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Abstract
We present a method for effective title encoding
for hierarchical classification in a large taxon-
omy. The method enables taxonomy-aware
encoding in pre-trained text encoders, such
as fastText and BERT, which are additionally
fine-tuned for the hierarchical classification.
The embeddings produced using our method
perform well when applied to nearest neigh-
bor classification. They allow for controllable
and sufficient hierarchical classification based
solely on the title.

1 Introduction

Hierarchical classification is the task of organizing
data into a hierarchy of categories, where each cate-
gory is a subset of another category. This structure
can be thought of as a tree-like structure, where the
root node represents the most general category and
the leaf nodes represent the most specific categories.
In NLP, hierarchical text classification (HTC) is
widely used to organize large collections of doc-
uments (e.g. emails, patents, job advertisements,
digital libraries) or entities (e.g. product or service
titles in e-commerce). This work focuses on the
challenge of inferring fine-grained categories from
no other information but an entity name, which is
a specific challenge for hierarchical classification.

The deep hierarchical classification approaches
developed over the past years (Yang et al., 2020;
Gao, 2020; Gong et al., 2023) have three major
limitations:

• Entity HTC models are often developed for e-
commerce and use multiple attributes for the
input entity including detailed descriptions,
tags, or images. However, there are other situ-
ations where just the textual titles are available
for classification, like mapping diagnoses and
procedures to a clinical coding taxonomy (Li
et al., 2019; Chakraborty et al., 2023). Bet-
ter title representations can also be beneficial
when multiple attributes are present.

• Being mostly deep learning classification
methods, they are prone to class imbalance
and may not be able to handle large skewed
hierarchies with a few examples per leaf.

• Limited interpretation capabilities of the deep
hierarchical classifiers are another disadvan-
tage that can be critical in some practical ap-
plications.

To address these limitations, we propose a sim-
ple yet effective approach that encodes the textual
title using hierarchy-aware information to map an
object’s title to the relevant leaf in the taxonomy.
We show that our approach improves the classifi-
cation performance of deep models while making
the entity title classification easier to interpret and
control1.

2 Related Work

Hierarchical Entity Title Classification In hi-
erarchical classification, each object is associated
with a certain branch (labels path) in the hierarchy
tree. There are three fundamental approaches to hi-
erarchical classification: flat classification (object-
to-branch), global classification, and local classifi-
cation (Silla and Freitas, 2011). Global classifica-
tion predicts classes in the hierarchy using a single
model that considers class dependencies, whereas
local classification uses multiple separate models
for different hierarchy nodes or levels.

Previous approaches to HTC for e-commerce
mainly focus on title-plus-description classifica-
tion, and include flat classifiers (Skinner, 2018;
Suzuki et al., 2018), two-level pipelines (Cevahir
and Murakami, 2016; Gupta et al., 2016; Das et al.,
2017; Goumy and Mejri, 2018), multilabel classi-
fiers (Jia et al., 2018; Yu et al., 2018), and sequence-
to-sequence branch generation (Li et al., 2018).

1The code is available at https://github.com/
tchewik/entity_representation_learning

https://github.com/tchewik/entity_representation_learning
https://github.com/tchewik/entity_representation_learning


Shared tasks often feature the systems investigat-
ing external ways to improve classification perfor-
mance, including model ensembling (Yang et al.,
2020; Yu et al., 2018; Jia et al., 2018), pseudo la-
beling (Yang et al., 2020), and collecting additional
data (Borst et al., 2020). Some approaches focus
on optimizing the classification model itself by con-
sidering the hierarchy of classes in the activation
(Yang et al., 2020) or loss (Gao, 2020) function.
Other methods involve matching an entity title with
a leaf title (Chen et al., 2021; Gong et al., 2023).
To improve entity title encoding for product classi-
fication and overcome the problem of domain shift,
Brinkmann and Bizer (2021) suggest additionally
pre-training the transformer on product offers from
Common Crawls.

In our method, we train a single global deep
classifier and utilize it to encode entity titles in a
complicated hierarchy for flat categorization. We
demonstrate that this approach excels in terms of
accuracy on the deepest levels of hierarchy, sim-
plicity, and controllability.

LLM Applications Large language models have
limited structured prediction capabilities. There
have been recent attempts to solve the HTC task
through hierarchy verbalization, however, they still
rely on pretrained BERT rather than LLMs and re-
quire model architecture modifications: Wang et al.
(2022) frame the problem as a hierarchy-aware
multi-label MLM task, adopting a Graph Attention
Network and a zero-bounded Multi-label Cross-
Entropy Loss, while Ji et al. (2023) address HTC
as flat classification solvable by verbalizing with
a hierarchy-aware decoder constraint. Although
promising, these methods are tailored and eval-
uated for elaborate texts in smaller taxonomies
(WOS, DBPedia, RCV1-V2).

While prompting LLMs for this task can be pos-
sible for flat entity title classification in a large
hierarchy, there are some major limitations:

• A large language model should memorize
an entire deep taxonomy with thousands of
branches and adhere to its complex structure
without deviation. This level of precision is
achievable by imposing low-level constraints
overriding the NLG capabilities of LLMs.
Constraining LLMs in this way erases their
main strength in favor of precise taxonomic
compliance – an outcome more efficiently
reached by fine-tuning text encoders.

• Few-shot learning is successful in many tasks,
but it is not suitable for the hierarchical clas-
sification in a large taxonomy. Exposing the
LLM to examples spanning all the taxonomy
branches, or fine-tuning on a large labeled
dataset, would be extremely resource- and
time-intensive.

• LLM predictions cannot be controlled or in-
terpreted precisely. This lack of transparency
makes LLMs unsuitable for settings requiring
controllable accuracy and recall.

3 Background

In this work, we compare nearest-neighbors clas-
sification, deep hierarchical classification, and our
hybrid method as three basic approaches to entity
title classification in a large taxonomy.

3.1 k-Nearest-Neighbor Classification
Given representations of entity titles in hierarchi-
cally organized data, the embedding of an input
entity is assigned to a leaf of the hierarchy based on
the leaves of its k nearest neighbors. The distance
between text embeddings is typically estimated as
a cosine distance, and k nearest neighbor classes
are weighted according to the distances.

Advantages: (1) The most interpretable method.
(2) With small k is immune to subclass imbalance
in a complex hierarchy.

Disadvantages: (1) Domain shift affects pre-
trained language models substantially, and domain
adaptation requires additional resources for data
collection and computation. (2) With small k,
highly sensitive to outliers. (3) Does not provide
any information about the taxonomy.

3.2 Deep Hierarchical Classification
The classifier predicts the most probable classes
for each level of the hierarchy and collects the fi-
nal prediction from a pool of weighted class labels.
The classifier can predict multiple labels in a multi-
label fashion or have n top outputs for all hierarchy
levels.

Advantages: (1) The internal representations of
texts in the neural model are influenced by both
their own surface forms and their position in the
hierarchy. (2) More robust to data noise. (3) Can
more or less adjust to specific domains while fine-
tuning.

Disadvantages: (1) Is highly affected by class
imbalance. (2) Has reduced interpretability. (3) As
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Figure 1: Overview of our framework with DBERT1−5 as a deep classifier. During training, the encoder is paired
with outputs for hierarchical classification. The classification part of the model is fine-tuned in conjunction with the
encoder to generate a sequence of subclass labels (levels 1-5). During inference, we encode the known data and
input entity using only the fine-tuned encoder and attempt to find the most similar entities in a complex taxonomy.
Finally, we assign the input entity to the hierarchy leaf with the most similar known entities.

a result of the previous point, it is more difficult to
control the precision of the model when implement-
ing it in real-world systems. Classifier confidence
is not transparent. (3) The model itself can pro-
duce contradictory labels (non-existing taxonomy
branches), and introducing hierarchical informa-
tion can require the implementation of additional
restrictions.

4 Methods

We compare multiple methods that follow the two
fundamental strategies introduced in Section 3. The
described HTC methods employing a single model
(FT1−5, DBERT1−5) are additionally probed in the
hybrid classification setting.

4.1 k-NN
The most similar titles in a hierarchy are found
using cosine distance. The out-of-the-box encoder
is not fine-tuned on task-related data. The title is
encoded as an average of token representations. We
probe two types of representations: fastText and
DeBERTa.

4.2 Trainable Classification
A deep classification model simultaneously pre-
dicts multiple labels denoting the nodes in a hierar-
chy. The final prediction assigns an entity title to
a taxonomy branch and is constructed from top-n
predicted node labels along with their probabilities.

FT1−5 : To predict top-n possible nodes for levels
1-5, we use a one-vs-all multilabel classification
implemented in the fastText2 library.

2https://fasttext.cc/

DBERT1−5 : We use an architecture of a deep
hierarchical classifier similar to that of Gao (2020).
The output layers for every level are added on top
of an encoding language model (DeBERTa). For
the title consisting of tokens w1, w2, ..., wz , the
representations are computed in encoder:

e = Encoder(w1w2...wk) ∈ RdLM (1)

The output for each hierarchy level i is predicted
with a separate feedforward layer. Input for the
output layer i > 1 is a concatenation of the text
embedding e and an output for the previous level:

yi =

{
FFi(e) if i = 1;

FFi(e⊕ yi−1), otherwise.
(2)

The probabilities of classes for a hierarchy level
i are calculated by passing yi through the softmax
activation function. The class with the highest pre-
dicted probability is then predicted as ŷi. The loss
function is a weighted sum of the categorical cross-
entropy loss and hierarchical loss:

HLossi =

{
0 if ŷi ⊂ ŷi−1;

1 otherwise.

Loss = α
n∑

i=1

CELossi +
n∑

i=2

βi−1HLossi

(3)

where α and β are the weights controlling the im-
pact of hierarchical loss. The hyperparameter β
(0 < β ≤ 1) is used to scale the hierarchical loss.
The cross-entropy loss is weighted to handle the
class imbalance on each hierarchy level.

https://fasttext.cc/


Part Deduplicated
Length

Unique
Branches

Unique Classes of Each Level
1 2 3 4 5

Clothing Shoes and Jewelry 1988301 35710 11 253 953 5263 12371
Home and Kitchen 1203754 1671 13 136 539 695 292
Automotive 831549 2252 14 165 743 849 318
Sports and Outdoors 809999 3414 3 43 351 1102 1281
Electronics 584136 900 16 105 290 305 133
Tools and Home Improvement 488042 1152 13 98 435 427 172
Industrial and Scientific 132168 1796 25 301 970 496 93

Table 1: Statistics of the corpus.

4.3 Our hybrid approach

As a compromise between both of the described
methods, we propose a hybrid approach, in which
the out-of-the-box text encoder is additionally pre-
trained on hierarchical classification. The overall
framework is illustrated in Figure 1. The title en-
coder is fine-tuned as a part of a hierarchical clas-
sifier, and the nearest-neighbor classifier dealing
with flat (entity; leaf) pairs predicts the leaf with
most similar entities.

5 Experimental Setup

5.1 Dataset

Deep models with millions of parameters, such as
BERT, have a tendency to overfit to noise and out-
liers in e-commerce product classification data, as
noted by Zhang et al. (2021). They describe two
major challenges in e-commerce data: frequently
incomplete or misleading item descriptions and
confusing or non mutually exclusive labels in a
large taxonomy. Supervised learning faces a sig-
nificant obstacle when classifying images, descrip-
tions, or titles due to confusing and non-mutually
exclusive labels in a large taxonomy. To address
this issue, we thoroughly clean the data for our
experiments.

We only use the titles and hierarchy annotations
from the Amazon review dataset3 (Ni et al., 2019);
HTML character references in both titles and cat-
egories are decoded into Unicode. We cut sub-
branches leaving only the nodes containing less
than 13 tokens4 in name and keep only subbranches

3https://cseweb.ucsd.edu/~jmcauley/datasets/
amazon_v2/

4We considered the longer nodes noisy because they often
included non-taxonomy information, such as notes for cus-
tomers (e.g. “Please feel free to contact us if you have any
special requests or questions”) or lengthy keyword-stuffed
descriptions (e.g. “My Daily Styles Stainless Steel Black
Faux PU Leather Yellow Gold-Tone Latin Cross Religious
Adjustable Wristband Mens Bracelet”) hardly resembling sub-
classes.

appearing in the data at least 4 times. We have se-
lected seven major data subsets that have at least 90
classes annotated in the 5th level of the hierarchy.
The statistics of the obtained data are described
in Table 1. On each hierarchy level, we encode
classes independently of the previous levels. As
a result, on most subsets, the number of classes
decreases after level 4; instead, “missing” class re-
placement occurs most frequently. This denotes a
natural skew in the hierarchy.

5.2 Metrics

We evaluate the hierarchical classification perfor-
mance with 5-fold stratified cross-validation. This
balances the distribution of branches in each fold.
Firstly, we calculate macro-averaged F1 for each
level of the hierarchy. Since this F1 reflects per-
formance for each level independently, we also
evaluate the accuracy for flat branch assignment
for each depth.

5.3 Implementation Details

fastText We use a fastText model described in
(Grave et al., 2018) that is pretrained on Common
Crawl and Wikipedia data. Hierarchical model
(FT1−5): The classifier is fine-tuned using the one-
vs-all scheme, with a learning rate of 1, character
n-gram range of (3, 10), and for 25 epochs. The
top 7 predicted nodes are used to assemble the full
branch after classification.

Contextual Embeddings As a pretrained trans-
former, we employ DeBERTa5 (He et al., 2021).
Hierarchical model (DBERT1−5): The model is
fine-tuned with a learning rate of 2e-5, dropout rate
of 0.4, batch size of 128, α = 1, β = 0.9, and the
cross-entropy loss for each level (CELossi in (3))
is weighted based on the distribution of classes in
the subcorpus. The top 8 predicted nodes are used
to assemble the final branch.

5microsoft/deberta_v3_base

https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/


6 Experimental Results

Table 2 compares all the investigated methods for
hierarchical classification. The statistics of macro
F1 calculated for each level independently are il-
lustrated in Figure 2.

6.1 Baselines

The results for kNN using out-of-the-box pre-
trained text encoders are denoted as KNN:FT for
fastText and KNN:DBERT for DeBERTa. The
fastText-based flat kNN classifier provides a strong
baseline across all subcorpora. The low perfor-
mance of the KNN:DBERT can be attributed to a
known issue with transformers: the feature extrac-
tion performance of the frozen model decreases
with increasing difference between pretraining and
target tasks (Peters et al., 2019).

6.2 Trainable Classifiers

The fastText- and DeBERTa-based classifiers are
denoted as FT1−5 and DBERT1−5, respectively.

According to the results in Table 2, the fastText-
based hierarchical classifier outperforms the kNN
baseline only across the smallest subcorpora, and
mostly for the higher levels of hierarchy. More-
over, for larger datasets, starting with “Sports and
Outdoors” multilabel fastText training becomes in-
creasingly more challenging and consuming. The
statistics of hierarchical labels are actually learned
by the model, which we’ll see by applying kNN
to its representations. However, collecting the tax-
onomy branch from top-n pool of predicted labels
using the direct approach is hardly applicable.

DBERT1−5 outperforms not only the correspond-
ing weak baseline but also the fasttext-based hybrid
classification KNN:FT1−5 on many datasets. It is
also worth noting that this method handles larger
data with larger class sets much better than multil-
abel fastText.

6.3 k-NN over the Tuned Representations

Applying kNN directly to the inner representa-
tions results in an improvement in classification
for all levels for both backbones (KNN:FT1−5 and
KNN:DBERT1−5). In addition to a considerable
improvement in the accuracy of full branch predic-
tion (A1−5 in Table 2) while preserving or improv-
ing the intra-level F1 (Figure 2), the purely vector-
based approach can also be significantly faster than
collecting known branches from a pool of predicted
labels for each entity.

A1 A1−2 A1−3 A1−4 A1−5

Clothing Shoes and Jewelry

KNN:FT 85.5 81.4 71.0 55.3 44.4
FT1−5 84.1 76.8 64.1 45.4 31.1
KNN:FT1−5 86.8 83.1 73.3 57.8 45.9

KNN:DBERT 72.7 64.3 51.3 38.9 31.8
DBERT1−5 90.8 88.2 80.3 65.7 52.7
KNN:DBERT1−5 90.9 88.4 80.8 67.0 54.9

Home and Kitchen

KNN:FT 89.7 78.5 68.5 64.4 63.5
FT1−5 91.5 80.0 68.0 62.9 60.6
KNN:FT1−5 90.9 81.0 71.5 67.4 66.5

KNN:DBERT 64.5 49.6 42.2 39.8 39.8
DBERT1−5 93.3 85.0 76.5 72.7 71.6
KNN:DBERT1−5 93.6 85.6 77.6 74.0 73.1

Automotive

KNN:FT 89.4 82.1 76.1 72.7 72.0
FT1−5 88.5 80.1 72.9 67.9 66.6
KNN:FT1−5 91.8 86.0 80.7 77.4 76.7

KNN:DBERT 76.9 66.9 61.3 58.7 58.3
DBERT1−5 92.1 86.3 80.8 77.4 76.6
KNN:DBERT1−5 92.3 86.9 81.8 78.6 77.8

Sports and Outdoors

KNN:FT 91.8 81.7 73.0 64.2 59.3
FT1−5 90.3 78.0 67.1 56.7 50.3
KNN:FT1−5 93.3 85.2 77.5 69.2 64.6

KNN:DBERT 77.0 54.5 46.0 40.8 38.0
DBERT1−5 94.4 87.3 80.3 72.6 68.0
KNN:DBERT1−5 94.5 87.8 81.2 74.0 69.8

Electronics

KNN:FT 87.0 76.3 68.6 64.0 62.6
FT1−5 87.4 74.6 64.8 58.3 56.7
KNN:FT1−5 89.4 79.8 72.6 68.5 67.2

KNN:DBERT 63.9 50.3 43.6 40.4 39.6
DBERT1−5 89.8 80.1 72.5 68.1 66.9
KNN:DBERT1−5 90.1 80.8 73.7 69.5 68.3

Tools and Home Improvement

KNN:FT 88.3 78.9 68.4 64.3 62.9
FT1−5 89.9 79.8 69.2 63.7 62.1
KNN:FT1−5 91.9 84.3 75.2 70.9 69.6

KNN:DBERT 62.0 51.7 43.9 41.7 40.8
DBERT1−5 92.2 84.6 75.6 71.1 69.8
KNN:DBERT1−5 92.4 85.2 76.5 72.2 70.9

Industrial and Scientific

KNN:FT 82.0 71.8 63.6 60.6 60.2
FT1−5 85.1 74.1 64.7 60.3 59.7
KNN:FT1−5 87.9 79.1 71.4 68.2 67.8

KNN:DBERT 56.8 49.0 44.1 42.4 42.3
DBERT1−5 88.2 78.9 70.6 67.4 67.0
KNN:DBERT1−5 88.4 79.4 71.5 68.5 68.0

Table 2: Mean accuracy of the branch prediction. The
datasets are listed in descending order of size (see Ta-
ble 1).
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7 Conclusion

We present an approach for entity title hierarchical
classification that uses representation learning for
training hierarchy-informed embeddings. We apply
the obtained embeddings in kNN flat hierarchical
classification to demonstrate how these representa-
tions can be directly used in a controllable setting.
The baselines include pretrained encoders used as
the base encoders in the pipeline and hierarchical
classifiers built with the same encoders. The hybrid
approach outperforms the baselines on each part of
the large-taxonomy e-commerce corpus.
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