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Abstract

In this paper, we propose a novel approach to
enhance query-by-example spoken term detec-
tion using Acoustic Word Embeddings (AWEs).
Our AWEs model combines CNN and LSTM
layers to capture sequential information and
generate fixed-dimensional word-level embed-
dings. To address the challenge of distin-
guishing between words, we introduce a deep
word discrimination loss that enhances em-
bedding discrimination. Additionally, we em-
ploy an embedding-matching scheme based
on cosine similarity computation and slid-
ing window smoothing. Our experimental re-
sults demonstrate the effectiveness of our ap-
proach in word discrimination tasks, achieving
high mean Average Precision scores and out-
performing baseline models. Moreover, our
embedding-matching scheme shows promising
performance in query-by-example spoken term
detection, opening up possibilities for advance-
ments in audio indexing and search techniques.

Index Terms: spoken term detection, query-by-
example, acoustic word embedding, word discrimi-
nation, audio retrieval

1 Introduction

The field of Spoken Term Detection (STD) (Man-
dal et al., 2014)—identifying specific terms within
audio streams or files—has gained importance due
to the widespread availability of internet media
and the proliferation of smart devices. This has
led to an increasing demand for proficient audio
search tools and efficient voice control mechanisms.
Query by Example (QbE) represents a specialized
application of STD, offering advantages over tra-
ditional text-based searches by directly matching
audio samples. This is especially valuable for han-
dling unknown or out-of-vocabulary search terms.

Query by Example Spoken Term Detection
(QbE-STD) has historically employed Dynamic

Time Warping (DTW) in conjunction with frame-
level features for keyword matching (Rodriguez-
Fuentes et al., 2014; Mantena et al., 2014). Both
supervised (Zhang et al., 2019) and unsupervised
approaches (Chen et al., 2016; Holzenberger et al.,
2018) have been examined, each with distinct ad-
vantages. While unsupervised methods primarily
utilize traditional acoustic features (Vasudev et al.,
2016; Wang et al., 2018), supervised techniques fre-
quently employ neural network-derived phonetic
features. The field has witnessed a paradigm shift
with the introduction of Acoustic Word Embed-
dings (AWEs) (Ma et al., 2021; Kamper et al., 2019;
Settle et al., 2017; Kamper et al., 2016; Yuan et al.,
2018), which transform variable-length speech seg-
ments into fixed-dimensional vectors (Levin et al.,
2013). This approach overcomes the computational
limitations of traditional DTW-based methods, fa-
cilitating more efficient searching, clustering, and
similarity comparisons. Neural networks, particu-
larly Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM) networks, are
now widely utilized for extracting these AWEs
(Ram et al., 2018; Svec et al., 2022; Chen et al.,
2015; Settle and Livescu, 2016; Chung and Glass,
2018; Naik et al., 2020; Ram et al., 2020; Lopez-
Otero et al., 2019; Madhavi and Patil, 2017). Con-
sequently, the current focus in QbE-STD research
has largely shifted towards search and indexing
tasks, with these deep learning frameworks playing
a pivotal role in feature extraction.

The main challenge resides in mapping sequen-
tial speech information into vector space without
losing sequential integrity. Our proposed method
addresses this challenge through deep neural net-
works and introduces an additional loss function
designed for enhanced word discrimination. This
paper presents an architecture combining CNN lay-
ers for local feature extraction, Long Short-Term
Memory (LSTM) layers for capturing temporal
dependencies, and Fully Connected Layers (FC
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Layers) for dimensionality reduction. An addi-
tional loss function is incorporated to improve word
discrimination and optimize generalization across
keywords spoken by various speakers by aligning
embeddings with acoustic word centroids while
maximizing inter-class and minimizing intra-class
variation. Moreover, our method utilizes a co-
sine similarity-based query centroid matching tech-
nique, supplemented by moving average smooth-
ing, for efficient word search in spoken utterances.
Our contributions to this work are as follows:

1. Introduction of an Acoustic-to-Embedding
network (A2E-Net) for generating word-level
acoustic word representations.

2. Development of a Deep Word Discrimina-
tion (DWD) loss function aimed at enhanc-
ing the discrimination capabilities of acoustic
word embeddings by minimizing intra-word
distance and maximizing inter-word distance
within each acoustic word embedding.

3. Establishment of Query Centroid Similarity
Matching (QC-matching), a technique for
acoustic word embedding matching that em-
ploys query centroids to facilitate QbE-based
audio indexing.

The remainder of this paper is organized as fol-
lows: Section 2 details the proposed system, Sec-
tion 3 discusses implementation aspects, Section
4 presents the results, and Section 6 outlines the
conclusions.

2 Proposed framework

In this section, we present the components of our
proposed method for enhancing QbE-STD. They
are as follows:

2.1 Acoustic-to-Embedding network
(A2E-Net)

Our proposed AWEs model architecture aims to
effectively capture and represent acoustic features
at both the frame and word levels. The input com-
prises raw audio signals, which are divided into
frames using a windowing size of 25 ms and a step
size of 10 ms. To extract local acoustic features,
we employ two CNN layers with 3x3 kernels and
64 filters each, followed by a max-pooling layer
that reduces dimensions and extracts essential fea-
tures. Two additional CNN layers with 3x3 kernels
and 128 filters each extract higher-level features,

followed by another max-pooling layer for further
dimension reduction.

To capture temporal dependencies and sequence
information, we utilize two sets of LSTM layers.
The first set consists of two LSTM layers with 1024
units, followed by another set of two LSTM lay-
ers with 512 units each. These LSTM layers are
crucial for modeling the sequential nature of acous-
tic features. Subsequently, two FC layers map the
LSTM outputs to lower-dimensional spaces, reduc-
ing dimensionality and facilitating subsequent em-
beddings. The resulting frame-level AWEs, with
a size of 256x1, are obtained from the output of
the FC layer. The statistical pooling layer then
aggregates the variable-length frame-level AWEs
into a fixed-length representation by computing the
mean and standard deviation, concatenating these,
and finally mapping them to a 4096-dimensional
space through a linear transformation. This fixed-
length representation encapsulates both the mean
and variance of the frame-level features, making
it a rich and comprehensive descriptor for each
word. Another FC layer maps a 4096x1 repre-
sentation to a 2048-dimensional space, generating
word-level AWEs. During training, the model pa-
rameters are optimized using both cross-entropy
loss, a common classification loss, and an auxil-
iary word-discrimination loss designed to enhance
embedding discrimination.

In summary, our AWEs model architecture com-
bines CNN layers for local feature extraction,
LSTM layers for capturing temporal dependencies,
and FC layers for dimensionality reduction and
mapping to lower-dimensional embeddings. By
representing acoustic features at both the frame
and word levels, our model enables the effective
calculation of word-level embeddings and facili-
tates meaningful similarity comparisons.

2.2 Deep word discrimination Loss (DWD)

The DWD loss is introduced to address the chal-
lenge of accurate word discrimination. In such
tasks, where the search content and query keyword
are typically spoken by different speakers, it is
crucial to ensure that the AWEs of the same spo-
ken keyword by different speakers are identical.
However, traditional embedding approaches often
encode speaker-related information, which hinders
precise word discrimination. To overcome this lim-
itation, we incorporate a variability-invariant loss
in the training phase.
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Figure 1: A2E-net with QC-matching framework for Query-by-Example Spoken term detection system

To address the inter-class and intra-class co-
variance in QbE-STD tasks, our additional loss
function aims to maximize variation across dif-
ferent word classes while minimizing variation
within the same class. We construct batches of
size Nword ×M , where M denotes the number of
acoustic signals for each word, spoken by differ-
ent speakers. This is designed to capture the di-
versity in pronunciation, accent, and other speech
characteristics unique to each speaker. Such di-
versity is crucial in a QbE-STD task, where the
goal is to accurately identify a keyword regard-
less of the speaker. By incorporating acoustic sig-
nals from multiple speakers for each word, the
model is trained to recognize words independently
of speaker-specific characteristics. Nword repre-
sents the number of distinct words and indicates the
size of the vocabulary in the training set. This set
is generated from the alignment of acoustic signals
and their transcriptions using the Montreal Forced
Aligner (McAuliffe et al., 2017). After alignment,
feature vectors xji are extracted from the ith acous-
tic signal of the jth word. These vectors are input
into the AWEs model, comprising convolutional
layers with ReLU activation and batch normaliza-
tion, followed by max-pooling layers. The model
also includes four LSTM layers and two dense lay-
ers with ReLU activation, culminating in the out-
put layer that represents frame-level AWEs. Each

word-level AWE embji is normalized to enable
accurate comparisons.

The main objective during training is to optimize
the embedding representation of each acoustic sig-
nal. This involves aligning the embedding closely
with the centroid of embeddings from the same
word while ensuring a significant separation from
centroids of other words. The word embedding
centroid is computed by averaging the word-level
embeddings, excluding the ith acoustic word em-
bedding, denoted as [embj1, ..., embjM ] with the
M acoustic signals per word, resulting in cj .

cj =

∑M
m=1,m ̸=i embjm

M − 1
(1)

To measure the similarity between the word-
level embeddings and the centroid, we employ co-
sine similarity. The similarity matrix (Sji,k) repre-
sents the scaled cosine similarities between each
embedding vector embji and all centroids ck.

Sji,k = cos (embji, ck) (2)

To enhance conventional contrastive loss in QbE-
STD tasks, a softmax operation is applied to simi-
larity scores, enabling a probabilistic interpretation
of the similarity between embedding vectors. The
loss on each embedding vector (embji) is defined
as follows:



Lsm = −Sji,j + log
Nword∑
k=1

expSji,k (3)

where Lsm represents the softmax loss.
Finally, we introduce the contrastive centroid

Loss (Lcc) to encourage embeddings of positive
examples (words in the query) to be close to their
respective class centers while simultaneously push-
ing them away from the class centers of negative ex-
amples (other words). By considering both the cen-
trality and contrastive aspects, this loss promotes
effective discrimination in QbE audio indexing.

Lcc =
Nword∑
j=1

M∑
i=1

(1− Sji,j) + max
1<k<Nword,j ̸=k

Sji,k

(4)
The (1− Sji,j) targets positive pairs, measuring

and minimizing their dissimilarity from the class
center to enhance intra-class compactness. The
second term addresses the most dissimilar negative
pairs. It identifies the maximum similarity between
embji and centroids of all other classes (k ̸= j)
The aim is to decrease the similarity of an embed-
ding vector to centroids of different words, thus
increasing inter-class variability.

The Deep Word Discrimination loss (Ldwd) is a
combination of the softmax loss and the contrastive
centroid Loss, as follows:

Ldwd = Lsm + Lcc (5)

By incorporating the Deep Word Discrimination
loss into the training process, our goal is to en-
hance the discriminative power of the embeddings,
thereby facilitating accurate word discrimination
in QbE search tasks.

2.3 Query centroid similarity matching
(QC-matching)

Our proposed word-searching system employs an
embedding-matching scheme based on cosine sim-
ilarity computation with a sliding window. To initi-
ate the process, the search content is divided into
segments using a fixed-size sliding window along
the time axis, forming a sequence of segments.
These segments are then passed through a trained
A2E-Net, resulting in a sequence of acoustic word
embeddings derived from the FC layer.

To ensure consistency in segment lengths, the
keyword audio is either padded or clipped to match

the size of the sliding window. Subsequently, each
input segment (x) is transformed into its corre-
sponding embedding (embx) using deep CNN. In
order to capture the representation of acoustic sig-
nals of a spoken query term, the basis embedding of
the word is computed by averaging the word-level
embeddings in the following manner:

cb =

∑B
x=1 embx

B
(6)

where B is the number of multiple acoustic sig-
nals of a spoken query term. The basis embedding,
denoted as cb, captures the representative acoustic
features of the spoken query.

By calculating the cosine similarity between the
segment sequence of the search content y and the
basis embedding of the spoken query (embx), we
generate a time-dependent score sequence. To mit-
igate the impact of random score fluctuations, we
apply a simple moving average (SMA) operation
(Koul and Awasthi, 2019) to smooth the sequence.
This smoothing process involves summing recent
scores and dividing the sum by the number of
frames involved at each point.

The resulting smoothed score sequence provides
a measure of similarity between the search content
and the spoken query, enabling the identification of
relevant word occurrences within the search con-
tent. This embedding-matching approach, employ-
ing cosine similarity computation with a sliding
window and subsequent SMA smoothing, offers an
effective means of searching for specific words in
spoken utterances.

3 Experimental Details

In this section, we provide the experimental de-
tails of our study, covering evaluation metrics, the
dataset, baselines, data preparation, and model con-
figuration.

3.1 Evaluation

Our evaluation of the method employs two key
metrics: mean Average Precision (mAP) and Pre-
cision at 5 (P@5), same as (Ma et al., 2021). The
mAP metric assesses the average precision for each
word in word discrimination and search content. It
is calculated by averaging precision values for all
queries, providing a holistic measure of retrieval
performance. Precision at k documents (P@k) eval-
uates the precision of the retrieval system by con-
sidering the relevance of the top k retrieved word



occurrences. By using mAP and P@5, we gain in-
sights into the retrieval performance and precision
of our word-searching system, accurately retrieving
desired words from spoken utterances.

3.2 Dataset
This study explores word discrimination across
Buckeye (Pitt et al., 2005) (6 hours for develop-
ment and testing), Librispeech (Panayotov et al.,
2015) (5.4 hours for development and clean test-
ing), TIMIT (Garofolo et al., 1983) (4620 audio
files for training, 1690 for testing), and English
Command Voice corpus 12.0 (Ardila et al., 2020)
(986,897 utterances for training, 16,365 for devel-
opment and testing).

To evaluate word discrimination, we train an
AWEs model using the English Common Voice
dataset and assess discrimination using Librispeech
and Buckeye. We investigate the QbE technique
for spoken term detection and compare the perfor-
mance of our embedding-matching method with
other approaches. For embedding-matching, we
use spoken queries from Librispeech and test utter-
ances from TIMIT. We examine the effectiveness
of fixed-dimensional acoustic embedding by ob-
taining unseen spoken queries from Librispeech
and test utterances from TIMIT. Through these ex-
periments, our aim is to gain insights into word
discrimination and evaluate the effectiveness of our
proposed method in unseen word search scenarios.

3.3 Baseline
Network: Due to the high performance of super-
vised acoustic word embedding models, as cited in
(Ram and Aldarmaki, 2022) and (Sanabria et al.,
2023), we evaluate our proposed AWE model in
comparison with baseline models such as Wav2Vec
2.0 (W2V2) (Baevski et al., 2020), HuBERT (Hsu
et al., 2021), and XLSR-53 (Conneau et al., 2021)
for word discrimination tasks. These baseline
models leverage pre-trained supervised representa-
tions for constructing acoustic word embeddings
(AWEs). Notably, HuBERT with mean-pooling
outperforms other AWE systems employing sim-
pler pooling strategies, as evidenced in (Sanabria
et al., 2023), thus showcasing its robust perfor-
mance across various AWEs. Additionally, XLSR-
53 demonstrates promising performance, as re-
ported in (Ram and Aldarmaki, 2022).

Loss function: We compare the performance
of our DWD loss with other methods, including
Triplet loss (Ge et al., 2018) and Multi-Similarity

Loss (MS loss) (Wang et al., 2019), demonstrating
the strong and consistent performance of our DWD
loss across various AWEs.

Word matching : Furthermore, we compare
our proposed embedding-matching approach for
QbE-STD with the baseline Cosine Distance Pat-
tern Matching (CDP matching) method (Ma et al.,
2021). This baseline method employs cosine dis-
tance computation in conjunction with a sliding
window to match spoken query segments to the
search content. A simple moving average is then
applied to smooth the score sequence, thereby re-
ducing random fluctuations. Additionally, a multi-
template strategy is used to average values across
templates, resulting in a fused embedding. We
also compare our proposed approach with the best-
performing model, One Softmax AWE with V-I
Loss (s-AWE), as outlined in the work of (Ma et al.,
2021).

3.4 Experimental setup

To evaluate the performance of A2E-Net in word
discrimination tasks, reference is made to the exper-
iment detailed in Section 4.2. We utilize six differ-
ent systems for this evaluation: the proposed A2E-
Net with DWD loss, softmax loss, and MS loss, as
well as pre-trained W2V2, Hubert, and XLSR-53
models. The objective is to examine the efficacy of
A2E-Net across different loss functions, including
DWD, softmax, and MS loss. Performance compar-
isons are made against high-performing pre-trained
models. The metric for evaluation is mAP, and
word categorization employs a cosine similarity
threshold of 0.5.

To assess the proposed Query-by-Example
(QbE) approach for Spoken Term Detection (STD),
experiments outlined in Section 4.2 are referenced.
The systems examined specifically include A2E-
Net with QC matching, A2E-Net with CDP match-
ing, and s-AWE with CDP matching (Ma et al.,
2021). The performance of A2E-Net is scrutinized
by employing various word-matching methods and
is compared against the benchmark technique of
CDP matching.

To evaluate the efficacy of the proposed method
in word discrimination tasks, an experiment was
conducted to compare frame-level and word-level
acoustic embeddings. Two variations of the A2E-
Net model were employed: one with DWD loss
and another with softmax loss. Detailed results and
analyses can be found in Section 4.3.



To investigate the effectiveness of the proposed
method in retrieving unseen words for real-world
applications, an experiment was conducted as out-
lined in Section 4.4. The word-level A2E-Net with
DWD loss was used, and the experiment focused
on two categories of words: all-selected and un-
seen. The objective is to evaluate the ability of the
system to retrieve and rank unseen words compared
to a pre-selected set of words.

3.5 Data Preparation
Speech signals in all experiments were processed
at a sampling rate of 16 kHz with 16-bit resolution.

To train the word discrimination model and con-
duct evaluations, precise word timestamps were
necessary. Forced alignment techniques were em-
ployed for datasets without manual timestamps,
using the MFA (McAuliffe et al., 2017) for all
datasets. The evaluation focused on words with
a minimum duration of 0.5 seconds.

During word discrimination training and infer-
ence, acoustic word segments were divided into 25
ms frames with a step size of 10 ms. These frames
were transformed into 25-dimensional feature vec-
tors for the acoustic word embedding model. The
model generated embeddings, and cosine similar-
ity with a threshold was used for comparison and
classification.

For embedding-matching in QbE-STD, a query
word with multiple acoustic words was indexed
within a recording file. The word basis embedding
and average duration of the query word were cal-
culated. The recording file was segmented into
segments of the average duration with a step size of
50 ms. Acoustic word embeddings were compared
to the word basis embedding using cosine similar-
ity, enabling identification and indexing based on a
similarity threshold.

3.6 Model Configuration
To compare with the baseline, we conducted ex-
periments using frame-level and word-level repre-
sentations from various models. For frame-level
representations, we evaluated word discrimination
models with different loss functions. For word-
level representations, we examined word discrimi-
nation models with the DWD loss.

For each reported model, we employed spe-
cific hyperparameter configurations, including a
learning rate of 0.001, a batch size of 32, and the
Adam optimizer. The output layer of the word dis-
crimination model generated a 2048-dimensional

Table 1: The performance evaluation of A2E-Net in
word discrimination task

Methods mAP(%)
Model Loss Librispeech Buckeye

A2E-Net

DWD loss 63.9 72.9
softmax loss 59.1 65.2
Triplet loss 60.2 68.3

MS loss 62.5 69.1
W2V2 (Baseline) 47.4 53.1
Hubert (Baseline) 58.2 64.8

XLSR-53 (Baseline) 54.7 60.1

word embedding with Nword nodes, representing
the number of words in the training set. We im-
plemented early stopping, and halting training if
the validation loss did not improve for more than
10 epochs or started to increase for more than 3
epochs. The maximum number of epochs was set
to 100. These hyperparameter settings and training
strategies played a crucial role in achieving optimal
model performance.

4 Experimental result and discussion

In this section, we present the experimental results
and discussion of our study, focusing on perfor-
mance evaluation and comparisons across various
aspects.

4.1 The performance evaluation of A2E-Net
in word discrimination task

This study investigates the performance of various
model architectures in word discrimination tasks
using our proposed method. In Table 1, we com-
pare the effectiveness of the A2E-Net model across
different loss functions (DWD, softmax, Triplet,
and MS) against two baseline models (W2V2 and
HuBERT), employing the mAP metric for eval-
uation. These results contribute to the advance-
ment of word embedding models. Specifically, the
A2E-Net model with DWD loss demonstrates ex-
ceptional performance, achieving the highest mAP
scores of 63.9% for Librispeech and 72.9% for
Buckeye, thus outperforming both baseline mod-
els. Furthermore, the A2E-Net model employing
the softmax loss function also shows competitive
performance, with mAP scores of 59.1% for Lib-
rispeech and 65.2% for Buckeye. However, there
remains room for further optimization. In con-
trast, W2V2 exhibits moderate performance, and
although HuBERT outperforms W2V2, it still falls
short of the mAP scores achieved by the A2E-Net



Table 2: The performance evaluation of a proposed QbE
Approach for QbE-STD

Methods mAP (%) P@5 (%)
Model Word matching

A2E-Net QC-matching 70.22 80.62
A2E-Net CDP matching 59.1 65.2

Baseline
s-AWE CDP matching 59.1 65.2

models. The XLSR-53 model also demonstrates
promise but requires additional tuning to match
the performance of our proposed models. Overall,
the A2E-Net model with the DWD loss function
emerges as the most effective architecture for word
discrimination tasks, highlighting the efficacy of
its design and chosen loss function in achieving
superior performance. This research offers valu-
able insights into various model architectures for
word discrimination, thereby guiding future inves-
tigations in this field.

4.2 The performance evaluation of a proposed
QbE Approach for QbE-STD

We conducted a comprehensive investigation to as-
sess the effectiveness of our QbE technique for
QbE-STD in Table 2, comparing it with exist-
ing approaches. We implemented two variations
of our model: word embedding-based matching
with a proposed loss function and pattern matching
based on cosine distance with the same loss func-
tion. The evaluation was performed using the mAP
metric, and the results were compared to baseline
approaches. The word embedding-based model
achieved high mAP scores of 70.22%, effectively
detecting spoken terms. On the other hand, the
pattern matching-based model showed strengths
in capturing patterns but exhibited slightly lower
performance. In contrast, the baseline models
had lower mAP scores, indicating limitations in
STD. Ultimately, the word embedding-based model
emerged as the most effective, outperforming the
baseline models. Our findings highlight the poten-
tial of QbE techniques and pave the way for future
improvements in STD methods.

4.3 The performance evaluation of
frame-level and word-level Acoustic Word
Embeddings for word discrimination task

This experiment evaluates various architectures for
word discrimination tasks using frame-level and
word-level acoustic word embeddings. Our pro-

63.9 68.5 72.9 74.8

59.1 61.2 65.2 67.9

Frame-level Word-lovel Frame-level Word-lovel

mAP (%)
Librispeech                                    Buckeye

A2EC-Net with DWD loss A2EC-Net with softmax loss

Figure 2: The performance evaluation of frame-level
and word-level Acoustic Word Embedding for word
discrimination task

Table 3: Performance Evaluation of AWEs for Unseen
Word Retrieval

Retrieval mAP (%) P@5 (%)
All selected words 70.22 80.62

Unseen words 54.95 62.59

posed model, which employs a specialized loss
function, is compared with its softmax loss variant
using the mean Average Precision (mAP) metric.
Results in Figure 2 show that the specialized loss
function yields high mAP scores for both frame-
level and word-level embeddings, highlighting its
efficacy in word discrimination. Moreover, word-
level representation outperforms its frame-level
counterpart, capturing discrimination patterns more
effectively. The proposed model also surpasses the
softmax model, validating the effectiveness of our
architecture and loss function. In conclusion, we
recommend using the word-level approach with our
specialized loss function to improve word discrimi-
nation models, contributing to advances in speech
analysis.

4.4 The performance evaluation of AWEs for
Unseen Word Retrieval

This experiment evaluates the effectiveness of
AWEs in retrieving unseen words through QC-
matching, utilizing A2E-Net and the DWD loss.
We measure the system’s performance in identify-
ing and retrieving unseen words compared to ran-
domly selected words, using the mAP metric. The
results presented in Table 3 advance search tech-
niques for speech data, offering valuable insights
into the effectiveness of AWEs in Unseen Word
Search Retrieval. By analyzing the strengths and
weaknesses of each architecture in word discrimina-
tion tasks, the proposed model with AWEs demon-



strates impressive performance in distinguishing
both seen and unseen words across languages. It
achieves high mAP and P@5 scores, although there
is still room for improvement in discriminating un-
seen words. These findings highlight the effective-
ness of AWEs for word discrimination and empha-
size the benefits of leveraging multilingual mod-
els. Overall, they contribute to the advancement
of search techniques for STD, providing valuable
insights for future research in this domain.

5 Discussion

5.1 Performance Insights

Acoustic Word Embeddings (AWEs) have played
a pivotal role in advancing the field by offering a
computationally efficient approach to spoken term
detection. Our A2E-Net model with DWD loss
function outperformed baseline models like W2V2
and HuBERT, achieving mAP scores of 63.9% on
Librispeech and 72.9% on Buckeye. These scores
underline the architectural efficiency and the effi-
cacy of the DWD loss function. On both frame-
level and word-level tasks, our specialized loss
function improves word discrimination, thereby
enhancing the versatility of the model across dif-
ferent granularities. AWEs were also effective in
retrieving unseen words, thereby advancing search
techniques for speech data. Our QbE technique sur-
passed existing baseline models with a high mAP
score of 70.22%, underscoring the efficacy of word
embedding-based models in spoken term detection.

5.2 Computation Time

One notable advantage of A2E-Net is its computa-
tional efficiency. Traditional methods (e.g. DTW)
suffer from high computational complexity, espe-
cially with long sequences. A2E-Net generates
AWEs that represent variable-length segments as
fixed-dimensional vectors, significantly reducing
computation time for search and similarity com-
parisons. While the training phase is resource-
intensive due to the depth of the model, real-time
deployment remains efficient. The specialized loss
function adds minimal computational overhead,
making model scalable for real-time applications.

5.3 Theoretical and Practical Implications

The research findings have important theoretical
ramifications for the academic community in ma-
chine learning, acoustic modeling, and natural lan-
guage processing. On the practical side, the re-

duced computational complexity and time efficien-
cies hold promise for applications in information
retrieval, speech indexing, and automated customer
service.

5.4 Limitations and Future Work

Despite encouraging results, limitations exist. The
proposed loss functions, though superior to tradi-
tional ones, require broader linguistic testing. Addi-
tional evaluation against a more diverse set of base-
line models could enrich our findings. The current
A2E-Net model excels in distinguishing seen words
but falls short in discriminating unseen words. Fu-
ture work could focus on developing adaptive meth-
ods to enhance this specific performance aspect.
The generalizability of the model across various
languages, dialects, or noisy environments, as well
as its practical effectiveness in real-world, real-time
applications, remains to be tested. Moreover, sub-
sequent studies could expand the A2E-Net model
to include more languages, particularly those with
limited resources, to increase its applicability in lin-
guistically diverse contexts. Therefore, upcoming
research could focus on overcoming these limita-
tions and further refining the performance of the
model across multiple domains.

6 Conclusion

The presented research substantially advances
the understanding and development of Query-by-
Example Spoken Term Detection (QbE-STD) tech-
niques, acoustic word embeddings (AWEs), and
their integration with deep learning architectures.
Our study introduces an innovative approach to en-
hance QbE-STD through the use of AWEs. The
A2E model overcomes the limitations of traditional
methods by converting variable-length speech seg-
ments into fixed-dimensional vectors, thereby facil-
itating quicker and more efficient search operations.
Experimental results confirm the model’s effective-
ness in word discrimination tasks, underscoring
its potential for innovations in audio indexing and
search techniques. The incorporation of the DWD
loss function further augments the discriminative
power of the embeddings. Our contributions not
only advance the field of QbE-STD but also set the
stage for improved audio search tools and voice-
controlled applications. Particularly, the A2E-Net
model with DWD loss function exhibits superior
performance, offering promising avenues for future
research in speech technology.
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