrained 

model checkpoints, out of which the Wav2Vec2-

XLS-R-1B (XLSR-1B) 5  model checkpoint with 

1B parameters was chosen for finetuning. 

Whisper: Unlike Baevski, et al. (2020) which 

has relied on unsupervised pretraining on large 

amounts of raw speech, the authors of Whisper 

(Radford, et al., 2022) took the approach of 

pretraining a Transformer (Vaswani, et al., 2023) 

 
5 
https://huggingface.co/facebook/wav2v

ec2-xls-r-1b 

model with semi-supervised learning. The authors 

collected 680,000 hours of speech audio and 

corresponding text transcription data of different 

qualities from web sources for training (Radford, et 

al., 2022). Apart from just speech transcription, the 

authors trained the model in a multitask training 

format to perform a variety of speech processing 

tasks including, speech translation, language 

identification and voice activity detection 

(Radford, et al., 2022). Whisper uses a byte-level 

Byte Pair Encoding (BPE) text tokenizer and as 

opposed to typical ASR models, does not 

normalize the transcription text during training 

(Radford, et al., 2022). This results in more natural 

transcription that doesn’t require further processing 

such as punctuation restoration (Radford, et al., 

2022). The authors demonstrated that Whisper is 

able to achieve good performance on its supported 

languages in a zero-shot setting without any 

finetuning (Radford, et al., 2022). However, 

finetuning has been shown to further improve this 

performance. More interestingly, it has also been 

shown that Whisper could be finetuned on a new 

language that was not included in the original 

training data, by setting the target language to the 

phonetically closest language among the supported 

languages. Dhivehi is not officially supported by 

Whisper, but its closest neighbour Sinhalese is 

supported, which was used as a target language to 

finetune the model for Dhivehi. Whisper authors 

had also released pretrained checkpoints of 

different sizes, out of which, the Whisper Small 6 

checkpoint containing 244M model parameters 

was chosen for this work. 

Massively Multi-lingual Speech (MMS): 

Whereas XLSR was pretrained on 53 languages, 

the authors of MMS (Pratap, et al., 2023) scaled 

this to 1,107 languages. Their primary data source 

consisted of recordings of people reading 

translations of the New Testament in different 

languages (Pratap, et al., 2023). The authors 

created a GPU accelerated version of the Viterbi 

algorithm for computing the forced alignment of 

these recordings to the corresponding texts (Pratap, 

et al., 2023). Using this forced alignment method, 

the training dataset was constructed by chunking 

the recordings and texts into samples of short 

durations (Pratap, et al., 2023). The authors had 

used the same model architecture as XLSR 

6 
https://huggingface.co/openai/whisper

-small 

https://huggingface.co/facebook/wav2vec2-xls-r-1b
https://huggingface.co/facebook/wav2vec2-xls-r-1b
https://huggingface.co/facebook/wav2vec2-xls-r-1b
https://huggingface.co/openai/whisper-small
https://huggingface.co/openai/whisper-small


 
 

(Radford, et al., 2022) for MMS (Pratap, et al., 

2023). Some of the models they had trained were 

fully multilingual with all the weights shared 

across all the training languages, while other 

models had used language specific adapter layers 

added to the encoder Transformer blocks (Pratap, 

et al., 2023). These language adapters constitute an 

additional 2M parameters which can be swapped 

out on the fly depending on the language being 

transcribed. They can also be finetuned separately 

without finetuning the whole model (Pratap, et al., 

2023). The authors recommend finetuning only the 

language adapters for low-resource languages, but 

do suggest that full model finetuning is beneficial 

when more training data is available (Pratap, et al., 

2023). The authors had released pretrained model 

checkpoints of different sizes, out of which MMS-

1B-ALL (MMS-1B) 7  model checkpoint with 1B 

parameters was chosen for finetuning. 

3.2 CTC Output Vocabularies 

For finetuning the CTC based XLSR and MMS 

models, an output vocabulary had to be modelled. 

Previous works (Wav2Vec2-XLS-R-1B-dv) had 

used a character-based vocabulary of all 49 Thaana 

symbols and the Arabic ligatures Allah الله 

(U+FDF2) and Sallallahou Alayhe Wasallam 

(Peace be Upon Him)  صلى الله عليه وسلم (U+FDFA) which 

commonly appear in Dhivehi text. However, Xu, et 

al. (2019) and Zhou, et al. (2021) had shown that 

training on sub-word based vocabularies where the 

tokens better correspond to phonemes can produce 

better results than simple character-based 

vocabularies. Similarly, Hou, et al. (2020a)’s 

results also show sub-word vocabularies generally 

giving better performance. Therefore, it was 

decided to also train using a more acoustically 

relevant sub-word vocabulary modelled with all 

consonants, all consonant-vowel pairs and 

aforementioned Arabic ligatures. Vowel diacritics 

were not included separately in this vocabulary as 

phonetically in Dhivehi, the vowels by themselves 

do not make any sound. In both vocabularies, 

additional special tokens were included, which 

were: the word delimiter token for spaces, the 

“[UNK]” token for unknown tokens, and the 

“[PAD]” token for the CTC blank token 𝜖 . The 

character-based vocabulary had 54 tokens while 

the sub-word vocabulary had 461 tokens. 

 
7 https://huggingface.co/facebook/mms-
1b-all 

3.3 Speech Dataset 

The Dhivehi speech dataset chosen for training the 

ASR models were taken from Mozilla Common 

Voice (Ardila, et al., 2019). Common Voice (CV) is 

a crowd-sourced dataset where volunteers 

contribute recordings by reading text samples 

through a web interface (Ardila, et al., 2019). For 

version 13.0 of Common Voice that was used for 

this work, there were in total 64 hours of Dhivehi 

recordings from 331 different speakers. Out of 

these, only 38 hours were validated by contributors 

to be correct. The publishers further split these 

validated hours into different splits, out of which 

the “train” and “other” splits were selected for 

model training, “validation” split for evaluation 

during training and the “test” split for final model 

evaluation. The average length of samples in the 

dataset is 4.9 seconds. 

3.4 Text Corpus 

To train the language models for CTC LM 

decoding and for building synthetic spelling 

correction datasets, a Dhivehi text corpus was 

needed. For this, a text corpus was built using 

4.2GB of text extracted from 1,197,470 news 

articles provided by ArchiveMV 8 , a Maldives 

online news archive. To build the text corpus, the 

raw texts were tokenized into sentences using 

NLTK (Bird, et al., 2009), and the sentences were 

normalized by removing punctuation and replacing 

multiple whitespaces with single whitespaces. The 

text corpus contained 18,117,809 sentences and 

258,345,316 tokens of 3,744,110 types. 

3.5 Pretrained Text-to-Text Models 

For the spelling correction task, a suitable Text-to-

Text model architecture had to be chosen. As with 

8 https://archive.mv/ 

Split Duration Samples 

Train* 25:19:33 19,072 

Validation 3:18:39 2,227 

Test 3:21:26 2,212 

Total 31:59:38 23,511 

Table 1: Dataset splits. *For the train split, the original 

"train" and "other" splits have been combined. 

https://huggingface.co/facebook/mms-1b-all
https://huggingface.co/facebook/mms-1b-all
https://archive.mv/


 
 

the ASR models, it was decided to use a pretrained 

model for this task to take advantage of the benefits 

of transfer learning. The model chosen was the 

UniMax (Chung, et al., 2023) model by Google 

Research. This is a multilingual version of the T5 

(Raffel, et al., 2020) Text-to-Text Transformer 

model trained using a novel fairer language 

sampling method. The authors had released 

different sized pretrained checkpoints of this 

model, and the specific checkpoint chosen was the 

umT5-Small 9 checkpoint containing 300M model 

parameters. 

4 Implementation 

4.1 Data Processing 

For preprocessing of the speech dataset for 

training, the text samples were normalized to 

remove all punctuation marks, which included 

removing the following characters;  ،؟,?.!-

;:"“%‘”�—’…– . Furthermore, any newline 

characters or multiple spaces were replaced with 

single spaces. For training the Whisper model, the 

text was not normalized, but the generated output 

text and the reference text were normalized when 

calculating the WER. For the audio data, the audio 

files were resampled to 16Khz as this was the 

sampling rate the pretrained models were trained 

on. 

4.2 ASR Model Training 

The ASR models were trained using Hugging Face 

Transformers package (Wolf, et al., 2020), using 

PyTorch (Paszke, et al., 2019). All the models were 

trained using the AdamW (Loshchilov & Hutter, 

2019) optimizer using a linear learning rate 

schedule with a warmup of 500 steps. For the MMS 

and XLSR models, a learning rate of 4.5e-05 was 

used, while a learning rate of 1e-5 was used for 

Whisper models. MMS and XLSR models were 

trained for 30 epochs (except for the MMS-1B-VL-

DL-dv which was trained for 40 epochs) while 

Whisper models were trained for 15 epochs. 

During training, the models were evaluated every 

400 steps using the validation set and a checkpoint 

saved. At the end of training, the checkpoint with 

the lowest WER was loaded and saved. 

It was noted for MMS and XLSR models using the 

character-based vocabulary, the training reached 

 
9 https://huggingface.co/google/umt5-
small 

the best performance around epoch 2, and beyond 

this the loss and the WER goes back up. This 

behaviour was not observed for the models using 

the sub-word vocabulary, which had a smooth 

decline of WER until the end of the training.  

For both the MMS and XLSR models, the CNN 

feature extractor layers (Baevski, et al., 2020) were 

frozen during training. For the MMS models, initial 

experiments were conducted to train only the 

language adapter layers (Pratap, et al., 2023), 

however this resulted in relatively poor 

performance. So, for the final model training, full 

model training was performed for the MMS 

models.  

The training was conducted on a AMD Ryzen 9 

7950X 16-Core Processor machine with 128GB of 

RAM and dual RTX 3090 Ti 24GB GPUs running 

Ubuntu 23.04. Even though the machine had 2 

GPUs, training was conducted using single GPUs 

as there were issues with parallel training the MMS 

and XLSR models. However, training sessions 

were conducted two at a time, with sessions 

assigned to either of the GPUs to take advantage of 

them both. The XLSR and Whisper models on 

average took around 11.5 hours to train, while the 

MMS model trained for 30 epochs took around 13 

hours and the model trained for 40 epochs took 

around 17 hours. 

 

Model Name Base Model Vocab. 

XLSR-1B-VS-DL-dv XLSR-1B character 

XLSR-1B-VL-DL-dv XLSR-1B sub-word 

MMS-1B-VS-DL-dv MMS-1B character 

MMS-1B-VL-DL-dv MMS-1B sub-word 

Whisper-Small-DL-dv Whisper-Small - 

4.3 Language Models 

The language models were trained using KenLM 

(Heafield, 2011) as 5-gram word-based models. 

KenLM uses modified Kneser-Ney smoothing 10 

and produces efficient inference once trained. The 

language models were trained using the 

ArchiveMV text corpus. The first LM was the 

ArchiveMV-5gram (Amv-5g) model, trained 

10 http://www.foldl.me/2014/kneser-ney-
smoothing/ 

Table 2: ASR models trained. 

https://huggingface.co/google/umt5-small
https://huggingface.co/google/umt5-small
http://www.foldl.me/2014/kneser-ney-smoothing/
http://www.foldl.me/2014/kneser-ney-smoothing/


 
 

without any restrictions. The second LM was the 

ArchiveMV-5gram-500k (Amv-5g-500k) model 

which was trained with the vocabulary limited to 

500k common Dhivehi words to see whether this 

had any effect on the performance. For decoding of 

the CTC ASR model outputs using these LMs, 

pyctcdecode 11 Python package was used. 

4.4 Spelling Correction Models 

 To train the spelling correction models, first 2 

different spelling correction datasets were created 

which were the 1M and 10M datasets. To create the 

datasets, random text samples from the ArchiveMV 

corpus were taken, which were then normalized, 

and synthetically spelling mistakes introduced into 

them using a series of random transformations. 

These transformations were designed to mimic the 

specific types of errors observed in the ASR model 

outputs. These include; randomly repeating 

characters at the end of the string, randomly 

inserting spaces within words, randomly removing 

spaces, interchanging phonetically similar letters 

and vowels (such as ިޝ sheenu and ިށ shaviyani), 

and random insertions, deletions and modifications 

of characters. These transformed texts were used as 

the inputs for the 1M and 10M datasets, and the 

corresponding original normalized texts were used 

as the labels. The 1M dataset contained around 1 

million samples while the 10M dataset contained 

around 10.3 million samples. For evaluation, a 

third dataset was created using the MMS-1B-VS-

DL-dv model outputs decoded using the 

ArchiveMV-5gram LM on the validation set of  the 

speech dataset. 

The models were trained using the Hugging Face 

Transformers package, using PyTorch (Paszke, et 

al., 2019). All the models were trained for only 1 

epoch as Transformer models are shown to overfit 

quickly to training data. AdamW optimizer was 

used with a learning rate of 4e-5. During training, 

the model was evaluated using the evaluation 

 
11 https://github.com/kensho-
technologies/pyctcdecode 

dataset and the relative WER improvement was 

recorded. At the end of the training the checkpoint 

with the highest relative WER improvement was 

loaded and saved. The spelling models were also 

trained using the same machine as the ASR models. 

The 1M model took around 5 hours to train, while 

the 10M model took around 56 hours. 

5 Evaluation 

5.1 Experimental Setup 

All the experiments were conducted on the same 

machine as used for training. Each experiment was 

conducted on a single GPU using an evaluation 

script that ran the ASR inference using all the 

trained ASR models, language models and spelling 

correction models and recorded the results into 

CSV files. For the spelling correction evaluations, 

for the CTC-based ASR models, the outputs from 

the ArchiveMV-5gram LM decoding was used as a 

baseline. For the Whisper model, the normalized 

text outputs were used as inputs to the spelling 

correction models. 

5.2 Baseline ASR Model Results 

First, we evaluate the baseline WER of all the 

trained models on the test sets of all the speech 

datasets without using any LM decoding or 

spelling correction and compare the results with the 

state-of-the-art Dhivehi ASR model Wav2Vec2-

XLS-R-1B-dv. Here, for the CTC based XLSR and 

MMS models, Greedy Search decoding was used. 

And for the Whisper models, the generated texts 

were normalized as described in 4.1 before 

calculating the WER. 

 

Model Vocabulary WER 

Wav2Vec2-XLS-R-1B-dv character 20.95 

This work   

XLSR-1B-VS-DL-dv character 56.29 

XLSR-1B-VL-DL-dv sub-word 19.94 

MMS-1B-VS-DL-dv character 38.26 

MMS-1B-VL-DL-dv sub-word 16.19 

Whisper-Small-DL-dv - 43.13 

Model Name Base Model 
Training 

Samples 

umT5-S-1M-dv umT5-Small 1,043,532 

umT5-S-10M-dv umT5-Small 10,351,970 

Table 3: Spelling Correction Models 

Table 4: Baseline ASR Model Results 

https://github.com/kensho-technologies/pyctcdecode
https://github.com/kensho-technologies/pyctcdecode


 
 

As can be seen from the results, our XLSR and 

MMS based XLSR-1B-VL-DL-dv and MMS-1B-

VL-DL-dv models were able to beat the state-of-

the-art model on the CV-13 test benchmark. MMS-

1B-VL-DL-dv had the best result with a relative 

improvement of 22.72% as compared to the state-

of-the-art. It must be noted that MMS-1B-VL-DL-

dv was trained for 10 additional epochs as 

compared to the other XLSR and MMS models. 

Therefore, this suggests that the other models also 

could potentially benefit from longer training.  

Interestingly, the best performing CTC based 

XLSR and MMS models had used the sub-word 

vocabulary. This is consistent with the results 

observed by Xu, et al. (2019) and Zhou, et al. 

(2021) as the sub-words better correspond to 

phonetic characteristics of Dhivehi, making it 

easier for the models to learn a relationship 

between them and the audio. The sub-word 

vocabulary was able to improve the average WER 

for both MMS and XLSR models, with an average 

relative WER improvement of 61.79%. This goes 

to show that better sub-word modelling using just 

a little domain knowledge of the target language 

can go a long way in improving ASR model 

performance. The current sub-word vocabulary 

doesn’t include all possible Dhivehi phonemes, 

such as consonant-vowel pairs followed by sukun 

(eg. ްއަނ un) or diphones like ިިއައ a-i. Further 

investigations need to be done to see whether 

expanding the sub-word vocabulary to include 

these phonemes would improve performance. 

5.3 Language Model Decoding Results 

Model 
Amv-5g-

500k 
Amv-5g  

Wav2Vec2-XLS-R-1B-dv 20.03 19.85 

This work   

XLSR-1B-VS-DL-dv 52.63 52.42 

XLSR-1B-VL-DL-dv 18.66 18.44 

MMS-1B-VS-DL-dv 39.50 38.99 

MMS-1B-VL-DL-dv 14.69 14.49 

The results show a further improvement of WER 

when LM decoding is used. Using the ArchiveMV-

5gram LM, the WER of the MMS-1B-VL-DL-dv 

model is reduced to 14.49%, which is a 10.50% 

relative improvement over baseline. The 

ArchiveMV-5gram LM showed the overall best 

performance, followed by the ArchiveMV-5gram-

500k LM which had the vocabulary limited to 500k 

words. This indicates that, for this particular case, 

limiting the LM vocabulary is worse for 

performance. Table 6 shows that the ArchiveMV-

5gram LM improves the WER by 5.65% on 

average across all models. 

 

Model 
Amv-5g-

500k 
Amv-5g  

Wav2Vec2-XLS-R-1B-dv 4.39% 5.25% 

This work   

XLSR-1B-VS-DL-dv 6.50% 6.88% 

XLSR-1B-VL-DL-dv 6.42% 7.52% 

MMS-1B-VS-DL-dv -3.24% -1.91% 

MMS-1B-VL-DL-dv 9.26% 10.50% 

Average 4.67% 5.65% 

5.4 Spelling Correction Results 

Model 
umT5-S-

10M-dv 

umT5-S-

1M-dv 

Wav2Vec2-XLS-R-1B-dv 20.83 21.28 

This work   

XLSR-1B-VS-DL-dv 50.14 50.73 

XLSR-1B-VL-DL-dv 18.17 18.95 

MMS-1B-VS-DL-dv 38.52 39.01 

MMS-1B-VL-DL-dv 14.26 15.27 

Whisper-Small-DL-dv 42.77 43.54 

Table 5: LM decoding results; WER for each of the 

trained XLSR and MMS models and the state-of-the-

art Dhivehi ASR model when decoded using the 2 

different LMs. Marked in bold is the best WER 

obtained for each LM. 

Table 6: Relative WER improvement for LMs; 

Showing the relative WER improvement for all XLSR 

and MMS models using the 2 different LMs as 

compared to their baseline overall WER without LM 

decoding. 

Table 7: Spelling correction results; WER for each of 

the trained models & the SOTA Dhivehi ASR model 

when spelling correction applied. For the MMS and 

XLSR models, spelling correction was applied after 

decoding with the ArchiveMV-5gram LM. For the 

Whisper model, spelling correction was applied after 

normalizing the output text. 



 
 

The results show even more WER reduction with 

spelling correction. Using the umT5-S-10M-dv 

spelling model, WER for the MMS-1B-VL-DL-dv 

model is now reduced to 14.26%, which is the new 

state-of-the-art WER for CV-13 Dhivehi 

benchmark 12  13  as of August 2023. This is a 

31.93% relative WER improvement as compared 

to the 20.95% baseline WER of the SOTA Dhivehi 

ASR model on CV-13.  

As can be seen from Table 8, only the umT5-S-

10M-dv spelling correction model trained on 10M 

samples produced any overall WER improvement 

on average across all the models. This indicates the 

importance of training on more data. Interestingly, 

the Whisper model seem to benefit less from 

spelling correction, which is to be expected as the 

AED architecture of Whisper essentially learns a 

language model on the training transcriptions, 

negating the need for further text processing. 

While spelling correction in addition to LM 

decoding seems to be a viable technique to boost 

the accuracy of CTC models, the relative 

improvement going from LM decoding to spelling 

correction is markedly less compared to the relative 

improvement going from baseline to LM decoding. 

Moreover, doing spelling correction on top of LM 

decoding adds additional memory and processing 

time overhead. The memory overhead could be 
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https://paperswithcode.com/sota/speec

h-recognition-on-common-voice-dhivehi 

mitigated by loading the spelling model after ASR 

inference is complete, however, the processing 

time can still be up to 1.6 times slower than LM 

decoding alone. 

6 Conclusion 

Our results show that pretrained multilingual ASR 

models can greatly benefit from language specific 

finetuning and optimizations. Specifically for CTC 

based models, proper sub-word modelling and 

language model decoding seems crucial. 

Multilingual models could also benefit from these 

techniques, as the language optimized sub-word 

vocabularies can be incorporated back into 

multilingual models and language specific LMs 

can be swapped out on the fly when decoding 

outputs for a specific language. While AED models 

seem to benefit less from these accuracy boosting 

techniques, they also seem to benefit from 

language specific finetuning. As for further 

accuracy improvement of Dhivehi ASR, more 

labelled speech data is needed for training, which 

could be generated using forced alignment as was 

done by Pratap, et al., 2023. Moreover, further 

expansion of the CTC sub-word vocabulary can be 

explored to see if it yields any improvement. 

Furthermore, for production systems, punctuation 

restoration Alam, et al., 2020 will need to be 

performed on the generated text to produce more 

readable transcripts, especially for the CTC based 

models. 
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