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Introduction

Welcome to the proceedings of the 6th International Conference on Natural Language and Speech Pro-
cessing!

This volume presents a vibrant tapestry of cutting-edge research in natural language processing, highlight-
ing advancements in a diverse range of areas. It addresses many NLP aspects as bridging the language
divide, expressive and robust communication, building and leveraging resources, and unifying theory and
practice. Research works dealing with these topics have been presented at ICNLSP 2023.

Thirty seven (37) papers have been accepted by the program committee members that helped us a lot with
their insightful comments. All papers have been presented orally, that is why the program was quite long
and rich. The technical program included 05 oral sessions, namely: Classification and clustering, Deep
learning and transformers, Analysis, summarization, and numerical representation, Speech and phonetics,
and Dataset.

This year, we were honoured by the participation of two distinguished scholars: Prof. Dr. Alexander
Waibel from Carnegie Mellon University (USA) and Karlsruhe Institute of Technology (Germany) and
Dr. Najim Dehak from Johns Hopkins University (USA). Professor Alexander Waibel gave the first talk
entitled “Transcending Communication Barriers: From Machine Translation to Language Transparence”.
During his talk, Prof. Alex discussed the latest advances and activities to transcend these barriers. The
second talk, entitled “Biosignal-based Digital Biomarkers for Aging” was given by Dr. Najim Dehak,
in which he described several tools to detect, assess, and monitor the functional and cognitive decline of
elderly adults. Both talks were very interesting.

This volume reflects the richness and diversity of the NLP community itself. Contributions from re-
searchers across the globe explore a wide range of languages, domains, and methodologies. This tapestry
of research highlights the collaborative spirit and boundless potential of NLP to revolutionize the way we
understand, interact with, and create language.

We hope readers enjoy reading the content of the 6th ICNLSP proceedings. We would like also to invite
them to check the proceedings of the past versions of ICNLSP.

Mourad Abbas
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Invited Talks

Transcending Communication Barriers: From Machine Translation to Lan-
guage Transparence
Prof. Dr. Alex Waibel, Carnegie Mellon University, USA

As we marvel at impressive advances in Artificial Intelligence in recent years, we
may wonder whether the problem of language translation and language barriers
has been solved. Aside from remaining technical issues, it is important to note that
translation is only one (even though important) step toward making people on the
planet understand each other: Our thoughts are expressed in many ways: speech,
text, video, handwriting, road signs, facial expressions, voice, lip movement, emo-
tion, gesture, mannerisms and more. . . For frictionless communication, the way technology is deployed
in different settings is just is as important a consideration as the performance of the technology itself
and they come with profound consequences on the technical design and requirements. To make language
barriers fade into the background, we need language transparence, not only translation: multimodal, im-
mersive, cross lingual, culturally aware, proactive communication and dubbing tools that interpret the
communicative intent and transcend barriers between us. In this talk, I will review major milestones on
our journey and discuss our latest advances and activities toward this goal.

Biosignal-based Digital Biomarkers for Aging
Dr. Najim Dehak, Johns Hopkins University, USA

Currently, there are more Americans aged 65 and older (over 49 million) than
at any other time in history, according to the US Census Bureau. A significant
increase in individuals with severe chronic conditions will have profound social
and economic effects on society. Three aspects describe the human aging process:
functional (motor system), cognitive, and behavior (social and psychological stres-
sors). In this talk, we will describe several tools to detect, assess, and monitor the
functional and cognitive decline of elderly adults. Those tools named biomarkers
are based on multimodal biosignals such as speech, handwriting, and eye movement. In addition, we
will describe our current work on emotion recognition from speech that can be used to assess social and
psychological stressors.
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Classification of Human- and AI-Generated Texts
for English, French, German, and Spanish

Kristina Schaaff and Tim Schlippe and Lorenz Mindner
IU International University of Applied Sciences, Germany.
kristina.schaaff@iu.org; tim.schlippe@iu.org

Abstract

In this paper we analyze features to classify
human- and AI-generated text for English,
French, German and Spanish and compare
them across languages. We investigate two
scenarios: (1) The detection of text generated
by AI from scratch, and (2) the detection of
text rephrased by AI. For training and testing
the classifiers in this multilingual setting, we
created a new text corpus covering 10 topics
for each language. For the detection of AI-
generated text, the combination of all proposed
features performs best, indicating that our fea-
tures are portable to other related languages:
The F1-scores are close with 99% for Spanish,
98% for English, 97% for German and 95% for
French. For the detection of AI-rephrased text,
the systems with all features outperform sys-
tems with other features in many cases, but
using only document features performs best for
German (72%) and Spanish (86%) and only
text vector features leads to best results for En-
glish (78%).

1 Introduction
In recent years, chatbots have gained popularity and
are now widely used in everyday life (Pelau et al.,
2021). These systems are designed to simulate
human-like conversations and provide assistance,
information, and emotional support (Dibitonto
et al., 2018; Arteaga et al., 2019; Falala-Séchet
et al., 2019; Adiwardana et al., 2020). OpenAI’s
ChatGPT has emerged as one of the most com-
monly used tool for text generation (Taecharun-
groj, 2023). Within a short span of only five
days after its release, over one million users regis-
tered (Taecharungroj, 2023). The application sce-
narios are manifold, ranging from children seeking
help with their homework to individuals seeking
medical advice or companionship.

As the use of chatbots like ChatGPT becomes
more prevalent in our daily lives, it is important
to differentiate between human-generated and AI-

generated text. As AI algorithms improve, de-
tecting AI-generated content accurately becomes
increasingly challenging, posing issues such as
plagiarism, fake news generation, and spamming.
Thus, tools that can differentiate between human-
and AI-generated content are crucial.

In Mindner et al. (2023), we explored a large
number of innovative features such as text objec-
tivity, list lookup features, and error-based features
for the detection of English (EN) text generated
by ChatGPT. However, in the current study, we ex-
tended this research to Spanish (ES), German (DE),
and French (FR). We selected these languages, as
these are amongst the most frequently used lan-
guages in the world (Ethnologue, 2023).

Consequently, our contributions are as follows:
• We proved, that the features we investigated

in Mindner et al. (2023) can be successfully
ported to other languages.

• We extended our Human-AI-Generated Text
Corpus1 with FR, DE and ES articles which
cover 10 topics, providing a benchmark cor-
pus for the detection of AI-generated texts in
EN, FR, DE and ES.

• Our best systems significantly outperform the
state-of-the-art system for the detection of AI-
generated text ZeroGPT.

2 Related Work
In the this section, we will describe the related
work concerning ChatGPT and the classification of
human- and AI-generated texts.

2.1 ChatGPT
Since its release by OpenAI in late 2022, ChatGPT
has revolutionized the field of AI (Mesko, 2023)
and several other generative AIs such as Google’s
Bard2 or Llama3 (Touvron et al., 2023) have been

1https://github.com/LorenzM97/human-AI-
generatedTextCorpus

2https://bard.google.com
3https://ai.meta.com/llama
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released. Those tools are capable of generating text
in response to user queries across a wide range of
domains. Its successful implementation has been
demonstrated in areas like education (Baidoo-Anu
and Owusu Ansah, 2023), medicine (Jeblick et al.,
2022), and language translation (Jiao et al., 2023).
ChatGPT is built on the Generative Pre-trained
Transformers (GPT) language model and under-
goes fine-tuning using reinforcement learning with
human feedback. This approach allows ChatGPT
to grasp the meaning and intention behind user
prompts, enabling it to provide relevant and helpful
responses. During the training process, a substan-
tial amount of text data is incorporated to ensure the
safety and accuracy of the generated text. While
the quantity of training data has not been published,
we know that the previous GPT-3 model, which
is substantially larger than other language mod-
els such as BERT (Kenton and Toutanova, 2019),
RoBERTa (Liu et al., 2019), and T5 (Roberts et al.,
2019), was trained with 175 billion parameters and
499 billion crawled text tokens (Brown et al., 2020).
Through extensive training on a diverse dataset,
ChatGPT has acquired a sophisticated understand-
ing of human language, allowing it to generate
text that closely resembles that written by humans
(Mitrović et al., 2023).

2.2 Detecting Human- and AI-Generated Texts
Commercial tools and plagiarism apps, such
as GPTZero (Shrivastava, 2023), ZeroGPT4, AI
Content Detector5, and GPT-2 Output Detector6

(Mitchell et al., 2023), have been developed to iden-
tify AI-generated text. Furthermore, researchers
are working on developing new corpora for this
task and finding out which features and classi-
fiers improve classification accuracy: For exam-
ple, (Yu et al., 2023) present a corpus of human-
and AI-generated abstracts to investigate com-
mercial and non-commercial systems—but only
for EN. Recent studies have explored various ap-
proaches to detect AI-generated text, including
XGBoost (Shijaku and Canhasi, 2023), decision
trees (Zaitsu and Jin, 2023), and transformer-based
models (Mitrović et al., 2023; Guo et al., 2023):
Mitrović et al. (2023) evaluated characteristics of
AI-generated text from EN customer reviews and
built a transformer-based classifier that achieved
79%. Zaitsu and Jin (2023) achieved 100% accu-

4https://www.zerogpt.com
5https://copyleaks.com/ai-content-detector
6https://openai-openai-detector–mqlck.hf.space

racy in the detection of Japanese texts with decision
trees combining stylometric features for Japanese
such as bigrams, comma position, and function
word rates. Guo et al. (2023) evaluated the char-
acteristics of human-generated and AI-generated
answers to questions in EN and Chinese. They
fine-tuned a RoBERTa model on their texts and
achieved 98.8% F1-score on the EN answers and
96.4% F1-score on the Chinese answers. Shijaku
and Canhasi (2023) addressed the detection of gen-
erated essays written in EN and proposed an XG-
Boost model that achieved 98% accuracy using
features generated by TF-IDF and a set of hand-
crafted features. Soni and Wade (2023) analyzed
human- and AI-generated text summarization and
achieved 90% accuracy using DistilBERT7 (Sanh
et al., 2019). Mindner et al. (2023) explored fea-
tures to detect AI-generated and -rephrased text
for EN. They report an F1-score of 96% for AI-
generated text and 78% for AI-rephrased text on
their text corpus which contains different topics.
These F1-scores were even achieved when the AI
was instructed to create the text in a way that a
human would not recognize that it was generated
by an AI.

To the best of our knowledge, we are the first
to explore a large set of features and state-of-the-
art classifiers across multiple languages with XG-
Boost, Random Forrest and MLP. We compare our
results with two popular state-of-the-art tools that
detect texts generated by AI: GPTZero and Ze-
roGPT. GPTZero is used by over 1 million peo-
ple (Shrivastava, 2023), but its results are only re-
liable for EN texts. Consequently, we also used
ZeroGPT for comparison which is able to deal
with other languages. As there is currently no text
corpus available, which contains human- and AI-
generated texts in multiple languages, we extended
our Human-AI-Generated Text Corpus to cover EN,
FR, DE and ES.

3 Our Human-AI-Generated Text Corpus
As mentioned in the previous section, we extended
our Human-AI-Generated Text Corpus (Mindner
et al., 2023) to cover EN, FR, DE, and ES. In total,
for each language we used 100 human-generated,
100 AI-generated, and 100 AI-rephrased articles for
our multilingual analysis which contain the follow-
ing 10 topics: biology, chemistry, geography,
history, IT , music, politics, religion, sports,
and visualarts.

7https://huggingface.co/docs/transformers/model_doc/distilbert
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Human AI-generated AI-rephrased
Language P S W P S W P S W

EN 415 1.7k 38.3k 555 1.4k 27.6k 255 1.1k 24.6k
FR 415 1.2k 31.0k 524 1.3k 26.5k 157 0.8k 18.7k
DE 335 1.2k 20.5k 529 1.4k 22.9k 256 1.0k 16.4k
ES 450 1.4k 38.0k 514 1.2k 26.8k 190 0.8k 18.9k

Table 1: AI-Generated/Rephrased Text
(P = #paragraphs, S = #sentences, W = #words).

The characteristics of our Human-AI-Generated
Text Corpus for the respective languages are sum-
marized in Table 1: EN consistently has the highest
counts across all categories and types of text. On
the other hand, the counts for FR, DE, and ES vary
substantially depending on whether the text was
human-generated, AI-generated, or AI-rephrased.
This illustrates how languages differ in the expres-
sion of information. The prompts which we used
to receive the AI-generated and AI-rephrased texts
are listed in Table 2.

Lang. Prompt

Text Generation
EN Generate a text on the following topic: <topic>
FR Rédigez un texte sur le thème suivant: <topic>
DE Erstelle einen Text zum folgenden Thema: <topic>
ES Genera un texto sobre el siguiente tema: <topic>

Text Rephrasing
EN Rephrase the following text: <topic>
FR Reformulez le texte suivant: <topic>
DE Formuliere den folgenden Text um: <topic>
ES Reformule el siguiente texto: <topic>

Table 2: Prompts used for Generation and Rephrasing

4 Our Features for the Classification of
Human- and AI-Generated Texts

As shown in Table 3, we analyzed 37 features for
their suitability to discriminate between human-
and AI-generated text. More details of the features
are given in Mindner et al. (2023).

4.1 Perplexity-Based Features
Perplexity is a measure of how well a language
model is able to predict a sequence of words. The
lower the perplexity, the better a language model
will perform to predict the next word in a sequence.
As AI-generated texts are usually based on statisti-
cal patterns and rules, they tend to be more repeti-
tive and therefore have a lower perplexity than hu-
man generated texts. The perplexity-based features
in our study are based on the findings by Mindner
et al. (2023); Gehrmann et al. (2019); Mitrović et al.
(2023); Guo et al. (2023).

For sentence tokenization, we use the Natural

Language Toolkit (NLTK)8. Perplexity is calcu-
lated using evaluate package9 and GPT-2 using the
respective models for EN10, FR11, DE12, and ES13.

4.2 Semantic Features

In our study, semantic features refer to the prop-
erties of words or phrases used to represent their
meanings. Previous studies successfully used these
features for the differentiation between human- and
AI-generated texts (Mitrović et al., 2023; Guo et al.,
2023; Mindner et al., 2023).

Again, we use different Python packages for the
respective languages: TextBlob’s sentiment analy-
sis for English14, textblob-fr15 for French, and
textblob-de16 for German. Due to the absence
of a package that computes both, polarity and sub-
jectivity, for ES texts were translated these texts
into EN using Googletrans17, despite potential in-
formation loss, because of its high BLEU score and
proficiency in ES-EN translation.

4.3 List Lookup Features

With our ListLookup features, we analyze informa-
tion about the word or character class, e.g., whether
it is a stop word or a special character. These fea-
tures have previously been used for this task by
Mindner et al. (2023); Shijaku and Canhasi (2023);
Kumarage et al. (2023). For every language, we
used ChatGPT to generate a list of all discourse
markers as well as the personal pronouns. These
lists were additionally evaluated by language ex-
perts. To count stop words, we use NLTK for the
respective languages.

8https://www.nltk.org
9https://github.com/huggingface/evaluate

10https://huggingface.co/gpt2
11https://huggingface.co/dbddv01/gpt2-french-small
12https://huggingface.co/dbmdz/german-gpt2
13https://huggingface.co/DeepESP/gpt2-spanish
14https://textblob.readthedocs.io/en/dev/quickstart.html
15https://github.com/sloria/textblob-fr
16https://textblob-de.readthedocs.io/en/latest/api_reference

.html#module-textblob_de.sentiments
17https://github.com/ssut/py-googletrans
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Category Feature Description

Perplexity PPLmean mean PPL
PPLmax maximum PPL

Semantic sentimentpolarity degree of positivity/negativity [-1,+1]
sentimentsubjectivity degree of subjectivity [0,+1]

ListLookup stopWordcount number of stop words
discourseMarkercount number of discourse markers
titleRepetitioncount absolute repetitions of title
titleRepetitionrelative relative repetitions of title
personalPronouncount absolute number of personal pronouns
personalPronounrelative relative number of personal pronouns

Document wordsPerParagraphmean mean number of words per paragraph
wordsPerParagraphstdev stdev of wordsPerParagraph
sentencesPerParagraphmean mean number of sentences per paragraph
sentencesPerParagraphstdev stdev of sentencesPerParagraph
wordsPerSentencemean mean number of words per sentence
wordsPerSentencestdev stdev of wordsPerSentence
uniqWordsPerSentencemean mean number of unique words per sentence
uniqWordsPerSentencestdev stdev of uniqWordsPerSentence
wordscount number of running words
uniqWordscount number of unique words
uniqWordsrelative relative number of unique words
paragraphcount number of paragraphs
sentencecount number of sentences
punctuationcount number of punctuation marks
quotationcount number of quotation marks
charactercount number of characters
uppercaseWordsrelative relative number of words in uppercase
POSPerSentencemean mean number of unique POS-tags/sentence
specialCharcount number of special characters

ErrorBased grammarErrorcount number of spelling/grammar errors
multiBlankcount number of multiple blanks

Readability fleschReadingEase Flesch Reading Ease score [0-100]
fleschKincaidGradeLevel Readability as U.S. grade level [0-100]

AIFeedback AIFeedback Ask AI if text was generated by AI

TextVector TF-IDF 500-dim TF-IDF vector of 1-/2-grams
Sentence-BERT mean Sentence-BERT vector
Sentence-BERT-dist mean distance of Sentence-BERT vectors

Table 3: Summary of our Features for the Classification of Generated Texts.

4.4 Document Features
Our document features are related to the content
and structure of a document such as word fre-
quencies, syntactic structures, and corpus statis-
tics. These features have been successfully used
by (Kumarage et al., 2023; Shijaku and Canhasi,
2023; Guo et al., 2023; Mitrović et al., 2023; Za-
itsu and Jin, 2023; Mindner et al., 2023). To cal-
culate sentence- and word-related features, the
text is first divided into sentences and words us-
ing NLTK’s sent_tokenize and word_tokenize
functions. For the features related to Part-of-speech
(POS) in EN texts, we use the NLTK function
pos_tag. As NLTK lacks POS tags for the other
three languages, we use spaCy NLP library18. For
POS tags in DE texts, we use de_core_news_sm19,

18https://github.com/explosion/spaCy
19https://spacy.io/models/de#de_core_news_sm

for FR texts, we use fr_core_news_sm20, and for
ES texts, es_core_news_sm21.

4.5 Error Based Features
This feature category introduced in Mindner et al.
(2023) is based on errors in the text such as gram-
mar and spelling mistakes.

To count multiple blanks, we used regular ex-
pressions. Grammar and spelling errors are de-
tected using the open-source tool LanguageTool22

which allows it to detect grammar errors in multiple
languages. For the detection of DE errors, the built-
in class LanguageToolPublicAPI(de-DE) for
querying the tool’s public servers is used. For the
other languages, the tool’s remote server is applied
using the function Language-Tool(language).

20https://spacy.io/models/fr#fr_core_news_sm
21https://spacy.io/models/es#es_core_news_sm
22https://github.com/jxmorris12/language_tool_python
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4.6 Readability Features
Readability features assess the readability level of
texts as in Mindner et al. (2023); Shijaku and Can-
hasi (2023); Flesch (1948); Kincaid et al. (1975).

To derive Flesch Reading Ease and Flesch-
Kincaid Grade Level we use Textstat23. This
Python library provides functions to calculate text
statistics such as grade level, complexity, and read-
ability. Textstat supports calculating Flesch Read-
ing Ease, and Flesch-Kincaid Grade Level for EN,
FR, DE, and ES texts. However, it is important to
note that these measures were originally developed
for the specific structure of words, sentences, and
syllables of EN. Therefore, when applying these
measures to texts in FR, DE, and ES, the results
may not be as representative as those for EN.

4.7 AI Feedback Features
Our AI Feeback features reflect, how an AI cate-
gorizes the text (Mindner et al., 2023). For this
purpose, we use ChatGPT with the prompts in Ta-
ble 4.

Lang. Prompt

EN Was the following text generated by ChatGPT?
FR Le texte suivant a-t-il été généré par ChatGPT?
DE Wurde der folgende Text von ChatGPT generiert?
ES ¿El siguiente texto fue generado por ChatGPT?

Table 4: Prompts used for AI Feedback.

4.8 Text Vector Features
Our TextVector features analyze semantic content
of a text, identifying patterns and repetition (Mind-
ner et al., 2023; Shijaku and Canhasi, 2023; So-
laiman et al., 2019; Reimers and Gurevych, 2019).

For the features based on Sentence-BERT, we
use the sentence-transformer model distiluse-
base-multilingual-cased-v224, since it sup-
ports all the languages used in this research. In
addition to the four languages in our experiments,
it can be used for more than 50 languages, guaran-
teeing reliable results for possible future research.

4.9 Summary of Our Analyzed Features
Our 8 feature categories contain 37 features. While
the AI feedback category consists of one feature,
the perplexity, semantic, error-based, and readabil-
ity features each contain two features. The largest
feature category are document features, which con-
tains 19 different features. Table 3 summarizes all
the features that are part of our experiments.

23https://github.com/textstat/textstat
24https://huggingface.co/sentence-transformers/distiluse-

base-multilingual-cased-v2

5 Experimental Setup
In this section, we will describe our experiments
with the different feature categories and three clas-
sification approaches: The two more traditional
approaches XGBoost (Shijaku and Canhasi, 2023)
and random forest (RF) (Breiman, 2001) as well
as a neural network-based approach with multi-
layer perceptrons (MLP) (Murtagh, 1991). As in
other studies like Guo et al. (2023); Kumarage et al.
(2023); Mitrović et al. (2023), we evaluated the
classification performance with accuracy (Acc) and
F1-score (F1). First, we built text generation de-
tection systems which were trained, fine-tuned, and
tested with our human-generated and AI-generated
texts. Second, we implemented text rephrasing de-
tection systems which were trained, fine-tuned, and
tested with our human-generated and AI-rephrased
texts. To provide stable results, we used a 5-fold
cross-validation, randomly dividing our corpus into
80% training, 10% validation, and 10% unseen test
set. The numbers in all tables are the average of
the test set results. The best performances are high-
lighted in bold. As a baseline, we choose two pop-
ular state-of-the-art tools which detect texts gener-
ated by AI: GPTZero and ZeroGPT. GPTZero is
used by over 1 million people (Shrivastava, 2023).
However, we found that GPTZero’s results were
only reliable for EN texts. Consequently, we used
ZeroGPT as our baseline for FR, DE and ES.

6 Results
Table 5 lists Acc and F1 for detecting AI-generated
and -rephrased texts in EN, FR, DE, and ES. For
each language classifiers trained on AI-generated
texts achieve better performances compared to clas-
sifiers trained on AI-rephrased texts.

6.1 Results of Single Feature Categories
As shown in Figure 1 using the example of
sentimentsubjectivity, the distribution of fea-
ture values can differ depending on whether
the text is human-generated, AI-generated or
AI-rephrased and depending on the language.
sentimentsubjectivity denotes objectivity (low val-
ues) or subjectivity (high values) of a text. Average
sentimentsubjectivity values tend to be higher for
AI-generated text than for human-generated and AI-
rephrased text. In general, DE texts are the most
objective texts—be it human- or AI-generated—
while EN and ES are more subjective. Moreover,
AI-generated texts tend to be more subjective than
AI-rephrased texts for our languages.
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Figure 1: Distribution of sentimentsubjectivity

Generated Rephrased
XGBoost RF MLP XGBoost RF MLP

Category Lang Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Perplexity EN 83.0 82.2 87.0 85.3 82.0 82.1 52.0 48.7 55.0 54.6 56.0 63.2

FR 62.0 60.3 69.0 66.8 68.0 69.0 50.0 50.2 53.0 44.2 56.0 58.8
DE 74.0 74.0 76.0 76.1 81.0 80.6 53.0 53.6 61.0 60.4 56.0 62.7
ES 82.0 82.3 83.0 82.4 82.0 83.6 56.0 55.4 63.0 63.7 62.0 67.3

Semantic EN 72.0 72.9 75.0 75.6 73.0 72.3 66.0 64.4 66.0 64.3 52.0 54.3
FR 61.0 55.8 67.0 65.6 63.0 59.4 55.0 48.2 57.0 50.0 51.0 52.9
DE 64.0 58.3 64.0 59.8 63.0 63.3 56.0 59.9 54.0 54.4 62.0 60.1
ES 72.0 69.9 75.0 73.8 76.0 75.7 58.0 56.1 58.0 52.4 53.0 56.3

ListLookup EN 72.0 72.1 79.0 78.5 71.0 67.8 72.0 73.9 67.0 67.5 69.0 70.3
FR 72.0 73.0 76.0 76.7 67.0 62.9 66.0 62.6 65.0 65.5 64.0 63.2
DE 74.0 75.8 79.0 77.8 72.0 74.1 57.0 59.1 58.0 59.2 50.0 52.0
ES 78.0 79.6 82.0 84.1 73.0 76.8 75.0 75.2 80.0 81.3 77.0 78.4

Document EN 91.0 91.6 92.0 92.6 87.0 86.0 70.0 69.6 71.0 70.8 78.0 76.1
FR 94.0 94.2 91.0 90.8 92.0 92.2 86.0 85.3 84.0 80.8 81.0 81.2
DE 87.0 87.2 90.0 89.6 88.0 88.0 72.0 71.9 67.0 66.7 71.0 71.3
ES 96.0 96.2 98.0 98.1 87.0 88.5 84.0 83.4 83.0 82.0 86.0 86.4

ErrorBased EN 55.0 61.7 55.0 61.7 56.0 63.9 62.0 68.0 62.0 68.0 62.0 68.0
FR 62.0 64.2 63.0 67.2 61.0 65.5 53.0 56.0 56.0 58.9 56.0 59.7
DE 67.0 67.1 67.0 67.1 67.0 69.8 62.0 61.9 62.0 63.5 56.0 50.7
ES 70.0 71.2 71.0 71.9 71.0 74.6 59.0 56.8 61.0 56.3 64.0 65.2

Readability EN 60.0 56.3 63.0 59.3 60.0 56.8 54.0 51.1 54.0 47.8 50.0 50.2
FR 61.0 64.7 62.0 66.0 65.0 67.4 59.0 58.3 60.0 60.6 52.0 31.6
DE 57.0 53.5 53.0 51.5 57.0 53.6 48.0 41.9 45.0 39.1 45.0 44.9
ES 74.0 73.7 74.0 72.1 69.0 66.6 54.0 49.1 61.0 50.7 56.0 52.5

AIFeedback EN 62.0 67.1 62.0 67.1 62.0 68.1 52.0 50.9 50.0 39.8 45.0 30.1
FR 52.0 24.2 52.0 24.2 48.0 37.2 42.0 33.6 42.0 33.6 55.0 53.4
DE 49.0 46.1 47.0 35.0 50.0 43.4 52.0 61.8 52.0 61.8 50.0 54.3
ES 52.0 7.3 52.0 7.3 52.0 20.6 50.0 0.0 52.0 7.3 49.0 25.7

TextVector EN 90.0 89.9 95.0 94.9 83.0 81.7 79.0 78.2 75.0 71.0 69.0 65.1
FR 94.0 94.1 93.0 93.0 85.0 85.4 77.0 77.3 75.0 75.2 68.0 64.2
DE 87.0 87.0 94.0 94.0 90.0 90.8 68.0 67.5 72.0 67.3 72.0 71.7
ES 84.0 84.5 91.0 89.5 81.0 76.6 76.0 74.0 76.0 73.6 68.0 64.4

All EN 90.0 90.9 98.0 98.0 87.0 87.8 77.0 77.6 71.0 69.8 72.0 71.9
FR 94.0 94.4 95.0 95.0 88.0 89.2 89.0 87.9 86.0 84.2 74.0 66.4
DE 94.0 93.8 97.0 96.9 87.0 86.6 70.0 71.6 71.0 68.3 70.0 71.6
ES 94.0 94.4 99.0 99.0 90.0 90.2 83.0 82.2 83.0 82.9 78.0 76.1

Table 5: Results for the Detection of EN FR, DE and ES AI-generated and AI-Rephrased Texts.

6.1.1 English

Text Generation Detection The results for EN
in Table 5 indicate that the system that com-
bines all features (All) in an RF performs best

(Acc=98.0%, F1=98.0%). The 2nd-best system
is the MLP system that uses Document features
(Acc=95.0%, F1=94.9%). The RF system that
uses TextVector features results in a similar per-

6



formance (Acc=95.0%, F1=94.9%). The worst-
performing system is the XGBoost system that uses
the ErrorBased features (Acc=55.0%, F1=61.7%).
Compared to GPTZero (AccGPTZero=76.0%,
F1GPTZero=78.9%), most of our systems perform
better. Our best system with all features (All) out-
performs GPTZero by 28.9% relative in Acc and
24.2% relative in F1. ZeroGPT reaches 78.0%
AccZeroGPT and 81.8% F1ZeroGPT . Thus, our
best system performs 25.6% relatively better in
Acc, and 19.8% relatively better in F1.
Text Rephrasing Detection The performances
for the EN text rephrasing detection systems
are worse than the text generation detection sys-
tems for all feature categories except ErrorBased
(Acc=62.0%, F1=68.0%). The best-performing
system is the XGBoost system that uses TextVec-
tor features (Acc=79.0%, F1=78.2%), followed
by the MLP system that uses Document features
(Acc=78.0%, F1=76.1%). The worst-performing
system is the MLP system that uses the AIFeed-
back feature. All our text rephrasing detec-
tion systems were able to outperform GPTZero
(AccGPTZero=43.0% and F1GPTZero=27.8%).
Our the best-performing TextVector feature sys-
tem even outperforms GPTZero by 83.7% rela-
tive in Acc and even 159.8% relative in F1. Ze-
roGPT reaches 49.0% AccZeroGPT and 43.9%
F1ZeroGPT . Thus, Document outperforms it by
61.2% relative in Acc and 81.5% relative in F1.

6.1.2 French
Text Generation Detection The results for FR
in Table 5 demonstrate that the system that com-
bines all features (All) in an RF performs best
(Acc=95.0%, F1=95.0%). The 2nd-best system
is the XGBoost system that uses Document fea-
tures (Acc=86.0%, F1=85.3%), followed by the
XGBoost system that uses TextVector features
(Acc=77.0%, F1=77.3%). The worst-performing
systems are those that use the AIFeedback fea-
ture. Our best FR system with all features
(All) outperforms ZeroGPT (AccZeroGPT=62.0,
F1ZeroGPT )=72.6%) by 53.2% relative in Acc and
30.9% relative in F1.
Text Rephrasing Detection The performances
for the FR text rephrasing detection systems are
worse than the text generation detection systems
for all feature categories except the MLP sys-
tem that uses the AIFeedback feature (Acc=55.0%,
F1=53.4%). The best-performing system is
the system that that combines all features (All)

in an XGBoost (Acc=89.0%, F1=87.9%), fol-
lowed by the XGBoost system that uses Doc-
ument features (Acc=86.0%, F1=85.3%) and
the XGBoost system that uses TextVector fea-
tures (Acc=77.0%, F1=77.3%). The worst-
performing systems are again those that use
the AIFeedback feature. Our best FR sys-
tem with all features (All) outperforms Ze-
roGPT (AccZeroGPT=57.0, F1ZeroGPT )=67.4%)
by 56.1% relative in Acc and 30.4% relative in F1.

6.1.3 German
Text Generation Detection The results for DE in
Table 5 indicate that the system that combines all
features (All) in an RF performs best (Acc=97.0%,
F1=96.9%). The 2nd-best system is the RF sys-
tem that uses TextVector features (Acc=94.0%,
F1=94.0%), followed by the RF system that uses
Document features (Acc=90.0%, F1=89.6%). As
for the previous languages, the worst-performing
systems are those that use the AIFeedback fea-
ture. Our best FR system with all features
(All) outperforms ZeroGPT (AccZeroGPT=65.0,
F1ZeroGPT )=70.9%) by 49.2% relative in Acc and
36.7% relative in F1.
Text Rephrasing Detection The performances for
the DE text rephrasing detection systems are worse
than the text generation detection systems for all
feature categories except the systems that use the
AIFeedback features. The best-performing system
is the XGBoost system that that uses the Docu-
ment features (Acc=72.0%, F1=71.9%), followed
by the MLP system that uses TextVector features
(Acc=72.0%, F1=71.7%). The worst-performing
systems are those that use the Readability fea-
ture. Our best DE system with the Document
features outperforms ZeroGPT (AccZeroGPT =48.0,
F1ZeroGPT=49.5%) by 45.5% relative in Acc and
45.3% relative in F1.

6.1.4 Spanish
Text Generation Detection The results for ES
in Table 5 show that the system that combines all
features (All) in an RF performs best (Acc=99.0%,
F1=99.0%). The 2nd-best system is the RF sys-
tem that uses Document features (Acc=98.0%,
F1=89.1%), followed by the RF system that
uses TextVector features (Acc=91.0%, F1=89.5%)
and the RF system that uses ListLookup features
(Acc=82.0%, F1=84.1%). As for the previous lan-
guages, the worst-performing systems are those
that use the AIFeedback feature. The F1 of 7.3%
is so poor since the feature classifies the text as
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AI-generated text in almost all cases. Our best
ES system with all features (All) outperforms Ze-
roGPT (AccZeroGPT=60.0, F1ZeroGPT )=71.5%)
by 65.0% relative in Acc and 38.5% relative in F1.

Text Rephrasing Detection The performances
for the ES text rephrasing detection systems are
worse than the text generation detection systems
for all feature categories. The best-performing sys-
tem is the RF system that uses the Document fea-
tures (Acc=86.0%, F1=86.4%). The 2nd best sys-
tem is the system that combines all features (All)
in an RF (Acc=83.0%, F1=82.9%), followed by
the RF system that uses the ListLookup features
(Acc=80.0%, F1=81.3%). The worst-performing
systems are those that use the AIFeedback feature.
The F1 of 0% and 7.3% are so poor since the fea-
ture classifies the text as AI generated text in almost
all cases. Our best ES system with the Document
features outperforms ZeroGPT (AccZeroGPT =52.0,
F1ZeroGPT=63.7%) by 65.4% relative in Acc and
25.6% relative in F1.

6.1.5 Combination of All Features
As shown in Table 5, the best performances for
the text generation detection systems are achieved
using a combination of all features (All). Looking
at the systems which use all features, the Acc for
the AI-generated FR and DE texts is similar with
97.0%, while the Acc for the AI-generated EN texts
is 98.0%. The best F1 for the AI-generated DE clas-
sifier is 96.9%. Thus, it is slightly worse than the
classifiers trained on our EN and FR texts which
achieved 98.0% and 97.1%, respectively. The
best classifier trained on the AI-generated ES texts
achieved slightly better performances, with 99.0%
Acc and 99.0% F1. Comparing the performances
of the systems trained on the AI-generated texts,
it can be summarized that the classifiers deliver
comparable performances across the languages.

The performances of the systems which use all
features (All) vary more for the AI-rephrased texts
across the languages. While the best EN classifier
reaches 79.0% Acc on the AI-rephrased texts, the
best FR classifier achieves 89.0% Acc on the AI-
rephrased texts. The AI-rephrased detection sys-
tem for DE only achieves 72.0% Acc. Compared to
the best DE text rephrasing detection system, the
FR system is 23.6% relatively better in Acc. The
Acc for the ES text rephrasing detection system
is 1% worse than the FR system. For F1, com-
parable conclusions can be drawn across the lan-
guages. Thus, our investigated features do not de-

liver comparable performances for the detection of
AI-rephrased texts across the evaluated languages.

7 Conclusion and Future Work
In this paper, we investigated features to classify
whether text is written by a human, generated by
AI from scratch or rephrased by AI. We conducted
a comparative analysis of the classification across
the languages of EN, FR, DE, and ES, assessing
the performance of these features in their respec-
tive linguistic contexts. To train and test classifiers
which use the features, we extended the Human-AI-
Generated Text Corpus (Mindner et al., 2023)—our
new text corpus, which covers 10 different topics
for each of the four languages. For AI-generated
text, our classifier performed best when combining
all features, meaning that there are no substantial
differences for features across languages. There-
fore, we conclude, that the same feature set could
also be used for other languages from the same lan-
guage families. The accuracies are close with 99%
for ES, 98% for EN, 97% for DE and 95% for FR.
In contrast to that, for the detection of AI-rephrased
text, the systems with all features outperformed sys-
tems with other features in many cases. For DE
(72%) and ES (86%) we achieved the best results
using only document features while for EN the text
vector features yielded the best results (79%).

Although our results indicate that the same fea-
ture set could be applied to other languages within
the same familie, future work could investigate
the applicability of these features across further
language families. This would help in understand-
ing the robustness of our method across a more
diverse set of languages. Moreover, our corpus cur-
rently covers 10 different topics for each language.
Extending the corpus to include more topics, and
possibly considering different domains and genres,
may help in generalizing the findings and making
the system more robust. Finally, experimenting
with different machine learning architectures such
as transformer models could potentially lead to fur-
ther optimizations.

Ethics Statement
The collected corpus is made freely available to
the community. It is based on Wikipedia and news
texts. The research was conducted transparently,
free from bias and in compliance with applicable
laws and regulations. The use of AI models and
data is intended to foster a deeper understanding of
AI-generated content, with the goal of promoting
responsible use and technological innovation.

8



References
Daniel Adiwardana, Minh-Thang Luong, David R So,

Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu,
and Quoc V Le. 2020. Towards a Human-Like Open-
Domain Chatbot. ArXiv Preprint ArXiv:2001.09977.

David Arteaga, Juan Arenas, Freddy Paz, Manuel Tu-
pia, and Mariuxi Bruzza. 2019. Design of Informa-
tion System Architecture for the Recommendation of
Tourist Sites in the City of Manta, Ecuador through
a Chatbot. In 2019 14th Iberian Conference on In-
formation Systems and Technologies (CISTI), pages
1–6. IEEE.

David Baidoo-Anu and Leticia Owusu Ansah. 2023.
Education in the Era of Generative Artificial Intel-
ligence (AI): Understanding the Potential Benefits
of ChatGPT in Promoting Teaching and Learning.
Available at SSRN 4337484.

Leo Breiman. 2001. Random Forests. Machine Learn-
ing, 45(1):5–32.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language Models are Few-Shot Learners.
CoRR, abs/2005.14165.

Massimiliano Dibitonto, Katarzyna Leszczynska, Fed-
erica Tazzi, and Carlo M Medaglia. 2018. Chatbot
in a Campus Environment: Design of LiSA, a Vir-
tual Assistant to Help Students in Their University
Life. In Human-Computer Interaction. Interaction
Technologies: 20th International Conference, HCI
International 2018, Las Vegas, NV, USA, July 15–
20, 2018, Proceedings, Part III 20, pages 103–116.
Springer.

Ethnologue. 2023. What are the top 200 most spoken
languages?

Clara Falala-Séchet, Lee Antoine, Igor Thiriez, and
Catherine Bungener. 2019. OWLIE: A Chatbot that
Provides Emotional Support for Coping With Psy-
chological Difficulties. In Proceedings of the 19th
ACM International Conference on Intelligent Virtual
Agents, pages 236–237.

Rudolf Franz Flesch. 1948. A New Readability Yard-
stick. The Journal of applied psychology, 32 3:221–
233.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander
Rush. 2019. GLTR: Statistical Detection and Visual-
ization of Generated Text. In Proceedings of the 57th
Annual Meeting of the Association for Computational

Linguistics: System Demonstrations, pages 111–116,
Florence, Italy. Association for Computational Lin-
guistics.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng
Wu. 2023. How close is chatgpt to human experts?
comparison corpus, evaluation, and detection.

Katharina Jeblick, Balthasar Schachtner, Jakob Dexl,
Andreas Mittermeier, Anna Theresa Stüber, Johanna
Topalis, Tobias Weber, Philipp Wesp, Bastian Sabel,
Jens Ricke, and Michael Ingrisch. 2022. ChatGPT
Makes Medicine Easy to Swallow: An Exploratory
Case Study on Simplified Radiology Reports. ArXiv
E-Prints.

Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing
Wang, and Zhaopeng Tu. 2023. Is ChatGPT a Good
Translator? A Preliminary Study. ArXiv Preprint
ArXiv:2301.08745.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding.
In Proceedings of NAACL-HLT, pages 4171–4186.

J. Peter Kincaid, Robert P. Fishburne, Richard L. Rogers,
and Brad S. Chissom. 1975. Derivation of New Read-
ability Formulas (Automated Readability Index, Fog
Count and Flesch Reading Ease Formula) for Navy
Enlisted Personnel.

Tharindu Kumarage, Joshua Garland, Amrita Bhat-
tacharjee, Kirill Trapeznikov, Scott Ruston, and Huan
Liu. 2023. Stylometric Detection of AI-Generated
Text in Twitter Timelines.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. CoRR, abs/1907.11692.

Bertalan Mesko. 2023. The chatgpt (generative arti-
ficial intelligence) revolution has made artificial in-
telligence approachable for medical professionals.
Journal of medical Internet research, 25:e48392.

Lorenz Mindner, Tim Schlippe, and Kristina Schaaff.
2023. Classification of Human- and AI-Generated
Texts: Investigating Features for ChatGPT. TBD.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D. Manning, and Chelsea Finn. 2023.
DetectGPT: Zero-Shot Machine-Generated Text De-
tection using Probability Curvature. In Proceedings
of the 40th International Conference on Machine
Learning (ICML 2023).
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Abstract

Label noise refers to errors in training labels
caused by cheap data annotation methods, such
as web scraping or crowd-sourcing, which can
be detrimental to the performance of super-
vised classifiers. Several methods have been
proposed to counteract the effect of random la-
bel noise in supervised classification, and some
studies have shown that BERT is already robust
against high rates of randomly injected label
noise. However, real label noise is not random;
rather, it is often correlated with input features
or other annotator-specific factors. In this pa-
per, we evaluate BERT in the presence of two
types of realistic label noise: feature-dependent
label noise, and synthetic label noise from an-
notator disagreements. We show that the pres-
ence of these types of noise significantly de-
grades BERT classification performance. To
improve robustness, we evaluate different types
of ensembles and noise-cleaning methods and
compare their effectiveness against label noise
across different datasets.

1 Introduction

Deep learning algorithms have been shown to per-
form extremely well in supervised classification
tasks given high-quality datasets. Unfortunately,
obtaining gold-standard labels is often prohibitively
expensive with large-scale datasets, leading practi-
tioners to resort to cheaper data collection methods
such as crowd-sourcing or automatic annotation
methods (Yan et al., 2014). These techniques are
known to impart a substantial amount of label noise
in the data, which can degrade classification perfor-
mance (Ji et al., 2021). Label noise refers to errors
or inconsistencies within the data labels, such that
the prescribed labels do not match the gold labels
assigned by experts. Datasets obtained through
web scraping often contain label noise given the ab-
sence of expert-verified gold labels (Li et al., 2017).
Due to a meteoric rise in social media usage, more
and more datasets are automatically acquired from

online social platforms, and such datasets are likely
to contain label noise. Small-scale datasets can
also suffer from the same problem if the annota-
tion process is challenging or the annotators have
divergent opinions (Ma et al., 2019).

Some prior works have been dedicated to devel-
oping and deploying algorithms that combat the
effects of label noise in text classification (Han
et al., 2018; Sukhbaatar et al.; Zhang and Sabuncu,
2018; Jiang et al., 2018). However, most previous
studies simulated label noise by random substitu-
tion, and recent research has shown empirically
that many methods that successfully handle ran-
dom noise are ineffective against real-world label
noise (Jiang et al., 2020). In the text classification
domain, Zhu et al. (2022) explored the robustness
of previously proposed methods for handling la-
bel noise, including noise matrix with regulariza-
tion (Jindal et al., 2019), co-teaching (Han et al.,
2018), and label smoothing (Szegedy et al., 2016).
They concluded that BERT (Devlin et al., 2019)
is already robust against randomly injected label
noise and these approaches obtain no additional
performance gains. On the other hand, they find
that feature-dependent label noise, which realisti-
cally arises from automatic annotation techniques,
degrades BERT performance and these noise han-
dling techniques add little to no robustness at all.
This creates a need for a comprehensive evalua-
tion of noise-robust methods in the domain of text
classification, considering the presence of realistic
labeling errors.

In this paper, we describe methods and experi-
ments for handling realistic label noise in BERT
text classification. We use two datasets that contain
feature-dependent label noise from automatic anno-
tation, namely Yorùbá and Hausa (Hedderich et al.).
These two datasets have been manually cleaned, so
a clean version of each exists for evaluation. In
addition, we use tweetNLP (Gimpel et al., 2011)
and SNLI (Bowman et al., 2015) datasets with syn-
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thetic noise that mimics human errors by utilizing
multiple crowd-sourced annotations (Chong et al.,
2022). This collection of datasets provides a range
of noise types and levels that more closely reflect
realistic label noise compared to random noise in-
jection. We evaluate the performance of vanilla
BERT compared with a subset of noise-handling
approaches, namely co-teaching (Han et al., 2018),
Consensus Enhanced Training Approach (CETA)
(Liu et al., 2022), different types of ensembles
(Ganaie et al., 2022), and noise cleaning (Chong
et al., 2022; Sluban et al., 2014). We summarize
our findings as follows:

1. For datasets with feature-dependent label
noise, we find that CETA, some types of en-
sembles, and noise cleaning, all provide pos-
itive performance gains compared to vanilla
BERT.

2. For synthetic label noise from multiple anno-
tations, we do not observe significant gains
using these approaches. We surmise that this
type of noise is more challenging or may even
reflect inherently ambiguous labels.

It is worth noting that the noise is qualitatively
different in these two categories of label noise as
the latter arises from human rather than automatic
processes, which could be due to either errors or
genuine disagreements. Some recent works attempt
to include multiple labels in the training process
rather than rely on a single gold label to account
for the inherent uncertainty from human disagree-
ments. This may be justified given the nature of
some tasks, and the noising scheme performed on
tweetNLP and SNLI may warrant that kind of treat-
ment or further scrutiny to identify clear-cut errors.
However, as we focus on noise robustness as the
scope of this work, we treat the synthetic noise
int these datasets as labeling errors and leave any
further analysis of this sort for future work.

2 Background & Related Works

2.1 Types of Label Noise

Label noise refers to irregularities or inconsisten-
cies within the data labels, where the prescribed
label of a data point does not correspond to the
true expert label. In other words, noisy instances
in this context specifically pertain to inaccuracies
or errors in the labeling of the data, rather than any
distortions or imperfections in the input data itself.

When observing the effect of label noise, the
majority of existing literature in text classification
assumes random injection of label noise (Han et al.,
2018; Sukhbaatar et al.; Zhang and Sabuncu, 2018).
This type of synthetic noising involves randomly
permuting a fixed number of labels according to a
pre-defined noise level and noise type. Because the
process of simulating such noise is entirely random
and does not depend on the input data features in
any way, this type of noise is also known as feature-
independent label noise.

In contrast, feature-dependent label noise is cor-
related with input features (Algan and Ulusoy,
2020). Datasets that use distantly or weakly su-
pervised methods to generate labels are prone to
this type of label noise. These approaches are often
used in low-resource applications where it is im-
practical or expensive to manually annotate large
amounts of data. Relation extraction is one such
application that heavily relies on automatic data
generation methods as supervised relation extrac-
tion methods necessitate an extensive amount of
labeled training data (Mintz et al., 2009). In this
area, denoising methods such as the ones proposed
in Jia et al. (2019), Qin et al. (2018), Liu et al.
(2022) and Ma et al. (2021) are specifically devel-
oped to address feature-dependent label noise in
relation extraction datasets.

Recently, Chong et al. (2022) developed realis-
tic noising methods that mimic how humans make
labeling errors by taking advantage of the multi-
ple rounds of annotation that some datasets un-
dergo. During the annotation process, certain sub-
sets of the data are subjected to rigorous valida-
tion schemes, such as gold labels assigned by ex-
perts, while others are annotated using less strin-
gent methods, such as crowdsourced evaluations.
By incorporating varying annotations generated
during this process, their approach produces real-
istic label noise that reflects how humans make
errors. We refer to this noising scheme as pseudo-
real-world label noise.

2.2 Noise-robust methods

Noise-robust methods in the literature include
model enhancements such as robust loss functions.
Robust loss functions are a class of loss functions
used to train models in a way that is more resistant
to label noise. One such loss function is the family
of generalized cross-entropy loss functions (Zhang
and Sabuncu, 2018), which are designed to be more
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robust to label noise by penalizing the model less
for incorrect predictions that are consistent with
noisy labels.

Another class of noise-robust approaches is what
we refer to as multi-netowrk training. This sub-
category of methods introduces multiple networks
that learn from each other and as such make more
informed decisions regarding which data to use
to update the model parameters. For instance,
co-teaching (Han et al., 2018) includes two mod-
els that are trained in parallel, and each model is
presented with examples that incur low loss by
the other model. Intuitively, correct labels pro-
duce small losses in earlier training epochs and
noisy labels produce higher losses. Similarly, the
Consensus-Enhanced Training Approach (CETA)
proposed in Liu et al. (2022) is a methodology for
robust sentence-level relation extraction that em-
phasizes the selection of clean data points during
the training process. The denoising technique is
applied to establish a robust boundary for classifi-
cation, preventing inaccurately labeled data from
being assigned to the wrong classification space,
and the consensus between two divergent classifiers
is used to select clean instances for training.

2.3 Noise cleaning approaches

Noise-cleaning aims to automatically segregate
clean data from noisy data in order to train the
final classifier using a cleaned subset of the orig-
inal training set. The “small loss trick" is com-
monly used to identify potentially noisy or misla-
beled data. The intuition behind this approach is
that noisy data have comparatively higher loss than
clean data (Takeda et al., 2021; Han et al., 2018;
Jiang et al., 2018; Ji et al., 2021).

Several approaches have been proposed for auto-
matic noise detection, which can be a first step to-
wards noise-cleaning before training a robust classi-
fier. Wheway (2001) used boosting to detect noisy
data instances. The approach involves iteratively
re-weighing the data points to emphasize those that
are most difficult to classify correctly. The result-
ing model is then used to identify the noisy data
points by measuring their contribution to the final
model. Sluban et al. (2014) trained multiple classi-
fiers (ensemble) on different subsets of the data and
combined their outputs to obtain a noise ranking
for each instance. Similarly, Chong et al. (2022)
assessed the performance of pre-trained language
models as error detectors using clean held-out data.

They experiment with the error detection capabil-
ities of individual pre-trained models and an en-
semble of pre-trained language models. They find
that an ensemble of pre-trained model losses out-
performs individual model loss in error detection.

2.4 Label noise & BERT

BERT (Devlin et al., 2019) is a popular pre-trained
language model that is frequently used for text clas-
sification by fine-tuning on target labels. Some
recent studies have shown that BERT is already
robust against randomly injected label noise (Zhu
et al., 2022), and early stopping is sufficient to pre-
vent overfitting on noisy labels. Zhu et al. (2022)
evaluates popular noise robust approaches in BERT
text classification such as appending noise transi-
tion matrix after BERT’s predictions (Sukhbaatar
et al.), acquiring the noise transition matrix with
l2 regularization (Jindal et al., 2019), and multi-
network training via co-teaching (Han et al., 2018).
They conclude that while BERT appears to be in-
herently robust to feature-independent noise, none
of the above approaches improves BERT’s peak
performance in the presence of feature-dependent
label nose.

3 Methodology

In this work, we evaluate BERT text classifica-
tion on datasets containing pseudo-real-world label
noise and feature-dependent label noise. We do
not consider randomly injected label noise as Zhu
et al. (2022) have shown BERT to be already robust
to this type of synthetic noise. The scope of this
work is limited to text classification with BERT
following the baselines established by Zhu et al.
(2022).

3.1 Datasets

To study feature-dependent label noise, we use two
news-topic categorization datasets from two low-
resource African languages: Hausa and Yorùbá
(Hedderich et al.). These languages are spoken by
large populations in Africa, with Hausa being the
second most spoken indigenous language, with 40
million native speakers, and Yorùbá being the third
most spoken, with 35 million native speakers1. For
these datasets, gazetteers were used for automatic
labeling, which results in feature-dependent label
noise. For instance, when identifying texts for the
“Africa" class, a labeling rule based on a list of

1https://en.wikipedia.org/wiki/Languages_of_Africa
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Dataset Yorùbá Hausa TweetNLP SNLI
Number of classes 7 5 15 3
Average sentence length 13 10 12 21
Train Samples 1340 2045 11565 363043
Validation Samples 189 290 2874 9831
Test Samples 379 582 - 9815
Train Noise Level 33.28% 50.37% Various Various

Table 1: Dataset statistics

African countries and their capitals was employed.
These datasets were chosen specifically as they
contain automatic annotation label noise i.e., weak-
supervision/feature-dependent noise in addition to
clean versions of the splits, making it possible to
establish ground truth. Note that the amount of
label noise in Hausa and Yorùbá is fixed.

Furthermore, we use the noising schemes pro-
posed by Chong et al. (2022) to simulate real-world
label noise produced by crowd-sourced labeling.
Pseudo-real-world label noise is injected in two
benchmark datasets: TweetNLP (Gimpel et al.,
2011) and Stanford Natural Language Inference
(SNLI) dataset (Bowman et al., 2015). TweetNLP
is a part-of-speech tagging dataset developed by
scraping Twitter posts. While TweetNLP already
contained crowd-sourced labels, it later received
separate crowdsource evaluations, allowing access
to multiple annotations from separate annotators.
The SNLI dataset is a large Natural Language In-
ference corpus developed at Stanford. The original
corpus consists of 570K sentence pairs, manually
labeled by experts. Like TweetNLP, a subset of
SNLI later received extensive crowdsource eval-
uation. We noise both TweetNLP and SNLI to
three label noise levels: 10%, 20%, and 30%. Data
statistics for all datasets are shown in Table 1.

3.2 Baselines
Zhu et al. (2022) already evaluated the noise ma-
trix approach (Sukhbaatar et al.), label smoothing
(Szegedy et al., 2016), and co-teaching (Han et al.,
2018) on the feature-dependent datasets, Hausa and
Yorùbá, and concluded that no gains are observed
using these methods. We use the following as base-
lines to benchmark our experiments using other
approaches:

1. Vanilla BERT: BERT trained on noisy train-
ing data without a noise-handling mechanism,
except early stopping on a noisy validation set,
as done in Zhu et al. (2022).

2. Co-teaching (Han et al., 2018), which simul-
taneously trains two networks, with each net-
work independently ranking data points based
on their loss to guide the other network on
which points to be included for training. In
other words, each network independently per-
forms noise-cleaning for the other network.

4 Approaches

We experiment with the following approaches as
potential methods for improving performance un-
der realistic label noise conditions:

4.1 Consensus-Enhanced Training Approach
(CETA)

CETA (Liu et al., 2022) has been proposed as a
noise-robust model for relation extraction and has
shown promising results. CETA contains two dis-
crepant classifiers that share a single encoder. The
focus of CETA is to train the classifiers only in
instances where both classifiers have reached a con-
sensus. Such instances are supposedly deemed
clean. To achieve consensus, CETA augments the
standard cross entropy loss to include predictions
from both classifiers and uses the Wasserstein dis-
tance (Kantorovich, 2006) as a secondary criterion.
In this manner, CETA can also be considered an
ensemble learning approach.

4.2 Deep Ensembles

Deep ensembles have been shown to generally ex-
hibit robustness as compared to singular models
and reduce overfitting (Ganaie et al., 2022). To
that end, we hypothesize that ensembles may excel
in noisy classification tasks due to the presence of
label noise in the training data, which can cause in-
dividual models to learn false correlations between
features and labels. By training multiple classifiers
and combining their predictions, each model can
develop a unique representation of the input data
and filter out spurious information, leading to a
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more robust classification boundary. While ensem-
bles have been previously proposed for data and
label noise detection (Wheway, 2001; Sluban et al.,
2014; Chong et al., 2022), their performance as
a method of robust text classification with noisy
labels has not been established.

We formally define ensembles as follows: Given
m classifiers C1, C2, ..., Cm, each classifier pro-
duces probabilities Pci on a clean test set T , an en-
semble of the predictors averages the probabilities
of each predictor such that Pensemble =

∑m
i=1

PCi
m .

It should be noted that each ensemble member is
trained on either the same noisy training set or a
randomly selected subset of the noisy training set,
depending on the employed technique, which is de-
scribed below. Nevertheless, in all scenarios, each
member is evaluated on the same clean test set. We
experiment with three types of ensembles:

1. Homogeneous Ensembles Ensembles that ag-
gregate predictions from the same type of clas-
sifier (i.e. vanilla BERT with early stopping),
trained with different initializations and hy-
perparameters.

2. Heterogeneous Ensembles Ensembles that
aggregate predictions from different types of
classifiers. In our experiments, we use vanilla
BERT, co-teaching, and CETA as the hetero-
geneous classifiers in the ensemble.

3. Boosting Ensembles that aggregate predic-
tions from the same type of classifier (i.e.
vanilla BERT with early stopping), but each
classifier is trained on a different subset of the
training data.

4.3 Noise Cleaning Based on Fine-Tuned
Model Loss

We use the pre-trained language model’s ability to
identify noisy labels as a way to clean the train-
ing set by removing instances with potential label
noise. This involves fine-tuning BERT on noisy
task-specific training data and evaluating model
loss on each instance. Training instances that have
a loss higher than the selected threshold are ex-
cluded from the training set used to train the final
classifier. We tune the loss threshold on a noisy
validation set.

To avoid biasing or overfitting the model when
computing loss on the same set used for fine-tuning,
we employ an N-fold process to calculate the loss

only on held-out data points2. The process is out-
lined in Algorithm 1. In summary, we fine-tune the
model using a subset of the noisy training set and
use the model to identify and remove noisy sam-
ples from the held-out validation set using a fixed
loss threshold3. The process is repeated separately
N times using disjoint validation sets to clean the
complete training set.

Algorithm 1 Noise Cleaning Algorithm

1: Input: Noisy train set T , loss threshold t, num-
ber of folds f

2: Output: Cleaned train set Tclean
3: Divide T into f validation subsets: V1, . . . , Vf
4: for i = 1 to f do
5: Ti = T \ Vi
6: Train a fine-tuned model Mi on Ti
7: Evaluate the model loss LVi on Vi
8: Tclean,i = Vi[LVi < t]
9: end for

10: Tclean =
⋃f

i=1 Tclean,i
11: return Tclean

5 Experiments and Results

All of the methods evaluated in these experiments
incorporate early stopping on noisy validation set
as done by Zhu et al. (2022). We use a noisy valida-
tion set because obtaining a clean validation set is
often not feasible in practice. Moreover, Zhu et al.
(2022) show that using a noisy validation set for
early stopping is more or less as effective as using
a clean validation set.

5.1 Hyperparameters

The number of training steps is optimally set to
30004 unless we are required to vary hyperparame-
ter settings for homogeneous ensembles. For homo-
geneous ensembles, we cycle through a combina-
tion of the following hyperparameters: the number
of training steps = [2000, 3000, 4000, 5000, 6000],
learning rate = [0.0002, 0.0004, 0.0005, 0.00001,
0.00002, 0.00003, 0.00004, 0.00005], patience (for
early stopping) = [25, 30, 40, 50], warm-up steps =

2A similar approach is briefly described in (Northcutt et al.,
2021) for estimating noise characterization in the confident
learning framework.

3The loss threshold is a hyperparameter that we tune be-
forehand.

4If the validation accuracy does not improve beyond a cer-
tain patience level, we employ early stopping to prematurely
halt the training process for all experiments.
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Hausa Yorùbá
Clean Data

Vanilla BERT 82.67± 0.73 76.23± 0.28

Noisy Data
Vanilla BERT 46.98± 1.01 64.72± 1.45
Co-Teaching 48.11 ± 1.71 64.38± 0.98

CETA ∗49.31 ± 0.31 ∗68.07 ± 0.18

HME 46.39± 0.21 67.28 ± 0.81
HTE 48.28 ± 0.19 67.81 ± 0.73

Boosting 47.13 ± 0.42 67.63 ± 1.26

NC 47.18 ± 0.22 62.17± 0.54

Table 2: A comparison of proposed methods against
baselines on datasets with feature-dependent label noise.
HME: Homogeneous ensembles HTE: Heterogeneous
ensembles. Boosting: Ensembles of different random
subsets from the train set. NC: Noise Cleaning. Average
accuracy is reported with a standard deviation from 5
runs of each experiment.

[0, 1, 5, 7, 10], weight decay = [0.1, 0.001, 0.0001],
and drop rate = [0.1, 0.25, 0.5, 0.8].

For other experiments that do not explicitly re-
quire us to vary hyperparameters, we fix the fol-
lowing hyperparameters for the African language
datasets, training steps = 3000, learning rate =
0.00005, patience = 25, drop rate = 0.1, warm-up
steps = 0, weight decay = 0.1. We fix the following
hyperparameters for the English language datasets,
training steps = 3000, learning rate = 0.00002, pa-
tience = 25, drop rate = 0.25, warm-up steps = 0,
weight decay = 0.1. For boosting related experi-
ments, we experiment with two training data subset
sizes: 50% of the total training data and 80% of the
total training data. For heterogeneous ensembles,
we aggregate predictions from the following three
classifiers: vanilla BERT, co-teaching, and CETA.

5.2 BERT Models

We use bert-base-uncased5 as the backbone for
our English language datasets: TweetNLP and
SNLI. We use bert-base-multilingual-cased6 for
our African language datasets: Yorùbá and Hausa.

5.3 Loss threshold

To select a loss threshold for noise-cleaning as de-
scribed in section 4.3, we experiment with different
cut-off points in the following interval [6.0, 8.0].
We use only a noisy validation set to select the
loss threshold. Data points whose loss exceeds the
fixed loss threshold are excluded from the training

5https://huggingface.co/bert-base-uncased
6https://huggingface.co/bert-base-multilingual-cased

(a) Hausa: before (b) Hausa: after

(c) Yorùbá: before (d) Yorùbá: after

Figure 1: Noise matrices for Hausa and Yorùbá showing
noise distribution before and after noise cleaning.

set, effectively ‘cleaning’ the noisy training set to a
certain extent. Note that we only report results on
the loss threshold that produces the most optimal
accuracy on the noisy validation set. The cleaned
training set is once again used to train a vanilla
BERT model, at which point we can evaluate how
well the noising scheme performed.

5.4 Results

5.5 Feature-dependent label noise

Table 2 shows the results of baseline models and
the proposed approaches on datasets containing
feature-dependent label noise: Hausa and Yorùbá.

First, we observe that co-teaching and noise
cleaning do not consistently improve performance
compared to vanilla BERT. CETA, on the other
hand, improves performance by around 3 absolute
percentage points on both datasets. The homo-
geneous ensemble method does not consistently
improve either, but we do observe consistent gains
using heterogeneous ensembles and boosting.

Figure 1 show the noise distribution in the train-
ing set before and after applying the noise cleaning
procedure in both datasets. Note that the noise-
cleaning method results in the removal of both
noisy and clean instances, which leads to the total
noise level not being considerably reduced. Overall,
we we do not observe a larger reduction in noise
level in either dataset. After noise cleaning, we
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TweetNLP SNLI
Noise Level 10% 20% 30% 10% 20% 30%

Clean Data
Vanilla BERT 91.03± 0.81 85.03± 0.16

Noisy Data
Vanilla BERT 82.08± 0.03 74.45± 0.65 72.96± 1.42 84.79± 0.87 83.83 ± 1.01 82.01± 0.21
Co-Teaching 81.31± 0.11 73.68± 0.04 72.41± 0.71 84.27± 0.15 83.10± 1.20 80.99± 0.04

CETA 81.00± 1.81 72.40± 1.01 72.13± 0.71 84.24± 0.01 82.67± 0.21 81.02± 0.27

HME 81.81± 0.05 74.08± 0.03 72.53± 0.01 85.02± 0.12 83.76± 0.10 81.99± 0.26
HTE 79.13± 0.32 74.90 ± 0.51 72.32± 0.97 84.75± 0.34 83.64± 1.11 81.16± 0.97

Boosting 82.53 ± 0.01 74.27± 0.15 73.52 ± 3.32 85.38 ± 0.45 83.80± 0.81 82.06 ± 0.41

NC 80.94± 0.09 74.55± 0.45 72.65± 0.19 85.13± 0.05 84.00 ± 0.01 82.97 ± 1.09

Table 3: A comparison of proposed methods against baselines on TweetNLP and SNLI datasets noised to various
levels. HME: Homogeneous ensembles HTE: Heterogeneous ensembles. Boosting: Ensembles of different random
subsets from the training set. Average accuracy is reported with the standard deviation from 5 runs of each
experiment.

have 31% label noise in Yorùbá compared to 33%
before noise cleaning, with only a 2% reduction in
noise. For Hausa, the noise level after cleaning is
similarly reduced by 3% (47% compared to 50%
before cleaning). In summary, we do not find the
noise-cleaning method to be an efficient error detec-
tor for feature-dependent label noise, as compared
to the other noise-robust we use. This is inconsis-
tent with the result in Chong et al. (2022), where
they show that language models are suitable for la-
bel error detection. However, they also report that
an ensemble of large pre-trained language models
is a better error detector than a smaller individual
pre-trained model, and in both cases, while models
may have good error detection performance, the
performance in the underlying task is not necessar-
ily improved.

5.6 Pseudo-real-world label noise

Table 3 shows the results on datasets contain-
ing pseudo-real-world label noise, TweetNLP, and
SNLI, with three levels: 10%, 20%, and 30%.
In these datasets, we observe that performance
drops significantly with increased noise levels in
TweetNLP, but only small drops in performance are
observed in SNLI. We hypothesize that this poten-
tially reflects the inherent difficulty in the natural
language inference task, and the gold labels may
already be ambiguous even before applying the
noising scheme. Table 4 shows samples from both
SNLI and TweetNLP datasets before and after in-
jecting noisy labels. In many cases, particularly in
SNLI, the given example is rather ambiguous and
both labels can be suitable. These are also cases
where there are high inter-annotator disagreements.

In terms of noise handling techniques, we ob-
serve that all approaches generally do not produce
large gains in performance compared to vanilla
BERT. Furthermore, many approaches result in
slightly worse performance compared to the base-
line. Boosting seems like the most robust technique,
as it maintains baseline performance at least, while
also being effective against feature-dependent la-
bel noise. Noise cleaning in this category obtained
mixed results. Surprisingly, CETA does not ex-
cel over other methods in this particular category.
Although it was specifically designed to address
feature-dependent label noise, its performance is
somewhat inferior to the vanilla BERT baseline
when dealing with realistic label noise. We sur-
mise that this type of artificial noise is more chal-
lenging as it’s based on actual human errors, and
may even reflect intrinsic ambiguities in the task,
which makes it harder to detect through automatic
approaches.

6 Conclusions

In this paper, we described experiments for evaluat-
ing different label noise handling techniques within
the framework of BERT text classification. We eval-
uated some multi-network training approaches (i.e.
co-teaching and CETA), different types of ensem-
bles (homogeneous, heterogeneous, and boosting),
and a noise cleaning technique and compared them
with a vanilla BERT fine-tuned model with early
stopping. We used two datasets that contain feature-
dependent label noise from automatic labeling, as
well as two datasets with synthetic pseudo-real-
world label noise obtained by considering multiple
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Dataset Text Noisy Label Actual Label
SNLI (1) Young man wearing a blue jacket, green shirt and denim jeans is pho-

tographed by person in beige jacket and burgundy pants while four onlookers
watch on an expanse of sand.<!SEP!> The people are ignoring the man
getting photographed.

No Relationship Contradiction

SNLI (2) A man wearing a black t-shirt is playing seven string bass a
stage.<!SEP!> The man is playing an old guitar.

Contradiction No Relationship

SNLI (3) Many children are sitting in a classroom watching a woman in the
front.<!SEP!>The woman is teaching the children

Entailment No Relationship

TweetNLP (1) Reading harry potter in bed! waiting for the new south park to come on ADJ NOUN
TweetNLP (2) @USER: I’m not insulted, at all, trust me. I’m seeking to understand

you and your video. :)
DET ADP

TweetNLP (3) Chicagoan early voters in Uptown even get brownies and entertainment
while waiting for a dozen people to do number page ballots.

ADJ NOUN

Table 4: Samples from SNLI and TweetNLP with pseudo-real-world noise injection, highlighting the complexity
and potential ambiguity of these tasks.

annotations.
For feature-dependent label noise, the recently

proposed Consensus Enhanced Training Approach
(CETA) shows the most promising results com-
pared to the baselines. Some ensembling tech-
niques, such as boosting, can also improve per-
formance compared to the baselines but do not
provide the level of robustness achieved via CETA.

While pre-trained language models have been
shown previously to have the potential to detect
label errors through out-of-sample loss, our results
indicate that using this technique to automatically
clean the data does not result in improved perfor-
mance compared to using the noisy set. This may
suggest that removing label errors is not necessarily
a good approach for handling label noise; rather,
error detection can be used to identify noisy labels
for manual correction.

The synthetic pseudo-real-world category of la-
bel noise appears to be more challenging as the
noise represents actual human errors, which could
be an indication of inherent ambiguities in the task
itself. Our experiments show that most techniques
do not improve performance compared to the base-
lines. Furthermore, for a dataset like SNLI, which
is known to be challenging even for human anno-
tators, the presence of label noise does not reduce
the performance to a great extent compared to the
other datasets. This may suggest that the noising
scheme is compatible with the inherent difficulty
or label ambiguity of the task, and any attempts to
detect or discard the noise will not necessarily im-
prove the performance using stringent metrics such
as accuracy. Recent efforts to embrace annotator
disagreements and incorporate them in the training
process (Zhang et al., 2021) rather than relying on

a single gold label may be more suitable to handle
this kind of labeling inconsistencies.

Overall, the results indicate that handling realis-
tic label noise in text classification remains a chal-
lenging task, and none of the noise-handling tech-
niques examined so far has shown consistent per-
formance improvements across multiple datasets.

Limitations

The work described in this paper is limited by the
small number of datasets that contain both noisy
and clean versions in the text classification domain,
which are needed for evaluating noise-handling
methods. While we observed positive results from
at least two approaches, any conclusions we make
about their effectiveness are drawn from a sample
of two datasets, and may not necessarily general-
ize to other cases. For the pseudo-real-world label
noise category, it is unclear whether the noise rep-
resents true errors or inherent ambiguity in the task.
The mixed results we observe could also be a result
of ambiguities in the presumed ‘clean’ test set.
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Abstract

Existing discourse formalisms use different tax-
onomies of discourse relations, which require
expert knowledge to understand, posing a chal-
lenge for annotation and automatic classifica-
tion. We show that discourse relations can be
effectively captured by some simple cognitively
inspired dimensions proposed by Sanders et al.
(2018). Our experiments on cross-framework
discourse relation classification (PDTB & RST)
demonstrate that it is possible to transfer knowl-
edge of discourse relations for one framework
to another framework by means of these di-
mensions, in spite of differences in discourse
segmentation of the two frameworks. This man-
ifests the effectiveness of these dimensions in
characterizing discourse relations across frame-
works. Ablation studies reveal that different di-
mensions influence different types of discourse
relations. The patterns can be explained by the
role of dimensions in characterizing and distin-
guishing different relations. We also report our
experimental results on automatic prediction of
these dimensions.

1 Introduction

Discourse relations are useful for various down-
stream NLP tasks, such as text generation (Ji and
Huang, 2021) and machine translation (Sim Smith,
2017). However, discourse relations are shaped by
multiple sources of information and require expert
knowledge for annotation. Since the release of the
Penn Discourse Treebank 2.0 (PDTB 2.0) (Prasad
et al., 2008), less than 8% improvement has been
made in English implicit relation classification in
more than ten years (Atwell et al., 2021). Even
with the development of contextualized embed-
dings, this task shows the least improvement in
performance compared with other NLP tasks.

Another issue is that existing studies on dis-
course relation classification are separated into sev-
eral independent strands of work (Zeldes et al.,
2021). The complex nature of discourse gives rise

to discourse annotation frameworks which vary
in assumptions and definitions of fundamental as-
pects of discourse, such as what constitutes a dis-
course relation, what is a basic discourse unit, full-
coverage or shallow discourse annotation, and how
discourse structure is represented (Fu, 2022).

The leading examples of these annotation
frameworks include the Rhetorical Structure
Theory (RST) (Mann and Thompson, 1988),
the Segmented Discourse Representation Theory
(SDRT) (Asher and Lascarides, 2003) and the Dis-
course Lexicalized Tree-Adjoining Grammar (D-
LTAG) (Forbes et al., 2003). These three frame-
works have been used in various discourse annota-
tion projects covering different languages. Based
on the RST framework, the Rhetorical Structure
Theory Discourse Treebank (RST-DT) (Carlson
et al., 2001) is developed. SDRT forms the theo-
retical framework for the ANNODIS corpus (Afan-
tenos et al., 2012), the STAC corpus (Asher et al.,
2016) and so on, and D-LTAG is the theoretical
foundation for PDTB (Prasad et al., 2008, 2018),
which is the largest corpus annotated with discourse
relations.

To enable different strands of research to come
together and benefit from data across frameworks,
we need an interface with which discourse rela-
tion classification tasks under different frameworks
can be formulated in similar terms, independent
of the underlying theoretical assumptions (Zeldes
et al., 2021). The UniDim proposal by Sanders et al.
(2018) represents one of the influential approaches
for this task. The intuition is that discourse rela-
tions of different frameworks can be decomposed
into cognitive primitives rooted in the Cognitive ap-
proach to Coherence Relations (CCR) (Sanders
et al., 1992, 1993) (hence denoted as the CCR
framework), and people can make use of these el-
ementary notions to relate and compare discourse
relations. These primitives are not intended to
form a complete and descriptively adequate ac-
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count of discourse relations but are targeted at a
psychologically plausible theory of discourse rela-
tions (Sanders et al., 1992). Additional primitives
are added in later studies to reach better linguistic
and cognitive coverage (Crible and Degand, 2019).

Sanders et al. (2018) and other researchers such
as Rehbein et al. (2016) try to test if discourse re-
lations annotated based on the CCR framework are
consistently categorized into relations under other
frameworks. Their investigation reveals that dis-
crepancies between frameworks arise due to vari-
ations in how coherence relations are defined, the
methods used to perform the annotation, and the
rules governing segmentation, and the alignment
of discourse relations is generally many-to-many.

In this study, we aim to assess to what extent
these CCR dimensions provide information about
discourse relations of different frameworks. We as-
sume that CCR dimensions are annotated in parallel
to discourse relation annotations of other frame-
works and utilize these dimensions as features in
discourse relation classification tasks. The improve-
ment/degradation of performance relative to the
case without such features as a measure of the in-
formation that these dimensions provide. In this
way, we show empirical evidence of the effective-
ness of the UniDim proposal in representing and
bridging discourse relations of different discourse
annotation schemes.

Our contributions include:

• We show that the dimensions of the UniDim
proposal effectively capture discourse rela-
tions and are useful for training computational
systems for discourse relation classification,
both for RST relation classification and PDTB
explicit and implicit relation classification,
yielding significant performance gains. Such
elementary cognitive dimensions can be use-
ful features for the challenging task of dis-
course relation classification.

• We demonstrate that these dimensions can
work as an interface for discourse relations
across different frameworks. It is possible
to train one discourse relation classification
model on PDTB and apply the model to the
discourse relation classification task in RST
with transfer learning and the performance is
as high as training a model specifically for
RST relation classification, in spite of differ-
ences in discourse segmentation between the

two frameworks. The CCR dimensions pro-
vide an effective means of bridging discourse
relations of different frameworks.

• We report experimental results on automatic
prediction of these dimensions with RST-DT,
PDTB 3.0 and a combination of the two cor-
pora.

2 Related Work

2.1 Mapping Discourse Relations of Different
Frameworks

Prior studies on mapping discourse relations of dif-
ferent frameworks adopt varied approaches. Some
researchers propose common inventories of rela-
tions that are created based on analysis of discourse
relations of different frameworks (Benamara and
Taboada, 2015; Bunt and Prasad, 2016). Alterna-
tively, an intermediate representation may be used
to reduce the number of mappings necessary to
harmonize different frameworks (Chiarcos, 2014;
Sanders et al., 2018). As there are corpora that
contain parallel annotations under different frame-
works on the same texts, these corpora are used
to identify mappings between discourse relations.
Since this approach relies on textual matching, dif-
ferences in discourse segmentation would hinder
relation mapping, leaving only a small number of
relations successfully mapped between different
frameworks (Bourgonje and Zolotarenko, 2019;
Scheffler and Stede, 2016). The study by Dem-
berg et al. (2019) employs the strong nuclearity
hypothesis (Marcu, 2000) to mitigate this problem.
Demberg et al. (2019) show that the Unified Dimen-
sion (UniDim) approach is relatively successful in
mapping relations between RST-DT and PDTB 2.0.

Roze et al. (2019) investigates the possibility of
predicting CCR dimensions automatically. They
achieve an accuracy above the baseline of majority
class guessing. Furthermore, they try to predict re-
lations of PDTB 2.0 from these dimensions, and it
is shown that the accuracy is much lower than that
of training a model for predicting PDTB relations
directly. The low performance may be attributed
to the high level of under-specification in the map-
ping from PDTB relations to these dimensions and
the reverse mapping from dimension combinations
to the hierarchical PDTB sense labels, especially
when the mapping is not necessarily one-to-one.

Recent studies propose to represent discourse
relations as question-answering (QA) pairs (Ko
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et al., 2022; Pyatkin et al., 2020). While this ap-
proach is designed to simplify discourse relation
labelling, some relations cannot be expressed by
QA pairs (Pyatkin et al., 2020), and evaluation is
difficult. Moreover, open-ended QA leads to anno-
tations similar to the GraphBank (Wolf and Gibson,
2004), which has higher complexity than the other
frameworks.

2.2 Dimensions in UniDim Proposal

The main approach adopted in the UniDim pro-
posal is to use cognitively inspired dimensions as
an intermediate representation and decompose dis-
course relations of different frameworks into these
dimensions so that they can be related and com-
pared. The result contains five dimensions which
are rooted in the Cognitive approach to Coherence
Relations (CCR) (Sanders et al., 1992, 1993) and
some additional dimensions that are added to allow
more relations to be better represented (collectively
referred to as “UniDim dimensions” or “dimen-
sions of the UniDim proposal” in the following).
We give an overview of these dimensions here.

Two segments that may stand in a discourse re-
lation are identified first, the two segments being
denoted as S1 and S2 in linear order, and the un-
derlying propositions being denoted as P and Q in
linear order.

The first dimension is basic operation, which
has two values: causal and additive. A causal re-
lation means that the two segments are strongly
connected and typically, an implication relation
P → Q can be deduced. In (1), S2 shows the cause
and S1 gives the consequent. If the two segments
are just loosely connected and only a conjunction
relation P ∧ Q can be inferred, the value at this
dimension is additive, as shown in (2).

(1) [He immigrated to the US,]S1 because [his
natural parents were believed to live there.]S2

(2) [She is a painter]S1 and [her studio is a few
blocks away.]S2

As indicated in Sanders et al. (2018), basic op-
eration can be used to distinguish causal relations
or conditional relations from additive relations or
temporal relations.

The second dimension is source of coherence. It
has two values: semantic and pragmatic in the orig-
inal proposal (Sanders et al., 1992), later renamed
as objective and subjective in Maat and Sanders
(2000), respectively. A relation is objective if the
segments are connected because of their proposi-

tional content, and the relation holds because the
connection is coherent based on world knowledge,
as shown in (3). A relation is subjective if the
speaker’s reasoning or the pragmatic effect of the
relation is prominent. (4) shows a claim in S2 and
S1 is an argument that supports it.

(3) [It was dark outside,]S1 so [he lit up a
candle.]S2

(4) [Smoking is unhealthy]S1 and [we should put
a limit on it.]S2

This dimension can be used to distinguish re-
lations that are related to real-world situations,
such as temporal sequence, and cause-consequence,
from argumentative relations, such as claim-
argument or evidence-justification (Sanders et al.,
2018).

The third dimension is implication order. This
dimension distinguishes between non-basic and ba-
sic orders of causal relations, and does not apply
to additive relations, which are generally symmet-
ric. For a causal relation characterized by P → Q,
if S1 expresses P and S2 expresses Q (note that S1
and S2 are in linear order), then this relation is
in basic order, as shown in (6). If S2 actually ex-
presses P while S1 expresses Q, this relation is in
non-basic order, as shown in (5).

(5) [He did not attend the conference,]S1 because
[he received a message telling him not to go.]S2

(6) Because [he received a warning message,]S1

[he did not attend the conference.]S2

It is clear to see that the implication order dimen-
sion is mainly used to distinguish relations with di-
rectionality, such as cause-result and cause-reason.

The fourth dimension is polarity. A relation
is characterized by positive polarity if the propo-
sitions P and Q, expressed by S1 and S2, respec-
tively, have the same logical polarity and support
each other, as shown in (7). A relation is of negative
polarity if the relation involves the juxtaposition of
¬P and P or ¬Q and Q in the two segments, as
shown in (8). In this example, a positive polarity
would require a reason or result that supports the
decision of closing the library.

(7) [We like the garden]S1 because [it is
pretty.]S2

(8) [The university library was closed]S1 al-
though [students wanted more space for study.]S2

This dimension is useful for capturing
contrastive, adversative and concession rela-
tions (Sanders et al., 2018).

The fifth dimension is temporality, which dis-

23



tinguishes between temporal and non-temporal re-
lations. Under temporal relations, temporality has
three values: synchronous, chronological and anti-
chronological. Synchronous relations are those
temporal relations which feature simultaneous oc-
currence of events. If events described in the
segments happen in temporal order, then the re-
lation is chronological, otherwise the relation is
anti-chronological.

In order to characterize more relations, addi-
tional dimensions are introduced, including speci-
ficity, lists and alternatives for additive relations,
and conditionals and goal-oriented relations for
causal relations (denoted collectively as “additional
dimensions” in the following).

3 Methodology

Since RST-DT and PDTB both use the WSJ arti-
cles of the Penn Treebank, cross-framework rela-
tion classification of RST and PDTB by automatic
means would be less influenced by domain shift.
Therefore, we focus on the two frameworks. For
PDTB, we use PDTB 3.0, which is newer and in-
troduced systematic changes.

As we are primarily interested in the effective-
ness of UniDim dimensions rather than improving
algorithms for discourse relation classification, sim-
ple models are implemented in the experiments.

3.1 Discourse Relation Classification
Discourse relation classification is a typical multi-
class classification task. Given a span/argument
pair with tokens S = [CLS], S(1)

1 ... S
(1)
m , [SEP ],

S
(2)
1 ... S

(2)
n , we obtain the representation of the

sequence from a pre-trained language model, de-
noted as fPLM (S), and the embeddings of the di-
mensions E are obtained from embedding layers,
where the embeddings are initialized from uniform
distributions and trainable. The representation of
the input and the embeddings of dimensions are
concatenated:

hS = fPLM (S)⊕Edimpol ⊕Edimbop ⊕ ... (1)

The dimpol and dimbop ... represents the UniDim
dimensions, including polarity, basic operation, im-
plication order, source of coherence, temporaltiy,
specificity, alternative, conditional and goal.

The representation is fed to two two-layer feed-
forward networks (FFNs) with LeakyReLU as acti-
vation functions:

ĥ = g2(W2 ∗ g1(W1 ∗ hS)) (2)

where g1 and g2 represent the non-linear activation
functions of first and the second FFNs, respectively.
W1 and W2 denote weights of the first layers of the
two FFNs, and bias terms are omitted for clarity.

A classifier layer is configured on top of the
second FFN. The predicted result ŷ is obtained
with:

ŷ = softmax(W3 ∗ ĥ) (3)

Cross-entropy loss is used in the loss function:

Lc = −
N∑

i=1

C∑

l=1

cil log p(c
i
l) (4)

where N is the batch size, C is the total number of
classes, and p(cil) is the probability predicted for a
class c.

In this design, we take our experiments with
transfer learning for cross-framework discourse re-
lation classification into consideration, as we try to
keep the architecture and only replace the last clas-
sifier layer to fit the model on new data. Moreover,
our preliminary experiments indicate that removing
the second FFN causes a significant performance
drop.

Baseline model The BertForSequenceClassifi-
cation model from the Transformers library (Wolf
et al., 2020) is used as the baseline model, in which
a classifier layer is added on top of the contextu-
alized embeddings of the input sequence. For an
input sequence S, its representation is obtained
with:

hS = fPLM (S) (5)

The predicted result ŷ is obtained with:

ŷ = softmax(Wb ∗ hS) (6)

As shown in Kim et al. (2020), this model is
a strong baseline. We use the bert-base-uncased
BERT model in all our experiments for comparison
of experimental results.

3.2 Cross-framework Discourse Relation
Classification

We hypothesize that if UniDim dimensions form an
effective “interlingua” of discourse relations from
different frameworks, we can train a model for dis-
course relation classification in one framework and
apply the model for relation classification in an-
other framework without much modification. The
transfer learning framework can be used for this
experiment.

24



As PDTB 3.0 is much larger than RST-DT, a
natural choice would be to treat PDTB relation
classification as the source task and RST relation
classification as the target task (Wang et al., 2019).

We first train a model as described in section 3.1
on all the PDTB data, and freeze all the layers but
the last classifier layer so that the model can be fit
on RST data.

Formally, for a pair of PDTB arguments P =

[CLS], A(1)
1 ... A

(1)
m , [SEP ], A(2)

1 ... A
(2)
n , we ob-

tain the representation of sequence P with equation
(1). Through training, the parameters in equation
(2) are learnt for the PDTB relation classification
task. With these parameters, for an RST span pair
R = [CLS], R

(1)
1 , ..., R

(1)
m , [SEP ], R

(2)
1 , ..., R

(2)
n ,

we first obtain the representation of sequence R
with equation (1), denoted as hR, and with the pa-
rameters learnt for PDTB relation classification, we
obtain the representation ĥR:

ĥR = g2(W2 ∗ g1(W1 ∗ hR)) (7)

The predicted result ŷ for RST relation classifi-
cation is obtained with:

ŷ = softmax(Wr ∗ ĥR) (8)

whereWr is the weight to be learnt for RST relation
classification.

Baseline model As we transfer knowledge from
PDTB relation classification to RST relation clas-
sification, the baseline model is a model trained
specifically for RST relation classification with
BERT embeddings and UniDim dimensions as in-
put. For the baseline model in section 3.1, where
only BERT embeddings are used, we train a model
for PDTB relation classification and apply the
model to RST relation classification without us-
ing UniDim dimensions.

3.3 Automatic UniDim Dimension Prediction
Since the dimensions may be related to each other,
we train one model for predicting the nine dimen-
sions in equation 1 together.

For an input sequence S, we obtain its repre-
sentation hS with equation 5. A two-layer FFN
f with LeakyReLU activation function is applied
to hS before nine classification layers ci|i=1...9 are
applied:

ŷ = softmax(Wci ∗ f(hS)) (9)

We train the model on PDTB, RST and the combi-
nation of PDTB and RST data, respectively. The

results reported in Roze et al. (2019) are our base-
line.

4 Experiments

We use the mapping table given in Sanders et al.
(2018) (Appendix A) for obtaining the dimension
values for relation labels of RST-DT. As no map-
ping table is provided for PDTB 3.0, we create the
mapping table by ourselves (Appendix B).

4.1 Data Preprocessing

We binarize the RST trees based on the procedure
in Ji and Eisenstein (2014) and extract pairs of
spans that are connected by a relation. Follow-
ing Sanders et al. (2018), we exclude Same-Unit
and Attribution relations from RST-DT, leaving 16
relations. We use the standard split of the corpus
and take 20% from the training set for validation.

Since PDTB level-2 relations carry specific and
generally more useful information, we focus on
level-2 relation classification for PDTB. We ex-
clude relations that have fewer than 100 instances
to alleviate data imbalance, as suggested in Kim
et al. (2020). We follow the data split in Ji and
Eisenstein (2015), using sections 2-20 for training,
0-1 for validation and 21-22 for testing.

We use the pre-trained BERT model (Devlin
et al., 2019) for obtaining contextualized embed-
dings and the [CLS] and [SEP] tokens are inserted
following the settings of the BERT model, which
is shown to benefit inter-sentential (Shi and Dem-
berg, 2019) and intra-sentential (Zhao and Webber,
2021) implicit discourse relation classification.

Among the UniDim dimensions, we exclude list
because this dimension is proposed for represent-
ing the List relation in PDTB, which has been
removed from the sense hierarchy in PDTB 3.0.
Following Roze et al. (2019), we merge specificity-
example and specificity-equivalence into specificity,
and add the NS label in cases of ambiguity or under-
specification. The N.A. label is kept when it appears
on its own to reflect the fact that some dimensions
do not apply to certain types of relations. The
default values of additional dimensions are set to
negative because they are only applicable to some
relations and typically have binary values.

On the whole, the dimensions are heavily imbal-
anced and have high degree of under-specification.
Statistics for the distribution of these dimensions
are shown in Appendix C. Hyper-parameter set-
tings and model training details are described in
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Appendix D.

4.2 Evaluation
For RST relation classification, the settings of the
DISRPT 2021 shared task on relation classifica-
tion (Zeldes et al., 2021) are the closest to ours.
We report their best accuracy on RST-DT (Gessler
et al., 2021) alongside our baseline model results
for comparison.

After preprocessing, we perform 12-way explicit
relation classification and 14-way implicit relation
classification for PDTB. While most of the previ-
ous studies use PDTB 2.0 and recent studies on
PDTB 3.0 only focus on implicit relation classifica-
tion, when settings of previous studies are close to
ours, we report their results alongside our baseline
results1.

4.3 Results and Discussion
We report our experimental results on the test
sets, which are computed with the Scikit-Learn
library (Pedregosa et al., 2011). We can expect that
RST and PDTB data show different patterns. For
RST, the dimension values for end labels may be
clear, but when end labels are grouped into a class,
the values could be rather mixed. For PDTB, as
L2 sense classification is performed, the process of
grouping relations into broader classes happens at
L3, which only encodes directionality, and dimen-
sions that are related to directionality are affected,
such as implication order, but the other dimensions
are not influenced. Therefore, dimension values for
PDTB classes tend to be less ambiguous. Moreover,
data amount differences are likely to have notable
influence on the results. We do not report the re-
sults of additional dimensions separately because
their individual effects are not obvious.

4.3.1 RST Relation Classification
Table 1 shows results on RST-DT. When UniDim
dimensions are added as features, a significant per-
formance gain can be obtained. Some relations
can be recognized with 100% accuracy. However,
relations including Comparison, Manner-means,
Summary and Textual-Organization cannot be rec-
ognized. From Fig. 3 in Appendix E, it is clear that
these relations have small amounts of training data.
As we focus on broader classes rather than end
labels in relation classification, we can see from
the mapping table in Appendix A that dimension

1We build and run all the baseline models mentioned in
section 3.1 and section 3.2 by ourselves.

P R F1 Pb. Rb. F1b. C.
Background 1.00 1.00 1.00 0.47 0.35 0.40 111
Cause 0.92 0.70 0.79 0.50 0.17 0.25 82
Comparison 0.00 0.00 0.00 0.61 0.38 0.47 29
Condition 1.00 1.00 1.00 0.79 0.71 0.75 48
Contrast 0.99 1.00 0.99 0.75 0.68 0.72 146
Elaboration 0.75 1.00 0.86 0.65 0.88 0.75 796
Enablement 0.92 1.00 0.96 0.61 0.85 0.71 46
Evaluation 0.99 1.00 0.99 0.29 0.14 0.19 80
Explanation 0.72 0.97 0.83 0.46 0.27 0.34 110
Joint 1.00 0.03 0.06 0.67 0.62 0.64 212
Manner-
Means

0.00 0.00 0.00 0.68 0.48 0.57 27

Summary 0.00 0.00 0.00 0.88 0.47 0.61 32
Temporal 1.00 1.00 1.00 0.74 0.27 0.40 73
Textual-
Organization

0.00 0.00 0.00 0.44 0.44 0.44 9

Topic-
Change

0.28 1.00 0.44 0.28 0.38 0.32 13

Topic-
Comment

0.71 0.21 0.32 0.00 0.00 0.00 24

Acc. 0.81 0.63 (vs DISRPT 2021: 0.67)
Macro-F1 0.64 0.62 0.58 0.55 0.44 0.47 1838

Table 1: Results of RST relation classification. The columns
in blue show the results of our method and uncolored columns
show the results of the baseline model, and the last column
shows the count of occurrences of each relation in the test set.
We use this convention in reporting the results.

values under these classes are mixed. It is difficult
for the model to learn patterns from the data.

To have a better understanding of the influence
of each dimension on the results, we performed ab-
lation studies and the results are shown in Table 2.

Acc P R F1
Total 0.81 0.64 0.62 0.58
-Pol. 0.74 0.49 0.48 0.48

-Basic Op. 0.78 0.52 0.58 0.53
-SoC. 0.78 0.52 0.58 0.53

-Impl. order 0.81 0.58 0.60 0.55
-Temp. 0.80 0.59 0.60 0.55
-Add. 0.80 0.52 0.59 0.54

Table 2: Results of ablation studies for RST relation classi-
fication, showing the overall accuracy (Acc), precision (P ),
recall(R) and macro-averaged F1 (F1) for dimensions of po-
larity (Pol.), basic operation (Basic Op.), source of coherence
(SoC.), implication order (Impl. order), temporality (Temp.)
and additional dimensions (Add.), respectively.

As shown in Table 2, removing the polarity di-
mension causes the biggest performance drop in
macro-averaged F1. By examining the detailed
results (Table 33, Appendix L), we find that re-
moving this dimension has noticeable influence on
the recognition of Contrast(↓ 0.41), Evaluation(↓
0.26), Topic-Change(↓ 0.44) and Topic-Comment(↓
0.32). The correlation between Contrast and this
dimension is self-evident. Examination of the map-
ping table suggests that the rest of these relations
have ambiguous or mixed values in the other di-
mensions and their data amounts are small, making
it difficult for the model to learn any patterns.

4.3.2 PDTB Explicit Relation Classification
Table 3 shows the results of 12-way explicit re-
lation classification. The overall accuracy score
is high and the majority of the relations can be
recognized with near perfect performance, which
means that the UniDim dimensions are effective
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in characterizing most of the PDTB explicit re-
lations. However, in spite of the noticeable im-
provement in overall accuracy, our method does
not show improvement over the baseline model in
macro-averaged F1 score. This is likely due to
the strong reliance of pre-trained language models
on lexical cues in discourse relation classification
tasks (Kim et al., 2020) and these lexical cues are
effective features for this task. Moreover, with our
approach, the Level-of-detail and Substitution rela-
tions cannot be recognized. The two relations have
the smallest data amount, and in terms of dimen-
sion values, Substitution is similar to Concession
and Level-of-detail is similar to Manner. It is possi-
ble that the model predicts Manner for instances of
Level-of-detail, which explains the lower precision
for Manner.

P R F1 Pb. Rb. F1b. C.
Asynchronous 1.00 1.00 1.00 0.97 0.87 0.92 127

Cause 1.00 1.00 1.00 0.82 0.89 0.85 115
Concession 0.96 1.00 0.98 0.89 0.95 0.92 285
Condition 1.00 1.00 1.00 0.93 0.92 0.93 61

Conjunction 1.00 1.00 1.00 0.97 0.96 0.96 516
Contrast 1.00 1.00 1.00 0.52 0.48 0.50 50

Disjunction 1.00 1.00 1.00 0.90 1.00 0.95 18
Level-of-detail 0.00 0.00 0.00 0.71 0.75 0.73 20

Manner 0.35 1.00 0.52 0.42 0.91 0.57 11
Purpose 1.00 1.00 1.00 0.62 0.45 0.52 29

Substitution 0.00 0.00 0.00 1.00 0.92 0.96 13
Synchronous 1.00 1.00 1.00 0.81 0.71 0.76 126

Acc. 0.98 0.89
Macro-F1 0.78 0.83 0.79 0.80 0.82 0.80 1371

Table 3: Results of PDTB explicit relation classification.

The results of ablation studies are shown in Ta-
ble 4. Removing the source of coherence dimen-
sion causes the biggest performance drop in macro-
averaged F1. Through examining the detailed re-
sults, we find that without this dimension, the Dis-
junction relation cannot be recognized. Meanwhile,
removing this dimension causes a drop of 0.15 for
identifying the Contrast relation and a drop of 0.14
for recognizing the Synchronous relation. The Dis-
junction relation has a small data amount, and the
model might predict Contrast for instances of Dis-
junction, since they are similar in the absence of
this dimension, which may account for the lower
precision for Contrast.

Acc P R F1
Total 0.98 0.78 0.83 0.79
-Pol. 0.95 0.74 0.81 0.76

-Basic Op. 0.98 0.78 0.83 0.79
-SoC. 0.94 0.67 0.73 0.68

-Impl. order 0.98 0.78 0.83 0.79
-Temp. 0.95 0.76 0.81 0.77
-Add. 0.96 0.73 0.73 0.73

Table 4: Results of ablation studies for PDTB explicit relation
classification.

4.3.3 PDTB Implicit Relation Classification
Table 5 shows the results of 14-way implicit rela-
tion classification. The previous best result under
similar settings is 0.64 in overall accuracy (Kim

et al., 2020), which is achieved with large-cased
XLNet (Yang et al., 2019). Our baseline 56% ac-
curacy is consistent with the results in Kim et al.
(2020).

P R F1 Pb. Rb. F1b. C.
Asynchronous 1.00 1.00 1.00 0.62 0.61 0.62 95

Cause 1.00 1.00 1.00 0.60 0.63 0.61 366
Cause+Belief 1.00 0.42 0.59 0.00 0.00 0.00 12
Concession 1.00 0.92 0.96 0.44 0.40 0.42 84
Condition 1.00 1.00 1.00 0.71 0.42 0.53 12

Conjunction 0.90 1.00 0.95 0.49 0.61 0.54 221
Contrast 0.98 1.00 0.99 0.45 0.42 0.43 50

Equivalence 0.00 0.00 0.00 0.12 0.04 0.06 24
Instantiation 0.00 0.00 0.00 0.77 0.54 0.64 107

Level-of-detail 0.60 1.00 0.75 0.45 0.48 0.46 180
Manner 0.00 0.00 0.00 0.38 0.60 0.46 15
Purpose 0.92 0.94 0.93 0.92 0.98 0.95 88

Substitution 0.75 1.00 0.86 0.43 0.48 0.45 21
Synchronous 0.87 0.97 0.92 0.27 0.10 0.15 40

Acc. 0.87 0.56
Macro-F1 0.72 0.73 0.71 0.48 0.45 0.45 1315

Table 5: Results of PDTB implicit relation classification.

As is shown in Table 5, adding UniDim di-
mensions brings significant performance gain for
this task, which is challenging for the baseline
model. Meanwhile, we notice that relations in-
cluding Equivalence, Instantiation and Manner are
difficult to recognize. In terms of dimension values,
Equivalence is similar to Conjunction, which has
a much larger amount of data. It is likely that the
model predicts Conjunction for Equivalence, hence
the lower precision for Conjunction. Instantiation,
Manner and Level-of-detail have the same dimen-
sion values, and as the data amount for Level-of-
detail is much larger, the model may predict Level-
of-detail for instances of the other two relations,
causing the precision score for Level-of-detail to
go down.

The results of ablation studies are shown in Ta-
ble 6. Both the implication order dimension and
the additional dimensions have substantial influ-
ence on the F1 score. Removing the implication
order dimension does not cause much decrease in
the overall accuracy score but mainly lowers the F1
score, while removing the additional dimensions
reduces both the overall accuracy score and the F1
score.

Acc P R F1
Total 0.87 0.72 0.73 0.71
-Pol. 0.87 0.71 0.71 0.70

-Basic Op. 0.87 0.72 0.73 0.71
-SoC. 0.87 0.72 0.73 0.71

-Impl. order 0.86 0.57 0.64 0.60
-Temp. 0.87 0.72 0.73 0.71
-Add. 0.73 0.64 0.64 0.62

Table 6: Results of ablation studies for PDTB implicit relation
classification.

Detailed results (Table 26 in Appendix J) show
that removing the implication order dimension
causes a drop of 0.07 in recognizing Concession,
a drop of 0.86 in recognizing Substitution and a
drop of 0.59 in recognizing Cause+Belief. As the
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last two relations cannot be recognized, the macro-
averaged F1 shows a significant decrease. Sim-
ilarly, this is associated with differences in data
amount and how different relations can be distin-
guished from each other without the dimension, for
instance, Substitution has a small data amount, and
without the implication order dimension, the model
might confuse this relation with Concession and
predict Concession for instances of both relations,
which may explain the lower precision for Conces-
sion. If the additional dimensions are removed, ma-
jor relations that are impacted include Condition(↓
0.14), Conjunction(↓ 0.37), and Level-of-detail(↓
0.75). In this case, the Level-of-detail relation can-
not be identified. Without this dimension, Level-of-
detail has the same dimension values as Conjunc-
tion, which has a larger data amount. The model
may predict Conjunction for both classes, which
causes precision for Conjunction to decrease.

4.3.4 Cross-Framework Discourse Relation
Classification

As RST does not distinguish explicit and implicit
relations, we train a model on the whole PDTB
data for the source task. We show the overall per-
formance of transfer learning from PDTB to RST
in Table 7. The settings of the DISRPT 2021 shared
task are the closest to our experiments, and their
best results (Gessler et al., 2021) are shown along-
side the baseline model for comparison. As is clear
from the table, the results of transfer learning based
on the baseline BERT model show noticeable ef-
fect of negative transfer (0.63 → 0.58 in overall
accuracy and 0.47 → 0.33 in F1 score), while with
our method, the overall accuracy does not show
any decrease and the F1 score is only 1% lower.
This shows that the UniDim dimensions may serve
as an effective interface for relations of different
frameworks. The detailed results for the source
and target tasks are shown in Tables 39 and 40 in
Appendix M.

Task Acc. Macro-F1
target RST (BERT+Dim) 0.81 0.57
RST-specific (BERT+Dim)
from Table 1

0.81 0.58

src PDTB total (BERT+Dim) 0.86 0.67
target RST (BERT only) 0.58 0.33
RST-specific (BERT only)
from Table 1

0.63 0.47

src PDTB total (BERT only) 0.71 (vs. DISRPT
2021: 0.74)

0.61

Table 7: Results of transfer learning from PDTB to RST.

4.3.5 Automatic Dimension Prediction
We show our experimental results of automatic pre-
diction of UniDim dimensions in Table 8. As is

clear from the table, reasonable performance for
this task can be achieved. Note that the baseline
results are based on PDTB 2.0 and separate classi-
fiers are trained for each dimension.

The performance on PDTB is higher than on
RST data with the exception of Temporality and
Goal. As PDTB allows multi-sense annotation,
instances labeled with temporal relations might
be annotated with labels of causal relations, and
instances for which a Purpose relation can be in-
ferred (captured by the Goal dimension), a Manner
relation is also possible (not involving the Goal
dimension), which poses a challenge for machine
learning systems.

Moreover, combining the two corpora to aug-
ment training data does not improve the perfor-
mance over using PDTB data alone but it is helpful
for improving performance on RST data. RST data
amount is much smaller and adding more data is
beneficial. As relations of the two frameworks may
not be completely compatible and combining the
two corpora might introduce inconsistent and re-
dundant data, combining the datasets is likely to be
more useful in low-resource settings.

PDTB RST PDTB+RST Baseline
Acc. Macro-

F1
Acc. Macro-

F1
Acc. Macro-

F1
Acc. Macro-

F1
Pol. 0.92 0.57 0.85 0.58 0.89 0.56 0.82 0.50
Basic
Op.

0.80 0.52 0.76 0.45 0.77 0.50 0.76 0.38

SoC. 0.75 0.72 0.67 0.45 0.70 0.59 0.68 0.50
Impl.
order

0.76 0.50 0.75 0.38 0.75 0.48 0.78 0.41

Temp. 0.79 0.59 0.86 0.30 0.82 0.43 0.73 0.48
Spec. 0.87 0.65 0.80 0.72 0.83 0.66 0.85 -
Alter. 1.00 0.95 1.00 0.50 1.00 0.95 0.99 -
Cond. 0.99 0.86 0.98 0.83 0.98 0.83 0.99 -
Goal 0.91 0.75 0.97 0.75 0.93 0.74 - -

Table 8: Results of UniDim dimension prediction. Blue
columns show classification accuracy and grey columns show
macro-averaged F1.

5 Conclusion and Future Work

By incorporating the UniDim dimensions proposed
in Sanders et al. (2018) in discourse relation clas-
sification tasks, we obtain quantitative results of
the effectiveness of these dimensions in capturing
discourse relations of different frameworks and
bridging discourse relations across frameworks.
Ablation studies reveal the influence of these di-
mensions on different types of discourse relations.
Meanwhile, we show that these dimensions can
be predicted automatically with a simple model.
These dimensions are potentially useful features for
discourse relation classification across frameworks.
Therefore, in future work, we plan to incorporate
automatically predicted dimensions in our models.
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6 Limitations

Since we need to create the mapping table for
PDTB 3.0 by ourselves, it is unavoidable that there
may be errors and inconsistencies with existing
mapping tables for the other frameworks.

Meanwhile, in the mapping table provided
in Sanders et al. (2018), to obtain the values of
the dimensions, we need all the information of a
relation label, for instance, to represent an RST rela-
tion label with dimensions, we need the nuclearity
label and whether the relation is mono-nuclear or
multi-nuclear in addition to the relation label itself,
and in the case of a PDTB relation, we need the
relation label and the order of the arguments. This
is because these dimensions are not incorporated in
the annotation process of RST-DT and PDTB, and
only a general mapping is possible. We consider
the resultant ambiguity and under-specification un-
avoidable.

7 Ethics Statement

This study does not involve special ethical consider-
ations. The potential impact may include providing
computational evidence of the validity of cognitive
study of discourse relations and attracting attention
to cognitive frameworks of discourse, which may
spur fine-grained research on the correlation be-
tween cognitive dimensions and different discourse
relations and how different language models per-
form from this perspective.
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A RST to UniDim Dimension Mapping Table
Table 9 shows the mapping of RST-DT relation labels to UniDim dimensions.

Class End label Nuc. N-S Pol. Basic Op. Impl. order SoC Temp. Add. features
Background Background Mono N-S pos/neg add N.A. obj anti/N.A.

Background Mono S-N pos/neg add N.A. obj chron/N.A.
Circumstance Mono pos/neg add N.A. obj syn/N.A.

Cause Cause Mono N-S pos cau bas obj chron
Cause Mono S-N pos cau non-b obj anti
Cause-result Multi pos cau bas/non-b obj chron/anti
Result Mono N-S pos cau non-b obj anti
Result Mono S-N pos cau bas obj chron
Consequence-n Mono N-S pos cau non-b obj anti
Consequence-n Mono S-N pos cau bas obj chron
Consequence-s Mono N-S pos cau bas obj chron
Consequence-s Mono S-N pos cau non-b obj anti
Consequence Multi pos cau bas/non-b obj chron/anti

Comparison Comparison Both pos add N.A. obj/sub N.A.
Preference Mono neg add N.A. obj/sub N.A.
Analogy Both pos add N.A. sub N.A.
Proportion Multi pos add/cau any obj/sub any

Conditional Condition Mono N-S pos/neg cau non-b obj/sub anti/N.A. conditional
Condition Mono S-N pos/neg cau bas obj/sub chron/N.A. conditional
Hypothetical Mono N-S pos cau non-b sub N.A. conditional
Hypothetical Mono S-N pos cau bas sub N.A. conditional
Contingency Mono N-S pos/neg cau non-b obj anti conditional
Contingency Mono S-N pos/neg cau bas obj chron conditional
Otherwise Mono N-S neg cau bas obj/sub chron/N.A. conditional
Otherwise Multi neg cau bas obj/sub chron/N.A. conditional

Contrast Contrast Multi neg add N.A. obj/sub any
Concession Mono N-S neg cau non-b obj/sub anti/N.A.
Concession Mono S-N neg cau bas obj/sub chron/N.A.
Antithesis Mono neg add/cau any obj/sub any

Elaboration El.-additional Mono pos add N.A. obj/sub N.A.
El.-gen.-spec. Mono pos add N.A. obj/sub N.A. specificity
El.-part-whole Mono pos add N.A. obj N.A. specificity
El.-process-step Mono pos add N.A. obj N.A. specificity
El.-object-attr. Mono pos add N.A. obj N.A. specificity
El.-set-member Mono pos add N.A. obj N.A. spec.-ex.
Example Mono pos add N.A. obj N.A. spec.-ex.
Definition Mono pos add N.A. obj N.A. specificity

Enablement Purpose Mono N-S pos cau bas obj/sub chron/N.A. goal
Purpose Mono S-N pos cau non-b obj/sub anti/N.A. goal
Enablement Mono N-S pos cau non-b obj/sub anti/N.A. goal
Enablement Mono S-N pos cau bas obj/sub chron/N.A. goal

Evaluation Evaluation Both pos add/cau any sub N.A. specificity
Interpretation Both pos add/cau any sub N.A. specificity
Conclusion Mono N-S pos cau bas sub N.A. specificity
Conclusion Mono S-N pos cau non-b sub N.A. specificity
Conclusion Multi pos cau bas/non-b sub N.A. specificity
Comment Mono pos add N.A. sub N.A. specificity

Explanation Evidence Mono N-S pos cau non-b sub anti
Evidence Mono S-N pos cau bas sub chron
Exp.-argument. Mono N-S pos cau non-b obj anti
Exp.-argument. Mono S-N pos cau bas obj chron
Reason Mono N-S pos cau non-b obj anti
Reason Mono S-N pos cau bas obj chron
Reason Multi pos cau bas/non-b obj chron/anti

Joint List Multi pos add N.A. obj/sub syn/chron/N.A. list
Disjunction Multi pos/neg add N.A. obj/sub syn/N.A. alternative

Summary Summary Mono pos add N.A. obj N.A. specificity
Restatement Mono pos add N.A. obj N.A. spec.-equiv.

Temporal Temp.-before Mono N-S pos add N.A. obj chron
Temp.-before Mono S-N pos add N.A. obj anti
Temp.-after Mono N-S pos add N.A. obj anti
Temp.-after Mono S-N pos add N.A. obj chron
Temp.-same-time Both pos add N.A. obj syn
Sequence Multi pos add N.A. obj chron
Inverted-seq. Multi pos add N.A. obj anti

Manner-Means Means Mono N-S pos cau non-b obj anti
Means Mono S-N pos cau bas obj chron goal

Topic-Comment Problem-sol.-n Mono N-S pos cau non-b obj/sub anti/N.A. goal
Problem-sol.-n Mono S-N pos cau bas obj/sub chron/N.A. goal
Problem-sol.-s Mono N-S pos cau bas obj/sub chron/N.A. goal
Problem-sol.-s Mono S-N pos cau non-b obj/sub anti/N.A. goal
Problem-sol. Multi pos cau bas/non-b obj/sub achron/anti/N.A. goal

Table 9: Mapping of RST relations to UniDim dimensions, taken from Sanders et al. (2018)

Table 9 is the mapping table of relation labels of RST-DT to UniDim dimensions. Nuc. means the
nuclearity of a relation. N-S means whether the nuclearity is Nucleus-Satellite (N-S) or Satellite-Nucleus
(S-N) or Nucleus-Nucleus (N-N). Pol., Basic Op., Impl. order, Basic Op., SoC, Temp., and Add. features
denote polarity, basic operation, source of coherence, temporality and additional features, respectively.
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B Relation Labels of PDTB 3.0 to UniDim Dimension Mapping Table
Table 10 shows the mapping of relation labels of PDTB 3.0 to UniDim dimensions.

Class_type End label A1-A2 Pol. Basic Op. Impl. order SoC Temp. Add. features
Temporal
Synchronous pos add N.A. obj sync
Asynchronous Precedence A1-A2 pos add N.A. obj chron

Precedence A2-A1 pos add N.A. obj anti
Succession A1-A2 pos add N.A. obj anti
Succession A2-A1 pos add N.A. obj chron

Contingency
Cause Reason A1-A2 pos cau non-b obj anti

Reason A2-A1 pos cau bas obj chron
Result A1-A2 pos cau bas obj chron goal
Result A1-A2 pos cau bas obj chron goal
NegResult neg cau bas obj chron

Cause+Belief Reason+Belief A1-A2 pos cau non-b sub NS
Reason+Belief A2-A1 pos cau bas sub NS
Result+Belief A1-A2 pos cau bas sub NS
Result+Belief A2-A1 pos cau non-b sub NS

Cause
+SpeechAct Reason+SpeechAct A1-A2 pos cau non-b sub NS

Reason+SpeechAct A2-A1 pos cau bas sub NS
Result+SpeechAct A1-A2 pos cau bas sub NS
Result+SpeechAct A2-A1 pos cau non-b sub NS

Purpose arg1-as-goal A1-A2 pos cau non-b obj/sub NS goal
arg1-as-goal A2-A1 pos cau bas obj/sub NS goal
arg2-as-goal A1-A2 pos cau bas sub NS goal

Condition arg1-as-cond A1-A2 pos cau bas obj/sub NS conditional
arg1-as-cond A2-A1 pos cau non-b obj/sub NS conditional
arg2-as-cond A1-A2 pos cau non-b obj/sub NS conditional
arg2-as-cond A2-A1 pos cau bas obj/sub NS conditional

Condition
+SpeechAct pos cau bas sub NS conditional

Negative
-Condition arg1-as-negcond A1-A2 neg cau bas sub NS conditional

arg1-as-negcond A2-A1 neg cau non-b sub NS conditional
arg2-as-negcond A1-A2 neg cau non-b sub NS conditional
arg2-as-negcond A2-A1 neg cau bas sub NS conditional

Negative-
Condition+
SpeechAct

neg cau bas sub NS conditional

Comparison
Concession arg1-as-denier A1-A2 neg cau non-b obj/sub NS

arg1-as-denier A2-A1 neg cau bas obj/sub NS
arg2-as-denier A1-A2 neg cau bas obj/sub NS
arg2-as-denier A2-A1 neg cau non-b obj/sub NS

Concession
+SpeechAct neg cau bas sub NS

Contrast neg add NA obj NS
Similarity pos add NA obj NS
Expansion
Conjunction pos add NA obj/sub NS
Disjunction neg add NA obj/sub NS alternative
Equivalence pos add NA obj/sub NS
Exception arg1-as-excpt neg add NA obj/sub NS

arg2-as-excpt neg add NA obj/sub NS
Instantiation arg1-as-instance pos add NA obj/sub NS specificity

arg2-as-instance pos add NA obj/sub NS specificity
Level-of-detail arg1-as-detail pos add NA obj/sub NS specificity

arg2-as-detail pos add NA obj/sub NS specificity
Manner arg1-as-manner A1-A2 pos add NA obj/sub NS specificity

arg2-as-manner pos add NA obj/sub NS specificity
Substitution arg1-as-subst A1-A2 neg cau bas obj/sub NS

arg1-as-subst A2-A1 neg cau non-b obj/sub NS
arg2-as-subst A1-A2 neg cau non-b obj/sub NS
arg2-as-subst A2-A1 neg cau bas obj/sub NS

Table 10: Mapping of relations labels of PDTB 3.0 to UniDim dimensions.

Table 10 is the mapping table of relation labels of PDTB 3.0 to UniDim dimensions. A1-A2 means
Argument 1 precedes Argument 2 and A2-A1 means Argument 2 precedes Argument 1 in the original
text. The abbreviations are interpreted in the same way as in Table 9.
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C Distribution of UniDim dimensions in RST-DT and PDTB 3.0

Figure 1 shows distribution of the polarity, basic operation, implication order, source of coherence,
temporality and additional dimensions used in this paper.

Figure 1: Distribution of the polarity, basic operation, and implication order dimensions (upper row, from left to right,
respectively), and source of coherence, temporality and additional dimensions (lower row, from left to right, respectively) in the
training sets of RST-DT and PDTB 3.0. We divide PDTB 3.0 based on explicit and implicit relation types.
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D Hyper-parameters

For discourse relation classification described in
section 3.1, the model is configured with a dropout
rate of 0.2. The size of the output of the first MLP
is set to 256 and the size of the second MLP output
is 128. The model is trained with the AdamW
optimizer (Loshchilov and Hutter, 2019), with a
learning rate of 5e − 5. The batch size is set to 4
and the maximum norm of gradient clipping is set
to 1. We use get_linear_schedule_with_warmup
from the Transformers library as the learning rate
scheduler. The maximum training epoch number is
set to 10. The same setting is used in training the
model for UniDim dimension prediction, the only
exception being the learning rate, which is set to
1e− 5 to obtain good performance for this task.

For the cross-framework discourse relation clas-
sification task, the learning rate for transfer learning
is 1e − 5 and as only parameters of the classifier
layer are learnable, the maximum training epoch
number is set to 50. The other hyper-parameters
are the same as above.

We choose the best-performing model based on
the performance at the validation set. The PyTorch
library (Paszke et al., 2019) is used for implementa-
tion. The models are trained on an RTX2060 Super
GPU.

The model for PDTB relation classification has
109,753,388 parameters and the training process
took 6:25:23 (h:mm:ss) GPU hours for PDTB to-
tal relation classification, 2:56:58 GPU hours for
PDTB explicit relation classification and 3:13:13
GPU hours for PDTB implicit relation classifica-
tion. The model for RST relation classification has
109,494,544 parameters and the training process
took 2:28:44 GPU hours. The number of parame-
ters in the model for transfer learning is 2,064 and
the training process took 4:38:43 GPU hours.
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E Distribution of Relations in Training Data

Figures 2, 3, 4 and 5 shows the distribution of relations in the training sets used in the experiments, sorted
in descending order.

Figure 2: Distribution of PDTB relations in the experiment on PDTB where data of explicit and implicit relations are combined.

Figure 3: Distribution of RST relations in the training set.

36



Figure 4: Distribution of PDTB explicit relations in the training set.

Figure 5: Distribution of PDTB implicit relations in the training set.
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F PDTB Total Data Relation
Classification

Table 11 shows the classification report on PDTB
3.0 (combining explicit and implicit relations) with
BERT embeddings and UniDim dimensions as in-
put features.

Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 232
Cause 1.00 1.00 1.00 538
Cause+Belief 1.00 1.00 1.00 13
Concession 0.99 0.96 0.98 371
Condition 1.00 1.00 1.00 79
Conjunction 0.97 1.00 0.98 745
Contrast 1.00 1.00 1.00 102
Disjunction 1.00 1.00 1.00 20
Equivalence 0.00 0.00 0.00 25
Instantiation 0.00 0.00 0.00 117
Level-of-detail 0.00 0.00 0.00 202
Manner 0.07 0.96 0.14 26
Purpose 1.00 0.96 0.98 118
Similarity 0.00 0.00 0.00 12
Substitution 0.68 0.91 0.78 35
Synchronous 0.90 1.00 0.95 170
Accuracy 0.86
Macro-F1 0.66 0.74 0.67 2805

Table 11: PDTB relation classification with BERT embed-
dings and UniDim dimensions as features.

Table 12 shows the classification report on
PDTB 3.0 (combining explicit and implicit rela-
tions) with BERT embeddings as input.

Precision Recall F1 Support
Asynchronous 0.79 0.65 0.71 232
Cause 0.71 0.62 0.66 538
Cause+Belief 0.00 0.00 0.00 13
Concession 0.78 0.83 0.80 371
Condition 0.92 0.87 0.90 79
Conjunction 0.71 0.85 0.77 745
Contrast 0.48 0.40 0.44 102
Disjunction 0.86 0.90 0.88 20
Equivalence 0.36 0.16 0.22 25
Instantiation 0.70 0.57 0.63 117
Level-of-detail 0.48 0.53 0.50 202
Manner 0.41 0.62 0.49 26
Purpose 0.87 0.84 0.85 118
Similarity 0.78 0.58 0.67 12
Substitution 0.53 0.49 0.51 35
Synchronous 0.74 0.64 0.68 170
Accuracy 0.71
Macro-F1 0.63 0.60 0.61 2805

Table 12: PDTB relation classification with BERT embed-
dings as features.

G PDTB Explicit Relation Classification

Table 13 shows the classification report on PDTB
3.0 (explicit relations only) with BERT embeddings
and UniDim dimensions as input features.

Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 127
Cause 1.00 1.00 1.00 115
Concession 0.96 1.00 0.98 285
Condition 1.00 1.00 1.00 61
Conjunction 1.00 1.00 1.00 516
Contrast 1.00 1.00 1.00 50
Disjunction 1.00 1.00 1.00 18
Level-of-detail 0.00 0.00 0.00 20
Manner 0.35 1.00 0.52 11
Purpose 1.00 1.00 1.00 29
Substitution 0.00 0.00 0.00 13
Synchronous 1.00 1.00 1.00 126
Accuracy 0.98
Macro-F1 0.78 0.83 0.79 1371

Table 13: Classification report of PDTB explicit relations
with BERT embeddings and UniDim dimensions as features.

Table 14 shows the classification report on
PDTB 3.0 (explicit relations only) with BERT em-
beddings as input features.

Precision Recall F1 Support
Asynchronous 0.97 0.87 0.92 127
Cause 0.82 0.89 0.85 115
Concession 0.89 0.95 0.92 285
Condition 0.93 0.92 0.93 61
Conjunction 0.97 0.96 0.96 516
Contrast 0.52 0.48 0.50 50
Disjunction 0.90 1.00 0.95 18
Level-of-detail 0.71 0.75 0.73 20
Manner 0.42 0.91 0.57 11
Purpose 0.62 0.45 0.52 29
Substitution 1.00 0.92 0.96 13
Synchronous 0.81 0.71 0.76 126
Accuracy 0.89
Macro-F1 0.80 0.82 0.80 1371

Table 14: Classification report of PDTB explicit relations
with BERT embeddings as features.

H PDTB Explicit Relation Classification
Ablation Studies

Table 15 shows the classification report on PDTB
3.0 (explicit relations only) with BERT embeddings
and UniDim dimensions as input features, the po-
larity dimension being removed.

Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 127
Cause 1.00 1.00 1.00 115
Concession 0.96 1.00 0.98 285
Condition 1.00 1.00 1.00 61
Conjunction 1.00 1.00 1.00 516
Contrast 0.62 1.00 0.76 50
Disjunction 1.00 1.00 1.00 18
Level-of-detail 0.00 0.00 0.00 20
Manner 0.35 1.00 0.52 11
Purpose 1.00 1.00 1.00 29
Substitution 0.00 0.00 0.00 13
Synchronous 1.00 0.75 0.86 126
Accuracy 0.95
Macro-F1 0.74 0.81 0.76 1371

Table 15: Classification report of PDTB explicit relations,
with the polarity dimension removed.

Table 16 shows the classification report on
PDTB 3.0 (explicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the basic operation dimension being removed.

Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 127
Cause 1.00 1.00 1.00 115
Concession 0.96 1.00 0.98 285
Condition 1.00 1.00 1.00 61
Conjunction 1.00 1.00 1.00 516
Contrast 1.00 1.00 1.00 50
Disjunction 1.00 1.00 1.00 18
Level-of-detail 0.00 0.00 0.00 20
Manner 0.35 1.00 0.52 11
Purpose 1.00 1.00 1.00 29
Substitution 0.00 0.00 0.00 13
Synchronous 1.00 1.00 1.00 126
Accuracy 0.98
Macro-F1 0.78 0.83 0.79 1371

Table 16: Classification report of PDTB explicit relations,
with the basic operation dimension removed.

Table 17 shows the classification report on
PDTB 3.0 (explicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the source of coherence dimension being removed.
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Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 127
Cause 1.00 1.00 1.00 115
Concession 0.96 1.00 0.98 285
Condition 1.00 1.00 1.00 61
Conjunction 0.94 1.00 0.97 516
Contrast 0.74 1.00 0.85 50
Disjunction 0.00 0.00 0.00 18
Level-of-detail 0.00 0.00 0.00 20
Manner 0.35 1.00 0.52 11
Purpose 1.00 1.00 1.00 29
Substitution 0.00 0.00 0.00 13
Synchronous 1.00 0.75 0.86 126
Accuracy 0.94
Macro-F1 0.67 0.73 0.68 1371

Table 17: Classification report of PDTB explicit relations,
with the source of coherence dimension removed.

Table 18 shows the classification report on
PDTB 3.0 (explicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the implication order dimension being removed.

Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 127
Cause 1.00 1.00 1.00 115
Concession 0.96 1.00 0.98 285
Condition 1.00 1.00 1.00 61
Conjunction 1.00 1.00 1.00 516
Contrast 1.00 1.00 1.00 50
Disjunction 1.00 1.00 1.00 18
Level-of-detail 0.00 0.00 0.00 20
Manner 0.35 1.00 0.52 11
Purpose 1.00 1.00 1.00 29
Substitution 0.00 0.00 0.00 13
Synchronous 1.00 1.00 1.00 126
Accuracy 0.98
Macro-F1 0.78 0.83 0.79 1371

Table 18: Classification report of PDTB explicit relations,
with the implication order dimension removed.

Table 19 shows the classification report on
PDTB 3.0 (explicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the temporality dimension being removed.

Precision Recall F1 Support
Asynchronous 0.80 1.00 0.89 127
Cause 1.00 1.00 1.00 115
Concession 0.96 1.00 0.98 285
Condition 1.00 1.00 1.00 61
Conjunction 1.00 1.00 1.00 516
Contrast 1.00 1.00 1.00 50
Disjunction 1.00 1.00 1.00 18
Level-of-detail 0.00 0.00 0.00 20
Manner 0.35 1.00 0.52 11
Purpose 1.00 1.00 1.00 29
Substitution 0.00 0.00 0.00 13
Synchronous 1.00 0.75 0.86 126
Accuracy 0.95
Macro-F1 0.76 0.81 0.77 1371

Table 19: Classification report of PDTB explicit relations,
with the temporality dimension removed.

Table 20 shows the classification report on
PDTB 3.0 (explicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the additional dimensions being removed.

Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 127
Cause 1.00 1.00 1.00 115
Concession 0.96 1.00 0.98 285
Condition 0.88 1.00 0.94 61
Conjunction 0.94 1.00 0.97 516
Contrast 1.00 1.00 1.00 50
Disjunction 1.00 1.00 1.00 18
Level-of-detail 0.00 0.00 0.00 20
Manner 0.00 0.00 0.00 11
Purpose 1.00 0.72 0.84 29
Substitution 0.00 0.00 0.00 13
Synchronous 1.00 1.00 1.00 126
Accuracy 0.96
Macro-F1 0.73 0.73 0.73 1371

Table 20: Classification report of PDTB explicit relations,
with the additional dimensions removed.

I PDTB Implicit Relation Classification

Table 21 shows the classification report on PDTB
3.0 (implicit relations only) with BERT embed-
dings and UniDim dimensions as input features.

Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 95
Cause 1.00 1.00 1.00 366
Cause+Belief 1.00 0.42 0.59 12
Concession 1.00 0.92 0.96 84
Condition 1.00 1.00 1.00 12
Conjunction 0.90 1.00 0.95 221
Contrast 0.98 1.00 0.99 50
Equivalence 0.00 0.00 0.00 24
Instantiation 0.00 0.00 0.00 107
Level-of-detail 0.60 1.00 0.75 180
Manner 0.00 0.00 0.00 15
Purpose 0.92 0.94 0.93 88
Substitution 0.75 1.00 0.86 21
Synchronous 0.87 0.97 0.92 40
Accuracy 0.87
Macro-F1 0.72 0.73 0.71 1315

Table 21: Classification report of implicit PDTB relations
with BERT embeddings and UniDim dimensions as features.

Table 22 shows the classification report on
PDTB 3.0 (implicit relations only) with only BERT
embeddings as input features.

Precision Recall F1 Support
Asynchronous 0.62 0.61 0.62 95
Cause 0.60 0.63 0.61 366
Cause+Belief 0.00 0.00 0.00 12
Concession 0.44 0.40 0.42 84
Condition 0.71 0.42 0.53 12
Conjunction 0.49 0.61 0.54 221
Contrast 0.45 0.42 0.43 50
Equivalence 0.12 0.04 0.06 24
Instantiation 0.77 0.54 0.64 107
Level-of-detail 0.45 0.48 0.46 180
Manner 0.38 0.60 0.46 15
Purpose 0.92 0.98 0.95 88
Substitution 0.43 0.48 0.45 21
Synchronous 0.27 0.10 0.15 40
Accuracy 0.56
Macro-F1 0.48 0.45 0.45 1315

Table 22: Classification report of PDTB implicit relations
with only BERT embeddings as features.

J PDTB Implicit Relation Classification
Ablation Studies

Table 23 shows the classification report on PDTB
3.0 (implicit relations only) with BERT embed-
dings and UniDim dimensions as input features,
the polarity dimension being removed.
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Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 95
Cause 1.00 1.00 1.00 366
Cause+Belief 1.00 0.42 0.59 12
Concession 0.96 0.92 0.94 84
Condition 1.00 0.75 0.86 12
Conjunction 0.90 1.00 0.95 221
Contrast 0.98 1.00 0.99 50
Equivalence 0.00 0.00 0.00 24
Instantiation 0.00 0.00 0.00 107
Level-of-detail 0.60 1.00 0.75 180
Manner 0.00 0.00 0.00 15
Purpose 0.92 0.94 0.93 88
Substitution 0.75 1.00 0.86 21
Synchronous 0.87 0.97 0.92 40
Accuracy 0.87
Macro-F1 0.71 0.71 0.70 1315

Table 23: Classification report of PDTB implicit relations,
with the polarity dimension removed.

Table 24 shows the classification report on
PDTB 3.0 (implicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the basic operation dimension being removed.

Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 95
Cause 1.00 1.00 1.00 366
Cause+Belief 1.00 0.42 0.59 12
Concession 1.00 0.92 0.96 84
Condition 1.00 1.00 1.00 12
Conjunction 0.90 1.00 0.95 221
Contrast 1.00 1.00 1.00 50
Equivalence 0.00 0.00 0.00 24
Instantiation 0.00 0.00 0.00 107
Level-of-detail 0.60 1.00 0.75 180
Manner 0.00 0.00 0.00 15
Purpose 0.92 0.94 0.93 88
Substitution 0.75 1.00 0.86 21
Synchronous 0.87 0.97 0.92 40
Accuracy 0.87
Macro-F1 0.72 0.73 0.71 1315

Table 24: Classification report of PDTB implicit relations,
with the basic operation dimension removed.

Table 25 shows the classification report on
PDTB 3.0 (implicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the source of coherence dimension being removed.

Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 95
Cause 1.00 1.00 1.00 366
Cause+Belief 1.00 0.42 0.59 12
Concession 1.00 0.92 0.96 84
Condition 1.00 1.00 1.00 12
Conjunction 0.90 1.00 0.95 221
Contrast 1.00 1.00 1.00 50
Equivalence 0.00 0.00 0.00 24
Instantiation 0.00 0.00 0.00 107
Level-of-detail 0.60 1.00 0.75 180
Manner 0.00 0.00 0.00 15
Purpose 0.92 0.94 0.93 88
Substitution 0.75 1.00 0.86 21
Synchronous 0.87 0.97 0.92 40
Accuracy 0.87
Macro-F1 0.72 0.73 0.71 1315

Table 25: Classification report of PDTB implicit relations,
with the source of coherence dimension removed. The result
is the same as Table 24, where the basic operation dimension
is removed.

Table 26 shows the classification report on
PDTB 3.0 (implicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the implication order dimension being removed.

Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 95
Cause 1.00 1.00 1.00 366
Cause+Belief 0.00 0.00 0.00 12
Concession 0.80 1.00 0.89 84
Condition 1.00 1.00 1.00 12
Conjunction 0.90 1.00 0.95 221
Contrast 0.98 1.00 0.99 50
Equivalence 0.00 0.00 0.00 24
Instantiation 0.00 0.00 0.00 107
Level-of-detail 0.60 1.00 0.75 180
Manner 0.00 0.00 0.00 15
Purpose 0.87 0.94 0.91 88
Substitution 0.00 0.00 0.00 21
Synchronous 0.87 0.97 0.92 40
Accuracy 0.86
Macro-F1 0.57 0.64 0.60 1315

Table 26: Classification report of PDTB implicit relations,
with the implication order dimension removed.

Table 27 shows the classification report on
PDTB 3.0 (implicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the temporality dimension being removed.

Precision Recall F1 Support
Asynchronous 0.99 1.00 0.99 95
Cause 1.00 1.00 1.00 366
Cause+Belief 1.00 0.42 0.59 12
Concession 1.00 0.92 0.96 84
Condition 1.00 1.00 1.00 12
Conjunction 0.90 1.00 0.95 221
Contrast 1.00 1.00 1.00 50
Equivalence 0.00 0.00 0.00 24
Instantiation 0.00 0.00 0.00 107
Level-of-detail 0.60 1.00 0.75 180
Manner 0.00 0.00 0.00 15
Purpose 0.92 0.94 0.93 88
Substitution 0.75 1.00 0.86 21
Synchronous 0.87 0.97 0.92 40
Accuracy 0.87
Macro-F1 0.72 0.73 0.71 1315

Table 27: Classification report of PDTB implicit relations,
with the temporality dimension removed.

Table 28 shows the classification report on
PDTB 3.0 (implicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the additional dimensions being removed.

Precision Recall F1 Support
Asynchronous 0.99 1.00 0.99 95
Cause 1.00 1.00 1.00 366
Cause+Belief 1.00 0.42 0.59 12
Concession 0.96 0.92 0.94 84
Condition 1.00 0.75 0.86 12
Conjunction 0.40 1.00 0.58 221
Contrast 1.00 1.00 1.00 50
Equivalence 0.00 0.00 0.00 24
Instantiation 0.00 0.00 0.00 107
Level-of-detail 0.00 0.00 0.00 180
Manner 0.00 0.00 0.00 15
Purpose 0.92 0.94 0.93 88
Substitution 0.75 1.00 0.86 21
Synchronous 0.87 0.97 0.92 40
Accuracy 0.73
Macro-F1 0.64 0.64 0.62 1315

Table 28: Classification report of PDTB implicit relations,
with the additional dimensions removed.

K RST Relation Classification

Table 29 shows RST relation classification report
with BERT embeddings and UniDim dimensions
as input features.

Table 30 shows RST relation classification report
with BERT embeddings as input features.
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Precision Recall F1 Support
Background 1.00 1.00 1.00 111
Cause 0.92 0.70 0.79 82
Comparison 0.00 0.00 0.00 29
Condition 1.00 1.00 1.00 48
Contrast 0.99 1.00 0.99 146
Elaboration 0.75 1.00 0.86 796
Enablement 0.92 1.00 0.96 46
Evaluation 0.99 1.00 0.99 80
Explanation 0.72 0.97 0.83 110
Joint 1.00 0.03 0.06 212
Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 73
Textual-Organization 0.00 0.00 0.00 9
Topic-Change 0.28 1.00 0.44 13
Topic-Comment 0.71 0.21 0.32 24
Accuracy 0.81
Macro-F1 0.64 0.62 0.58 1838

Table 29: RST relation classification report with BERT em-
beddings and UniDim dimensions as features.

Precision Recall F1 Support
Background 0.47 0.35 0.40 111
Cause 0.50 0.17 0.25 82
Comparison 0.61 0.38 0.47 29
Condition 0.79 0.71 0.75 48
Contrast 0.75 0.68 0.72 146
Elaboration 0.65 0.88 0.75 796
Enablement 0.61 0.85 0.71 46
Evaluation 0.29 0.14 0.19 80
Explanation 0.46 0.27 0.34 110
Joint 0.67 0.62 0.64 212
Manner-Means 0.68 0.48 0.57 27
Summary 0.88 0.47 0.61 32
Temporal 0.74 0.27 0.40 73
Textual-Organization 0.44 0.44 0.44 9
Topic-Change 0.28 0.38 0.32 13
Topic-Comment 0.00 0.00 0.00 24
Accuracy 0.63
Macro-F1 0.55 0.44 0.47 1838

Table 30: RST relation classification report using pre-trained
BERT model.

Table 31 shows RST relation classification re-
port using transfer learning from the PDTB relation
classification model (combining PDTB explicit and
implicit relation data during training) with BERT
embeddings and UnDim dimensions as input fea-
tures.

Precision Recall F1 Support
Background 1.00 1.00 1.00 111
Cause 0.90 0.70 0.79 82
Comparison 0.00 0.00 0.00 29
Condition 1.00 0.98 0.99 48
Contrast 0.99 1.00 0.99 146
Elaboration 0.75 1.00 0.86 796
Enablement 0.92 1.00 0.96 46
Evaluation 1.00 1.00 1.00 80
Explanation 0.72 0.97 0.83 110
Joint 0.00 0.00 0.00 212
Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 73
Textual-Organization 0.00 0.00 0.00 9
Topic-Change 0.28 1.00 0.44 13
Topic-Comment 0.71 0.21 0.32 24
Accuracy 0.81
Macro-F1 0.58 0.62 0.57 1838

Table 31: Transfer learning for RST relation classification
with the PDTB relation classification model with BERT em-
beddings and UniDim dimensions as input features.

Table 32 shows RST relation classification re-
port using transfer learning from the pre-trained
BERT model fine-tuned on PDTB relation classifi-
cation task (combining PDTB explicit and implicit
relation data).

Precision Recall F1 Support
Background 0.51 0.27 0.35 111
Cause 0.17 0.07 0.10 82
Comparison 0.42 0.38 0.40 29
Condition 0.80 0.67 0.73 48
Contrast 0.75 0.73 0.74 146
Elaboration 0.60 0.82 0.69 796
Enablement 0.48 0.78 0.60 46
Evaluation 0.00 0.00 0.00 80
Explanation 0.40 0.15 0.22 110
Joint 0.57 0.66 0.61 212
Manner-Means 0.43 0.33 0.38 27
Summary 0.00 0.00 0.00 32
Temporal 0.53 0.36 0.43 73
Textual-Organization 0.00 0.00 0.00 9
Topic-Change 0.00 0.00 0.00 13
Topic-Comment 0.00 0.00 0.00 24
Accuracy 0.58
Macro-F1 0.35 0.33 0.33 1838

Table 32: Transfer learning for RST relation classification
using BERT embeddings as input.

L RST Relation Classification Ablation
Studies

Table 33 shows the classification report on RST-DT
with BERT embeddings and UniDim dimensions
as input features, the polarity dimension being re-
moved.

Precision Recall F1 Support
Background 1.00 1.00 1.00 111
Cause 0.90 0.70 0.79 82
Comparison 0.00 0.00 0.00 29
Condition 1.00 0.94 0.97 48
Contrast 0.61 0.56 0.58 146
Elaboration 0.68 1.00 0.81 796
Enablement 0.92 1.00 0.96 46
Evaluation 1.00 0.57 0.73 80
Explanation 0.71 0.97 0.82 110
Joint 0.00 0.00 0.00 212
Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 73
Textual-organization 0.00 0.00 0.00 9
Topic-Change 0.00 0.00 0.00 13
Topic-Comment 0.00 0.00 0.00 24
Accuracy 0.74
Macro-F1 0.49 0.48 0.48 1838

Table 33: Classification report for RST, with the polarity
dimension removed.

Table 34 shows the classification report on RST-
DT with BERT embeddings and UniDim dimen-
sions as input features, the basic operation dimen-
sion being removed.

Precision Recall F1 Support
Background 0.95 1.00 0.97 111
Cause 0.90 0.70 0.79 82
Comparison 0.00 0.00 0.00 29
Condition 1.00 0.98 0.99 48
Contrast 0.99 1.00 0.99 146
Elaboration 0.73 1.00 0.84 796
Enablement 0.92 1.00 0.96 46
Evaluation 0.87 0.57 0.69 80
Explanation 0.72 0.97 0.83 110
Joint 0.00 0.00 0.00 212
Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 73
Textual-Organization 0.00 0.00 0.00 9
Topic-Change 0.28 1.00 0.44 13
Topic-Comment 0.00 0.00 0.00 24
Accuracy 0.78
Macro-F1 0.52 0.58 0.53 1838

Table 34: Classification report for RST, with the basic opera-
tion dimension removed.

Table 35 shows the classification report on RST-
DT with BERT embeddings and UniDim dimen-
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sions as input features, the source of coherence
dimension being removed.

Precision Recall F1 Support
Background 0.95 1.00 0.97 111
Cause 0.84 0.70 0.76 82
Comparison 0.00 0.00 0.00 29
Condition 1.00 0.98 0.99 48
Contrast 0.99 1.00 0.99 146
Elaboration 0.73 1.00 0.84 796
Enablement 0.92 1.00 0.96 46
Evaluation 0.96 0.57 0.72 80
Explanation 0.72 0.97 0.83 110
Joint 0.00 0.00 0.00 212
Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 73
Textual-Organization 0.00 0.00 0.00 9
Topic-Change 0.28 1.00 0.44 13
Topic-Comment 0.00 0.00 0.00 24
Accuracy 0.78
Macro-F1 0.52 0.58 0.53 1838

Table 35: Classification report for RST, with the source of
coherence dimension removed.

Table 36 shows the classification report on RST-
DT with BERT embeddings and UniDim dimen-
sions as input features, the implication order di-
mension being removed.

Precision Recall F1 Support
Background 1.00 1.00 1.00 111
Cause 0.90 0.70 0.79 82
Comparison 0.00 0.00 0.00 29
Condition 1.00 0.98 0.99 48
Contrast 0.99 1.00 0.99 146
Elaboration 0.75 1.00 0.86 796
Enablement 0.84 1.00 0.91 46
Evaluation 0.99 1.00 0.99 80
Explanation 0.72 0.97 0.83 110
Joint 0.75 0.03 0.05 212
Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 73
Textual-Organization 0.00 0.00 0.00 9
Topic-Change 0.28 1.00 0.44 13
Topic-Comment 0.00 0.00 0.00 24
Accuracy 0.81
Macro-F1 0.58 0.60 0.55 1838

Table 36: Classification report for RST, with the implication
order dimension removed.

Table 37 shows the classification report on RST-
DT with BERT embeddings and UniDim dimen-
sions as input features, the temporality dimension
being removed.

Precision Recall F1 Support
Background 1.00 1.00 1.00 111
Cause 0.92 0.70 0.79 82
Comparison 0.00 0.00 0.00 29
Condition 1.00 0.88 0.93 48
Contrast 0.99 1.00 0.99 146
Elaboration 0.75 1.00 0.86 796
Enablement 0.84 1.00 0.91 46
Evaluation 0.99 1.00 0.99 80
Explanation 0.69 0.97 0.81 110
Joint 1.00 0.03 0.06 212
Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 73
Textual-Organization 0.00 0.00 0.00 9
Topic-Change 0.28 1.00 0.44 13
Topic-Comment 0.00 0.00 0.00 24
Accuracy 0.80
Macro-F1 0.59 0.60 0.55 1838

Table 37: Classification report for RST, with the temporality
dimension removed.

Table 38 shows the classification report on RST-
DT with BERT embeddings and UniDim dimen-

sions as input features, the additional dimensions
being removed.

Precision Recall F1 Support
Background 0.95 1.00 0.97 111
Cause 0.90 0.70 0.79 82
Comparison 0.00 0.00 0.00 29
Condition 1.00 0.81 0.90 48
Contrast 0.99 1.00 0.99 146
Elaboration 0.75 1.00 0.86 796
Enablement 0.84 1.00 0.91 46
Evaluation 0.90 1.00 0.95 80
Explanation 0.71 0.97 0.82 110
Joint 0.00 0.00 0.00 212
Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 73
Textual-Organization 0.00 0.00 0.00 9
Topic-Change 0.28 1.00 0.44 13
Topic-Comment 0.00 0.00 0.00 24
Accuracy 0.80
Macro-F1 0.52 0.59 0.54 1838

Table 38: Classification report for RST, with the additional
dimensions removed.

M Cross-framework Discourse Relation
Classification

Table 39 shows the classification report of the ex-
periment using total PDTB data, where PDTB rela-
tion classification is the source task.

P R F1 Pb. Rb. F1b. C.
Asynchronous 1.00 1.00 1.00 0.79 0.65 0.71 232

Cause 1.00 1.00 1.00 0.71 0.62 0.66 538
Cause+Belief 1.00 1.00 1.00 0.00 0.00 0.00 13
Concession 0.99 0.96 0.98 0.78 0.83 0.80 371
Condition 1.00 1.00 1.00 0.92 0.87 0.90 79

Conjunction 0.97 1.00 0.98 0.71 0.85 0.77 745
Contrast 1.00 1.00 1.00 0.48 0.40 0.44 102

Disjunction 1.00 1.00 1.00 0.86 0.90 0.88 20
Equivalence 0.00 0.00 0.00 0.36 0.16 0.22 25
Instantiation 0.00 0.00 0.00 0.70 0.57 0.63 117

Level-of-detail 0.00 0.00 0.00 0.48 0.53 0.50 202
Manner 0.07 0.96 0.14 0.41 0.62 0.49 26
Purpose 1.00 0.96 0.98 0.87 0.84 0.85 118

Similarity 0.00 0.00 0.00 0.78 0.58 0.67 12
Substitution 0.68 0.91 0.78 0.53 0.49 0.51 35
Synchronous 0.90 1.00 0.95 0.74 0.64 0.68 170

Acc. 0.86 0.71 (vs. DISRPT 2021: 0.74)
Macro-F1 0.66 0.74 0.67 0.63 0.60 0.61 2805

Table 39: Results of relation classification on total PDTB
data. Blue columns show our results and uncolored columns
show results of the baseline model.

Table 40 shows the classification report of the
target task, i.e. RST relation classification.

P R F1 Pb. Rb. F1b. C.
Background 1.00 1.00 1.00 0.51 0.27 0.35 111
Cause 0.90 0.70 0.79 0.17 0.07 0.10 82
Comparison 0.00 0.00 0.00 0.42 0.38 0.40 29
Condition 1.00 0.98 0.99 0.80 0.67 0.73 48
Contrast 0.99 1.00 0.99 0.75 0.73 0.74 146
Elaboration 0.75 1.00 0.86 0.60 0.82 0.69 796
Enablement 0.92 1.00 0.96 0.48 0.78 0.60 46
Evaluation 1.00 1.00 1.00 0.00 0.00 0.00 80
Explanation 0.72 0.97 0.83 0.40 0.15 0.22 110
Joint 0.00 0.00 0.00 0.57 0.66 0.61 212
Manner-
Means

0.00 0.00 0.00 0.43 0.33 0.38 27

Summary 0.00 0.00 0.00 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 0.53 0.36 0.43 73
Textual-
Organization

0.00 0.00 0.00 0.00 0.00 0.00 9

Topic-
Change

0.28 1.00 0.44 0.00 0.00 0.00 13

Topic-
Comment

0.71 0.21 0.32 0.00 0.00 0.00 24

Acc. 0.81 0.58
Macro-F1 0.58 0.62 0.57 0.35 0.33 0.33 1838
RST acc 0.81 0.63
RST
Macro-F1

0.64 0.62 0.58 0.55 0.44 0.47 1838

Table 40: Results of the target task. The results of training
a model specifically for RST relation classification with our
method are shown in blue columns and the uncolored columns
show results of the baseline model.
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Abstract
We present a method for effective title encoding
for hierarchical classification in a large taxon-
omy. The method enables taxonomy-aware
encoding in pre-trained text encoders, such
as fastText and BERT, which are additionally
fine-tuned for the hierarchical classification.
The embeddings produced using our method
perform well when applied to nearest neigh-
bor classification. They allow for controllable
and sufficient hierarchical classification based
solely on the title.

1 Introduction

Hierarchical classification is the task of organizing
data into a hierarchy of categories, where each cate-
gory is a subset of another category. This structure
can be thought of as a tree-like structure, where the
root node represents the most general category and
the leaf nodes represent the most specific categories.
In NLP, hierarchical text classification (HTC) is
widely used to organize large collections of doc-
uments (e.g. emails, patents, job advertisements,
digital libraries) or entities (e.g. product or service
titles in e-commerce). This work focuses on the
challenge of inferring fine-grained categories from
no other information but an entity name, which is
a specific challenge for hierarchical classification.

The deep hierarchical classification approaches
developed over the past years (Yang et al., 2020;
Gao, 2020; Gong et al., 2023) have three major
limitations:

• Entity HTC models are often developed for e-
commerce and use multiple attributes for the
input entity including detailed descriptions,
tags, or images. However, there are other situ-
ations where just the textual titles are available
for classification, like mapping diagnoses and
procedures to a clinical coding taxonomy (Li
et al., 2019; Chakraborty et al., 2023). Bet-
ter title representations can also be beneficial
when multiple attributes are present.

• Being mostly deep learning classification
methods, they are prone to class imbalance
and may not be able to handle large skewed
hierarchies with a few examples per leaf.

• Limited interpretation capabilities of the deep
hierarchical classifiers are another disadvan-
tage that can be critical in some practical ap-
plications.

To address these limitations, we propose a sim-
ple yet effective approach that encodes the textual
title using hierarchy-aware information to map an
object’s title to the relevant leaf in the taxonomy.
We show that our approach improves the classifi-
cation performance of deep models while making
the entity title classification easier to interpret and
control1.

2 Related Work

Hierarchical Entity Title Classification In hi-
erarchical classification, each object is associated
with a certain branch (labels path) in the hierarchy
tree. There are three fundamental approaches to hi-
erarchical classification: flat classification (object-
to-branch), global classification, and local classifi-
cation (Silla and Freitas, 2011). Global classifica-
tion predicts classes in the hierarchy using a single
model that considers class dependencies, whereas
local classification uses multiple separate models
for different hierarchy nodes or levels.

Previous approaches to HTC for e-commerce
mainly focus on title-plus-description classifica-
tion, and include flat classifiers (Skinner, 2018;
Suzuki et al., 2018), two-level pipelines (Cevahir
and Murakami, 2016; Gupta et al., 2016; Das et al.,
2017; Goumy and Mejri, 2018), multilabel classi-
fiers (Jia et al., 2018; Yu et al., 2018), and sequence-
to-sequence branch generation (Li et al., 2018).

1The code is available at https://github.com/
tchewik/entity_representation_learning
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Shared tasks often feature the systems investigat-
ing external ways to improve classification perfor-
mance, including model ensembling (Yang et al.,
2020; Yu et al., 2018; Jia et al., 2018), pseudo la-
beling (Yang et al., 2020), and collecting additional
data (Borst et al., 2020). Some approaches focus
on optimizing the classification model itself by con-
sidering the hierarchy of classes in the activation
(Yang et al., 2020) or loss (Gao, 2020) function.
Other methods involve matching an entity title with
a leaf title (Chen et al., 2021; Gong et al., 2023).
To improve entity title encoding for product classi-
fication and overcome the problem of domain shift,
Brinkmann and Bizer (2021) suggest additionally
pre-training the transformer on product offers from
Common Crawls.

In our method, we train a single global deep
classifier and utilize it to encode entity titles in a
complicated hierarchy for flat categorization. We
demonstrate that this approach excels in terms of
accuracy on the deepest levels of hierarchy, sim-
plicity, and controllability.

LLM Applications Large language models have
limited structured prediction capabilities. There
have been recent attempts to solve the HTC task
through hierarchy verbalization, however, they still
rely on pretrained BERT rather than LLMs and re-
quire model architecture modifications: Wang et al.
(2022) frame the problem as a hierarchy-aware
multi-label MLM task, adopting a Graph Attention
Network and a zero-bounded Multi-label Cross-
Entropy Loss, while Ji et al. (2023) address HTC
as flat classification solvable by verbalizing with
a hierarchy-aware decoder constraint. Although
promising, these methods are tailored and eval-
uated for elaborate texts in smaller taxonomies
(WOS, DBPedia, RCV1-V2).

While prompting LLMs for this task can be pos-
sible for flat entity title classification in a large
hierarchy, there are some major limitations:

• A large language model should memorize
an entire deep taxonomy with thousands of
branches and adhere to its complex structure
without deviation. This level of precision is
achievable by imposing low-level constraints
overriding the NLG capabilities of LLMs.
Constraining LLMs in this way erases their
main strength in favor of precise taxonomic
compliance – an outcome more efficiently
reached by fine-tuning text encoders.

• Few-shot learning is successful in many tasks,
but it is not suitable for the hierarchical clas-
sification in a large taxonomy. Exposing the
LLM to examples spanning all the taxonomy
branches, or fine-tuning on a large labeled
dataset, would be extremely resource- and
time-intensive.

• LLM predictions cannot be controlled or in-
terpreted precisely. This lack of transparency
makes LLMs unsuitable for settings requiring
controllable accuracy and recall.

3 Background

In this work, we compare nearest-neighbors clas-
sification, deep hierarchical classification, and our
hybrid method as three basic approaches to entity
title classification in a large taxonomy.

3.1 k-Nearest-Neighbor Classification
Given representations of entity titles in hierarchi-
cally organized data, the embedding of an input
entity is assigned to a leaf of the hierarchy based on
the leaves of its k nearest neighbors. The distance
between text embeddings is typically estimated as
a cosine distance, and k nearest neighbor classes
are weighted according to the distances.

Advantages: (1) The most interpretable method.
(2) With small k is immune to subclass imbalance
in a complex hierarchy.

Disadvantages: (1) Domain shift affects pre-
trained language models substantially, and domain
adaptation requires additional resources for data
collection and computation. (2) With small k,
highly sensitive to outliers. (3) Does not provide
any information about the taxonomy.

3.2 Deep Hierarchical Classification
The classifier predicts the most probable classes
for each level of the hierarchy and collects the fi-
nal prediction from a pool of weighted class labels.
The classifier can predict multiple labels in a multi-
label fashion or have n top outputs for all hierarchy
levels.

Advantages: (1) The internal representations of
texts in the neural model are influenced by both
their own surface forms and their position in the
hierarchy. (2) More robust to data noise. (3) Can
more or less adjust to specific domains while fine-
tuning.

Disadvantages: (1) Is highly affected by class
imbalance. (2) Has reduced interpretability. (3) As
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Figure 1: Overview of our framework with DBERT1−5 as a deep classifier. During training, the encoder is paired
with outputs for hierarchical classification. The classification part of the model is fine-tuned in conjunction with the
encoder to generate a sequence of subclass labels (levels 1-5). During inference, we encode the known data and
input entity using only the fine-tuned encoder and attempt to find the most similar entities in a complex taxonomy.
Finally, we assign the input entity to the hierarchy leaf with the most similar known entities.

a result of the previous point, it is more difficult to
control the precision of the model when implement-
ing it in real-world systems. Classifier confidence
is not transparent. (3) The model itself can pro-
duce contradictory labels (non-existing taxonomy
branches), and introducing hierarchical informa-
tion can require the implementation of additional
restrictions.

4 Methods

We compare multiple methods that follow the two
fundamental strategies introduced in Section 3. The
described HTC methods employing a single model
(FT1−5, DBERT1−5) are additionally probed in the
hybrid classification setting.

4.1 k-NN
The most similar titles in a hierarchy are found
using cosine distance. The out-of-the-box encoder
is not fine-tuned on task-related data. The title is
encoded as an average of token representations. We
probe two types of representations: fastText and
DeBERTa.

4.2 Trainable Classification
A deep classification model simultaneously pre-
dicts multiple labels denoting the nodes in a hierar-
chy. The final prediction assigns an entity title to
a taxonomy branch and is constructed from top-n
predicted node labels along with their probabilities.

FT1−5 : To predict top-n possible nodes for levels
1-5, we use a one-vs-all multilabel classification
implemented in the fastText2 library.

2https://fasttext.cc/

DBERT1−5 : We use an architecture of a deep
hierarchical classifier similar to that of Gao (2020).
The output layers for every level are added on top
of an encoding language model (DeBERTa). For
the title consisting of tokens w1, w2, ..., wz , the
representations are computed in encoder:

e = Encoder(w1w2...wk) ∈ RdLM (1)

The output for each hierarchy level i is predicted
with a separate feedforward layer. Input for the
output layer i > 1 is a concatenation of the text
embedding e and an output for the previous level:

yi =

{
FFi(e) if i = 1;

FFi(e⊕ yi−1), otherwise.
(2)

The probabilities of classes for a hierarchy level
i are calculated by passing yi through the softmax
activation function. The class with the highest pre-
dicted probability is then predicted as ŷi. The loss
function is a weighted sum of the categorical cross-
entropy loss and hierarchical loss:

HLossi =

{
0 if ŷi ⊂ ŷi−1;

1 otherwise.

Loss = α
n∑

i=1

CELossi +
n∑

i=2

βi−1HLossi

(3)

where α and β are the weights controlling the im-
pact of hierarchical loss. The hyperparameter β
(0 < β ≤ 1) is used to scale the hierarchical loss.
The cross-entropy loss is weighted to handle the
class imbalance on each hierarchy level.
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Part Deduplicated
Length

Unique
Branches

Unique Classes of Each Level
1 2 3 4 5

Clothing Shoes and Jewelry 1988301 35710 11 253 953 5263 12371
Home and Kitchen 1203754 1671 13 136 539 695 292
Automotive 831549 2252 14 165 743 849 318
Sports and Outdoors 809999 3414 3 43 351 1102 1281
Electronics 584136 900 16 105 290 305 133
Tools and Home Improvement 488042 1152 13 98 435 427 172
Industrial and Scientific 132168 1796 25 301 970 496 93

Table 1: Statistics of the corpus.

4.3 Our hybrid approach

As a compromise between both of the described
methods, we propose a hybrid approach, in which
the out-of-the-box text encoder is additionally pre-
trained on hierarchical classification. The overall
framework is illustrated in Figure 1. The title en-
coder is fine-tuned as a part of a hierarchical clas-
sifier, and the nearest-neighbor classifier dealing
with flat (entity; leaf) pairs predicts the leaf with
most similar entities.

5 Experimental Setup

5.1 Dataset

Deep models with millions of parameters, such as
BERT, have a tendency to overfit to noise and out-
liers in e-commerce product classification data, as
noted by Zhang et al. (2021). They describe two
major challenges in e-commerce data: frequently
incomplete or misleading item descriptions and
confusing or non mutually exclusive labels in a
large taxonomy. Supervised learning faces a sig-
nificant obstacle when classifying images, descrip-
tions, or titles due to confusing and non-mutually
exclusive labels in a large taxonomy. To address
this issue, we thoroughly clean the data for our
experiments.

We only use the titles and hierarchy annotations
from the Amazon review dataset3 (Ni et al., 2019);
HTML character references in both titles and cat-
egories are decoded into Unicode. We cut sub-
branches leaving only the nodes containing less
than 13 tokens4 in name and keep only subbranches

3https://cseweb.ucsd.edu/~jmcauley/datasets/
amazon_v2/

4We considered the longer nodes noisy because they often
included non-taxonomy information, such as notes for cus-
tomers (e.g. “Please feel free to contact us if you have any
special requests or questions”) or lengthy keyword-stuffed
descriptions (e.g. “My Daily Styles Stainless Steel Black
Faux PU Leather Yellow Gold-Tone Latin Cross Religious
Adjustable Wristband Mens Bracelet”) hardly resembling sub-
classes.

appearing in the data at least 4 times. We have se-
lected seven major data subsets that have at least 90
classes annotated in the 5th level of the hierarchy.
The statistics of the obtained data are described
in Table 1. On each hierarchy level, we encode
classes independently of the previous levels. As
a result, on most subsets, the number of classes
decreases after level 4; instead, “missing” class re-
placement occurs most frequently. This denotes a
natural skew in the hierarchy.

5.2 Metrics

We evaluate the hierarchical classification perfor-
mance with 5-fold stratified cross-validation. This
balances the distribution of branches in each fold.
Firstly, we calculate macro-averaged F1 for each
level of the hierarchy. Since this F1 reflects per-
formance for each level independently, we also
evaluate the accuracy for flat branch assignment
for each depth.

5.3 Implementation Details

fastText We use a fastText model described in
(Grave et al., 2018) that is pretrained on Common
Crawl and Wikipedia data. Hierarchical model
(FT1−5): The classifier is fine-tuned using the one-
vs-all scheme, with a learning rate of 1, character
n-gram range of (3, 10), and for 25 epochs. The
top 7 predicted nodes are used to assemble the full
branch after classification.

Contextual Embeddings As a pretrained trans-
former, we employ DeBERTa5 (He et al., 2021).
Hierarchical model (DBERT1−5): The model is
fine-tuned with a learning rate of 2e-5, dropout rate
of 0.4, batch size of 128, α = 1, β = 0.9, and the
cross-entropy loss for each level (CELossi in (3))
is weighted based on the distribution of classes in
the subcorpus. The top 8 predicted nodes are used
to assemble the final branch.

5microsoft/deberta_v3_base
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6 Experimental Results

Table 2 compares all the investigated methods for
hierarchical classification. The statistics of macro
F1 calculated for each level independently are il-
lustrated in Figure 2.

6.1 Baselines

The results for kNN using out-of-the-box pre-
trained text encoders are denoted as KNN:FT for
fastText and KNN:DBERT for DeBERTa. The
fastText-based flat kNN classifier provides a strong
baseline across all subcorpora. The low perfor-
mance of the KNN:DBERT can be attributed to a
known issue with transformers: the feature extrac-
tion performance of the frozen model decreases
with increasing difference between pretraining and
target tasks (Peters et al., 2019).

6.2 Trainable Classifiers

The fastText- and DeBERTa-based classifiers are
denoted as FT1−5 and DBERT1−5, respectively.

According to the results in Table 2, the fastText-
based hierarchical classifier outperforms the kNN
baseline only across the smallest subcorpora, and
mostly for the higher levels of hierarchy. More-
over, for larger datasets, starting with “Sports and
Outdoors” multilabel fastText training becomes in-
creasingly more challenging and consuming. The
statistics of hierarchical labels are actually learned
by the model, which we’ll see by applying kNN
to its representations. However, collecting the tax-
onomy branch from top-n pool of predicted labels
using the direct approach is hardly applicable.

DBERT1−5 outperforms not only the correspond-
ing weak baseline but also the fasttext-based hybrid
classification KNN:FT1−5 on many datasets. It is
also worth noting that this method handles larger
data with larger class sets much better than multil-
abel fastText.

6.3 k-NN over the Tuned Representations

Applying kNN directly to the inner representa-
tions results in an improvement in classification
for all levels for both backbones (KNN:FT1−5 and
KNN:DBERT1−5). In addition to a considerable
improvement in the accuracy of full branch predic-
tion (A1−5 in Table 2) while preserving or improv-
ing the intra-level F1 (Figure 2), the purely vector-
based approach can also be significantly faster than
collecting known branches from a pool of predicted
labels for each entity.

A1 A1−2 A1−3 A1−4 A1−5

Clothing Shoes and Jewelry

KNN:FT 85.5 81.4 71.0 55.3 44.4
FT1−5 84.1 76.8 64.1 45.4 31.1
KNN:FT1−5 86.8 83.1 73.3 57.8 45.9

KNN:DBERT 72.7 64.3 51.3 38.9 31.8
DBERT1−5 90.8 88.2 80.3 65.7 52.7
KNN:DBERT1−5 90.9 88.4 80.8 67.0 54.9

Home and Kitchen

KNN:FT 89.7 78.5 68.5 64.4 63.5
FT1−5 91.5 80.0 68.0 62.9 60.6
KNN:FT1−5 90.9 81.0 71.5 67.4 66.5

KNN:DBERT 64.5 49.6 42.2 39.8 39.8
DBERT1−5 93.3 85.0 76.5 72.7 71.6
KNN:DBERT1−5 93.6 85.6 77.6 74.0 73.1

Automotive

KNN:FT 89.4 82.1 76.1 72.7 72.0
FT1−5 88.5 80.1 72.9 67.9 66.6
KNN:FT1−5 91.8 86.0 80.7 77.4 76.7

KNN:DBERT 76.9 66.9 61.3 58.7 58.3
DBERT1−5 92.1 86.3 80.8 77.4 76.6
KNN:DBERT1−5 92.3 86.9 81.8 78.6 77.8

Sports and Outdoors

KNN:FT 91.8 81.7 73.0 64.2 59.3
FT1−5 90.3 78.0 67.1 56.7 50.3
KNN:FT1−5 93.3 85.2 77.5 69.2 64.6

KNN:DBERT 77.0 54.5 46.0 40.8 38.0
DBERT1−5 94.4 87.3 80.3 72.6 68.0
KNN:DBERT1−5 94.5 87.8 81.2 74.0 69.8

Electronics

KNN:FT 87.0 76.3 68.6 64.0 62.6
FT1−5 87.4 74.6 64.8 58.3 56.7
KNN:FT1−5 89.4 79.8 72.6 68.5 67.2

KNN:DBERT 63.9 50.3 43.6 40.4 39.6
DBERT1−5 89.8 80.1 72.5 68.1 66.9
KNN:DBERT1−5 90.1 80.8 73.7 69.5 68.3

Tools and Home Improvement

KNN:FT 88.3 78.9 68.4 64.3 62.9
FT1−5 89.9 79.8 69.2 63.7 62.1
KNN:FT1−5 91.9 84.3 75.2 70.9 69.6

KNN:DBERT 62.0 51.7 43.9 41.7 40.8
DBERT1−5 92.2 84.6 75.6 71.1 69.8
KNN:DBERT1−5 92.4 85.2 76.5 72.2 70.9

Industrial and Scientific

KNN:FT 82.0 71.8 63.6 60.6 60.2
FT1−5 85.1 74.1 64.7 60.3 59.7
KNN:FT1−5 87.9 79.1 71.4 68.2 67.8

KNN:DBERT 56.8 49.0 44.1 42.4 42.3
DBERT1−5 88.2 78.9 70.6 67.4 67.0
KNN:DBERT1−5 88.4 79.4 71.5 68.5 68.0

Table 2: Mean accuracy of the branch prediction. The
datasets are listed in descending order of size (see Ta-
ble 1).
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Figure 2: Macro F1 calculated for each level independently; two types of classifiers.

7 Conclusion

We present an approach for entity title hierarchical
classification that uses representation learning for
training hierarchy-informed embeddings. We apply
the obtained embeddings in kNN flat hierarchical
classification to demonstrate how these representa-
tions can be directly used in a controllable setting.
The baselines include pretrained encoders used as
the base encoders in the pipeline and hierarchical
classifiers built with the same encoders. The hybrid
approach outperforms the baselines on each part of
the large-taxonomy e-commerce corpus.
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Abstract

The swift surge of digital communication on
social media platforms has brought about an
increase in hate speech online, especially sex-
ism. Such content can have devastating effects
on the psychological well-being of the users,
and it becomes imperative to design automated
systems that can identify and flag such harmful
content. Human moderation alone is inade-
quate to manage the volume of content, neces-
sitating efficient technological solutions. In this
study, we explore the performance of different
modern techniques on Bert-based models for
detecting sexist text. We explore four such tech-
niques, namely, Domain Adaptive Pre-training
(DAP), Learning Rate Scheduling (LeR), Data
Augmentation (DAug), and an ensemble of all
three. The results show that each technique
improves performance differently on each task
due to their different approaches, which may
be suited to a certain problem more. The en-
semble model performs the best in all three
subtasks. These models are trained on a Se-
meval’23 shared task dataset, which includes
both sexist and non-sexist texts. All in all, this
study explores the potential of DAP-LeR-DAug
techniques in detecting sexist content. The re-
sults of this study highlight the strengths and
weaknesses of the three different techniques
with respect to each subtask. The results of
this study will be useful for researchers and
developers interested in developing systems for
identifying and flagging online hate speech.

1 Introduction

Text classification tasks have been around for a
long time, and so has online hate speech. Posting
without any consequences is stimulus enough for
people to be overly hurtful in their comments and
be ignorant of others’ feelings. Some might just do
it to "troll" someone, some out of pure hatred, and
some for channelling their inner frustration. With
time, the presence of hate speech prevalent online
increases too, and all the major social platforms

nowadays are trying to find ways to flag and curb it.
Sexism has been present since before the Internet,
and thus, there is no surprise that it is one of the
most used forms of hate speech online today.

In our study, we aim to develop an automated
system that can detect and classify sexism using
different techniques, namely, Domain Adaptive Pre-
training (DAP), Learning Rate Scheduling (LeR),
and Data Augmentation (DAug). For the same,
we use the dataset shared by the task organizers
of Task-10 of SemEval-2023 (Kirk et al., 2023).
The dataset contains data for the following three
subtasks:

• Subtask-A: binary classification task in which
systems must figure out whether a certain
piece of text is sexist or not

• Subtask-B: systems must classify the sexist
piece of content into its appropriate class from
the given 4 classes

• Subtask-C: systems must accurately classify
the sexist text into one of the listed 11 classes

Further details regarding sexism category names
can be seen in Figure-1. As visible from the defini-
tions discussed above, the complexity of the task
increases with each level. We go from dealing
with a simple binary classification task to an 11-
class multi-classification problem. This is precisely
why we tackle the task with three unique tech-
niques and an ensemble of all three combined tech-
niques. For implementing the these techniques we
use three BERT-based models, namely, RoBERTa,
HateBERT, and BERTweet. The best model for
each task is the ensemble model. This is because
each of the three techniques is beneficial in its own
way and using an ensemble model makes sure that
the advantages of all three techniques are utilized
simultaneously.

DAP boosts the scores most for Task-A, LeR
for Task-B, and DAug for Task-C thanks to their
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Figure 1: The shared task categories. Image adopted from the organizers of Kirk et al. (2023)

unique approach which caters to the respective sub-
tasks. As a result of their ensemble model, our
system is comfortably able to beat the best base-
line model from the original task paper (Kirk et al.,
2023).

2 Related Work

Detection of online sexism has been a task that
many researchers have worked on over the past
many years. Some showed how we can use both
conventional and deep learning approaches to iden-
tify various forms of sexism in a multi-lingual set-
ting (Rodríguez-Sánchez et al., 2020) while others
have created their own datasets to examine differ-
ent forms of sexist content prevalent nowadays (see
Parikh et al. (2019), Samory et al. (2021)). In
our study, however, we stick to the dataset for the
EDOS task, so we can compare the performance
of our systems with other major baselines and top-
ranked systems.

There have also been important efforts when it
comes to adapting the models to a certain domain.
In our case that is adapting BERT-based models
(for BERT see Devlin et al. (2019)) to hate speech,
sexism to be specific. The authors of Gururangan
et al. (2020) have shown how models can improve
in performance by adapting a certain domain. For
this, first, the model is trained on a large unlabelled
dataset and then fine-tuned on the smaller labelled

dataset, which fits in line with our case. This is
where the motivation of the DAP technique comes
from.

Zhao et al. (2022) showcased how important it
is for the learning rates to adapt to the task so as to
achieve best performance in classification tasks.
This helps in faster convergence while training
which ultimately leads to better results. Similarly,
Data augmentation has always been shown to im-
prove performance generally in text classification
tasks. For instance, the EDA framework (Wei et al.,
2019), where simple updates like synonym replace-
ment, random insertion, random swap, and random
deletion improved classification performance by a
good extent. Likewise, there are other data augmen-
tation approaches such as stochastic replacement of
words in the sentence (Kobayashi, 2018), and using
Pre-trained Language Models to get diverse and se-
mantically correct text samples (Anaby-Tavor et al.,
2019). In our study, we choose to stick with the
simpler EDA approach.

3 System Overview

The system for our study can be broken up into 5
different parts. Firstly, we have the Bert-based mod-
els as it is, i.e., we do not employ any techniques
on them. Then, we have got our DAP-LeR-DAug
individual models to understand which technique
works best in which scenarios. Finally, we wrap it
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all up by having an X model, which is basically an
ensemble of all the three techniques discussed.

3.1 Baselines

As mentioned earlier, we will have three BERT-
based models as our baselines, namely, RoBERTa,
HateBERT, and BERTweet. RoBERTa (Liu et al.,
2019) is an advanced BERT-based pretraining ap-
proach that optimizes and enhances performance
on various natural language understanding tasks
through extensive training with larger batches and
more data, resulting in improved language repre-
sentations. HateBERT (Caselli et al., 2021), on
the other hand, is a specialized transformer-based
model tailored for detecting hate speech in text,
designed to provide accurate identification of of-
fensive content through fine-tuned representations
and focused training on hate speech data. Finally,
BERTweet (Nguyen et al., 2020) is an adaptation
of the BERT model specifically designed for pro-
cessing and understanding text from social media
platforms like Twitter, offering improved perfor-
mance on tasks involving informal language, hash-
tags, mentions, and other characteristics unique to
Twitter discourse.

It is evident from the description of the selected
BERT-based models as to why they are apt for our
experiment which is heavily focused on natural
language understanding and dealing with sexism, a
form of hate speech. For the baseline stage, we use
them as they are and fine-tune them on our shared
task dataset. Then we evaluate how they perform.

3.2 DAP

DAP refers to Domain Adaptive Pre-training. The
organizers of the task (Kirk et al., 2023) had
also provided a dataset of 2 million unlabelled
posts from Gab and Reddit. We utilize this enor-
mous dataset with the Masked Language Modelling
(MLM) objective as we believe this pairing would
hold the most promise for enhancing the perfor-
mance of our BERT-based models in classifying
sexist content. By being subjected to diverse and
extensive linguistic contexts from the unlabelled
dataset during MLM pretraining, the models gain a
robust understanding of general language patterns
and nuances. This enriched linguistic foundation
forms the cornerstone for improved comprehension
of text, enabling the models to capture subtle lin-
guistic cues and contextual variations inherent in
sexist content.

During fine-tuning with labelled data, the mod-
els’ already adept language representations are
seamlessly adapted to the specific domain of sex-
ism detection. This dual-stage process harmonizes
its universal language understanding with domain-
specific features, resulting in heightened discrim-
inatory power to accurately identify and classify
sexist text instances. The fusion of pretraining’s
broad language expertise and fine-tuning’s task-
specific tailoring equips the models with a well-
rounded ability to identify and categorize nuanced
and varied forms of sexist content across the differ-
ent classes of sexist content.

3.3 LeR
LeR refers to Learning Rate Scheduling. Learning
rate scheduling enhances model performance by
dynamically adjusting the step size during train-
ing. This technique accelerates convergence by ini-
tially allowing larger parameter updates, ensuring
quicker progress towards the optimal solution. As
training advances, the learning rate is reduced, sta-
bilizing optimization and preventing overshooting.
By navigating the loss landscape more effectively,
learning rate scheduling helps evade local minima
and improves generalization by mitigating noise
fitting. Although this technique does not contribute
linguistically in terms of word embeddings, contex-
tual understanding of the domain, etc., it can still
prove to be very important.

This technique is particularly valuable for sta-
bilizing training with large batch sizes, adapting
to data characteristics, and achieving fine-tuned
results in transfer learning scenarios. In essence,
learning rate scheduling fine-tunes the learning pro-
cess itself, fostering quicker convergence, robust-
ness, and overall improved model performance.

3.4 DAug
DAug implies Data Augmentation. The dataset we
have is highly imbalanced for each subtask. For
example, the majority class in tasks A and B has
more than 3 times the number of data instances as
compared to the minority class. For task C, the
case is even worse. There are minority classes
with not even 100 instances while some majority
classes have more than 700 instances. A dataset
like this can make the best of classifying models
biased towards the majority class. There are vari-
ous different techniques to counter that, and Data
augmentation is certainly one of them. It concerns
itself with creating new data for classes with lim-
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Figure 2: System Architecture

ited data available. It can significantly enhance a
dataset with limited sexist posts by generating di-
verse variations of existing examples. Techniques
such as synonym replacement, paraphrasing, and
introducing minor textual perturbations help create
additional instances of sexist content. By simulat-
ing different linguistic expressions and contexts,
data augmentation enriches the dataset, which can,
in turn, improve the model generalization and per-
formance, even when original sexist instances are
sparse.

As discussed in earlier sections, we make use
of a similar approach as taken by authors of Easy
Data Augmentation (EDA) (Wei et al., 2019). By
introducing synonym replacement, random inser-
tion, random swap, and random deletion to the text,
the EDA framework generates diverse instances of
the original text. This augmented data enriches the
training dataset, improving model generalization
and performance. EDA is demonstrated to be re-
markably effective across various text classification
tasks, showcasing its ability to alleviate the chal-
lenges posed by limited training data and contribut-
ing to more robust and accurate text classification
models. This is why the EDA approach will be
helpful for us, for all three subtasks. We discuss
the exact setup details in the coming section.

3.5 X

The final or the X part of our system is basically a
combination or an ensemble of all the three unique
techniques we have discussed thus far. The en-
semble capitalizes on the complementary strengths
of each technique, effectively navigating linguis-

tic complexities through pre-trained domain un-
derstanding, fine-tuning with task-specific context,
and enriched data diversity. This holistic approach
promotes greater robustness to nuances in sexist
content and addresses challenges posed by limited
labelled data. Ideally, this should outperform the
individual technique models and ultimately lead to
the best performance when it comes to classifying
sexist content.

4 Experimental Setup

We discuss our experimental setup (see Figure-2)
in two forms: technique and fine-tuning specific.
Fine-tuning specific setup is applied to all the five
models irrespective of the technique being used.
We discuss the LeR setup in technique specific
section, but we must remember that it is applied
only while fine-tuning.

4.1 Technique specific
As discussed beforehand, one of the major prob-
lems we have is the class imbalance in the dataset.
For that, we use the Data Augmentation technique.
But, in order to do justice to other techniques so as
not to make their classifiers biased toward the ma-
jority class, we had to consider other approaches
for them like Undersampling and Oversampling.
In Undersampling, we remove a certain number of
data instances from the majority class to make sure
the classes are more or less balanced. However,
in Oversampling, we do the opposite. We repli-
cate data instances of the minority class until we
have achieved balance among all the classes in the
dataset. Undersampling has been shown to perform
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better for this shared task (Panwar and Mamidi,
2023), while Oversampling has been shown to per-
form worse than using the dataset as it is, i.e., im-
balanced. Therefore, for the model variations that
do not include data augmentation, i.e., Baseline,
DAP, and LeR, we use Undersampling to balance
the dataset.

Regarding the setup for Data Augmentation mod-
els, we implement the EDA framework (Wei et al.,
2019), as explained earlier. For generating data, we
decided to choose RoBERTa as it gave semantically
closer data to the actual data when compared with
the data generated by HateBERT and BERTweet.
We limit the augmentation probability to 0.3 as
above this threshold, the system generates very
noisy data, which can lead to loss of semantics
and an overall reduction in the performance of the
models.

For the Domain Adaptive Pre-training technique,
we use the Masked Language Modelling objective.
The first and foremost step is to obviously use the
correct tokenizers and pre-process tokens that may
not contribute semantically a lot to the sentence.
For example, tokens like [USER], [HASHTAGS],
[URLS], [MENTIONS], etc can be removed to
improve efficiency and accuracy. Then we create
the masked sentences, and we do so by randomly
masking a certain percentage of the sentence. Then,
the model learns by predicting the masked tokens
based on the surrounding context. The goal is to
minimize the loss between the actual masked and
predicted tokens. By gaining a better idea of the
contextual relationships from posts on sexist fo-
rums, the model should ideally perform better than
without DAP.

For the Learning Rate scheduling models, we
experimented primarily with four different types
of LRs: Step decay, Exponential decay, Cosine
annealing, and One-Cycle LR. They performed
more or less similarly, with the only difference be-
ing when it came to the X or the ensemble model.
In that case, cosine annealing edges out other ap-
proaches and this may be due to the fact that the
X model has a lot going underneath the layers.
Not only does it have more contextual embeddings
thanks to DAP, but it also has more data to work
with because of DAug. These rising complexities
require complex learning rate scheduling policies
like that of Cosine Annealing.

4.2 Fine-tuning specific

This part is very intuitive. We split the dataset
into 85:15 ratio with the former used for training
and the latter for validation. The authors of the
task have provided separate data for testing and we
believe it would be better to test our models on that
to compare how we stand with task paper baselines
and other top-ranked teams. During the training
phase, first, we do simple pre-processing. Most
of the pre-processing is handled comfortably with
the appropriate tokenizers of the different models
we have considered. However, we take care extra
care on our own end to remove tokens that do not
contribute semantically to the system. For example,
hashtags, emojis, noisy tokens like "heyyyyyy",
"yolooooooo", etc. For training our classifiers, we
set epochs as 10 and batch size as 16. After training
the classifiers, we proceed to evaluate them.

5 Results

For evaluation, we make use of macro average F-1
scores. This helps us to compare the performance
of our approach with that of the task paper base-
lines and other top-ranked teams. A major reason
for adopting macro average F-1 scores could be
that during evaluation it treats each class of the
dataset appropriately. This is very beneficial in
cases, where the dataset is highly imbalanced, like
in our case.

From the results in Table-1, we can see that the
ensemble model with RoBERTa as baseline per-
formed the best on the evaluation test. There can
be different reasons for that, but the primary rea-
son has to be the architecture of RoBERTa and
the fact that we have used RoBERTa-base in our
Data Augmentation phase. Models like HateBERT
and BERTweet have a good understanding of hate
speech beforehand, thanks to their architecture and
pre-training. It is possible that techniques like DAP
and DAug did not help these models as much as
they helped RoBERTa since they have been ex-
posed to a wide variety of hate speech data and
our techniques did not increase their contextual
understanding or vocabulary a whole lot.

Another important point to note is that the X
model performs the best for each baseline. All
three techniques that we decided upon, when em-
ployed together, can cause the model to perform
best. It is also intuitive as the X model is one
which has been pre-trained heavily on about 2 mil-
lion posts for adapting the sexist content domain,
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Model Task-A: 2 class Task-B: 4 class Task-C: 11 class
RoBERTa-base 83.22 59.77 34.01
RoBERTa-DAP 84.67 62.23 36.44
RoBERTa-LeR 82.45 63.97 38.21
RoBERTa-DAug 83.59 63.87 39.89
RoBERTa-X 85.09 65.89 40.23
HateBERT-base 82.13 60.56 33.84
HateBERT-DAP 82.55 62.23 35.19
HateBERT-LeR 82.14 64.12 37.77
HateBERT-DAug 82.34 64.01 38.09
HateBERT-X 82.78 64.53 38.34
BERTweet-base 84.01 61.12 30.01
BERTweet-DAP 84.33 62.01 32.71
BERTweet-LeR 84.03 62.89 34.66
BERTweet-DAug 84.12 62.88 34.81
BERTweet-X 84.39 63.45 35.22

Table 1: Macro Avg. F-1 Scores of Classifiers on all subtasks

has got augmented data with minority classes also
being represented adequately, and finally, can train
optimally thanks to the learning rate scheduling
technique. The three techniques complement each
other and bring out the best when used together.

We really notice the impact of individual tech-
niques when we look at the results task-wise. For
task A, we can see that the DAP technique im-
proves the score the most on the baseline. This is
intuitive as well because for a simple binary clas-
sification subtask, having more embeddings and
wider vocabulary to work with makes it even easier
for the model to figure out if the content is plain
sexist or not. The LeR approach works best with
increasing complexities of the task. It works better
for Tasks B and C than it does for Task A. The ef-
fect of optimal convergence is noticed more easily
when there are more classes involved in the task. It
performs the best for task B and is also good for
task C. It is not that its performance drops in task
C but that Data augmentation works too well for
task C and it outshines the LeR technique. We have
established multiple times in this study that the
dataset is imbalanced, and this imbalance increases
with the increasing complexity of the task. Under-
sampling can only work so well when we have to
deal with 11 classes in task C, and the majority
of them are very under-represented. This is where
Data Augmentation comes in handy. By creating
more data instances for the minority classes, we
are able to give the model more data to work with
and thus increase its performance in classification.

Model Task A Task B Task C
Best Baseline 82.35 59.26 31.71
Top-ranked 87.46 73.26 56.06
RoBERTa-X 85.09 65.89 40.23

Table 2: Comparison of the performances of the Best
Baseline model in Task paper, the top-ranked sys-
tems for each subtask, and our best performing model:
RoBERTa-X

Lastly, we compare our best-performing model,
i.e., RoBERTa-X, with the best baseline model of
the task paper (Kirk et al., 2023) and the top-ranked
systems for each subtask. We are able to comfort-
ably beat the best baseline model in each of the
subtasks, thanks to the ensemble of our effective
techniques. We were not able to beat the top-ranked
system in any subtask, even though we came close.
However, we must note that for this shared task,
no single approach was the top-ranked among all
the three subtasks. The top-ranked system score
for each subtask in Table-2 is from a different team.
We were able to create a single approach that at
least beat the best baseline. Comparing our scores
with the task leaderboard, we would stand in the
top 30% submissions in task A, top 25% submis-
sions in task B, and top 40% submissions in task
C.

6 Conclusion

Through this study, we were able to explore the
effectiveness of the DAP-LeR-DAug techniques
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when it comes to classifying hate speech in the
form of sexism. We were able to demonstrate that
each technique works well with a specific subtask,
and when employed together in the form of an
ensemble, they perform the best, irrespective of the
BERT-based model being used. This goes on to
show that the scores achieved were not coincidental,
and the techniques indeed complement each other
in a good way.

Although the DAP-LeR-DAug techniques do not
perform the best for any specific subtask when
compared with top-ranked systems, it should be
pointed out that they do surpass the scores achieved
by the best baseline model in the original task paper
quite comfortably. Nevertheless, there are a lot of
ways to improve upon the scores achieved, which
we discuss in the next section.

Limitations

Like any other research study, ours, too, is filled
with limitations. Overcoming some of these would
directly result in better scores for each subtask
while some others may increase the training time
but nonetheless will improve the performance of
the models.

First of all, we have used only the base versions
of the BERT-based models. If not for the restraint
of computational resources, we could have used the
large, extra-large, versions of the baseline models.
The larger vocabulary and increased number of
parameters would directly help to achieve better
scores in all three subtasks.

Another way to improve our performance could
be using more data for DAP. The suggestion is
indeed greedy but will improve the performance
nonetheless. Similarly, we could experiment with
other forms of hyperparameter tuning apart from
LeR alone. Some of them could be optimizing the
dropout rate, loss functions, weight decay, and acti-
vation functions. The impact of tuning these may
not be very large but it will optimize our perfor-
mance.

We can also try to use different data augmen-
tation approaches. In our study, we have only
used the EDA approach but there are more com-
plex ways to augment data. For example, Back-
translation, in which we translate the English sen-
tence to a certain language and then back to En-
glish. This is an easy and effective way to generate
more samples for under-represented classes and
ultimately balance the dataset.

Lastly, we can try to improve our pre-processing
stage as well. In our pre-processing stage, we get
rid of all the emojis and hashtags but they have
been shown to improve the performance of clas-
sification tasks (Eisner et al., 2016). They can be
converted to vector embeddings and then combined
with our word embeddings to form custom vector
embeddings. This will directly improve the per-
formance of our model as emojis are used a lot on
social platforms nowadays and they contribute to
the context and semantics of the text.
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Abstract

Document scaling has been a key component of
modern text-as-data applications in social sci-
ences, particularly for political scientists, who
aim at uncovering differences between speak-
ers or parties with the help of probabilistic
and non-probabilistic approaches. Yet, most
of these techniques employ the bag-of-word
hypothesis and disregard semantic features or
use prior information borrowed from external
sources that may bias the results. This paper
presents CommunityFish as an augmented ver-
sion of Wordfish based on a prior hierarchical
clustering of the word space to retrieve seman-
tic n-grams, or communities, as signals emerg-
ing from the corpus to be used as an input to
Wordfish. Instead of considering all words in
the corpus as independent features, we empha-
size the interpretability of the results, since
communities have the ability to better scale
parties or speakers, and ensure a faster con-
vergence when considering a Poisson-based
ranking model. Aside from yielding commu-
nities assumed to be subtopics summarizing
the corpus’ narrative signals, the application of
this technique outperforms the classic Wordfish
model by emphasizing key historical develop-
ments in the U.S. State of the Union addresses
and was found to replicate the prevailing politi-
cal stance in Germany when using the corpus
of parties’ manifestos.

1 Introduction

Comparative politics has been a prominent domain
of application of what is currently known as text-
as-data field, featuring the use of text mining tech-
niques and machine learning algorithms to identify
patterns that differentiate documents or track dis-
parities at the meta-data level. Scaling techniques
typically comprise an array of unsupervised meth-
ods, both probabilistic and non-probabilistic, which
aim to extract one or multiple dimensions to enable
metadata comparisons, based on a set of assump-
tions conducted at the word-level.

Earlier scaling techniques used statistical learn-
ing approaches as for matrix factorization schemes
(Deerwester et al., 1990) and a probabilistic model
based on the Poisson distribution as for Wordfish
(Slapin and Proksch, 2008; Lowe and Benoit, 2013)
which ranks documents on a unidimensional scale
using word occurrences in the corpus. Further ex-
tensions of Poisson scaling models considered a
debate structure (Lauderdale and Herzog, 2016),
pre-trained embedding models (Nanni et al., 2019),
word variations (Vafa et al., 2020) and semantic
search strategies (Diaf and Fritsche, 2022b), pro-
viding an improved scaling of documents depend-
ing on several assumptions and use cases at the
word or document levels.

Regarding Wordfish, the Poisson scaling model
uses word counts to learn a hidden and normally-
distributed dimension, assumed to be a proxy of
partisanship among political parties when scaling
manifestos (Slapin and Proksch, 2008). However,
the Poisson distribution does not always pertain
(Lowe and Benoit, 2013), as frequent words are
likely to be normally distributed, while very rare
words tend to substantially deviate from the Pois-
son paradigm (Lo et al., 2016). Another disadvan-
tage is the dynamic word usage which needs time-
varying parameters for the Poisson ranking model
and further constraints on parameters to ensure its
stability (Jentsch et al., 2020), or to consider the
structure document-topic-word to get polarization
at the topic level using a hybrid supervised topic
model (Diaf and Fritsche, 2022a).

Although the choice of scaling techniques is
abundant, it may not always meet the expectation of
practitioners, as the inference is done at the word-
level, while the analysis often targets documents’
content in terms of groups of words that convey
the interest of researchers. The word contribution
to the built scale in Wordfish is static and cannot
be fully interpretable if the corpus has undergone
significant changes over time, in terms of word us-
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age, between parties/speakers (Jentsch et al., 2020).
Furthermore, the polarity of specific words could
be different from the position of documents they
are mostly related to, thus not in-line with experts’
assessments (Hjorth et al., 2015). This issue arises
from the bag-of-word assumption and the under-
lying agnostic hypothesis of word independence,
which prevents an accurate scaling of documents
based on semantic features (Nanni et al., 2019).

Advances in social network analysis indicated
that hierarchical clustering can reveal homoge-
neous and distinct groups of users, commonly re-
ferred to as communities, based on their interac-
tions, which could also be used in text mining to
identify independent, semantic groups of words,
in form of n-grams, that differentiate documents
by their occurrences while delivering informative
signals that outperform analyses based on single-
word usage. One popular algorithm for studying
social networks is the Louvain algorithm (Blondel
et al., 2008) which was applied to get word groups
that better represent the rhetoric used in a given
corpus (Bail, 2016) or to study the lexical shift
in the State Of The Union addresses (Rule et al.,
2015). Other hierarchical clustering schemes were
proposed as for Infomap (Rosvall and Bergstrom,
2008) which uses random walk map-equation in-
stead of optimizing the modularity as for Louvain
(Lancichinetti and Fortunato, 2009), and Leiden
(Traag et al., 2019) which was found to outperform
Louvain when applied to big networks, however,
similar performances with Louvain are expected on
smaller networks.

This paper extends the idea of lexical shift (Rule
et al., 2015) by identifying communities as repre-
sentative groups of words, able to achieve a fast
and interpretable scaling of documents upon which
a Poisson ranking model could be built, instead of
considering a plain word-count model related to
the bag-of-word hypothesis. I argue that commu-
nities offer a better polarization level when differ-
entiating documents and metadata than standard
bag-of-word techniques, in addition to efficiently
speeding up the learning process by reducing the
size of the document-term-matrix whose sparsity
may hinder the convergence of Poisson models.
Commonly used words are likely to form commu-
nities with a high frequency of words but are less
likely to be polarized compared to communities
with exclusive word usage, denoting the focus of
a given speaker/party on a specific subject of item

that could be identified without the need to run
topic models.

Two historical corpora, in English and German,
were selected to evaluate this novel approach. The
application on the U.S. State Of The Union (SOTU)
addresses (1854-2019) shows a dominance of his-
torical developments as for economic issues, local
affairs and foreign policy that ranked addresses
on a two-regime scale whose transition could be
identified during the great depression. From the
analysis of German political parties’ manifestos
(2013, 2017 and 2022), CommunityFish identified
granular themes at the center of election debates
that were found to replicate the ideological spec-
trum of political parties with AFD and Linke parties
being the ideological bounds of the learned scale,
while other parties seem to share many featured
themes, hence reinforcing their centrist positions.

The paper outlines the build-up of Community-
Fish from a network analysis perspective (Section
2) and from statistical learning (Section 3), then
implements the proposed algorithm on two corpora
(Section 4) and compares to the standard Wordfish
used by practitioners.

2 Methodology

2.1 Network Analysis

Analysis of social media drove the attention of
scientists on the necessity to adopt advanced clus-
tering methods able to extract information that de-
scribe relationships between users via the types
of messages or ideas they produce (White, 2008),
instead of simple relationship structures between
individuals (Bail, 2016).

Network analysis witnessed important contribu-
tions on identifying distinct subgroups in social
networks, built on several optimization schemes de-
veloped to offer intuitive clustering (Lancichinetti
and Fortunato, 2009).

For such tasks, researchers should carefully se-
lect clustering methods for community detection
and also take into account centrality scores (Mester
et al., 2021). Louvain algorithm (Blondel et al.,
2008) is one commonly used clustering technique
,usually preferred to FastGreedy algorithm (Clauset
et al., 2004), due to its relative low complexity, as
it achieves a local optimization of the modularity
Q at the node-level, defined as :

Q = 1
2m

∑
ij

[
Aij − kikj

2m

]
δ(ci, cj)

with Aij representing the edge weight between
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nodes i and j, ki and kj are the sum of the weights
of the edges attached to nodes i and j, respectively;
m is the sum of all of the edge weights in the graph;
ci and cj are the communities of the nodes; and δ
is Kronecker delta function δ(x, y) = 1 if x=y, 0
otherwise.

Louvain clustering iteratively optimizes the mod-
ularity Q by starting with different node being its
own community, and the concept is to place a node
ni to one of its neighboring nodes community, in
a way to maximize the modularity change (Mester
et al., 2021). Similar to users in social networks,
Louvain algorithm can cluster words in a corpus,
so to extract communities, in a form of n-grams
of different lengths, having an independent, non-
overlapping structure stemming from the specific
word usage found in documents.

Traag et al. (2019) proposed Leiden clustering as
a reliable alternative to Louvain in discerning small
connected communities in large network structures.
Altough Leiden was found to be faster than Lou-
vain, in terms of execution, both do not differ when
the network structure is relatively small, as for
collection of documents with limited vocabulary,
meaning the community structures of both algo-
rithms can share many similarities and just slightly
differ in the number of uncovered clusters.

2.2 Poisson ranking model

To apply CommunityFish, the corpus is broken
down into bigrams and a minimum threshold π
is set before running Louvain algorithm that yields
K communities used as features for the Document-
Term-Matrix (DTM), instead of considering all
words in the corpus, hence communities serve as
features to the Wordfish scaling algorithm. This
scheme could be seen as a semantic clustering of
the DTM that identifies correlated pairs of words
in local contexts, thanks to a hierarchical clustering
on bigrams, which differs from a simple bigram
grouping of the initial DTM features.

The resulting DTM, as a matrix of communities’
frequencies on each document in the corpus, is
given as an input to Worfish (Slapin and Proksch,
2008) to learn document positions, or ideal points,
that scale documents based on the occurrence of
communities. As a scaling technique, Wordfish
uncovers a latent scale θ, assumed to be a proxy
of partisanship or ideological differences between
parties or speakers, depending on the used context.

Although the use of Poisson distribution is jus-

tified by the occurrence of words in the corpus,
assumed to be rare events, it is not always appli-
cable to cases where the word usage concerns few
documents, meaning the Poisson’s expectation de-
parts significantly from the variance (Lowe and
Benoit, 2013; Lo et al., 2016) even though a quasi-
Poisson scheme can relax the Poisson assumption
of the mean-variance equality.

I argue that considering communities frees the
DTM from potential biases raised by rare words
and allows a faster convergence of Wordfish algo-
rithm when applied to big corpora. CommunityFish
could be seen as a double dimensionality reduction
technique: first to uncover communities, as the pri-
mary unit of analysis, and second to learn one scale
of ideal points using a Poisson ranking model.

Algorithm: CommunityFish

1.Community detection: Run a hierarchical
algorithm (Louvain) over the bigram features of
the corpus and extract K groups of words or
communities, whose occurrence in the corpus is
greater than π.
2.Poisson scaling model: The K communities
are used as features for the Document-Term-
Matrix, to be given as input to the Poisson scal-
ing model (Slapin and Proksch, 2008) to uncover
the scale θi from the specification:
log(λij) = αi + ψj + θiβj , where:
λij : frequency of the community j in document i
αi: document fixed effect
ψj : community fixed effect
θi: the position of document i
βj : the effect of community j to the document
position

The hierarchical clustering applied to the corpus
(Louvain algorithm) may be regarded as an implicit
factorization of the traditional unigram DTM, yield-
ing an interpretable feature matrix stemming from
the learned communities. Aside from lowering the
DTM dimension, it permits to intuitively concen-
trate the scaling on meaningful and independent
groups of words (communities), that discriminate
the ideal points based on their occurrences in the
documents.
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3 Application

3.1 State of the Union

State of the Union (SOTU) addresses consist of
annual speeches given by U.S. presidents during
the period (1854-2019), so to emphasize the dual-
ity democratic-republican in the scaling (Diaf and
Fritsche, 2022a). The corpus was lemmatized us-
ing udpipe model (Straka et al., 2016) to reduce
the size of the Document-Term-Matrix and learn
robust communities, in comparison with the raw
corpus. The application of the Louvain algorithm
yielded 52 different communities (Table 1) with a
clear historical context that spans over one and half
century, tied to different episodes of modern Amer-
ican history. From Table 1, 22 communities, out of
52, are constituted of bigrams and the remaining
are n-grams of different lengths comprising entities,
expressions as well as plans or programs1.

Communities, whose contributions to the scale
βj are different from zero, polarize the overall scale
θ via their respective signs. From Figure 1, com-
munities 45, 40, 11 and 8 contribute to documents
whose positions in the overall scale (Figure 2) are
positive, consisting of earlier addresses from the
second half of the ninetieth century that targeted
foreign policy and local administration. On the
other hand, modern addresses have negative posi-
tions (Figure 2) and demonstrate a strong influence
of foreign policy and defense interests (communi-
ties 38 and 49) as well as business/economic envi-
ronment (communities 43 and 2). Figure 2 shows a
two-regime scale of ideal points, whose transition
occurred during the great depression (Hoover’s ad-
dresses during the period 1929-1933, coinciding
with the position θ̂ = 0), suggesting a potential
shift in the rhetoric, or a transition into modern ad-
dresses, used by U.S. presidents and captured via
communities that could be assumed to be proxies
for most discussed interests in their addresses.

In comparison to classic Wordfish application on
the same corpus (Diaf and Fritsche, 2022a), the
learned document positions are quiet similar, but
cannot be differentiated in small periods, even if
given by different speakers. Word contributions
(Figure 5) obtained via Wordfish offer clustered,
heavily centered densities, with tails dominated
by rare words that occurred in a relatively small

1Leiden clustering yielded a similar community structure
to Louvain, with minor differences concerning two communi-
ties, out of 52. The same results were found using the German
political manifesto corpus.
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Figure 1: Communities contributions to the scale (β) vs
communities’ positions ψ (SOTU corpus)

number of documents.

3.2 German Manifesto

The corpus of Manifesto Project (Lehmann et al.,
2022) was used to get the manifestos of six main
German political parties, during the period 2013-
2021 (Diaf and Fritsche, 2022b), then lemmatized
using udpipe German language model (Straka et al.,
2016) to reduce the vocabulary length of the cor-
pus. It resulted 45 communities (Table 2) repro-
ducing most of the debated themes in social life,
politics and economic development which consti-
tute the basis of the learned scale (Figure 4), found
to replicate the prevailing political partisanship in
Germany. The AFD and Linke parties represent the
opposite ends of the learned scale, while the other
parties hold central positions, with noticeable firm
positions (small standard deviations of their ideal
points) of the Linke and Grüne parties throughout
the studied period. Conversely, the positions of
AFD and CDU exhibit the highest variability, evi-
denced by wider standard errors. The blue line in
Figure 4 is the local polynomial regression Loess
curve (Jacoby, 2000) used to separate parties into
two distinct classes (left-right) based on learned
scale from the established communities (Table 2),
resulting into a bi-partisanship AFD-CDU-FDP
and SPD-Grüne-Linke.

From Figure 2, communities 40 and 45 support
the position of the Linke party, as their contribution
to the scale is strongly positive, in comparison to
communities 5, 11 and 12 whose βj are still pos-
itive but rather close to the origin. Most of the
learned communities have a low contribution to the
scale (βj → 0) and denote shared interests debated
by political parties.
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Figure 2: Learned CommunityFish ideal points with 95% confidence intervals (SOTU Corpus).

As a comparison to Wordfish (Figure 6), Commu-
nityFish highlights a better polarization AFD-Linke,
and a clear partisanship even if document positions
exhibit a higher variability, in terms of standard
errors, than Wordfish.

4 Conclusion

Scaling techniques are valuable analytical tools
used by political scientists to explore partisanship
among parties and to understand the ideological
spectrum of speakers. Nonetheless, they are lim-
ited by the fact that they consider only words as
the unit of analysis, making their application ag-
nostic vis-à-vis semantic signals emerging from
the corpus. While numerous solutions were devel-
oped to improve scaling results by incorporating
external information sources as priors, the use of
hierarchical clustering, as a pre-processing step,
enables the identification of communities, as re-
silient clusters, with semantic effectiveness and
substantial results, combined with a faster execu-
tion time. CommunityFish is a scaling technique
that translates the unit of analysis from words
to communities and an implicit factorization of
the document-feature-matrix, unveiling informative

sub-topic structures for an in-depth scaling of his-
torical corpora as well as political manifestos. Opti-
mal use of CommunityFish requires selecting most
informative communities in an already-lemmatized
corpus by mean of a clustering technique (such as
Louvain or Leiden algorithms). This ensures an in-
dependent community structure when aggregating
the document-feature-matrix, helping the spread
of the ideological stance learned via Poisson rank-
ing model, which was found to outperform classic
Wordfish without calling expensive, often biased,
prior information. Applied to two distinct corpora,
it demonstrated a great ability in extracting com-
munities from a language-variable corpus (SOTU)
and identifying common items in debate-based doc-
uments (German manifesto) for an efficient and
meaningful scaling of documents.
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Figure 3: Communities contributions to the scale (β) vs communities’ positions ψ (German Manifesto corpus)
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Figure 4: Learned CommunityFish ideal points with 95% confidence intervals (German Manifesto Corpus).
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Table1: Communities in SOTU corpus Table 2: Communities in German Manifesto corpus
Community Words
com_1 agricultural, product

com_2
american , billion , business , enlist , every , fellow , million , silver , small
young , citizen , family , people , republics, dollar , man , day , americans

com_3 annual , special, message
com_4 armed , military, naval , force

com_5
ask , come , current , end , fiscal , five , four , last , many , next , past precede ,
previous, recent , ten , three , two , year , congress, june , session , ago , ahead

com_6
attorney , british , can , federal , general , government, local , make , must
national , postmaster, self , social , spanish , supreme , help , court , sure
also , continue , bank , defense , security

com_7 balanced, budget
com_8 base , call , confer , depend , enter , impose , urge , upon , attention
com_9 careful , favorable , consideration
com_10 central, latin , south , america

com_11
civil , hard , human , interest , postal , public , right , tax , work , service , rate
debt , building , land , opinion , now , credit , cut , reduction, together

com_12 commerce , interstate, commission
com_13 earnestly, recommend
com_14 economic , development, growth
com_15 executive, branch , order
com_16 exist , international, law , present , tariff , enforcement , condition , system
com_17 far , thus , reach
com_18 first, time

com_19
foreign , free , great , nation , office , post , take , treasury , war , world
country com_ , power , trade , britain , department, place , ii

com_20 full , employment
com_21 go , look , move , forward
com_22 god , bless
com_23 good , faith
com_24 health , medical , care , insurance
com_25 high , level , priority, school
com_26 internal, revenue
com_27 large , number, part
com_28 let, us
com_29 long, run , term
com_30 low , income
com_31 may , well
com_32 merchant, marine
com_33 middle, class , east
com_34 minimum, wage , worker
com_35 mr , speaker
com_36 natural , resource
com_37 new , job , program, york
com_38 nuclear, weapon
com_39 one , half , hundred, third
com_40 panama, canal
com_41 per , annum, cent
com_42 philippine, islands
com_43 private , enterprise, sector
com_44 progress, step , toward
com_45 puerto, rico
com_46 set , forth
com_47 several, united , states , nations
com_48 sink, fund
com_49 soviet, union
com_50 vice , president
com_51 welfare, reform
com_52 white, house

Community Words
com_1 abkomme, abkommen
com_2 afd, demokrat, deshalb , fordern , frei, linke, stehen, setzen

com_3
alt, brauchen, immer, jung, mehr , mensch
million, gerechen, stark, geld, personal, transparenz, zeit

com_4
arbeit, beruflich, gut, kulturell, selbstbestimmt, arbeiten
bildung, arbeitsbedingung, leben, zukunft

com_5 arbeitgeber , arbeitnehmer, patient , verbraucher , innen

com_6
arbeitsplatz , dass , deutschland , einsetzen , ganz , gestalten
jed , neu , schaffen , sicherstellen, sorgen verhindern
zeigen , einzeln , form , kind , technologie

com_7
beitrag , bund , dabei, etwa, gelten , gerade , gesellschaftlich,
insbesondere , land , mittel, projekt , regelung
sollen , sowie , teilhabe, wichtig, zugang , leisten, na, mitteln , rolle

com_8 bezahlbar, wohnraum
com_9 biologisch, vielfalt
com_10 cdu, csu
com_11 corona, krise
com_12 demokratisch, kontrolle
com_13 deutsch, bundestag, sprache

com_14
digital, it, sozial, infrastruktur, welt , sicherheit, absicherung
gerechtigkeit, marktwirtschaft , netzwerk, sicherungssystem
wohnungsbau, zusammenhalt

com_15 drei, euro, letzt, milliarde, mrd, pro, seit, vergangen, vier, zehn, jahr
com_16 erhalten, bleiben
com_17 erneuerbare , erneuerbaren, energie, energien
com_18 erst, schritt
com_19 eu, ebene, kommission, mitgliedstaat, staat
com_20 fair, wettbewerb
com_21 gering, hoch, mittler, einkommen , unternehmen
com_22 gesetzlich, mindestlohn, rent, rentenversicherung
com_23 gleich, recht , chance, lohn , rechte
com_24 hartz, iv
com_25 lage, versetzen
com_26 medizinisch, versorgung
com_27 nachhaltig, wirtschaftlich, entwicklung
com_28 offen, gesellschaft
com_29 qualitativ, hochwertig
com_30 rechnung, tragen
com_31 rechtlich, rundfunk
com_32 regel, regeln
com_33 schnell, internet
com_34 schon, heute
com_35 schwarz, gelb
com_36 sexuell, orientierung
com_37 start, ups
com_38 stelle, stellen
com_39 strukturschwach, region
com_40 stunde, stunden
com_41 teil, teilen
com_42 treffen, triefen
com_43 verein, vereinen
com_44 vereint, nation
com_45 vgl, kapitel
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Figure 5: Word contributions from Wordfish (SOTU Corpus) (Diaf and Fritsche, 2022a)
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Abstract

We introduce ADCluster, a deep document clus-
tering approach based on language models that
is trained to adapt to the clustering task. This
adaptability is achieved through an iterative
process where K-Means clustering is applied
to the dataset, followed by iteratively training
a deep classifier with generated pseudo-labels
– an approach referred to as inner adaptation.
The model is also able to adapt to changes in
the data as new documents are added to the doc-
ument collection. The latter type of adaptation,
outer adaptation, is obtained by resuming the
inner adaptation when a new chunk of docu-
ments has arrived. We explore two outer adap-
tation strategies, namely accumulative adapta-
tion (training is resumed on the accumulated
set of all documents) and non-accumulative
adaptation (training is resumed using only the
new chunk of data). We show that ADClus-
ter outperforms established document cluster-
ing techniques on medium and long-text doc-
uments by a large margin. Additionally, our
approach outperforms well-established base-
line methods under both the accumulative and
non-accumulative outer adaptation scenarios.

1 Introduction

Document clustering is the task of arranging large
volumes of unlabeled documents into clusters ac-
cording to some notion of similarity. A particularly
common goal is to discover the most common top-
ics in a given collection of text documents and to
assign each document to its corresponding cluster.
Given the ever-growing number of documents avail-
able online and the fact that manually structuring
them is impossible, there are countless applications
of document clustering techniques.

General purpose clustering algorithms not specif-
ically designed to work on text documents can be
used for document clustering by creating vector
representations of documents using deep neural net-
works and then clustering those vectors. One way

Input: continual unlabelled  
documents in different chunks

ctct+1ct+k

Language
Models K-Means

Language Models

K-Means

Output: ClustersOur approach

Chunk ck

adaptive process

Previous approaches

Accumulate {Ck-a, ..., Ck}

Figure 1: Overview of traditional approaches in compar-
ison to ours in unsupervised text clustering tasks, where
chunk data can be accumulated for the adaptive process.

of doing so is to use autoencoders (Ballard, 1987;
Schmidhuber, 2015) applied to term frequency –
inverse document frequency document representa-
tions (tf-idf, (Rajaraman and Ullman, 2011)). How-
ever, such representations neglect contextual in-
formation. Alternatively, one can use contextual
representations obtained from pre-trained language
models (LMs). Such approaches run a clustering
algorithm such as K-Means over the output of the
LM (Guan et al., 2022; Subakti et al., 2022; Groo-
tendorst, 2022; Zhang et al., 2022; Eklund and
Forsman, 2022). In another line of work, some
studies proposed the simultaneous learning of doc-
ument representations and clustering through a self-
learning approach. This involves computing an
auxiliary target distribution using the output of the
model and minimizing the loss between these distri-
butions (Huang et al., 2020; Xie et al., 2016; Hadi-
far et al., 2019). A problem with this approach is
the risk of self-confirmation bias, potentially lead-
ing to trivial solutions. Moreover, the majority of
these proposals rely on autoencoders, with limited
exploration of LMs. In this paper, we introduce
ADCluster, which uses K-Means as a teacher to
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train an LM-based classifier in an iterative manner
to adapt it to the clustering task. Figure 1 shows
the comparison between our approach and previous
approaches (which use LMs) in the unsupervised
clustering task. We hypothesize that the adaptation
process is essential for any real-world application
where there is no labeled training data.

In applications that rely on document cluster-
ing, the collection of documents is seldom static.
For example, consider an online service using web
crawlers to find new content of interest for them,
or an online advertising service trying to discover
appropriate web pages for ad placement (Hatefi
et al., 2021). Given that new content is created
every day, their document collections will steadily
increase. With time, clustering will become unre-
liable because of subtle topic shifts or previously
unknown terms such as Fridays for Future or King
Charles III. Our method facilitates resuming the
iterative adaptation of the model to the clustering
task from its previous state when a new chunk of
documents is to be incorporated.

Thus, we distinguish between inner and outer
adaptation. Inner adaptation adjusts the LM to
the clustering task at hand by an iterative training
process during which the data is considered im-
mutable. Outer adaptation adjusts the model over
time to growing sets of documents by resuming the
inner adaptation when a significant amount of new
data becomes available, either by considering the
entire dataset (accumulative outer adaptation) or
using only the new data (non-accumulative outer
adaptation). An obvious third possibility is to re-
build the model from scratch or use a scheduled
combination of the three possibilities, depending
on the practical conditions under which the model
is used.

In this paper, we mainly focus on introducing the
model and studying its performance under the accu-
mulative and non-accumulative adaptation regimes.
Future work will study the dynamic behavior aris-
ing when the model adapts to growing document
collections as topics evolve.

Apart from introducing the clustering technique
itself, and the algorithm used for training, we exper-
iment with three different datasets, each of which
we divide into five chunks in order to simulate
growing collections of documents. The empirical
results show the following:

1. Under each variant of the outer adaptation
(training from scratch, accumulative, and non-

accumulative adaptation), ADCluster outperforms
the baselines.

2. In the absence of significant topic shifts, the
three outer adaptation regimes usually result in
comparable performance. Hence, one can choose
between them as fits the application.

In addition to these main results, we conduct
experiments to show that the method is insensi-
tive to the type of language model used (our main
experiments use BERT).

2 Related Work

Clustering is a much studied unsupervised problem
in machine learning and data mining which is cen-
tral to many data-driven applications. Many strate-
gies for clustering arbitary sets of data points in
an n-dimensional space have been studied. These
include density-based, hierarchical, centroid- and
partition-based clustering; see Xu and Tian (2015)
for an overview. K-Means (MacQueen et al., 1967)
and HDBSCAN (Campello et al., 2013) are two of
the most popular traditional clustering algorithms.

The progress in deep learning that has been made
during the last decade has made it natural to ap-
ply deep learning to clustering tasks (Zhou et al.,
2022). An example of this is seen in DEC (Xie
et al., 2016), which utilizes a stacked autoencoder
to acquire document representations from tf-idf
vectors. Subsequently, it improves these representa-
tions while learning clustering in a self-supervising
manner. Hosseini and Varzaneh (2022) present a
hybrid deep clustering method combining a stacked
autoencoder and k-Means to organize Persian texts
into clusters.

In recent years, large language models trained
for language understanding and generation have
achieved impressive results across a wide range
of tasks. These LMs produce excellent general-
purpose contextual representations that reflect topi-
cal information and can thus be used for clustering.
Guan et al. (2022) generate document representa-
tions by pooling the outputs of ELMo (Peters et al.,
2018) pre-trained LM and apply K-Means to these
representations after normalizing them. Gupta et al.
(2022) employ language models for unsupervised
model interpretation and syntax induction through
deep clustering of text representations. Huang
et al. (2020) fine-tune the LM simultaneously with
masked language modeling and clustering losses.

To our knowledge, no existing research explores
deep clustering with LMs for dynamic scenarios
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involving a growing set of documents. Our method
provides a simple yet effective approach to improve
cluster assignments by training the LM in an adap-
tive manner to provide clustering-friendly represen-
tations that, over time, can be adapted to a growing
set of documents.

3 Methodology

We first describe how the inner adaptation of the
proposed model ADCluster works. Its pseudocode
is given in Algorithm 1. It uses a conventional
K-Means algorithm and a Deep Neural Network
(DNN) classifier. The classifier is adapted itera-
tively in order to improve the clusterability of the
embedding vectors. This is the inner adaptation.
The classifier consists of a LM-based text encoder
(a pre-trained LM with a mean pooling layer over

Algorithm 1: ADCluster (inner adaptation)
Input :D: the set of unlabeled documents

fθ: LM-based encoder of DNN classifier
W : MLP head of DNN classifier
MaxIter : the max training iterations
EpochSize: iterations per training epoch
b: the mini-batch size
η, γ: the training learning rates
DR: the dimension reduction method
τ : a threshold for the minimum

percentage of changing assignments within two
consecutive epochs (convergence threshold)
Output :(θ∗,W ∗): The optimal weights

C: final cluster assignments for D

1 MaxEpoch ← MaxIter/EpochSize;
2 for epoch = 1 to MaxEpoch do
3 E ← encode D with fθ;
4 E′ ← DR(E) . Apply DR with condition
5 P ← run K-means on E′ using cosine similarity;
6 X ← choose b ∗ EpochSize documents from

pseudo-labeled set P with a uniform sampler;
7 W ← initialize W with Xavier initialization;
8 for iter = 1 to EpochSize do
9 Biter ← choose a mini-batch from X;

10 Yiter ←W (fθ(Biter ));
11 ŶK-means ← P (Biter);
12 l← cross-entropy-loss (Yiter , ŶK-means);
13 θ ← θ − η ∗ l(θ) . Update θ
14 W ←W − γ ∗ l(W ) . Update W
15 end
16 Ccurr ←Wpredict(fθ(D)) . predict cluster

assignments for D with DNN classifier
17 t ← compute (Ccurr , Cprev ) . Compute the

percentage of changing cluster assignments
compared to previous epoch;

18 if t < τ then
19 stop the iterative process
20 end
21 Cprev ← Ccurr

22 end
23 return θ∗,W ∗,C;

its last layer) denoted by fθ (where θ is the set of
parameters) followed by a Multi-Layer Perceptron
(MLP) head denoted by W that maps document
representations to cluster assignments. Suppose we
have an unlabeled dataset D = {dn}Nn=1 of N doc-
uments. At the beginning of each training epoch,
we map each document dn to its contextual repre-
sentation fθ(dn). So, E = {fθ(dn)}Nn=1 is the set
of document contextual representations. Often, it is
beneficial to reduce the dimensionality of these rep-
resentations using a dimension reduction method
such as PCA (Pearson, 1901) or UMAP (McInnes
et al., 2020), resulting in a set E′ of vectors of
fewer dimensions. Next, we use K-Means (based
on cosine similarity rather than squared Euclidean
distance) to cluster E′ into K distinct clusters. We
use these cluster assignments {pn}Nn=1 as pseudo-
labels to train the classifier. For this, the MLP W
and the encoder fθ are jointly trained to minimize
the cross entropy loss

∑b
n=1− log

exp (yn,pn)∑K
k=1 exp (yn,k)

b
(1)

where yn is the output of the classifier for docu-
ment dn and b is the mini-batch size. This cost
function is minimized using AdamW (Loshchilov
and Hutter, 2019) and backpropagation to compute
the gradients. With the goal of preventing the clas-
sifier from overfitting to the current pseudo-labels,
we employ only a subset of the data in every train-
ing epoch and restrict the number of iterations (i.e.,
EpochSize in Algorithm 1).

It is worth mentioning that there is no corre-
spondence between two consecutive cluster assign-
ments. Hence, the final classification layer learned
for an assignment becomes irrelevant for the fol-
lowing one and thus needs to be re-initialized from
scratch at each epoch. We found that re-initializing
the entire MLP head of the classifier rather than the
final classifier layer is also beneficial for reducing
the risk of overfitting. Since the MLP is a shallow
network (having only one hidden layer), it can be
trained sufficiently in one epoch.

In addition, we predict cluster assignments for
all documents at the end of each epoch using the
classifier and stop our procedure when the change
in assignments is less than a threshold τ , i.e., the
algorithm terminates when the number of docu-
ments for which the cluster assignment changes
falls below τ .
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Table 1: Datasets and statistics. Silhouette Coefficient
refers to the Silhouette score of Rousseeuw (1987)
which measures how similar a document is to its own
cluster compared to other clusters, the best and worst val-
ues being 1 and -1, respectively. We compute the mean
Silhouette Coefficient of all samples of the datasets us-
ing their true labels. As our LM for creating document
representations, we use a BERT language model.

Dataset Yahoo!5 Ag News Fake News

#-Documents 38 812 40 000 480
Avg # sents 25.12 1.45 6.05
Avg # word

(in doc)
578.26 36.09 141.20

Avg Silhouette
Coefficient

0.01234 0.03736 0.04356

Overall, ADCluster alternates between cluster-
ing document representations to produce pseudo-
labels and updating the parameters of the classifier
by predicting these pseudo-labels using Eq. (1).
This iterative adaptation of the encoder teaches
the LM to generate more clustering-friendly rep-
resentations. This distinguishes ADCluster from
conventional methods, resulting in an improved K-
Means clustering in subsequent epochs. The final
clusters are obtained using the adapted classifier to
predict cluster assignments.

If K-Means assigns almost all documents to a
few large clusters, θ will only discriminate between
them. A trivial parameterization occurs when all
clusters except one are singletons, and therefore
the classifier predicts the same output for all in-
puts (Caron et al., 2018). To overcome this prob-
lem, we train the classifier on uniformly sampled
documents from the pseudo-labeled classes. The
result is the same as weighting the contribution of
a document to the loss function by the inverse of
the size of the cluster to which it belongs.

Let us now briefly explain the outer adaptation of
ADCluster. Imagine a data stream where new data
arrives sequentially in chunks Ct, where t denotes
the time step. In the accumulative scenario, we
resume the inner adaptation of ADCluster at time
t using C0 ∪ · · · ∪ Ct as training data when a new
chunkCt arrives. In contrast, the non-accumulative
approach resumes inner adaptation solely with the
latest chunk Ct.

4 Experiments

4.1 Datasets

We employ the following three datasets whose
statistics are summarized in Table 1:

Yahoo!5 is a subset of Yahoo! Answers (Zhang
et al., 2015). The dataset comprises 10 classes,
each document consisting of a question, a title, and
the best answer to the question. We obtain the text
to be clustered by concatenating these parts. To
obtain a long-text dataset we only choose samples
of over 500 tokens. The resulting dataset includes
38 812 documents.

Ag News (Zhang et al., 2015) consists of 4
classes: World, Sports, Business, and Sci/Tech
news. The number of training and testing sam-
ples for each class is 30 000 and 1 900, respectively.
We choose 40 000 documuments at random from
the training set. To have a very short-text dataset,
we only consider the news text and ignore the titles.

Fake News (Pérez-Rosas et al., 2018) com-
prises 480 medium-length news articles belonging
to six different domains. While half of the articles
are real and the other half are fake news, we do not
make use of this distinction but use only the six
topics of the dataset as labels.

Following the approach of prior studies (Huang
et al., 2020; Xie et al., 2016; Hadifar et al., 2019),
we form unlabelled documents by removing all
labels for the training set, using the labels only to
evaluate unsupervised performance.

4.2 Baselines

We use the following baselines for comparisons:
Traditional clustering algorithms We com-

pare our model with K-Means and HDBSCAN.
For HDBSCAN, we use the soft (or fuzzy)
implementation1 of the algorithm that predicts
probability vectors for all dataset samples; no
samples are considered noise. These vectors show
the membership probability for each cluster, so
we assign the sample to the cluster for which the
highest probability has been determined. Instead of
using pure BERT vectors, we apply normalization
on them prior to performing dimension reduction
and clustering. Before running HDBSCAN on the
datasets, we perform dimension reduction using
UMAP2. For each dataset, we test several values

1https://hdbscan.readthedocs.io/en/latest/
soft_clustering.html

2https://umap-learn.readthedocs.io/en/latest/
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for parameters of HDBSCAN and UMAP and
report the highest accuracy we get. On Yahoo!
Answers, we perform PCA dimension reduction
(n_components = 0.8; preserving at least 80% of
variance) before K-Means.

DEC-tfidf we compare our model with that
of Xie et al. (2016), using the available Py-
Torch implementation from https://github.
com/vlukiyanov/pt-dec. We slightly adjust the
parameters reported in the paper to our datasets and
present the highest value obtained.

DEC-BERT To have a more fair comparison
between ADCluster and DEC (Xie et al., 2016),
we replace the stacked autoencoder part of DEC
with a BERT language model followed by a mean
pooling layer to encode documents and train it with
the same objective function as in DEC.

UFT We compare our model with the model pre-
sented in Huang et al. (2020). We refer to this base-
line as UFT. We obtained the source code from the
authors of the paper and applied it to our datasets.

ADCluster-noIter is a non-iterative version of
ADCluster. We run K-Means only once using con-
textual representations of documents from BERT
and train the neural classifier with the generated
pseudo-labels for some iterations.

Centroid-ADCluster Since in ADCluster
there is no correspondence between two consec-
utive cluster assignments, the final classification
layer learned for an assignment becomes irrelevant
for the following one and thus needs to be re-
initialized from scratch at each epoch. We do this
to prevent the model from overfitting to the noisy
pseudo-labels. For verification, we implemented
another version of ADCluster in which we, instead
of learning a classification layer predicting the
cluster assignments, perform explicit comparisons
between features and centroids.

4.3 Evaluation Metric

We adopt a standard unsupervised evaluation met-
ric that is widely used in deep clustering studies to
compare our proposed method to other algorithms.
For all the algorithms, the number of clusters is set
to the number of ground-truth categories of each
dataset, and we evaluate the clustering performance
using the unsupervised clustering accuracy (ACC):

ACC = max
m

∑N
n=1 1{ln = m(cn)}

N

whereN is the total number of documents, ln is the
ground-truth label of document dn, cn is the clus-
ter assignment that is predicted by the clustering
algorithm for dn, and m maps cluster assignments
to labels, ranging over all possible one-to-one map-
pings. This metric seeks the best possible align-
ment between the ground-truth label and the cluster
assignments generated by an unsupervised cluster-
ing algorithm. The Hungarian algorithm, presented
in the work of Xu et al. (2003), offers a means
to efficiently calculate the most effective mapping
function within the context of a linear assignment
problem.

4.4 Experimental Setup

We implemented ADCluster using the PyTorch
framework, utilizing bert-base-uncased LM of Hug-
ging Face3. Documents are truncated to their first
256 tokens. To generate document embeddings,
we employ average pooling over the output of the
language model. For label prediction, we employ
a two-layer MLP with a single hidden layer. The
hidden layer size is set to 128 for Yahoo!5 and
Fake News and 768 for Ag News. The hyperbolic
tangent function is used as the activation function
for the MLP.

We set the mini-batch size to 4 and the learning
rate of the LM and MLP head to 10−6 and 10−4

correspondingly. We also use a cosine scheduler
for the learning rate of the LM. We train ADClus-
ter for at most 10 000 iterations and reassign the
clustering labels by applying K-Means on docu-
ment representations every 200 iteration (which we
call an epoch). The threshold for stopping train-
ing when cluster assignments do not significantly
change anymore is set to 1% of the documents. The
model is trained using the AdamW optimizer with
α and β equal to 0.999. We use the first 200 iter-
ations as warm-up steps for the LM. To initialize
the centroids of K-Means we use the K-Means++
seeding strategy proposed by Arthur and Vassilvit-
skii (2007) and to initialize weights of MLP head
in each epoch we use Xavier initialization (Glorot
and Bengio, 2010). We train ADCluster-noIter and
Centroid-ADCluster under the same settings. The
only difference for Centroid-ADCluster is that the
size of the hidden layer of the MLP head is 768
for all datasets and the weights of the last layer
(768 ·K, where K is the number of classes in the
dataset) are initialized with the centroids of the K-

3https://huggingface.co/bert-base-uncased
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Means which are constant during training. For the
other baselines, we test several sets of values for
their hyperparameters and report the best results.

5 Results and Discussions

5.1 Overall Performance

Generally, ADCluster achieves better performances
than most of the baseline methods across multiple
datasets (see Table 2). Compared to traditional
clustering algorithms, ADCluster outperforms K-
Means from 1.84% (Ag News) up to 23.3% (Ya-
hoo!5), indicating that the iterative learning pro-
cess (inner adaptation) of our model is effective.
We can also note that HDBSCAN achieves better
performance than K-Means in most cases but out-
performs ADCluster only in the case of Ag News.
In Table 1, we see that Ag News consists of very
short texts, its average number of sentences per
document being 1.45 and the average number of
words being 36.09. It does not seem to provide
enough context for BERT to make distinctive repre-
sentations, thus limiting the efficacy of our model
on this particular dataset. However, in Section 5.5
we will see that by replacing BERT with more ad-
vanced LMs the performance of our model on this
dataset improves. For Yahoo!5 and Fake News,
HDBSCAN gains better performance than most of
the other methods except ADCluster. In fact, for
these datasets, ADCluster displays better perfor-
mance than all baselines. This holds even in the
case of Fake News, which consists of a very limited
number of documents (i.e., 480 documents).

The comparison with DEC-based models yields
the following observations. Firstly, ADCluster out-
performs DEC-tfidf, which we attribute to its use
of BERT contextual representations (whereas tf-
idf representations only consider text as a bags of
words and neglect their semantic relations). Sec-
ondly, even though DEC-BERT has similar ac-
cess to the contextual information of the language
model, its performance is still lower than that of
our model. The same applies to the UFT baseline.
The reason could be that these models are trained
in a self-learning fashion and may thus suffer from
self-confirmation. Our model avoids this by using
K-Means as an external teacher for our neural clas-
sifier. It also uses a uniform sampling technique for
batch creation, mitigating biases stemming from
imbalanced clusters.

5.2 Dynamic Performance Analysis of
ADCluster Across Varied Dataset Sizes

In this experiment, we examine the performance
of ADCluster in comparison to baselines as the
dataset size gradually increases. The outcomes of
this experiment are presented in Table 3, illustrat-
ing the results as the document size expands from
10% to 100%. In general, ADCluster consistently
maintains stable performance throughout these ex-
periments and surpasses baseline models for all
datasets, with the exception of the 10% case for
Fake News.

5.3 Illustration of Learned Representations
by ADCluster

In order to investigate how ADCluster develops
clustering-friendly representations through inter-
nal adaptation, we visualize the evolution of clus-
ters during the training process using the Yahoo!5
dataset. Figure 2 shows how ADCluster clusters
the documents during different epochs with ground-
truth classes represented by different colors. The
figure clearly demonstrates that at the very begin-
ning, the structure is random. Along with the adap-
tation process, documents are arranged into more
distinct groups, which is signified by both color
separation and spatial characteristics. This trend
is further confirmed by the continuous enhance-
ment in clustering performance observed in each
successive epoch.

5.4 The Model Behavior on Data Streams

Notation. Hereafter, if not otherwise specified, we
use Ac to abbreviate Accumulation. We randomly
split each unlabelled data collection into 5 chunks
and denote them by C1 (1–20%), C2 (21–40%), C3

(41–60%), C4 (61–80%), C5 (81–100%).
We now analyze the outer adaptation behavior of

ADCluster. In this experiment, we assume the num-
ber of the clusters to be constant over time, only
receiving new samples. We compare our model
with three baselines:

Word2vec+KM We generate document repre-
sentations as the average of the Word2vec embed-
dings of all words in the document and use K-
Means to cluster these representations.

BERT+KM We create document representa-
tions by taking the average of the output of the last
BERT layer for non-pad tokens and use K-Means
to cluster these representations.

ADCluster-scratch This baseline is the same
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Table 2: Overall performances of ADCluster in comparison to baselines. ♥ indicates
short-text datasets.

Method Yahoo!5 Ag News♥ Fake News

Classic
Clustering

Kmeans (BERT) 44.64 81.6 73.96
HDBSCAN (BERT) 58.8 83.68 72.71

DEC (Xie et al., 2016)∗ tf-idf 50.23 68.93 45.41
BERT 46.43 78.32 75.83

UFT (Huang et al., 2020)∗ 46.94 65.46 66.67

ADCluster (ours) Centroid-ADCluster 60.64 80.93 76.67
ADCluster-Final 67.94 83.44 77.50

∗ The result is produced by us following the original paper

Table 3: Performance analysis of ADCluster across
varied dataset sizes compared to baselines. Note that,
because of the unsupervised setting, there is no expecta-
tion of monotonic increases in performance.

Dataset Method 10% 50% 80% 100%

Ag News
K-Means 82.4 81.39 81.41 81.6
DEC-BERT 79.3 78.22 78.4 78.32
ADCluster 84.08 82.56 84.3 83.44

Yahoo!5
K-Means 53.23 53.5 59.95 52.17
DEC-BERT 45.74 46.44 46.56 46.43
ADCluster 66.3 66.03 67.38 67.94

Fake News
K-Means 64.58 77.08 77.34 73.96
DEC-BERT 68.75 79.58 77.60 75.83
ADCluster 64.58 83.75 79.95 77.50

as ADCluster except that instead of perform-
ing outer adaptation, we train the model from
scratch (accumulatively on the whole dataset or
non-accumulatively on the last chunk only, respec-
tively). Thus, we remove the outer adaptation and
the model only benefits from the inner adaptation.
Tables 4–6 show the results of our experiments.

As our main take-aways from these experi-
ments, we note that ADCluster outperforms the
Word2vec+KM and BERT+KM baselines in all
cases in both the Ac and non-Ac settings. The su-
perior accuracy of ADCluster on chunk C1 can

Table 4: Comparing the outer adaptation performance
of ADCluster with baselines on Yahoo!5.

Method Ac C1 C2 C3 C4 C5

Word2vec+KM Yes 52.09 41.86 47.08 44.94 49.02
BERT+KM Yes 46.28 53.84 53.67 55.24 53.70
ADCluster-scratch Yes 67.33 66.44 64.06 64.51 62.06
ADCluster Yes 67.33 67.99 68.07 67.8 67.48

Word2vec+KM No 52.09 42.51 45.72 49.79 50.22
BERT+KM No 46.28 57.02 52.00 54.86 55.04
ADCluster-scratch No 67.33 67.11 65.19 61.79 65.50
ADCluster No 67.33 68.07 68.24 67.61 67.98

(a) Epoch 0 (51.65%)) (b) Epoch 5 (57.37%))

(c) Epoch 30 (67.53%)) (d) Epoch 50 (67.94%))

Figure 2: Illustration of clustered contextual represen-
tations according to ADCluster for Yahoo! Answer
during inner adaptation. Colors indicate ground-truth
classes. We have used UMAP to map 768-dimensional
representations to a 2D feature space for illustration.

Table 5: Comparing the outer adaptation performance
of ADCluster with baselines on Ag News.

Method Ac C1 C2 C3 C4 C5

Word2vec+KM Yes 80.65 79.98 80.55 80.87 80.83
BERT+KM Yes 81.66 81.42 81.50 81.51 81.52
ADCluster-scratch Yes 84.07 84.56 84.09 83.07 81.76
ADCluster Yes 84.07 84.81 82.56 83.05 84.03

Word2vec+KM No 80.65 79.59 81.49 80.80 80.85
BERT+KM No 81.66 81.43 81.20 81.82 81.05
ADCluster-scratch No 84.07 83.74 81.95 83.87 82.51
ADCluster No 84.07 84.01 84.25 83.6 83.44
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Table 6: Comparing the outer adaptation performance
of ADCluster with baselines on Fake News.

Method Ac C1 C2 C3 C4 C5

Word2vec+KM Yes 67.71 79.69 78.47 71.35 74.58
BERT+KM Yes 57.29 77.60 77.08 77.34 77.29
ADCluster-scratch Yes 69.79 82.81 84.37 79.69 79.58
ADCluster Yes 69.79 83.33 83.68 81.25 80.62

Word2vec+KM No 67.71 80.21 62.50 54.17 57.29
BERT+KM No 57.29 77.08 58.33 53.12 51.04
ADCluster-scratch No 69.79 82.29 67.71 57.29 59.37
ADCluster No 69.79 86.46 79.17 61.46 73.96

be attributed to the inner adaptation which the
baseline models lack. However, interestingly the
outer adaptation results in superior performances
in most cases on chunks C2–C5 even compared to
ADCluster-scratch, which is remarkable and shows
the effectiveness of outer adaptation.

5.5 Ablation study

In this ablation study, we design two settings to
study the effectiveness of each ADCluster com-
ponent. First, we replace the default BERT lan-
guage model with recent models such as RoBERTa,
SBERT, and BART. Second, we test various set-
tings: (1) removing outer adaptation, (2) using a
random sampler instead of a uniform sampler, and
(3) Using UMAP for dimension reduction (instead
of PCA for the Yahoo!5, and instead of not using
dimension reduction for Ag News and Fake News).
Figure 3 clearly shows that recent advanced lan-
guage models yield better performance on all of the
datasets. Table 7 summarizes the performance of
ADCluster in the second setting. Across all experi-
ments, the final model of ADCluster shows better
performance than these variants.
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Figure 3: Ablation study w.r.t. different language mod-
els being used for the inner adaptation of ADCluster.

Table 7: Ablation study to evaluate the impact of differ-
ent components of ADCluster to the final performance.

Ablation setting Yahoo!5 Ag News Fake News

Non iterative 53.89 82.88 73.96
UMAP 64.74 58.33 66.25
Random sampler 65.78 79.2 76.04

6 Conclusion and Future Work

We have introduced ADCluster, a neural document
clustering model that iterates between a contextual
language model and K-Means. K-Means is ap-
plied to contextualized document representations
created by a BERT language model in order to ob-
tain pseudo-labels. The weights of the language
model are then iteratively adapted to improve the
prediction of cluster assignments using discrimi-
native loss. Not only does this inner adaptation
result in superior clustering performance, it also en-
ables us to resume training when the dataset grows
(outer adaptation), as is often the case in real-world
applications. Our empirical results show that for
medium to long-text documents, ADCluster consis-
tently outperforms conventional clustering models
by a considerable margin with respect to the unsu-
pervised accuracy measure.

Future work will have to study the inner and
outer adaptation in more detail. For instance, one
interesting direction could be a “soft adaptation”,
which continuously measures how much weight
the outer adaptation shall place on earlier and later
chunks. So far, we only presented two extreme
cases, i.e., accumulation or non-accumulation.

Moreover, text data is often accompanied by
additional modalities such as images, audio, and
video. Such multimodal data has the potential to
help the model understand the semantics of docu-
ments and assign them to the right cluster (Chen
et al., 2021; Jiang et al., 2019). Multimodality can
also open the door to new real-world downstream
applications. Therefore, we are interested in ex-
tending our model to multimodal data clustering in
the future.
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Abstract

Neural text detectors are models trained to de-
tect whether a given text was generated by a
language model or written by a human. In
this paper, we investigate three simple and
resource-efficient strategies (parameter tweak-
ing, prompt engineering, and character-level
mutations) to alter texts generated by GPT-3.5
that are unsuspicious or unnoticeable for hu-
mans but cause misclassification by neural text
detectors. The results show that especially pa-
rameter tweaking and character-level mutations
are effective strategies.

1 Introduction

The widespread availability of neural text genera-
tion models, like ChatGPT, has caused an increased
desire for neural text detectors, i.e. models that
can detect whether a given text was AI-generated.
The reliance of, e.g., educational institutions on
such detectors has raised questions about their ro-
bustness in general and in specific with regard to
adversarial attacks (Jawahar et al., 2020; Wolff and
Wolff, 2022; Liang et al., 2023a,b). Such attacks
exploit the fact that machine learning models by
identifying patterns in the data rather than by under-
standing actual underlying concepts. Consequently,
introducing small, human-unnoticeable perturba-
tions can result in misclassification. (Goodfellow
et al., 2014; Szegedy et al., 2013)

Adversarial attacks can be categorised into black-
box and white-box attacks (Peng et al., 2023). In
white-box attacks, the attacker has full access to
the target model, including its parameters, architec-
ture, and loss function (Ebrahimi et al., 2018; Gao
et al., 2018). During black-box attacks, the adver-
sary can only input queries and observe the outputs
without any insights into internal processing (Gao
et al., 2018). Furthermore, it can be distinguished
between targeted and untargeted attacks, where tar-
geted attacks aim at triggering misclassification

towards a specific label, while untargeted aim to
cause any misclassification (Rathore et al., 2021).

This paper investigates effective and resource-
efficient universal attack strategies in a black-box
scenario with minimal resources, based on text gen-
erated with GPT 3.5 and three neural text detectors:
the widely used open source GPT-2 Output detec-
tor model1, the OpenAI text classifier2, and the
commercial Turnitin AI detector3, which is used
by many educational institutions. The results show
that character-level mutations, tweaking the param-
eters of the generative model, as well as prompt
engineering, are efficient and effective strategies,
showing that currently available neural text detec-
tors can not reliably detect texts generated by state-
of-the-art large language models (LLMs).

2 Related work

Most of the existing literature about adversarial at-
tacks focuses on image detection. Textual input is
less used due to its discrete nature and the difficulty
in introducing human-imperceptible perturbations,
contrary to the image data, where a change in a few
hundred pixels can go unnoticed (Jin et al., 2019;
Peng et al., 2023). Examples of adversarial at-
tacks on general text classification models include
the work by Ebrahimi et al. (2018) and Gao et al.
(2018). More recent work has started to specifically
look into adversarial attacks on neural text detec-
tors: Wolff and Wolff (2022) showed that introduc-
ing spelling mistakes and replacing characters with
homoglyphs can significantly reduce the detection
rate for GPT-2 texts. Liang et al. (2023a) showed
that similar character-level mutation-based attacks
are also successful for RoBERTa-based detection
models. Liang et al. (2023c) not only showed that

1https://github.com/openai/
gpt-2-output-dataset/tree/master/detector

2https://platform.openai.com/
ai-text-classifier

3https://www.turnitin.com
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existing detectors are vulnerable to simple rephras-
ing, but they also showed that they are biased to-
wards flagging texts that have been (manually) writ-
ten by non-native speakers as AI-generated.

Because currently available methods are vulner-
able to adversarial attacks, multiple suggestions
have been made to improve their robustness, e.g.
by Liang et al. (2023b), Shen et al. (2023), Crothers
et al. (2022), and Yoo et al. (2022). While water-
marking techniques to identify AI-generated texts
are also investigated, they are generally seen as vul-
nerable to adversarial attacks, especially to muta-
tion and paraphrasing-based approaches (Jin et al.,
2019; Kirchenbauer et al., 2023; Sadasivan et al.,
2023).

3 Approaches

Based on the existing literature, we identified three
promising and efficient approaches for adversar-
ial attacks: parameter tweaking, prompt engineer-
ing and character-level mutations. All approaches
were tested with the three neural text detectors
mentioned in Section 1: GPT-2 output detector,
OpenAI classifier, and Turnitin AI writing detector.
The basis for all attacks were texts generated by the
GPT-3.5-turbo model via the OpenAI API. The text
samples were produced as 500-word essays, with
topics taken from a list of 200 essay topics (Nova,
2019) and the prompt “Write a five-hundred-word
argumentative essay on the topic ‘topic’.”. It was
then evaluated how the detection rate changed be-
tween the original texts and their altered version.
To ensure comparability of the results between dif-
ferent detectors, all scores were projected onto a
scale from 0.0 (very likely not AI-generated) to
1.0 (very likely AI-generated). The GPT-2 Output
detector returns a score between 0.0 and 1.0, that
can be used directly. Turnitin returns a percent-
age between 0 and 100 indicating how much of
the text was generated by AI. We divide the score
by 100. The OpenAI classifier returns one of five
labels (“very unlikely”, “unlikely”, “unclear”, “pos-
sibly”, “likely”). For each of the labels, OpenAI
(2023a) provides a corresponding range of numer-
ical thresholds, of which we take the mean score
(0.05, 0.275, 0.675, 0.94, 0.99). The code for the
evaluation was written with the assistance of GPT-
4, followed by extensive testing of the code, as well
as additional, manually implemented, features. The

Parameter Min Max Default
Temperature 0.0 2.0 1.0
Top p 0.0 1.0 1.0
Frequency penalty -2.0 2.0 0.0
Presence penalty -2.0 2.0 0.0

Table 1: Investigated parameters

code and the data are available on GitHub4.

3.1 Parameter tweaking

First, we investigated the influence of GPT-3.5 gen-
eration parameters on the detection. Table 1 shows
the parameters we focus on because they have the
biggest impact on the produced texts according to
OpenAI (2023b). Temperature and top p control
randomness in the text. By increasing the tempera-
ture, the output becomes more random. However,
for values beyond the default of 1.0, the length
of the outputs started fluctuating strongly and the
quality of the texts dropped. Consequently, we fo-
cused on the range between 0.0 and 1.0. Top p
represents the percentage of tokens selected based
on their probability mass. The frequency penalty
controls the frequency of tokens appearing in the
text, with higher values leading to more diverse
verbatim. During the testing phase, it was found
that increasing the frequency penalty beyond 1.0
degrades the quality of the texts rapidly. Addition-
ally, as decreasing the value below 0.0 increases the
repetitiveness, we focused on the range between 0.0
and 1.0. Finally, the presence penalty controls the
model’s likelihood of repeating tokens in the text.
Higher values of presence penalty lead to the model
producing more diverse texts. Following consider-
ation similar to the frequency penalty, the negative
values were discarded, and we focused on the range
between 0.0 and 2.0. (OpenAI, 2023b) First, we
investigated each parameter separately, changing
it in steps of 0.1. Subsequently, we used the two
parameters that had the biggest impact and investi-
gated whether their interaction also influences the
detection rate by performing a grid search in steps
of 0.1 with these parameters.

3.2 Prompt engineering

The second approach explored the effect of prompt
engineering on detection rates. Since Liang et al.
(2023c) have shown that detection is vulnerable
towards simple rephrasing, our hypothesis was that

4https://github.com/Lolya-cloud/
adversarial-attacks-on-neural-text-detectors
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providing regeneration instructions as a separate
prompt might lower the detection rate. This hypoth-
esis was tested with the following four prompts,
each of which was used to generate ten texts: (1)
standard prompt as described in Section; (2) stan-
dard prompt followed by second query "Regen-
erate the essay."; (3) advanced prompt as shown
in Appendix A.1; (4) standard prompt followed
by advanced prompt as second query. Addition-
ally, several prompts to increase the perplexity and
burstiness of generated texts were tested, a strategy
that is popular among users (see e.g. Alexander
(2023)). Ten prompts were designed, and for each,
ten texts were generated. The first five prompts use
single-query architecture, while the others utilise a
two-query concept. The following methods were
tested with different prompts: (1) Explaining bursti-
ness and perplexity, then asking to implement them
(see Appendix A.2); (2) Explicitly asking to max-
imise either perplexity, burstiness or both (standard
prompt followed by “Maximize the burstiness /
perplexity / burstiness and perplexity of the text.”);
(3) Explicitly asking to rewrite to avoid detection.
(“Rewrite the above essay in order to avoid AI
detection.”)

3.3 Character-level mutations

This approach aimed to test the robustness of the
detectors against traditional adversarial attack vec-

tors. Three character level mutations were taken as
a basis: replacing either Latin lowercase “a” or “e”
with the corresponding Cyrillic analogue; replacing
Latin lowercase “L” with Latin uppercase “I”. Ten
texts were generated with the standard prompt and
then the mutations were applied.

4 Results

4.1 Parameter tweaking

The detection rate of all three detectors dropped
with an increment in either frequency or presence
penalty (see Figure 1). Starting from a frequency
penalty of 0.3-0.4 and a presence penalty of 1.0-1.2,
the detection rate fell under 50% with some fluctu-
ations. An analysis of the generated texts showed
that increasing either the frequency or presence
penalty led to more diverse texts. A higher fre-
quency penalty caused a wider vocabulary variety.
For values above 0.6, the occurrence of punctuation
mistakes and unclear wordings quickly increased,
making the texts difficult to read. For values be-
tween 0.0 and 0.6, increases in value caused an
incremental increase in text complexity while pre-
serving quality and readability. A higher presence
penalty primarily influenced the diversity of per-
spectives and text engagement. However, for values
above 0.6, the coherence and logical progression
rapidly decreased and texts became less subject-
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focused. Therefore, increasing either frequency or
presence penalty from the default of 0.0 up to 0.6
can be seen as successful attack strategies that sig-
nificantly lowers detection while maintaining text
quality. Increasing the temperature and top p value
above the default was already excluded from the
experimental design, because of the strong nega-
tive effects on text quality. Lowering either value
resulted in more deterministic outputs leading to
higher detection rates, therefore, tweaking those
parameters is not a successful attack strategy.

In a second step, the interaction between fre-
quency and presence penalty was investigated. Fig-
ure 2 shows that the detection rates dropped for
all three detectors with an increment in frequency
and presence penalty. Notably, they started drop-
ping for smaller values of presence and frequency
penalty than they did for the individual parameters,
thereby minimising the potential negative effects
on text quality. The GPT-2 detector showed the
worst performance in the comparison with very
quickly declining detection scores.

4.2 Prompt engineering

The simple regeneration approach, whether using
a second query or providing detailed instruction
in the first query, did not have an impact on de-
tection rates. Increasing the perplexity and bursti-
ness of the texts through prompts, on the other
hand, caused a drop in the detection rate across
all three detectors, however only if applied in two
separate prompts, as shown in Figure 3. Although
the approach managed to decrease the detection
rate across all three detectors, the score sank only
for the GPT-2 detector below 0.5 (see Figure 3a).
For the other two detectors, the score stayed above
0.5, meaning that the generated texts would still be
detected as AI-generated or at least as undecidable.

4.3 Character-level mutations

The influence of the character-level mutations on
the detection scores is shown in Table 2. For the
GPT-2 detector, all three replacements lead to a de-
tection score of 0. For Open AI, all attacks lowered
the detection score, although not as much as for
the GPT-2 detector. Turnitin detected the replace-
ment of Latin characters with Cyrillic characters
and flagged the attack. The substitution of ls with
capital is, however, remained undetected and sig-
nificantly lowered the detection score, therefore
presenting a successful attack strategy.
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Figure 3: Influence of perplexity and burstiness prompts
on detection (number of prompts in brackets; std =
standard prompt; exp = prompt to explain and increase
burstiness & perplexity; per = increase perplexity; bur =
increase burstiness; bot = increase both)

5 Conclusion

This study explored the effectiveness of resource-
efficient adversarial attacks on neural text detectors,
based on texts generated by GPT-3.5 and the three
detectors GPT-2 output detector, OpenAI classifier,
and Turnitin. Of the three investigated strategies,
parameter tweaking and character-level mutations
were successful for all three detectors. Prompt
engineering was only successful for the GPT-2 out-
put detector. All strategies are resource efficient
and easy to implement, effectively showing that
currently available detectors cannot reliably detect
AI-generated texts and are vulnerable to adversarial
attacks.

GPT-2 OpenAI Turnitin
Standard 0.67 0.77 0.75
Swap a lat.-cyr. 0 0.52 x
Swap e lat.-cyr. 0 0.48 x
Swap l - I 0 0.38 0.21

Table 2: Character-level mutation mean detection score
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A Appendix - Prompts

A.1 Advanced Prompt
“Write a five-hundred-word argumentative essay on
the topic ‘topic’. Include personal reflections, use a
mix of long and short sentences, employ rhetorical
questions to engage the reader, maintain a conver-
sational tone in parts, and play around with the
paragraph structure to create a dynamic and en-
gaging piece of writing. Try to include factual and
contextual information, use advanced concepts and
vocabulary. Utilize a combination of complex and
simple vocabulary. Try to mimic human writing as
closely as you can. Avoid passive voice, as it tends
to occur more often in AI-generated texts. Add a
few examples from the real world illustrating your
point.”

A.2 Perplexity and Burstiness
“Write a five-hundred-word argumentative essay on
the topic ‘topic’. When it comes to writing con-
tent, two factors are crucial, perplexity and bursti-
ness. Perplexity measures the complexity of the
text. Separately, burstiness compares the variations
of sentences. Humans tend to write with greater
burstiness, for example, with some longer or more
complex sentences alongside shorter ones. AI sen-
tences tend to be more uniform. Therefore, when
writing the following content, I need it to have a
good amount of perplexity and burstiness.
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Abstract

Twitter has become an important platform for
political discussions among both politicians
and the public and was extensively used during
the 2021 federal election in Germany. Previous
research examined the sentiment of the major
political actors during that election on Twitter,
but it remains unclear how the German public
responded to them on Twitter in terms of senti-
ment. We analyzed a corpus of 713,742 tweets
mentioning the Twitter handle of 89 of the most
important party and politician accounts. We
annotated a subset of 2,000 of these tweets re-
garding their sentiment and used this and other
annotated corpora to implement and evaluate
sentiment analysis algorithms based on single-
label classification (positive, negative and neu-
tral). We achieved best results with the German
BERT model gbert-large using a combination
of our annotated corpus and a previously anno-
tated corpus from the same context as training
material. This model achieves an average accu-
racy of 81.8% in a 5x5 cross-validation setting.
Applying sentiment analysis on the overall cor-
pus revealed that the majority of the tweets
expressed negative sentiments. We investigated
sentiment developments per party and show
that sentiment was driven by significant events
such as the implementation of stricter COVID-
19 regulations.

1 Introduction

In 2021, the 20th German federal election took
place, with the reigning chancellor Angela Merkel
not running again after 16 years in office. After
the election, Angela Merkel’s party, the Christian
Democratic Union (CDU), was no longer part of

the government and a coalition was formed con-
sisting of the Social Democratic Party (SPD), the
Green Party (BÜNDNIS 90/DIE GRÜNEN), and the
Free Democratic Party (Liberals, FDP). According
to the opinion polling institute Infratest Dimap, a
strong change in the political mood in the form of
voting intention could be observed among voters
during the election year.1 Due to ongoing restric-
tions in the wake of the pandemic, campaigning
by the respective parties on social media platforms
like Twitter2 played a special role in this election.
Twitter is one of the most popular social media
platforms and a micro-blogging platform where
users can send out short posts (“tweets”) which can
then be viewed by other users. Tweets are limited
to 280 characters (as of January 2023) and may
also contain images, videos, links or hashtags, i.e.
keywords marked with a “#”-sign. It is possible to
mention other users in tweets by using their Twitter
handle (e.g. @OlafScholz for the current German
chancellor’s account).

Twitter has become a popular platform for all
sorts of analysis in Natural Language Processing
(NLP) and Computational Social Science (CSS)
including sentiment analysis. Sentiment analysis,
also known as opinion mining, is the computational
method to predict the sentiment, attitude, or opin-
ion of media, predominantly text (Liu, 2020) and
has major application areas in the analysis of social
media (Schmidt et al., 2020), online reviews (Fehle

1https://www.infratest-dimap.de/
umfragen-analysen/bundesweit/sonntagsfrage

2As of July 2023, Twitter has been rebranded as X. How-
ever, we will use the name “Twitter” in this paper since the
data was acquired before the rebranding and “Twitter” is still
a common reference for the platform.
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et al., 2023), healthcare NLP (Moßburger et al.,
2020) or narrative texts (Schmidt and Burghardt,
2018). The method has also been used extensively
in the political context on Twitter to quantify both
public sentiment towards political parties and ac-
tors (Agarwal et al., 2018; Yaqub et al., 2020), pre-
dict election results (Ibrahim et al., 2015; Ramteke
et al., 2016), and to describe and relate sentiment
of parties with one another (Tumasjan et al., 2011;
Caetano et al., 2018). Previous research analyzed
the tweets of major political accounts during the
2021 federal election in Germany and identified,
among other things, a tendency towards negativ-
ity by opposition parties and significant sentiment
changes before and after election day (Schmidt
et al., 2022).

We build on this research but shift the focus from
the political actors to the general public. In this pa-
per, we perform sentiment analysis to analyze how
the most important German political parties and
their politicians were perceived on Twitter during
the 2021 federal election campaign year. We have
built a corpus of 713,742 tweets that were posted
throughout the election year 2021 and that men-
tion a selection of 89 political party accounts and
politicians from the major German parties using
their Twitter handle. Our research questions are as
follows:

• How does the sentiment of the tweets differ
comparing the major parties and comparing
opposition and government parties?

• How does the sentiment expressed in tweets
change over the course of the election year?

• How does the sentiment of tweets from po-
litical parties differ compared to tweets from
users mentioning accounts of those parties?

Our main contributions are as follows:

• Acquisition and preparation of a corpus con-
sisting of 713,742 tweets mentioning (using
@-sign) 89 Twitter accounts by the major po-
litical German parties.

• Annotation of sentiment for a sub-corpus of
2,000 tweets.

• A fine-tuned and optimized German BERT
model using annotations as training material.

• The analysis of classification results on the en-
tire corpus focused on the proposed research
questions.

Although sentiment analysis of the tweets of
political actors during the 2021 German Federal
Election has been already explored (Schmidt et al.,
2022), to the best of our knowledge, no prior work
has investigated citizens’ sentiment during this elec-
tion.

2 Related Work

2.1 Methods for Sentiment Analysis

Previous sentiment analysis research on Twitter
has employed diverse approaches, ranging from
lexicon-based methods (Elbagir and Yang, 2019;
Hutto and Gilbert, 2014) to machine learning ap-
proaches like support vector machines (Awwalu
et al., 2019; Xia et al., 2021), word embeddings
(Lilleberg et al., 2015; Joulin et al., 2017) or neural
networks (Zhang et al., 2018; Minaee et al., 2021;
Xia et al., 2021). However, transformer-based mod-
els such as BERT (Devlin et al., 2019) and ELEC-
TRA (Clark et al., 2020) which are trained on huge
amounts of unlabeled textual data are currently con-
sidered state-of-the-art in a variety of NLP tasks
including sentiment analysis (Dang et al., 2020;
Qiu et al., 2020; Schmidt et al., 2021a). BERT-
based models are available for many languages,
and there are versions that have been fine-tuned
on specific domains or languages. For example,
for the German language, deepset3 published large
models that are trained on over 160 GB of German
texts (Chan et al., 2020). In the context of Twitter,
there are also some BERT-based models such as
BERTweet (Nguyen et al., 2020) and TwHIN-BERT
(Zhang et al., 2023) that have been fine-tuned on
English tweets. In the field of political sentiment
analysis, transformer-based models usually outper-
form lexicon-based methods and traditional ma-
chine learning methods (Chintalapudi et al., 2021;
Fehle et al., 2021; Schmidt et al., 2022). Thus, we
will focus on this approach for the implementation
of our sentiment analysis.

2.2 Sentiment Analysis in the Context of
Twitter for Political Research

Analyzing the sentiment of politicians’ or political
party tweets has been shown to accurately reflect
the political orientation of these politicians or po-
litical parties. Tumasjan et al. (2011) found that
the party sentiment profiles corresponded to how
similar their political views between parties were.

3https://www.deepset.ai/
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Additionally, politicians from opposing parties ex-
pressed opposing sentiments. Moreover, tweets
during the 2016 American presidential election of
both users and political actors have been used to
identify homophily, i.e. “the tendency for individu-
als to interact with similar others”(Fu et al., 2012;
Caetano et al., 2018). More recently, Schmidt et al.
(2022) showed that in the 2021 German Federal
election, the sentiment expressed in tweets of ma-
jor parties was largely negative. Additionally, gov-
erning parties expressed more positive sentiments
compared to those in the opposition.

Tweets have also been used to localize public
opinion towards political actors in elections (Agar-
wal et al., 2018; Yaqub et al., 2020). Using both,
geospatial data and sentiment analysis of tweets,
Agarwal et al. (2018) have shown how political
actors were perceived across the globe in the con-
text of the EU Referendum regarding whether the
UK should leave or stay in the EU. Likewise,
Yaqub et al. (2020) evaluated the similarity be-
tween the sentiment of location-based tweets and
on-ground public opinion and show that it corrobo-
rates with the election result. Similarly, Chaudhry
et al. (2021) analyzed Twitter sentiment before,
during, and after the 2020 US election on a state
level. They find that the sentiment corresponded
to a large degree with the final election results. Ali
et al. (2022) investigated the sentiment expressed
in tweets about Joe Biden and Donald Trump in the
lead up to and aftermath of the 2020 US presiden-
tial election. Their findings indicate that following
the election outcome, there was an increase in posi-
tive sentiment towards the winner Joe Biden. Using
the public citizen sentiment of tweets regarding po-
litical candidates has also been shown to be useful
in predicting the outcome of elections (Ibrahim
et al., 2015; Ramteke et al., 2016).

3 Methodology

3.1 Data Acquisition

In order to capture the sentiment towards political
actors on Twitter, we collected tweets that used the
Twitter handles (using the @-sign) of a selection
of accounts of parties represented in the Bundestag.
The seven parties in the Bundestag were taken into
account (whereby these were the same parties be-
fore and after the election). For each party, the
ten politicians’ accounts with the most followers
were considered (as of January 2022). In addition,
tweets were collected that mentioned the three offi-

cial party accounts with the most followers of the
seven parties. Since the parties CDU and CSU
form a parliamentary group and the CSU repre-
sents the state of Bavaria only, these parties were
considered as a single party in the following anal-
ysis. Thus, the party accounts of CDU and CSU
were summarized to four accounts. In total, 89 ac-
counts were included in the analysis, which are the
same as those considered by Schmidt et al. (2022)
to enable direct comparisons between the sentiment
expressed by political actors and the sentiment of
public citizens towards them in the discussion. A
full list of the accounts can be found in tables 6 and
7 in the appendix.

For the collection of tweets, we used Twint4,
a Python library that allows downloading large
amounts of tweets. For each account, tweets were
collected for two random days in each month of
2021. For one day, all tweets that mentioned the
account with an @-sign were scraped. We have
chosen these selection criteria due to resource and
API limitations we would encounter when work-
ing with all tweets mentioning the 89 accounts for
this year (∼ 11 million tweets). We argue that
the acquired corpus is still appropriate in size and
representative in the context of our research goals.

Subsequently, tweets that did not have a German
language code were filtered, as well as tweets in
which the account under consideration mentioned
itself. After filtering, the final corpus consists of
707,241 tweets and over 22 million tokens in total
(see table 1 for general statistics of the corpus). The
accounts of the parties SPD and CDU/CSU, which
formed the government until the federal election,
were mentioned in far more tweets and the party
DIE LINKE the least compared to the other parties.

3.2 Data Annotation

We annotated a subset of randomly selected 2,000
tweets in order to train a machine learning model.
The proportion of tweets related to a party in the
annotated subset corresponded to the proportion
in the entire corpus. The tweets were annotated
independently of each other by five native speakers
who were students or research assistants. Annota-
tors received an annotation manual and a guided
instruction session. Each tweet of the annotation
subset should be assigned to one of the following
sentiment labels by the annotators:

4https://github.com/twintproject/twint, https:
//github.com/kevctae/twint

86



Mentioned
Party

Political
Orientation

Pre-
Election

Post
Election # Tweets % # Tokens

avg.
Tweet

Length
SPD center left government government 228,415 32.3 7,153,549 31.32

CDU/CSU center right government opposition 227,683 32.2 7,097,145 31.17
DIE GRÜNEN left, ecological opposition government 73,261 10.4 2,408,946 32.88

FDP liberal opposition government 79,815 11.3 2,607,610 32.67
AfD far right opposition opposition 57,572 8.1 1,636,144 28.42

DIE LINKE far left opposition opposition 40,495 5.7 1,340,331 33.10
Total - - - 707,241 100 22,243,725 31.45

Table 1: General corpus statistics.

1. positive: Tweet has a predominantly positive
connotation.

2. negative: Tweet has a predominantly negative
connotation.

3. neutral: Tweet has a neutral sentiment tone.

4. mixed: Tweet contains positive and negative
elements, with no predominant tendency to-
wards positive/negative connotation.

Examples of annotations are shown in table 4
in the appendix. We acquired three annotations
per tweet. Fleiss‘ κ and Krippendorff’s α were
calculated to measure the inter-rater agreement.
Both Fleiss‘ κ and Krippendorff’s α are 0.61;
percentage-wise agreement is on average 66%.
These values point towards substantial agreement
according to Landis and Koch (1977).

Annotation # Tweets Proportion
positive 120 6,00%
negative 976 48,80%
neutral 777 38,85%
mixed 87 4,35%
no majority 40 2,00%

Table 2: Distribution of the sentiment classes of the
annotated subset.

We assigned each tweet the majority annotation
class and removed all tweets with no majority or
mixed as majority annotation class since we per-
form sentiment analysis on a three class setting
(neutral, positive, negative). The annotated corpus
consists of 1,873 tweets after this filtering. The
distribution of the majority labels for the annotated
tweets is shown in table 2. The majority of tweets
were annotated as negative (48.8%) while only few
tweets are annotated as positive (6%).

3.3 Sentiment Analysis Model Training

Since large language models such as BERT are
considered state-of-the-art in text classification, we
decided to use gbert-large by deepset, a pre-trained
model based on the BERT architecture (Chan et al.,
2020) and one of the largest German language
transformer-based models, as the base model. It
also proved to be the best classification model in a
similar setting (Schmidt et al., 2022). The model
was loaded and implemented via Hugging Face’s5

model hub and fine-tuned for the downstream task
of single-label classification on tweets with the
classes: negative, positive and neutral. We used
three different data sets for this fine-tuning process:
(1) our 1,873 annotated tweets, (2) the 1,785 anno-
tated tweets by Schmidt et al. (2022) which consists
of tweets by politicians of the same election con-
text and (3) the GermEval 2017 dataset (Wojatzki
et al., 2017). GermEval 2017 consists of German
sentiment-annotated posts from the field of cus-
tomer feedback (Wojatzki et al., 2017) and is one
of the most popular training corpus for sentiment
analysis in German. We used the 26,209 annotated
documents, referred to as the “main dataset” by
Wojatzki et al. (2017). We evaluated a total of 4
different approaches with these three datasets in a
5x5 stratified cross-validation setting:

• BERT-1: Using 80% of dataset (1) for train-
ing and evaluating the model accordingly with
20% for all 5 cross-validation runs.

• BERT-2: As of BERT-1 + dataset (2) for train-
ing.

• BERT-3: As of BERT-1 + dataset (3) for train-
ing.

5https://huggingface.co/
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• BERT-4: As of BERT-1 + dataset (2) and (3)
for training.

All models were trained for five epochs, with a
batch size of 16 for both training and evaluation.
AdamW (Loshchilov and Hutter, 2019) was used
as optimizer with a learning rate of 5e-6. This hy-
perparameter setting proved to achieve best results
in our experiments. All models were trained on an
NVIDIA GeForce GTX 1080 Ti GPU with 11 GB
VRAM. The evaluation was solely carried out on
the respective subset of our annotated dataset. For
the implementation of the models and the evalua-
tion we used Pytorch (Paszke et al., 2019), Trans-
formers (Wolf et al., 2020) and scikit-learn (Pe-
dregosa et al., 2011).

4 Results

4.1 Evaluation of the BERT Models
The results for the evaluation are shown in table 3.
For all metrics, the best performance was achieved
with BERT-2. The average accuracy is 81.8%,
with precision and recall being higher for the nega-
tive and neutral classes than for the positive class.
The worst accuracy was achieved with BERT-3,
although BERT-1 and BERT-4 are only slightly
better.

4.2 Analysis of Classification Results
All 707,241 tweets in the corpus were then clas-
sified using BERT-2. Thus, the final fine-tuned
model was trained with 3,658 tweets: 606 (17%)
positive, 1,512 (41%) negative and 1,540 (42%)
neutral. We first present distribution and word fre-
quency results and follow up with the analysis of
time-based sentiment progressions. Please refer
to table 5 in the appendix for election results to
support the analysis and interpretation of the data.

4.2.1 General Analysis
As figure 1 shows, the majority of tweets were
classified as negative (54.4%). Looking at the par-
ties individually, we can see that for each party
over 50% of the tweets were classified as negative,
which is about the same as for the annotation sub-
set. Tweets mentioning AFD accounts have the
largest share of tweets classified as negative, while
the FDP has the smallest share. However, for each
party, over 50% of the tweets were classified as
negative. Furthermore, it can be observed that the
sentiment of the tweets that mentioned the parties
that formed a government after the election (SPD,

Combined SPD CDU/CSU Grüne FDP AfD Die Linke
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Figure 1: Distribution of the sentiment annotation for
all parties.

DIE GRÜNEN, FDP) have the lowest proportion
of negative tweets in comparison to the parties that
would become the opposition (CDU/CSU, AfD,
DIE LINKE). This might be due to an overall more
positive representation in the public after the elec-
tion for the winning parties.

For preliminary semantic analysis, we inves-
tigated the word frequencies of the three senti-
ment classes, looking for the most common pos-
itive or negative terms. In order to enhance the
interpretability of the results, we removed stop
words and all @-mentions from the tweets. An-
alyzing the word frequencies in negative tweets
revealed frequent occurrences of terms such as
“Corona”, “Merkel” or “Impfung” (German for vac-
cination), showing the importance of COVID in
the political discourse of that year. Terms such as
“Danke” (thank you), “gut” (good) or “Herzlichen
Glückwunsch” (congratulations) are most common
among the positive tweets, indicating that post-
election celebrations were the major source for
positive tweets. Word clouds illustrating the word
frequencies of all negative and positive tweets are
presented in figures 4 and 5 in the appendix.

4.3 Diachronic Sentiment Analysis

We also carried out a diachronic sentiment analy-
sis (similar to Schmidt et al., 2022). Tweets that
were classified as positive were assigned +1, neu-
tral tweets 0, and negative tweets -1. These values
were then aggregated for tweets of each month and
party for the election year 2021 and a mean senti-
ment score was calculated by averaging this value
with the number of all tweets of that month and
party (see figure 2). It is noticeable that the parties’
curves are often in sync with each other and are
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BERT-1 1 BERT-2 1+2 BERT-3 1+3 BERT-4 1+2+3

Accuracy 80.1 81.8 79.7 80.4
F1 Macro 74.3 77.5 73.9 75.2
F1 Micro 80.1 81.8 79.7 80.4
F1 Weighted 80.0 81.7 79.5 80.2
Precision positive 71.0 71.0 69.8 69.3
Precision negative 83.5 84.8 83.0 83.8
Precision neutral 77.2 79.8 76.9 77.6
Recall positive 55.0 66.7 55.8 60.0
Recall negative 86.2 86.6 85.2 85.4
Recall neutral 76.4 78.1 76.3 77.2
1 = Our Annotations, 2 = Annotations by Schmidt et al. (2022), 3 = GermEval 2017

Table 3: Results of the training of the different BERT models for the classification of sentiment.
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Figure 2: Mean sentiment of tweets mentioning the political accounts over the course of the election year.

constantly below -0.3 with only a few exceptions
showing the dominant overall negativity in tweets
that are mentioning political actors. It can be seen
that the sentiment of the tweets deteriorated for all
parties from January to February and October to
November and improved from November to De-
cember. Tweets mentioning the AFD are the most
negative for 11 months compared to the other par-
ties, while for six months tweets mentioning the
FDP are the most positive compared to the other
parties.

To take a closer look at the period around elec-
tion day, figure 3 shows the average sentiment
of tweets mentioning the respective party for six
weeks before and after the election day. Six weeks
before the election day there are only small out-
liers but in general the sentiment remains approx-
imately constant. Within the week starting on the
election day, it is particularly noticeable that the

sentiment of tweets mentioning DIE GRÜNEN was
more positive compared to those mentioning DIE

GRÜNEN in the previous week (about +0.4) and
there is a clear outlier. The tweets mentioning the
other two election winners (in terms of percent-
age gains) SPD and FDP were also more positive
compared to the other three parties CDU, AFD
and DIE LINKE, which recorded percentage losses
in the election. Finally, within a week starting on
17 October, tweets that mentioned the SPD, DIE

GRÜNEN and the FDP became more positive com-
pared to the previous week, especially for the SPD
(a major election winner) a clear change can be
observed (about +0.3).

5 Discussion

In the following section, we discuss and interpret
the overall results and highlight interesting findings.
To discuss our third research question, we refer to
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Figure 3: Mean sentiment of tweets mentioning parties over the course of 6 weeks before and after the election.

research by Schmidt et al. (2022) who did a similar
study but analyzed the tweets of the 89 political
actors themselves and not tweets mentioning them.

Considering the general corpus, it is notice-
able that the parties in power until the election,
CDU/CSU and SPD, were mentioned more often
by tweets than the four opposition parties. Further-
more, it can be seen that the tweets are on average
shorter than the tweets from the accounts of the
political parties themselves. The tweets by the
accounts of the political parties are 53.4 tokens
long on average (Schmidt et al., 2022), whereas the
tweets that mention the political parties, as shown
in this paper, are only 31.45 tokens long. This may
be because politicians, being in the public eye, are
more cautious about the language and information
they share. Conversely, public citizens may simply
want to express their emotions towards others, and
therefore, do not feel the same pressure to use more
words and explain themselves in more detail.

We annotated a subset of 2,000 tweets from the
corpus and achieved substantial agreement among
the annotators. Sometimes, annotations showed dis-
agreement, particularly in cases where tweets con-
tained ironic and sarcastic language, or expressed
mixed sentiments. This made it difficult for individ-
ual annotators to determine the overall sentiment of
the tweet, resulting in varied interpretations. The
annotated data set was then used to fine-tune a
BERT model. The best of the evaluated models
achieved an accuracy of about 81.8%. Methods
of hyperparameter optimization and dealing with
the class imbalance by assigning weights to labels

for loss calculation during training showed no im-
provements. However, overall, the accuracies are
in line with similar classification results in German
(Chan et al., 2020).

Using the best model, we then classified the sen-
timent of the tweets of the entire corpus, with more
than half of the tweets being classified as negative
and less than 10% as positive. Compared to the
tweets from the accounts of the political parties
themselves (Schmidt et al., 2022), the sentiment is
far less positive and more negative in average. This
could possibly be attributed to politicians using
positive and diplomatic language to gain support
for their policies while avoiding offending anyone,
whereas citizens tend to use negative language to
express their frustration or dissatisfaction with po-
litical events or decisions. Regarding party-based
classification results, we showed that tweets refer-
ring to the AFD were most often classified as nega-
tive compared to the other parties. Tweets about the
election winner parties showed the most positive
sentiment.

Subsequently, we analyzed how the sentiment
in the tweets has evolved over the course of the
election year. We identified several overall sen-
timent drops and peaks. The drop in sentiment
observed in tweets from January to February could
be explained by the ongoing discussions of state-
level COVID-19 regulations during that period,
as indicated by the corresponding term frequen-
cies for these months. In these two months, terms
such as “Lockdown”, “Pandemie” (pandemic) and
“Corona” were frequently used in tweets. The drop
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in sentiment from October to November can proba-
bly also be explained by the fact that new COVID-
19 restrictions were discussed after the summer, at
which time similar terms were mentioned in the
tweets. At the time of election day in September,
the peak of DIE GRÜNEN is particularly noticeable
and can be explained because they recorded the
strongest percentage gain compared to the other
parties. These findings are consistent with previous
research (Ali et al., 2022) which has shown that
there tends to be an increase in positive sentiment
regarding the winning candidate around the time
of the election and the announcement of the results.
On the other hand, the CDU is the party where
the tweets mentioning their accounts have the low-
est sentiment in September and the week after the
election compared to the other parties. Presumably,
this can be explained since they lost the most votes
in percentage compared to the last election. Fi-
nally, the increase in sentiment from November to
December is likely due to the election of a new fed-
eral cabinet. This is supported by the most frequent
words used in these months like “Glückwunsch”,
“Gratulation” (both congratulation) and “Erfolg”
(success). Comparing the changes in sentiment
over the year, there are differences and similari-
ties comparing tweets from political party accounts
(Schmidt et al., 2022) and tweets mentioning them,
as studied in this paper. Our findings indicate that
the parties do not have similar tops and lows and
that the parties’ courses of the sentiment are more
asymmetric to each other. Nevertheless, the highs
and lows in February, November and December
are also recognizable and prove that major interna-
tional and national events influence both in similar
way politicians’ tweets and tweets by the public
about them. Our results also show that the senti-
ment of the AFD is more negative in most months
compared to the other parties. But in comparison,
the CDU is not the party whose tweets show the
most positive sentiment in most months. Among
the tweets we looked at, the CDU is the party with
the most positive tweets only in December, most
often it is the FDP.

6 Limitations and Future Work

Our work provides insights on how the political par-
ties were perceived on Twitter in the election year
2021 and we contribute resources to the research
area of sentiment analysis in German. However,
there are limitations of our work that we intend to

address in future work: Due to the high number
of tweets mentioning party accounts, we decided
not to collect tweets for all days within the election
year and instead acquired tweets for two random
days of each month in 2021. This certainly limits
the representativeness of our corpus, since critical
events or fluctuations in public sentiment may have
been overlooked, like the 2021 European Floods,
killing 196 in Germany6 which had a strong impact
in Germany during the election campaign. Fur-
thermore, our corpus contains tweets that mention
multiple accounts, which can dilute the sentiment
targeted at the primary party or politician of interest.
Another limitation is the accuracy of the trained
model. While it is in line with similar studies and
evaluation results (Chan et al., 2020), we plan to
improve accuracies by annotating more tweets and
exploring more methods of hyperparameter opti-
mization. We want to address the performance also
with more sophisticated methods to deal with class
imbalance (Buda et al., 2018). Moreover, we will
investigate the addition of more complex classes
similar to emotion classification (Schmidt et al.,
2021b; Dennerlein et al., 2023), as the annotators
also reported that nuanced emotions occurred often.
Furthermore, Twitter also offers multimedia con-
tent that we intend to explore via computer vision
based sentiment- and emotion analysis (Schmidt
et al., 2021c; Schmidt and Wolff, 2021; El-Keilany
et al., 2022). Lastly, we also want to highlight that
Twitter is not as popular in Germany as in other
countries and thus represents a limited subsection
of public social media sentiment. According to
surveys, 10% of Germans use Twitter regularly7

compared to 23% of U.S. adults.8 In addition to
that, we intend to improve upon the semantic explo-
ration of our data via more sophisticated methods
like topic modeling and named entity recognition.
On the annotation side, we plan to investigate pos-
sibilities of more fine-grained annotation to gain
a better understanding of the annotation theory on
this material. Parts of our research and more infor-
mation about this project are publicly available to
support further research in this area.9

6Cf. https://en.wikipedia.org/wiki/2021_
European_floods.

7https://de.statista.com/statistik/
daten/studie/171006/umfrage/
in-anspruch-genommene-angebote-aus-dem-internet/

8https://www.statista.com/statistics/232818/
active-us-twitter-user-growth/

9https://github.com/NilsHellwig/Twitter_
German_Federal_Election_Perception_2021

91



References
Amit Agarwal, Ritu Singh, and Durga Toshniwal. 2018.

Geospatial sentiment analysis using twitter data for
uk-eu referendum. Journal of Information and Opti-
mization Sciences, 39(1):303–317.

Rao Hamza Ali, Gabriela Pinto, Evelyn Lawrie, and
Erik J Linstead. 2022. A large-scale sentiment anal-
ysis of tweets pertaining to the 2020 us presidential
election. Journal of big Data, 9(1):1–12.

Jamilu Awwalu, Azuraliza Abu Bakar, and
Mohd Ridzwan Yaakub. 2019. Hybrid n-gram model
using naïve bayes for classification of political
sentiments on twitter. Neural Computing and
Applications, 31(12):9207–9220.

Mateusz Buda, Atsuto Maki, and Maciej A.
Mazurowski. 2018. A systematic study of the
class imbalance problem in convolutional neural
networks. Neural Networks, 106:249–259.

Josemar A Caetano, Hélder S Lima, Mateus F Santos,
and Humberto T Marques-Neto. 2018. Using senti-
ment analysis to define twitter political users’ classes
and their homophily during the 2016 american pres-
idential election. Journal of internet services and
applications, 9(1):1–15.

Branden Chan, Stefan Schweter, and Timo Möller. 2020.
German’s next language model. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 6788–6796, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Hassan Nazeer Chaudhry, Yasir Javed, Farzana Kul-
soom, Zahid Mehmood, Zafar Iqbal Khan, Umar
Shoaib, and Sadaf Hussain Janjua. 2021. Sentiment
analysis of before and after elections: Twitter data of
us election 2020. Electronics, 10(17):2082–2108.

Nalini Chintalapudi, Gopi Battineni, and Francesco
Amenta. 2021. Sentimental analysis of covid-19
tweets using deep learning models. Infectious Dis-
ease Reports, 13(2):329–339.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
In International Conference on Learning Representa-
tions.

Nhan Cach Dang, María N Moreno-García, and Fer-
nando De la Prieta. 2020. Sentiment analysis based
on deep learning: A comparative study. Electronics,
9(3):483–512.

Katrin Dennerlein, Thomas Schmidt, and Christian
Wolff. 2023. Computational emotion classification
for genre corpora of German tragedies and comedies
from 17th to early 19th century. Digital Scholarship
in the Humanities, 38(4):1466–1481.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alina El-Keilany, Thomas Schmidt, and Christian Wolff.
2022. Distant Viewing of the Harry Potter Movies
via Computer Vision. In Proceedings of the 6th Dig-
ital Humanities in the Nordic and Baltic Countries
Conference (DHNB 2022)., pages 33–49, Uppsala,
Sweden.

Shihab Elbagir and Jing Yang. 2019. Twitter sentiment
analysis using natural language toolkit and vader sen-
timent. In Proceedings of the international multicon-
ference of engineers and computer scientists 2019.

Jakob Fehle, Leonie Münster, Thomas Schmidt, and
Christian Wolff. 2023. Aspect-based sentiment anal-
ysis as a multi-label classification task on the domain
of german hotel reviews. In Proceedings of the 19th
Conference on Natural Language Processing (KON-
VENS 2023), Ingolstadt, Germany. KONVENS 2023
Organizers.

Jakob Fehle, Thomas Schmidt, and Christian Wolff.
2021. Lexicon-based sentiment analysis in German:
Systematic evaluation of resources and preprocessing
techniques. In Proceedings of the 17th Conference
on Natural Language Processing (KONVENS 2021),
pages 86–103, Düsseldorf, Germany. KONVENS
2021 Organizers.

Feng Fu, Martin A Nowak, Nicholas A Christakis, and
James H Fowler. 2012. The evolution of homophily.
Scientific reports, 2(1):845.

Clayton Hutto and Eric Gilbert. 2014. Vader: A parsi-
monious rule-based model for sentiment analysis of
social media text. In Proceedings of the Eigth Inter-
national AAAI conference on web and social media,
volume 8, pages 216–225.

Mochamad Ibrahim, Omar Abdillah, Alfan F Wicak-
sono, and Mirna Adriani. 2015. Buzzer detection
and sentiment analysis for predicting presidential
election results in a twitter nation. In 2015 IEEE
international conference on data mining workshop
(ICDMW), pages 1348–1353. IEEE.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431, Valencia, Spain. Association
for Computational Linguistics.

John Richard Landis and Gary Grove Koch. 1977. The
measurement of observer agreement for categorical
data. Biometrics, 33(1):159–174.

92



Joseph Lilleberg, Yun Zhu, and Yanqing Zhang. 2015.
Support vector machines and word2vec for text clas-
sification with semantic features. In 2015 IEEE 14th
International Conference on Cognitive Informatics
& Cognitive Computing (ICCI* CC), pages 136–140.
IEEE.

Bing Liu. 2020. Sentiment analysis: Mining opinions,
sentiments, and emotions. Cambridge university
press.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. Machine Learning
Repository. arXiv:1711.05101. Version 3.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Nar-
jes Nikzad, Meysam Chenaghlu, and Jianfeng Gao.
2021. Deep learning–based text classification: A
comprehensive review. ACM Computing Surveys,
54(3):1–40.

Luis Moßburger, Felix Wende, Kay Brinkmann, and
Thomas Schmidt. 2020. Exploring Online Depres-
sion Forums via Text Mining: A Comparison of
Reddit and a Curated Online Forum. In Proceed-
ings of the Fifth Social Media Mining for Health
Applications Workshop & Shared Task, pages 70–81,
Barcelona, Spain (Online). Association for Computa-
tional Linguistics.

Dat Quoc Nguyen, Thanh Vu, and Anh Tuan Nguyen.
2020. BERTweet: A pre-trained language model
for English tweets. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 9–14, On-
line. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. 2019. Pytorch: An imper-
ative style, high-performance deep learning library.
In Proceedings of the 33rd International Conference
on Neural Information Processing Systems, pages
8026–8037, Red Hook, NY, USA. Curran Associates
Inc.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Édouard Duchesnay. 2011. Scikit-learn: Ma-
chine learning in python. Journal of Machine Learn-
ing Research, 12(85):2825–2830.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
Science China Technological Sciences, 63(10):1872–
1897.

Jyoti Ramteke, Samarth Shah, Darshan Godhia, and
Aadil Shaikh. 2016. Election result prediction using
twitter sentiment analysis. In 2016 international
conference on inventive computation technologies
(ICICT), volume 1, pages 1–5. IEEE.

Thomas Schmidt and Manuel Burghardt. 2018. An Eval-
uation of Lexicon-based Sentiment Analysis Tech-
niques for the Plays of Gotthold Ephraim Lessing. In
Proceedings of the Second Joint SIGHUM Workshop
on Computational Linguistics for Cultural Heritage,
Social Sciences, Humanities and Literature, pages
139–149, Santa Fe, New Mexico. Association for
Computational Linguistics.

Thomas Schmidt, Katrin Dennerlein, and Christian
Wolff. 2021a. Emotion classification in German
plays with transformer-based language models pre-
trained on historical and contemporary language. In
Proceedings of the 5th Joint SIGHUM Workshop on
Computational Linguistics for Cultural Heritage, So-
cial Sciences, Humanities and Literature, pages 67–
79, Punta Cana, Dominican Republic (online). Asso-
ciation for Computational Linguistics.

Thomas Schmidt, Katrin Dennerlein, and Christian
Wolff. 2021b. Using Deep Learning for Emotion
Analysis of 18th and 19th Century German Plays. In
Manuel Burghardt, Lisa Dieckmann, Timo Steyer,
Peer Trilcke, Niels-Oliver Walkowski, Joëlle Weis,
and Ulrike Wuttke, editors, Fabrikation von Erkennt-
nis: Experimente in den Digital Humanities. Teilband
1. Melusina Press, Esch-sur-Alzette, Luxembourg.

Thomas Schmidt, Alina El-Keilany, Johannes Eger, and
Sarah Kurek. 2021c. Exploring Computer Vision
for Film Analysis: A Case Study for Five Canonical
Movies. In 2nd International Conference of the Eu-
ropean Association for Digital Humanities (EADH
2021), Krasnoyarsk, Russia.

Thomas Schmidt, Jakob Fehle, Maximilian Weis-
senbacher, Jonathan Richter, Philipp Gottschalk, and
Christian Wolff. 2022. Sentiment analysis on Twitter
for the major German parties during the 2021 German
federal election. In Proceedings of the 18th Confer-
ence on Natural Language Processing (KONVENS
2022), pages 74–87, Potsdam, Germany. KONVENS
2022 Organizers.

Thomas Schmidt, Florian Kaindl, and Christian Wolff.
2020. Distant reading of religious online commu-
nities: A case study for three religious forums on
reddit. In Proceedings of the Digital Humanities in
the Nordic Countries 5th Conference (DHN 2020),
pages 157–172, Riga, Latvia.

Thomas Schmidt and Christian Wolff. 2021. Exploring
Multimodal Sentiment Analysis in Plays: A Case
Study for a Theater Recording of Emilia Galotti. In
Proceedings of the Conference on Computational
Humanities Research 2021 (CHR 2021), pages 392–
404, Amsterdam, The Netherlands.

Andranik Tumasjan, Timm O Sprenger, Philipp G Sand-
ner, and Isabell M Welpe. 2011. Election forecasts

93



with twitter: How 140 characters reflect the po-
litical landscape. Social science computer review,
29(4):402–418.

Michael Wojatzki, Eugen Ruppert, Sarah Holschneider,
Torsten Zesch, and Chris Biemann. 2017. GermEval
2017: Shared Task on Aspect-based Sentiment in
Social Media Customer Feedback. In Proceedings of
the GermEval 2017 – Shared Task on Aspect-based
Sentiment in Social Media Customer Feedback, pages
1–12, Berlin, Germany.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Ethan Xia, Han Yue, and Hongfu Liu. 2021. Tweet sen-
timent analysis of the 2020 u.s. presidential election.
In Companion Proceedings of the Web Conference
2021, WWW ’21, page 367–371, New York, NY,
USA. Association for Computing Machinery.

Ussama Yaqub, Nitesh Sharma, Rachit Pabreja,
Soon Ae Chun, Vijayalakshmi Atluri, and Jaideep
Vaidya. 2020. Location-based sentiment analyses
and visualization of twitter election data. Digital
Government: Research and Practice, 1(2):1–19.

Lei Zhang, Shuai Wang, and Bing Liu. 2018. Deep
learning for sentiment analysis: A survey. Wiley
Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 8(4):e1253.

Xinyang Zhang, Yury Malkov, Omar Florez, Serim
Park, Brian McWilliams, Jiawei Han, and Ahmed
El-Kishky. 2023. Twhin-bert: A socially-enriched
pre-trained language model for multilingual tweet
representations at twitter. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, KDD ’23, page 5597–5607,
New York, NY, USA. Association for Computing
Machinery.

94



A Appendix

A.1 Annotation Examples

Annotation Tweet Author Mentioned Account
(Party)

positive (Offenbar) Unpopular opinion: Ich mag
@ArminLaschet als Persönlichkeit und
kann ihn mir als Kanzler durchaus
vorstellen.

@fredschorn
@ArminLaschet
(CDU)

negative @derspiegel Scholz versagt irgendwie,
@Karl_Lauterbach, tun Sie etwas.

@1worldvs1virus
@Karl_Lauterbach
(SPD)

neutral @rRockxter @europeika @CDU Was hat
denn die CDU mit dem Christentum zu
tun?

@123JulianN321
@CDU
(CDU)

mixed @GrueneBundestag @BriHasselmann
Grüne Verbots Partei.. ahnungslos Glück-
lich

@Paellamixta
@GrueneBundestag
(Die Grünen)

no majority @gb_1960 @SWagenknecht Die Gehirn-
wäsche hat gewirkt. Du hättest herrlich in
die DDR gepasst.

@MaierJrg1
@SWagenknecht
(Die Linke)

Table 4: Annotation Examples: For the first four tweets, the annotators were unanimous, the last example was
annotated as neutral, positive and mixed (no majority).

A.2 Results of German Federal Election 2021

Party Full Name 2021 2017 Change
SPD Social Democratic Party of Germany 25.7 % 20.5 % + 5.2 %
CDU/CSU Christian Democratic Union/ Christian Social Union (Bavaria) 24.1 % 32.9 % - 8.8 %
Die Grünen The Greens 14.8 % 8.9 % + 5.9 %
FDP Free Democratic Party 11.5 % 10.7 % + 0.8 %
AfD Alternative for Germany 10.3 % 12.6 % - 2.3 %
Die Linke The Left 4.9 % 9.2 % - 4.3 %

Table 5: Election results of the 2021 federal election and changes compared to the previous election in 2017.
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A.3 Twitter accounts for data acquisition
A.3.1 Parties

SPD CDU CSU Die Grünen FDP AfD Die Linke
@spdde
Follower: 417k
Tweets: 22,138

@CDU
Follower: 378k
Tweets: 37,100

@CSU
Follower: 229k
Tweets: 9,072

@Die_Gruenen
Follower: 649k
Tweets: 30,560

@fdp
Follower: 414k
Tweets: 27,981

@AfD
Follower: 173k
Tweets: 8,330

@dieLinke
Follower: 350k
Tweets: 14,135

@spdbt
Follower: 217k
Tweets: 9,809

@cducsubt
Follower: 166k
Tweets: 13,250

@GrueneBundestag
Follower: 186k
Tweets: 6,399

@fdpbt
Follower: 39k
Tweets: 8,194

@AfDimBundestag
Follower: 68k
Tweets: 4,713

@Linksfraktion
Follower: 108k
Tweets: 2,994

@jusos
Follower: 77k
Tweets: 1,847

@Junge_Union
Follower: 79k
Tweets: 931

@gruene_jugend
Follower: 76k
Tweets: 1,290

@fdp_nrw
Follower: 28k
Tweets: 884

@AfDBerlin
Follower: 19k
Tweets: 364

@dielinkeberlin
Follower: 19k
Tweets: 1,228

Table 6: The 3 main accounts with the most followers for each party (as of January 2022).

96



A.3.2 Politicians

SPD CDU CSU
@Karl_Lauterbach
Follower: 770k
Tweets: 132,526

@jensspahn
Follower: 279k
Tweets: 35,571

@Markus_Soeder
Follower: 341k
Tweets: 30,495

@HeikoMaas
Follower: 660k
Tweets: 6,431

@ArminLaschet
Follower: 188k
Tweets: 36,161

@DoroBaer
Follower: 103k
Tweets: 2,560

@OlafScholz
Follower: 324k
Tweets: 27,414

@_FriedrichMerz
Follower: 179k
Tweets: 23,651

@andreasscheuer
Follower: 63k
Tweets: 2,431

@KuehniKev
Follower: 323k
Tweets: 5,192

@JuliaKloeckner
Follower: 74k
Tweets: 3,357

@ManfredWeber
Follower: 54k
Tweets: 527

@larsklingbeil
Follower: 116k
Tweets: 5,669

@n_roettgen
Follower: 68k
Tweets: 4,645

@DerLenzMdB
Follower: 10k
Tweets: 236

@hubertus_heil
Follower: 108k
Tweets: 2,406

@PaulZiemiak
Follower: 58k
Tweets: 12,723

@hahnflo
Follower: 9k
Tweets: 2,900

@EskenSaskia
Follower: 101k
Tweets: 7,180

@groehe
Follower: 49k
Tweets: 79

@smuellermdb
Follower: 9k
Tweets: 239

@Ralf_Stegner
Follower: 64.9k
Tweets: 7,061

@HBraun
Follower: 39k
Tweets: 3,212

@DaniLudwigMdB
Follower: 8k
Tweets: 3,821

@KarambaDiaby
Follower: 55.6k
Tweets: 392

@rbrinkhaus
Follower: 30k
Tweets: 4,280

@ANiebler
Follower: 6k
Tweets: 25

@MiRo_SPD
Follower: 39k
Tweets: 350

@tj_tweets
Follower: 17k
Tweets: 396

@MarkusFerber
Follower: 5k
Tweets: 21

Die Grünen FDP AfD Die Linke
@cem_oezdemir
Follower: 290k
Tweets: 9,942

@c_lindner
Follower: 552k
Tweets: 19,942

@Alice_Weidel
Follower: 138k
Tweets: 9,367

@SWagenknecht
Follower: 518k
Tweets: 7,177

@GoeringEckardt
Follower: 202k
Tweets: 5,227

@MaStrackZi
Follower: 46k
Tweets: 2,453

@Joerg_Meuthen
Follower: 76k
Tweets: 4,813

@GregorGysi
Follower: 439k
Tweets: 1,722

@JTrittin
Follower: 115k
Tweets: 1,782

@MarcoBuschmann
Follower: 46k
Tweets: 10,062

@Beatrix_vStorch
Follower: 68k
Tweets: 3,962

@katjakipping
Follower: 130k
Tweets: 1,072

@KonstantinNotz
Follower: 85k
Tweets: 2,144

@KonstantinKuhle
Follower: 44k
Tweets: 2,710

@gottfriedcurio
Follower: 37k
Tweets: 275

@DietmarBartsch
Follower: 82k
Tweets: 3,409

@RenateKuenast
Follower: 77k
Tweets: 2,026

@johannesvogel
Follower: 38k
Tweets: 2,121

@MalteKaufmann
Follower: 36k
Tweets: 5149

@anked
Follower: 43k
Tweets: 935

@Ricarda_Lang
Follower: 65k
Tweets: 3,546

@Wissing
Follower: 32k
Tweets: 2,805

@JoanaCotar
Follower: 30k
Tweets: 4,330

@b_riexinger
Follower: 41k
Tweets: 1,399

@KathaSchulze
Follower: 37k
Tweets: 4,609

@Lambsdorff
Follower: 27k
Tweets: 884

@Tino_Chrupalla
Follower: 21k
Tweets: 2,875

@jankortemdb
Follower: 34k
Tweets: 743

@BriHasselmann
Follower: 37k
Tweets: 1,795

@ria_schroeder
Follower: 23k
Tweets: 359

@StBrandner
Follower: 23k
Tweets: 11,914

@Janine_Wissler
Follower: 37k
Tweets: 1,046

@nouripour
Follower: 29k
Tweets: 505

@LindaTeuteberg
Follower: 23k
Tweets: 328

@GtzFrmming
Follower: 17k
Tweets: 984

@SevimDagdelen
Follower: 35k
Tweets: 172

@MiKellner
Follower: 28k
Tweets: 3,436

@f_schaeffler
Follower: 20k
Tweets: 1,092

@PetrBystronAFD
Follower: 17k
Tweets: 496

@SusanneHennig
Follower: 29k
Tweets: 4,463

Table 7: The 10 accounts with the most followers for each party (as of January 2022).
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A.4 Word clouds for positive and negative tweets

Figure 4: Word cloud created of negative tweets in the corpus for all parties.(These visualizations were generated by
the Python package wordcloud.)

Figure 5: Word cloud created of positive tweets in the corpus for all parties.
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Abstract

Vossian Antonomasia (VA) is a rhetorical de-
vice used to describe an entity (the target) by
transferring certain features and characteristics
of another entity (the source) to it. The phe-
nomenon is closely related to metaphor and
metonymy. Similar to these more familiar de-
vices, the detection of VA expressions is a chal-
lenging task. We propose novel VA detection
models that center on the source to tackle this
problem. The focus lies on the ability of the
models to detect VA independent of the syntac-
tic patterns they appear in. We model the prob-
lem in different scenarios and utilize a state-of-
the-art metonymy resolution model that relies
on word masking, and metaphor detection mod-
els, which are based on linguistic metaphor
theories, and adjust them to our task. All mod-
els leverage pre-trained language models such
as BERT and RoBERTa. As there is limited
annotated data available, we use a data aug-
mentation technique to create a new dataset
consisting of VA with new syntactic patterns
where the generalization ability of the models
can be evaluated.

1 Introduction

Vossian Antonomasia (VA) is a stylistic device
that refers to an entity by naming another famous
named entity that shares certain characteristics or
sets of attributes with the entity. In general, it con-
sists of three chunks (Bergien, 2013): The target is
the entity which is being described. The source is
the famous entity that typically stands for a certain
set of attributes. The modifier is the component that
shifts the characteristics of the source to the target’s
environment. When Angela Merkel is referred to
as “the German Margaret Thatcher” (Trippe, 2005),
“Angela Merkel” is the target entity that inherits one
or more attributes from the source entity, in this
case from the Iron Lady, “Margaret Thatcher”. The
modifier (“German”) projects these attributes tra-
ditionally associated with Margaret Thatcher onto

Angela Merkel. The combination of source and
modifier is called a VA phrase in the following.

To understand VA, one requires a deep cultural
and historical knowledge of the source entity, as the
transferred characteristics are often not explicitly
mentioned, but only indicated by the name of the
source that stands for the attributes. Thus, the read-
ers themselves must infer the author’s intention.
This can be achieved by the context the expres-
sion appears in and knowledge about the source
itself. The context is quite important because, in
most cases, an entity does not only stand for one
property. Arnold Schwarzenegger serves as a good
example of a person who successfully moved be-
tween fields and changed the characteristics and
attributes he stands for. First, he was known as a
successful bodybuilder, but after turning to acting
and politics, the focus of his persona shifted to his
newly achieved accomplishments and his ability to
successfully transition between fields.

The automatic detection of VA is challenging as
their syntax is often ambiguous and hard to distin-
guish from literal expressions. See, for example,
“the German Angela Merkel” vs. “the American
Angela Merkel” (Pohl, 2016). The first phrase is
literal stating that Angela Merkel is a person from
Germany. In contrast, in the second phrase, An-
gela Merkel stands for a set of characteristics and
is used as a source in a VA expression to describe
Hillary Clinton.

Recent years have seen various approaches to
the automatic detection and extraction of VA from
larger text corpora. The first steps were pattern-
based approaches (Jäschke et al., 2017; Fischer
and Jäschke, 2019; Schwab et al., 2019), but re-
cently language models like BERT (Devlin et al.,
2019) were employed (Schwab et al., 2022). They
achieved strong results and are also robust on un-
seen data.

In this paper, we tackle the problem of detecting
VA expressions independent of their syntactic struc-
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ture. The syntactic structure of VA phrases consist-
ing of source and modifier can include a wide range
of variations. So far, the only annotated VA dataset
(Schwab et al., 2023b) consists solely of examples
where the modifier follows the source, i.e., “the
SOURCE of MODIFIER”, which is a commonly
used syntactic pattern for VA phrases. This is be-
cause of the variety of naming the modifier. In
comparison to other syntactic patterns, the modifier
in this pattern can have an arbitrary length and com-
plex structure. In contrast, other patterns such as
“the MODIFIER SOURCE” (see Table 1 for more
syntactic patterns) often impose stricter limitations,
typically requiring the modifier to be a single word,
such as an adjective or noun. To our knowledge,
there is no study describing the extraction of VA
where the modifier precedes the source. We ad-
dress the problem of a generalized VA detection
approach by focusing solely on the source during
training to remove the boundaries associated with
the modifier and target. To achieve this, we develop
five different methods. One is a sentence classifi-
cation model that uses special tokens to indicate
the candidates. The next is based on a sentence-
pair classification model. Two rely on linguistic
metaphor theories. We adapt the metaphor theo-
ries to the source of VA expressions, since source
entities in text, like metaphorical words, are not
meant literally. The last method is an adaptation
of a metonymy resolution model, since VA is often
categorized as a specific subtype of metonymy.

Next to getting a deeper understanding of the
phenomenon itself, the detection of VA can support
various NLP tasks. It can provide new and interest-
ing question answering challenges, as Schwab et al.
(2023a) have shown that one can easily transform
the combination of source and modifier (VA phrase)
into questions. Schwab et al. (2023a) also showed
that VA phrases are hard to be captured correctly by
coreference resolution models. The models must
understand that the source is not independent, but
a part of the target’s reference chain. Often, this
did not work and the sources were predicted in
new standalone reference chains. Thus, VA detec-
tion could improve and support coreference res-
olution. By understanding figures of speech like
VA, language models can better understand natural
language in general and especially the nuances of
human language. With that, more human-like text
could also be generated, for instance, spiced-up
headlines for newspaper articles.

This paper is structured as follows: In Section 2,
we discuss related work, while in Section 3, we
present the datasets and explain the dataset genera-
tion process in detail. In Section 4, we describe the
developed models and methodology, followed by
an empirical evaluation of the proposed models in
Section 5. Finally, Section 6 closes the paper with
a conclusion.

Our code and data are freely available.1

2 Related Work

The research on the automatic detection of VA is a
relatively new topic in the NLP area. There exist
multiple approaches on the (semi-)automatic detec-
tion and extraction of the phenomenon that have
been developed recently. Jäschke et al. (2017), Fis-
cher and Jäschke (2019) and Schwab et al. (2019)
used semi-automatic approaches that were based
on syntactic patterns around the source. In par-
ticular, they used regular expressions to extract
candidate sentences from a newspaper corpus and
matched those candidates against entity lists. Fis-
cher and Jäschke (2019) and Schwab et al. (2019)
removed common false positives in a second step
using a manually curated blacklist. While Schwab
et al. (2019) additionally presented a first fully au-
tomatic approach for VA detection employing a
bidirectional long short-term memory (BLSTM)
network, in Schwab et al. (2022) the approaches
using neural networks were more advanced. They
used concatenations of BLSTM and attention lay-
ers with ElMo embeddings (Peters et al., 2018) as
well as a fine-tuned BERT model (Devlin et al.,
2019) for binary sentence classification. Addition-
ally, they presented a VA tagger that tags all parts of
a VA expression in a sentence employing BLSTM
and conditional random fields as well as a fine-
tuned BERT model for sequence tagging. Schwab
et al. (2023a) did not detect VA expressions, but
tackled the task of detecting the target entity inside
the newspaper article in which the VA expression
appeared, which was neglected in the previous ap-
proaches. They showed that by transforming a VA
phrase into a question, a hybrid model that sequen-
tially uses a QA model and a coreference resolution
model could yield high scores without fine-tuning
the models further.

Similar tasks like metaphor detection have been
studied deeply. Most of the research is based on

1https://vossanto.weltliteratur.net/
icnlsp2023/
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the Mozart of Japan

Japan’s (the Japanese) Mozart
Japan’s (the Japanese) answer to Mozart
Japan’s (the Japanese) version of Mozart
Japan’s (the Japanese) equivalent of Mozart

Table 1: An example of the data augmentation versions
with nouns (Japan) and their adjective forms as modi-
fiers in brackets (Japanese). In total, we get eight addi-
tional versions per sentence.

neural networks. While Gao et al. (2018), Dankers
et al. (2019) and Torres Rivera et al. (2020) used
sequence tagging models based on contextual word
embeddings, other models are focusing on single
word classification. In particular, they classify
words according to whether they are meant literally
or metaphorically. Choi et al. (2021) make use of
two linguistic metaphor theories which they imple-
ment by employing a pre-trained language model,
RoBERTa, and extract the embeddings in context
and without context to train a multilayer perceptron
(MLP). Most recently, Wang et al. (2023) follows
the idea of Choi et al. (2021), but additionally fo-
cuses on selecting relevant context for the classi-
fication task employing a dependency parser for
denoising the context around the candidate word
which works especially well on long input sen-
tences.

Metonymy resolution is another similar task that
has been researched, especially recently with the
use of pre-trained language models (Su et al., 2020;
Li et al., 2020; Mathews and Strube, 2021). Often,
the task is limited to location metonymy resolution
(Li et al., 2020; Su et al., 2020). While Li et al.
(2020) models the task as a token-level classifica-
tion task, Mathews and Strube (2021) introduces
a sequence tagging approach. Both models mask
their candidates during training and evaluation.

3 Data

Candidate Generation We use the dataset from
Schwab et al. (2023b) for training. There, we
need to identify phrases that are candidates for VA
sources. As, by definition, the source of any VA
expression has to be a named entity, we utilize a
state-of-the-art named entity tagger, FLAIR (Ak-
bik et al., 2019), to obtain all candidate entities
for each sentence in the dataset. We then collect
tuples for each sentence consisting of an entity in
the sentence and the sentence itself. The tuples

containing a source entity are labeled positive, all
others negative.

We remove candidates where the text sequence
the NER tagger has identified as entity mention
does not exactly match a source phrase, as those
cases are difficult to handle correctly (and only
a small part of the data is affected, cf. Sec. 5).
Consider the sentence “He is the Michael Jordan
of swimming, but he was never as good as Michel
Jordan.”. If the tagger would only tag “Michael”
or “Michael Jordan of swimming” as an entity we
remove those candidates.

The sentence highlights another issue: an entity
that is mentioned more than once in the same sen-
tence can not be distinguished within our set of
tuples. When all mentions are no VA sources, we
keep the tuples. When one of those entity mentions
is indeed a source, we keep that tuple (i.e., the tuple
with the positive label) and remove the others, since
such cases are very rare. We removed 38 negative
tuples in the training data and nine negative tuples
in the test data.

Training Data Compared to other more pop-
ular rhetorical devices, such as metaphor and
metonymy, one challenge of VA detection is the
lack of annotated data. The only annotated English
VA dataset is, to our knowledge, the one by Schwab
et al. (2023b). It was first introduced by Schwab
et al. (2019) and later annotated further (Schwab
et al., 2022, 2023a). The dataset contains sentences
from the New York Times Annotated Corpus (Sand-
haus, 2008). The corpus contains articles from
the New York Times from 1987 to 2007, com-
prising around 60,000,000 sentences. The dataset
was created in a semi-automated way. First, fre-
quently used syntactical patterns around the source
were identified and candidate sentences extracted.
The patterns consist of one of the words before
(the/a/an) and after the source (of/for/among).
Using all possible combinations, the authors of
Schwab et al. (2019) obtained nine different pat-
terns. Then the words between these combinations
were matched against an entity list, and finally
those candidates were checked against a manually
curated black list to remove false positives and man-
ually labeled. In total, the dataset contains 6,095
sentences of which 3,115 include VA expressions.
On this dataset we generate candidates as explained
before, which results in a training dataset of 16,877
sentence-entity tuples with 2,868 positive instances
(17%) and 14,009 negative instances.
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Test Data The lack of syntactic variations of VA
expressions is one significant issue for testing VA
detection models on generalization. For example,
in the training data the modifier always appears
directly after the source:

(a|an|the) SOURCE (of|for|among) MODIFIER.

This pattern, however, does not cover all vari-
ants of VA as the syntactic patterns in which source
and modifier appear are more diverse. Annotating
a text corpus to identify new syntactic variations
is prohibitively expensive due to the rarity of the
phenomenon on the sentence level (Schwab et al.,
2019). Another approach is syntactic data aug-
mentation which changes the syntax of a sentence
without affecting its semantics. In our case, it is
especially crucial to ensure that the VA expressions
remain intact and that their meaning is not changed.

To augment data, we identified eight different
VA patterns consisting of source and modifier that
are different from the ones in the training data. In
particular, their source follows after the modifier.
Two of the patterns have no words between the
modifier and source (named “—” in the sequel), the
other six patterns have connecting words between
modifier and source. We refer to these phrases
(“answer to”,“version of”, “equivalent of”) as “con-
nector phrase” (CP). Each of the phrases appears
two times in the patterns.

The first four patterns are represented by the
following regular expression and involve a modifier
that is a noun:

MODIFIER’s (CP)? SOURCE,

where CP is a connector phrase, MODIFIER is the
modifier chunk and SOURCE is the source entity.
The remaining four patterns include a modifier that
is an adjective and are represented by the following
regular expression:

(a|an|the) MODIFIER (CP)? SOURCE,

where the choice of the article at the beginning (“a”,
“an” or “the”) depends on the article in the original
VA phrase.

Six of the eight patterns include a CP between
modifier and source consisting of two words,
whereas the other two patterns do not have any
words between them. This is another distinction
from the pole word succeeding the source in the
annotated data. Furthermore, the grammatical cat-
egory of the modifier changes. While 92% of the

modifiers in the annotated data are noun phrases,2

this is not the case for the last four patterns, where
the modifier is an adjective.

The modifiers in the annotated data can be com-
plex (the longest modifier consists of 25 words)
and not all VA phrases can be easily augmented as
they cannot be changed semantically correct into
a noun or adjective. Thus, we use a subset of the
data for augmentation. Specifically, we extract all
sentences that include a VA expression where the
modifier is a geographical place that possesses an
adjectival form. This ensures that the meaning is
not changed when adapting the modifier and the
syntax. We achieve this using the lists of adjec-
tival and demonymic forms of place names from
Wikipedia.3 This has the advantage that those mod-
ifiers can always be transformed into any of the
eight patterns since place names are always nouns
and have an adjectival form which is suitable for
both, noun and adjective modifiers.

Hence, we match all modifiers against the lists.
In total, we could extract 244 VA expressions
where the modifier matches an entry in one of the
Wikipedia lists. Countries were mentioned most
often (159), followed by cities (51), regions (23),
and continents (11).

By augmenting each sentence, we obtain 1,952
augmented sentences (244 per pattern), which we
call augmented data. Along with the 244 original
instances (original data), this yields a total of 2,196
sentences. Again, we apply the candidate genera-
tion method and compute entity-sentence tuples for
each sentence. In total, we produced 8,480 unique
instances of which 2,196 are positive and 6,284 are
negative. The positive label ratio increases com-
pared to the positive label ratio of the training data
to 26% as each sentence in the test data consists
of a VA source which is not the case in the train-
ing data. Each sentence produced on average 34.5
instances with a standard deviation of 16.1 which
shows that the number of generated instances per
sentence is quite diverse depending on the number
of named entities.

4 Methods

As explained before, the anchor of a Vossian
Antonomasia expression is the source entity which
is being invoked as a point of comparison. Thus, we

2Which we detected with the dependency parser from
spaCy (Honnibal et al., 2020).

3https://en.wikipedia.org/wiki/List_of_
adjectival_and_demonymic_forms_of_place_names
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aim to find source entities of VA expressions using
different approaches. In particular, our goal is to
identify generalized VA expressions across diverse
syntactic structures. As a baseline, we adapt a state-
of-the-art VA extraction model. We then make use
of models that were successfully applied in similar
areas. In particular, we adjust two metaphor detec-
tion models which are based on linguistic metaphor
theories. Similar to metaphorical words, the source
entity of a VA expression is not meant literally, but
stands for a set of characteristics. Additionally,
we adapt a metonymy resolution model that uses
candidate word masking. Finally, we present two
fine-tuned RoBERTa models for sentence(-pair)
classification which are designed to focus on the
entity candidates inside a sentence. Contrary to the
baseline, which is a sequence tagging model, all
subsequent models are binary classification models.
The goal is to determine whether pre-computed
entities serve as a source of a VA expression or
not. As explained in Section 3, we first identify
all entities in a sentence and then classify each
entity-sentence tuple.

BERT_SEQ This baseline is an adaptation of the
sequence tagging model in Schwab et al. (2022),
BERT_SEQ. Each word in a sentence is tagged to
determine whether it is part of a chunk of a VA
expression (i.e., target, source, or modifier) or not.
It is a fine-tuned BERT (base-cased) model which
outperformed a BLSTM-CRF model.

Here, we modify this model by focusing on tag-
ging the source words only, employing the IOB
tagging scheme. In particular, like Schwab et al.
(2022), we add an additional linear layer to the
BERT model to tag all words in a sentence. This
enables a better comparability with our newly de-
veloped models. Additionally, the implicit focus on
the order of chunks will vanish, which potentially
leads to better generalization.

BERT_MASK This model is an adaptation of
a state-of-the-art location metonymy resolution
model (Li et al., 2020). The model is based on
the idea that the context is more important to distin-
guish between metonymic and literal usage than the
potential metonymic candidate itself. We use this
model, since VA is often categorized as a subtype
of metonymy, and apply it to our source candi-
dates. In particular, we follow Li et al. (2020) in
that we mask the source candidates with the single

token X during training and evaluation. Further, we
fine-tune a BERT model for word-level classifica-
tion. Specifically, we extract the embeddings of
the masked token (X) from the last hidden layer of
BERT and feed them into a binary linear classifier
to classify whether the candidate is a VA source. In
cases where the masked token is omitted in the pre-
processing due to truncation, we utilize the [CLS]
token for classification instead.

RoBERTa_MIP This model is inspired by the
Metaphor Identification Procedure (MIP) (Group,
2007). In short, the theory proposes that a word is
used metaphorically when its literal meaning devi-
ates from its contextual meaning. The key is that
the literal meaning of the word would not apply di-
rectly in the used context. We transfer this concept
to the source entity of a VA expression: The source
entity is not meant literally, but is a placeholder for
a set of characteristics the entity stands for. The
entity would normally not be used in the context,
as the target and especially the modifier are nor-
mally not directly related to the source. Thus, we
state that a named entity used as a source in a VA
expression has a different meaning in the context (a
set of characteristics) from its more basic meaning
(the entity itself).

We then roughly follow Choi et al. (2021). As
base, we utilize RoBERTa (Liu et al., 2019), a pre-
trained language model. First, each word of a sen-
tence is tokenized. The special character sequences
<s> and </s> are then added at the beginning and
end of the token sequence, respectively. Next, we
compute the position embedding which represents
the position of each token within the sentence and
the segment embedding which indicates which to-
kens belong to the candidate. The input embed-
dings are finally obtained by the element-wise ad-
dition of token, position embedding, and segment
embedding. In a separate step, we tokenize the
isolated candidate words using the same tokenizer
and also add special characters accordingly.

The embeddings of the candidate tokens in both
steps are averaged independently. This results
in two embeddings: the contextualized embed-
ding and the isolated embedding for the candi-
date. These embeddings are then concatenated and
passed through a linear layer that outputs a binary
label indicating whether the entity is a VA source
or not.
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RoBERTa_SPV The model is based on Selec-
tional Preference Violation (SPV) (Wilks, 1975,
1978), which is popular in metaphor detection
methods, see Mao et al. (2019) and Choi et al.
(2021). The idea of SPV in the context of
metaphors is that a word is metaphorical when it
appears unusual in its surrounding context, that is,
it typically does not co-occur with the surround-
ing words. We adapt this theory to VA detection:
An entity serving as a source for VA expressions
appears unusual within its surrounding words, espe-
cially with the modifier which normally represents
an environment unrelated to the source. Instead,
the modifier is connected to the target entity.

As in the MIP model, we compute tokens, po-
sition embedding and segment embedding of the
sentence. Subsequently, we compute the contextu-
alized embedding accordingly and also calculate
the embedding of the special <s> token, which rep-
resents the aggregated representation of the sen-
tence. Both embeddings are concatenated and
passed through a linear layer which returns a binary
label.

RoBERTa_CLF We adapt the binary sentence
classification model from Schwab et al. (2022).
Specifically, we introduce two special tokens,
[START_SRC] and [END_SRC], to denote the start
and end, respectively, of the candidate by encasing
the source entity inside the sentence with both to-
kens. These tokens are added to the tokenizer. The
adapted sentence is then used as input RoBERTa
which we fine-tune for binary sentence classifica-
tion by adding and training a linear layer.

RoBERTa_PAIR For this model, we reformulate
the task as a sentence-pair classification problem.
This task is typically used to assess the relationship
between two sentences, such as next sentence pre-
diction, contradiction of sentence-pairs or semantic
relations. In our case, the first sentence consists of
the candidate entity only, while the second sentence
provides context in form of the corresponding sen-
tence the candidate entity appears in. We want the
model to learn to classify whether the candidate
entity is a source in the corresponding sentence or
not. As in RoBERTa_CLF, we adapt RoBERTa by
appending a linear layer on top of the RoBERTa
model. Subsequently, we fine-tune the model for
binary classification.

5 Evaluation

In this section, we describe the experimental set-
tings before presenting and analyzing the empirical
results of our models. All models rely on the output
of an NER tagger whose output is used to form the
set of source candidates. This is different from the
baseline model, which does not need candidates
but classifies each word individually.

The tagger we used in our study has an F1 of 0.94
on the CoNLL-03 dataset. In our specific case, it
missed identifying 110 (3.8%) out of 2,868 source
entities in the training dataset and 40 (1.8%) out
of 2,196 source entities in the test dataset. For the
sake of comparability, we exclude these instances
from the evaluation process. The idea behind the
exclusion is that we aim to evaluate the individual
performance of our models rather than the whole
performance of the NER tagger combined with our
models. We use precision, recall and F1 score to
assess the performance of the models.

5.1 Experimental Settings
We conduct hyperparameter optimization on
dropout rate, epochs, learning rate, and batch size
based on F1 score.4 For this, we use 25% of the
test data as a validation set for all models including
the baseline. We use a part of the test data for hy-
perparameter optimization on purpose as we want
to determine the best model for the generalized test
data. We assume that if the model works well on
the test data, it should still be able to achieve good
performance on the data we trained it with. We will
evaluate this in the subsequent section.

We use the pre-trained BERT base-cased model5

as in Schwab et al. (2022) for BERT_SEQ as well
as for BERT_MASK, and the pre-trained RoBERTa
base model6 for all other models as basis. Both
models share the same architectural parameters.
Specifically, each model has 12 transformer blocks,
12 attention heads, and the dimensionality of the
hidden states is set to 768. For all models, we use
AdamW optimizer (Loshchilov and Hutter, 2017).
We implemented our models using the Hugging
Face framework and PyTorch. The code is free
available on our website.7

4See Appendix A for details and final choices for each
model.

5https://huggingface.co/bert-base-cased
6https://huggingface.co/roberta-base
7https://vossanto.weltliteratur.net/

icnlsp2023/
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model precision recall F1

BERT_SEQ .88 ±.02 .97 ±.03 .92 ±.02
BERT_MASK .83 ±.03 .88 ±.02 .85 ±.02
RoBERTa_MIP .88 ±.02 .89 ±.04 .88 ±.01
RoBERTa_SPV .93 ±.03 .85 ±.07 .89 ±.03
RoBERTa_CLF .87 ±.03 .87 ±.02 .87 ±.02
RoBERTa_PAIR .76 ±.04 .94 ±.02 .84 ±.01

Table 2: Performance of the models using 5-fold cross
validation on the training dataset.

5.2 Results on Training Data

Table 2 presents the results on the training data
using stratified 5-fold cross validation. All ap-
proaches, even if hyperparameters were not op-
timized for this data, achieve strong results. Surpis-
ingly, the baseline, BERT_SEQ, has the best results,
having an F1 score of 0.92, although the gap to the
other models is not large. RoBERTa_CLF and both
adapted metaphor detection model, RoBERTa_MIP
and RoBERTa_SPV, have similar scores of 0.87,
0.88, and 0.89, respectively. Only BERT_MASK
and RoBERTa_PAIR achieve a little lower score
of 0.85 and 0.84, respectively. The general high
scores are expected as the models were trained on
similar data regarding the syntax of the VA ex-
pressions. Also, the label ratio is the same as we
conducted stratified sampling for the cross valida-
tion.

5.3 Zero-shot Results on Test Data

We conduct a zero-shot transfer with our models
on the test data consisting of the original and aug-
mented data as explained in Section 3. This eval-
uation is conducted to analyze how the models
generalize to new syntactic VA variations which is
the main goal of our work. In this evaluation, we
obtain surprising results. While the performance of
all models except RoBERTa_PAIR decreases dras-
tically in all metrics, RoBERTa_PAIR increases its
performance to an F1 of .86 (cf. Table 3). While
the precision of RoBERTa_PAIR increases substan-
tially, the recall decreases. The other models are
not able to compete against this model. Even the
results of the second best model, RoBERTa_MIP,
decreases to an F1 score of 0.74 which is a gap
of 0.12 points. Still, this is the smallest perfor-
mance gap and shows that the adaptation of the
MIP theory works better for generalized VA de-
tection than the rest of the models. BERT_MASK

attains the lowest F1 score of 0.25. The baseline,
which achieved the best results on the training data,
is also not able to solve this task with the second
lowest F1 of 0.27 as well as RoBERTa_SPV and
RoBERTa_CLF whose scores also dropped to 0.58
and 0.41, respectively.

The performance on the original data in the test
dataset (713 instances, 183 positive) even increases
for all models compared to the results on the train-
ing data. This is not that surprising, as the syntax is
the same as in the training data. Also, the training
data consists of sentences without VA expressions
that are syntactically very similar to those with VA
expressions. In the test data, however, there exist
no such negative examples. Thus, this might be a
reason why the scores are rising. The performance
on the augmented data drops dramatically in al-
most all models compared to the performance on
the training data (cf. Section 5.2).

This shows that only RoBERTa_PAIR is able to
handle new syntactic variations in contrast to all
other models. As the F1 almost did not change
between the evaluation on both datasets, it shows
a robustness to new data. The metaphor detec-
tion models had similar scores on the training data
and could obtain high scores on the original data,
but they diverge on the augmented data. While
RoBERTa_SPV drops to an F1 of 0.53, which is
0.36 points less than on the training data, the per-
formance gap of RoBERTa_MIP is smaller.

In general, it seems that in all models except
RoBERTa_PAIR, the syntax of the VA expression
still has a major influence on the correct classifica-
tion.

Performance vs. Syntax (RoBERTa_PAIR) An
interesting point to investigate further is the influ-
ence of the syntactic variations we used for data
augmentation. In total, we have four syntactic pat-
terns, three that consist of the connector phrases
between modifier and source, “answer to”, “version
of”, “equivalent of”, and the “—” version without
any connector phrase between both chunks. Table 4
shows the results in the ‘total’ block. We can see
that all three metrics are best for the pattern “—”,
with an F1 of 0.92. For the “equivalent of” and
“version of” patterns, the model still achieves high
scores, whereas for the “answer to” patterns, it per-
forms worse with an F1 of 0.72 which is 0.2 lower
than the best score. It is interesting that one pattern
is much harder to detect and shows that even if
patterns seem quite similar for humans, it is much
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total original data augmented data

model precision recall F1 precision recall F1 precision recall F1

BERT_SEQ .73 .17 .27 .99 1.00 .99 .42 .07 .12
BERT_MASK .69 .15 .25 .92 .81 .86 .52 .07 .13
RoBERTa_MIP .92 .62 .74 .97 .92 .95 .91 .58 .71
RoBERTa_SPV .97 .42 .58 .99 .87 .93 .97 .36 .53
RoBERTa_CLF .73 .29 .41 .95 .82 .88 .66 .22 .33
RoBERTa_PAIR .89 .83 .86 .91 .97 .94 .89 .81 .85

Table 3: Performance of the models on the test data which include the original and augmented data.

total modifier is a noun modifier is an adjective

syntax precision recall F1 precision recall F1 precision recall F1

— .91 .93 .92 .90 .93 .92 .91 .93 .92
answer to .85 .62 .72 .88 .72 .79 .82 .51 .63
version of .89 .83 .86 .90 .90 .90 .87 .77 .81
equivalent of .89 .87 .88 .90 .91 .91 .87 .82 .85

total .89 .81 .85 .90 .87 .88 .87 .76 .81

Table 4: Performance of RoBERTa_PAIR on the augmented data, split up by pattern and POS type.

harder for the models to detect them correctly.

Performance vs. POS (RoBERTa_PAIR) We
now analyze whether the part of speech (POS)
tag of the modifier influences the model using
the best performing model on the test dataset,
RoBERTa_PAIR. One half of the augmented data
has modifiers that are adjectives whereas the other
half has modifiers that are nouns. In Table 4, we
can clearly see that the model performs better when
the modifier is a noun with an F1 of 0.88 compared
to 0.81 for the adjective examples. One reason is
the high performance gap of 0.11 in recall. A plau-
sible reason is the fact that in the training data, the
modifiers of the VA expressions are almost always
noun phrases (and thus include at least a noun),
which possibly is captured in the fine-tuning pro-
cess, even if the modifier is not marked explicitly.

5.4 Error Analysis (RoBERTa_PAIR)

In total, we got 851 false positive and 159 false
negative errors in the 5-fold cross validation. In
239 cases, an entity candidate was falsely predicted
as source entity in a sentence that included a VA
expression. Still, in the majority (612) of the false
positive errors, the entities appeared in a sentence
without any VA occurrence.

In the test dataset, more false negative errors
(281) than false positives (172) occurred. Group-

ing the false positives by entity and original sen-
tence, we got 25 groups where in 14 of them all
augmentations with the same candidate were pre-
dicted falsely. The false negatives, on the other
hand, grouped into 80 groups, which makes sense
as the syntax around the source entities changed,
whereas the syntax around the entity candidates in
the false positive instances did not and thus, the
model’s prediction should be more similar.

Table 5 shows a sample of false positive and
false negative errors, the RoBERTa_PAIR model
did in the test dataset.

The false positives included candidate entities
that belonged to the VA expression but as a target
chunk (“Manno Charlemagne”) or as a modifier
chunk (“European”). That was expected as they
are somehow connected semantically to the source
and thus, it is harder for the model to differentiate
between them. It also appeared that an entity that
was used as source (“Berlusconi”) was also men-
tioned in another typing elsewhere in the sentence
with a literal meaning (“Silvio Berlusconi”). Those
examples are rare as the source is normally not
mentioned in the context. Still, these are decisions
that are especially hard to predict correctly for the
sentence pair model as the model has no explicit
focus on the position of the entity in the sentence
as the other models had.
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Ex. 1: He doesn’t want to be Syria’s version of Gorbachev.
Ex. 2: “He’s the Japanese answer to Cal Ripken, but with more punch,” said Marty Kuehnert, a sports

broadcaster and longtime resident in Japan.
Ex. 3: Buena Vista Home Entertainment, the distribution arm of Disney, recently acquired a library of

Japanimation created by a man often hailed as “the Walt Disney of Japan,” Hiyao Miyazaki.
Ex. 4: One of the anthology’s strongest cuts, “Ayiti Pa Fore” (“Haiti Is Not a Forest’) was recorded in

1988 and features Manno Charlemagne, a singer and songwriter who is regarded as Haiti’s
answer to Bob Marley.

Ex. 5: In the capital, intellectuals refer to Mr. Thaksin as Asia’s Berlusconi, a reference to Prime
Minister Silvio Berlusconi of Italy, a business tycoon who has faced continuing accusations of
conflict of interest.

Ex. 6: Its chairman, Jan Carlzon, is credited with turning the airline around in the early 1980s, earning a
reputation as “the European answer to Lee Iacocca,” one analyst said.

Table 5: Incorrectly classified instances of RoBERTa_PAIR on the test dataset. False negatives (Ex. 1-3) are marked
green, false positives (Ex. 4-6) red.

6 Conclusion

We proposed four novel VA detection models and
analyzed their ability to detect generalized VA ex-
pressions across a range of syntactic patterns. To
achieve this, we use data augmentation techniques
to create a VA dataset including numerous new syn-
tactic patterns. We develop VA detection models
based on adjusted linguistic metaphor theories and
a metonymy resolution model that are applied to
the source. While most models struggle to gener-
alize well to these new patterns, our best model,
RoBERTA_PAIR, achieves good results on both,
the training and test dataset.
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A Appendix

Hyperparameter optimization We conducted
hyperparameter optimization using grid search on
all models using F1 score and a validation dataset
that is 1/4 of the proposed test data, as explained in
Section 3. The hyperparameters were tuned over
the values given in Table 6. The values that we
finally used for our models are given in Table 7.

hyperparameter tested values

number of epochs 2, 3, 4, 5
batch size 8, 16, 32
maximal length 32, 64, 128
learning rate 10−5, 3 · 10−5, 5 · 10−5

dropout rate 0.1, 0.2

Table 6: Values used for hyperparameter optimization.
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BERT_SEQ 2 16 64 10−5 0.2
BERT_MASK 4 16 32 3 · 10−5 0.2
RoBERTa_MIP 4 32 32 10−5 0.2
RoBERTa_SPV 4 32 64 10−5 0.2
RoBERTa_CLF 5 32 32 3 · 10−5 0.2
RoBERTA_PAIR 4 32 32 10−5 0.2

Table 7: Final choice of model parameters.
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Abstract

Extracting product attribute value information
is vital for many e-commerce applications. One
of the most crucial product attributes is the
brand, as it significantly impacts customers’
purchasing decisions and behaviour. Conse-
quently, it is critical for e-commerce platforms
to automatically and accurately identify brand
values from product descriptions. Most exist-
ing methods focus on brand value extraction
from text descriptions using sequence tagging
and question answering techniques. However,
brand values are often not mentioned explic-
itly in the product descriptions. Also, these
approaches are designed without paying atten-
tion to product categories, which are important
for brand value identification. In this work, we
propose a novel category-aware generative ap-
proach for brand value identification (GAVI).
In particular, we formulate the brand value iden-
tification problem as a sequence-to-sequence
generation task. We use the T5 language model
as the backbone of our approach. This allows
us to identify brand values that are not explicitly
mentioned in the title in a generative manner.
We then propose to highlight the product cate-
gories inside our model input, making the ap-
proach category-aware. We conduct extensive
experiments on a public dataset for brand value
identification. The experimental results demon-
strate that our generation-based approach out-
performs existing extraction-based methods.
Our code is released along with the fine-tuned
models presented in the paper1, which are also
available as a demo2.

1 Introduction

Product attributes are a crucial component of e-
commerce platforms as they provide valuable in-
formation for customers to browse and compare
products. One of the most important product at-
tributes is the brand, as it plays a pivotal role in

1https://github.com/kassemsabeh/gavi
2https://bit.ly/3FHZGjU

Mielle Organics Pomegranate & Honey Moisturizing 
and Detangling Shampoo, Hydrating Curl Cleanser For 
Dry, Damaged Type 4 Hair.

Brand Mielle Organics

(a) Brand value is mentioned in the product title.

Moroccan Argan Oil Shampoo - Sulfate SLS Paraben 
Free Moisturizing Treatment for Women and Men. For 
All Types Including Curly, Dry, Damaged and Oily Hair

Brand Pure Nature

(b) Brand value can not be extracted from the product title.

Figure 1: Examples of brand values in two product
profiles.

influencing customers’ behaviour and purchasing
decisions (Chovanová et al., 2015; Shahzad et al.,
2014). Brand names also increase the recognisabil-
ity of products and services amongst consumers,
and permit them to deduce knowledge about impor-
tant features of the product (Zhang et al., 2015). For
instance, Figure 1a shows an example of a profile of
a shampoo product taken from an e-commerce web-
site. The brand of this product is “Mielle Organics”.
Knowledge about the brand can help the customers
build a set of associations, like this shampoo is of
"high quality natural and organic ingredients", is
tailored for "frizzy or curly hair", has a "Moistur-
izing and Detangling effect" and is designed "for
women". Consequently, when customers shop for
a shampoo, they often select a particular brand
based on their prioritized attributes and features.
These inherent correlations between brands and
product attributes underscore the critical need for
e-commerce applications to automatically and ac-
curately identify brand names from product descrip-
tions.
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Existing work for brand value identification falls
under the general problem of attribute value extrac-
tion from product titles, with a plethora of research
being developed to tackle this problem (Putthivid-
hya and Hu, 2011; Kozareva et al., 2016; Zheng
et al., 2018; Xu et al., 2019; Wang et al., 2020).
Early approaches for attribute value extraction rely
on rule based techniques and domain-specific dic-
tionaries (Ghani et al., 2006; Vandic et al., 2012;
Kozareva et al., 2016). These methods carry a
close-world assumption and do not work well with
new values, since they need to develop rules for
every possible value. Consequently, they are not
suitable for brand value identification where new
brands are constantly emerging. With the advent of
natural language understanding, sequence labeling
methods have been developed (Huang et al., 2015;
Zheng et al., 2018; Sabeh et al., 2022b). These
methods utilize a BiLSTM-CRF architecture simi-
lar to NER tasks. However, their performance on
attribute value extraction is limited by the abun-
dance of negative token labels (e.g., the ’O’ in
BIO schema), which leads to many false negative
results. Recently, question answering (Xu et al.,
2019; Wang et al., 2020; Yang et al., 2022) based
approaches were proposed. These methods scale
existing sequence based methods to deal with mul-
tiple attribute inputs. All of the above approaches
achieve promising results, however, they suffer
from two major limitations:

• Most of the existing approaches are extractive-
based methods; i.e., they extract the brand
values from the text descriptions in the prod-
uct profile. However, target brand values are
sometimes absent from the textual descrip-
tions of the product. For example, in Figure
1b, the brand of the product is “Pure Nature”,
which is not explicitly mentioned in the prod-
uct title. The existing models extract instead
the value “Moroccan Argan” as the brand,
which is the wrong value.

• Existing methods for brand value extraction
are designed without considering the product
category. This is crucial for determining the
set of applicable values, because categories
can be substantially different in terms of brand
values. For example, the value “Sunflower”
can be a brand in the Clothing category. How-
ever, it used to indicate the scent in the Food
category.

In this paper, we formulate the brand value iden-
tification problem as a sequence-to-sequence gen-
eration task. Inspired by the recent advances on
text generation (Ushio et al., 2022; Bao et al.,
2020; Xiao et al., 2021), we propose a category-
aware Generative Approach for brand Value
Identification, namely GAVI. In contrast to pre-
vious extractive approaches, we employ T5 (Raffel
et al., 2020) language model as the backbone of our
sequence-to-sequence approach. This generative
approach allows the extraction output to expand
beyond strings and sub-strings mentioned in the
product textual description, which addresses the
first limitation. To make the model category-aware,
we propose to highlight the product categories in-
side the model input. This setup fits naturally with
the sequence-to-sequence model architecture, and
allows us to learn category-specific token embed-
dings that are effective for our task. We summarize
the main contributions of our work as follows:

• We propose GAVI, a generative sequence-to-
sequence model to identify brand values from
product descriptions. To the best of our knowl-
edge, this is the first work for generative brand
value identification.

• We extend the basic generative solution to a
category-aware sequence-to-sequence model
by highlighting the product categories inside
the input.

• We conduct extensive experiments on a public
dataset, demonstrating the effectiveness of the
proposed approach over several state-of-the-
art baselines.

2 Related Work

Early work on attribute value extraction relied on
rule-based techniques (Nadeau and Sekine, 2007;
Vandic et al., 2012; Gopalakrishnan et al., 2012),
which utilize domain-specific seed dictionaries to
perform the extraction. After that, a myriad of stud-
ies formulated the extraction task as named entity
recognition (NER) (Putthividhya and Hu, 2011;
Bing et al., 2012; Ling and Weld, 2021; More,
2016). However, these approaches carry a closed
world assumption and therefore can not discover
new values of attributes.

With the advent of deep learning, a number of se-
quence tagging methods were proposed (Kozareva
et al., 2016; Huang et al., 2015; Zheng et al., 2018).
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These approaches make instead an open world as-
sumption to discover new attribute values. (Huang
et al., 2015) applied a BiLSTM-CRF model in a
sequence tagging setting. (Zheng et al., 2018) de-
veloped an end-to-end tagging model (OpenTag)
that benefits from an attention layer (Vaswani et al.,
2017) to generate interpretable results. Moreover,
(Xu et al., 2019) proposed to encode both attributes
and values by using one set of BIO tags to scale up
the tagging methods. (Karamanolakis et al., 2020)
proposed a taxonomy aware multi-task framework
that utilizes the taxonomy of the products to further
improve the extraction. (Yan et al., 2021) utilize
a hypernetwork (Ha et al., 2017) and Mixture-of-
Experts module to parameterize their model with
pre-trained attribute embeddings. (Sabeh et al.,
2022b) proposed to utilize character level represen-
tations to improve the generalization performance
of sequence tagging models for extracting brand
values from product descriptions. The latest ap-
proaches (Wang et al., 2020; Yang et al., 2022;
Sabeh et al., 2022a) reformulate the problem as a
question answering (QA) task by utilizing BERT
(Devlin et al., 2019), which allows them to scale
to a large number of attributes. Sequence tagging
approaches (Huang et al., 2015; Zheng et al., 2018;
Sabeh et al., 2022b) are most relevant to our work
because identifying brand names does not require
scalability. However, these models are extractive
and therefore can not infer brand names which are
not directly mentioned in the title or description.
They also fail to take product categories into ac-
count, which is crucial for brand value identifica-
tion.

In this work, we adopt a generative approach
to identify the brand values from the product de-
scriptions. Our approach allows us to decode brand
values that are not directly stated in the text descrip-
tions. Our model is also category-aware, which
allows us to effectively take the product categories
into account.

3 Proposed Method

As mentioned above, previous methods formalize
the brand value identification as a sequence tagging
task. These approaches fail to identify brand values
that are not explicitly mentioned in the product de-
scription. In this work, we tackle the task of brand
value identification in a generative manner. More
specifically, we propose to fine-tune a generative
language model by formulating the brand value

identification problem as a sequence-to-sequence
generation task.

3.1 Problem Definition
In this section, we formally define the problem
of brand value identification from the product
description. Given an input product title t =
{t1, t2, . . . , tn} where n is the number of tokens
in t. We refer to the product category as c =
{c1, c2, . . . , cm} ∈ C, where m is the number of
tokens in c, and C is a predefined set of categories.
The goal of brand value identification is to gener-
ate a target sequence v̂, which represents the target
brand value. For the example in Figure 1a we have:

• t = "Mielle Organics Pomegranate & Honey
Moisturizing and Detangling Shampoo, Hy-
drating Curl Cleanser For Dry, Damaged Type
4 Hair."

• c = "Shampoos"

To generate the value v̂ given the product title
t and the category c, we formulate the problem as
a conditional sequence generation task. Formally,
we optimize the model to maximize the conditional
log-likelihood P (v | t, c) as follows:

v̂ = argmax
v

P (v | t, c)

In our implementation, similar to other sequence-
to-sequence learning settings (Sutskever et al.,
2014), we factorize the log-likelihood into word
and sub-word level predictions.

3.2 Language Model Fine-tuning
We employ T5 (Raffel et al., 2020) sequence-to-
sequence language model as the backbone of our
approach. T5 is a tranformer-based (Vaswani et al.,
2017) pre-trained generative language model that
maps a given input sequence into an output se-
quence. The pre-trained T5 model achieves supe-
rior performance in many sequence-to-sequence
tasks (Qi et al., 2020; Iqbal and Qureshi, 2022).
Fine-tuning T5 language model for brand value
identification can be done in a similar fashion as
for sequence-to-sequence generation tasks, such as
machine translation or text summarization, where
the model generates a sequence of tokens given the
input tokens (Dong et al., 2019; Bao et al., 2020;
Xiao et al., 2021).

To make the model aware of the product cate-
gory c, we propose to concatenate the input title
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Encoder Decoder

Input: product title highlighted with category 
Mielle Organics Pomegranate & Honey Moisturizing and 
Detangling Shampoo, Hydrating Curl Cleanser For Dry, 
Damaged Type 4 Hair <hl> Shampoos <hl> 

Output: brand value
Mielle Organics

Pre-trained encoder-decoder model

Figure 2: Overview of our generative approach GAVI;
it takes category highlighted product title as input and
returns the brand value. In this example, the model
generates Mielle Organics as output.

t and category c into a single input x. After that,
we highlight the category in the input. Specifically,
following (Chan and Fan, 2019), we introduce a
highlight token <hl> to take into account the cate-
gory c inside the model input x as below:

x = {t1, t2, . . . , tn, <hl>, c1, c2, . . . , cm<hl>}

We could also choose not to include and high-
light the category in our input. This means that
we can also train a generative model that is not
category aware by using only the title in our input
x:

x = {t1, t2, . . . , tn}

In our experiments, we investigate and analyse
these model variations, but assume the category
highlighted title as the default input. We refer to
the proposed category aware implementation of
the T5 generative model as GAVI in our experi-
ments. Figure 2 shows the overall architecture of
our sequence-to-sequence generative approach.

4 Experimental Setup

In this section, we represent the experimental set-
tings of our empirical approach for comparing our
generative proposed models with state-of-the-art
baselines on the task of brand value identification.

4.1 Datasets
We evaluate our model on a public product dataset3

for brand value identification (Sabeh et al., 2022b).
This dataset comprises over 250k product titles con-
taining more than 50k unique brand values, derived
from the Amazon Review Dataset (Ni et al., 2019).
Each example consists of product title, product cat-
egory, and the target brand value for identification.

3https://github.com/kassemsabeh/open-brand.

Category Number of Samples Average Tokens
Grocery & Gourmet Food 22397 23.22
Toys & Games 63304 21.95
Sports & Outdoors 54214 21.57
Electronics 47870 32.17
Automotive 66837 23.75
Clothing, Shoes & Jewelry 85068 20.75
Pet Supplies 10868 23.72
Cell Phones & Accessories 78564 34.62

Table 1: Detailed statistics of the dataset. We use T5
tokenizer to tokenize the examples.

Category Train Val Test
Grocery & Gourmet Food 15679 2239 4479
Toys & Games 44314 6330 12660
Sports & Outdoors 37951 5421 10842
Electronics 33512 4787 9574
Automotive 45132 6447 12894
Total 176588 25224 50449

Table 2: Statistics of AZ-base dataset with five selected
categories.

Table 1 shows the statistical details of the dataset.
The dataset contains information about products
in eight main categories. The average number of
tokens per sample in each category is also shown
in Table 1. Following previous work (Sabeh et al.,
2022b), we arrange the following setups for bench-
mark:

• AZ-base This split of the dataset contains in-
formation about products in five main cate-
gories: Grocery & Gourmet Food, Toys &
Games, Sports & Outdoors, Electronics and
Automotive. In this dataset, we randomly se-
lect 70% of the data for training, 20% for
validation, and 10% for testing. The main pur-
pose of this dataset is to evaluate the baseline
model performance on the task of brand value
identification. The statistics of the AZ-base
dataset are provided in Table 2.

• AZ-zero-shot In order to evaluate the gen-
eralization ability of the models, we divide
the AZ-base dataset into another disjoint train-
ing and test split with no overlapping brand

Category Train Val Test
Clothing, Shoes & Jewelry 0 0 85068
Pet Supplies 0 0 10868
Cell Phones & Accessories 0 0 78564
Total 0 0 174500

Table 3: Number of samples in AZ-new-cat dataset.
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values. The test set of this split contains 8k
unique values. None of these values are seen
during training. This allows us to evaluate the
zero-shot performance of the models.

• AZ-new-cat In this benchmark, we test the
models ability in identifying brand values
from different product categories. In specific,
we use the same training set from AZ-base,
but we test the model on three new categories
of products. None of these categories are
present in the training set, as shown in Table
3.

4.2 Implementation Details
All models are implemented using PyTorch4, and
are trained on NVIDIA Tesla V100 GPUs. During
training, Adam (Kingma and Ba, 2015) optimizer
is applied with initial learning rate 4e−5. The back-
bone uses the pre-trained T5-base encoder with 12
layers and 12 heads, which has 220M parameters.
The embedding dimension is 768, while the maxi-
mal input length is set to 512. The batch size is set
to 32. All hyper-parameters are chosen optimally
based on the performance on the validation set of
our dataset. We fine-tune the model on the training
set for 10 epochs, and perform early stopping if
there is no improvement in the loss on the valida-
tion set for 3 epochs. We report our final results
on the test where we perform beam search of size
four.

4.3 Evaluation Metrics
Following the literature (Xu et al., 2019; Yan et al.,
2021; Wang et al., 2020), we use Precision (P ), Re-
call (R), and F1 as evaluation metrics. We compute
these metrics based on the number of true positives
(TP), false positives (FP), and false negatives (FN)
of our predictions. We use Exact Match (Rajpurkar
et al., 2016) criteria in our evaluations, where the
full predicted sequence should match the ground
truth.

P =
TP

TP + FP
R =

TP

TP + FN
F1 = 2× P ×R

P +R

4.4 Compared Models
We compare the following models on the task of
brand value identification:

BiLSTM-CRF (Huang et al., 2015) applies a
BiLSTM followed by a CRF layer to model the
dependency of the predicted tags.

4https://pytorch.org/

OpenTag (Zheng et al., 2018) introduces a self-
attention layer between the BiLSTM and CRF to
highlight important features in the input. Open-
Tag is considered as the pioneer sequence tagging
model for attribute value extraction.

OpenBrand5 (Sabeh et al., 2022b) leverages a
CNN encoder to generate character level represen-
tations and improve the generalization performance.
OpenBrand achieves state-of-the-art results on the
brand value extraction task.

T5 The base generative model of ours that is fine-
tuned on the training dataset. T5 is not category-
aware as it only uses the title in the input.

GAVI Our proposed category-aware generative
model. Our model uses category-highlighted inputs
to identify the brand values, as described in Section
3.2.

5 Experimental Results

In this section, we conduct a series of experiments
under various settings to evaluate our proposed
approach.

5.1 Baseline Comparison Results

In this experiment, we compare the performance of
our proposed models with the baseline models, as
mentioned in Section 4.4, on the AZ-base dataset.
Table 4 reports the evaluation results of the com-
pared models on the five categories of AZ-base. We
can observe that GAVI consistently outperforms
other baselines across all categories of products.
The overall improvement in F1 score is up to 4.1%
compared to OpenBrand. One interesting observa-
tion is that both T5 and GAVI outperform the other
baselines in terms of F1 score. The main reason is
that both models are generative, meaning that they
can identify brand values that are not mentioned
in the title. On the other hand, sequence tagging
approaches fail to extract such values.

We also notice that, in general, GAVI outper-
forms the base T5 model in all categories of prod-
ucts. This is mainly because our model is category-
aware and is able to learn category-specific embed-
dings that are more suitable for the identification
task. Another key observation is that the perfor-
mance of GAVI depends on product categories. For

5We only compare our model with the CNN version of
OpenBrand as it was shown to have better performance by the
authors.
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Category Models P R F1

Grocery
& Gourmet Food

BiLSTM-CRF 74.9 66.0 70.2
OpenTag 76.0 65.4 70.3
OpenBrand 77.5 75.4 76.4
T5 76.5 75.9 76.2
GAVI 79.3 76.4 77.8

Toys & Games

BiLSTM-CRF 78.9 70.5 74.5
OpenTag 79.1 70.3 74.5
OpenBrand 81.3 72.0 76.4
T5 79.7 76.6 78.1
GAVI 80.3 77.2 78.7

Sports & Outdoors

BiLSTM-CRF 84.1 75.4 79.5
OpenTag 84.9 75.0 79.6
OpenBrand 86.1 77.3 81.5
T5 82.1 81.5 81.8
GAVI 88.1 82.3 85.1

Electronics

BiLSTM-CRF 87.8 81.5 84.5
OpenTag 89.2 79.6 84.2
OpenBrand 89.7 80.5 84.9
T5 87.9 81.5 87.8
GAVI 90.1 88.5 89.3

Automotive

BiLSTM-CRF 90.9 85.0 87.9
OpenTag 91.6 84.6 87.9
OpenBrand 91.8 85.4 88.5
T5 90.4 90.5 90.4
GAVI 91.4 91.3 91.3

Table 4: Performance comparison between different
models on the AZ-base dataset.

Model P R F1

OpenTag 53.80 33.82 41.53
OpenBrand 55.61 35.46 43.44
T5 67.28 47.90 55.95
GAVI 70.10 53.31 60.55

Table 5: Results on zero-shot brand values.

example, the gain in recall R in the Electronics cat-
egory (7%) is much higher than the gain in the Gro-
cery & Gourmet Food category (1%). By analyzing
the errors in the Grocery & Gourmet Food category,
we discovered that there are certain amount of false
negatives in the test set, where the outputs of the
model are actually correct, but the labels are wrong.
For example, given the following title: “Organo
Gold Organic Green Tea (4 Boxes)”, the model
correctly extracts “Organo Gold” as the brand, but
the ground truth is “Organic Green Tea”.

5.2 Results of Discovering New Brand Values

We conduct zero-shot extraction experiments to
evaluate the generalization performance of our
model on unseen brand values. The results on
the zero-shot dataset are reported in Table 5. We

Category Models P R F1

Clothing, Shoes,
& Jewelry

BiLSTM-CRF 58.5 42.2 49.0
OpenTag 60.3 43.5 50.5
OpenBrand 64.5 45.2 53.2
T5 64.2 55.9 57.4
GAVI 64.5 55.8 59.8

Pet Supplies

BiLSTM-CRF 55.0 37.3 44.5
OpenTag 53.9 38.9 45.2
OpenBrand 58.2 38.5 46.3
T5 64.8 51.5 57.4
GAVI 63.6 49.3 55.6

Cell Phones
& Accessories

BiLSTM-CRF 80.1 68.0 73.5
OpenTag 78.3 67.4 72.4
OpenBrand 85.2 67.8 75.5
T5 85.4 81.5 83.4
GAVI 85.5 81.7 83.6

Table 6: Performance comparison between models on
the AZ-new-cat dataset.

exclude the BiLSTM-CRF model from this ex-
periment as its not capable to generalize well to
new values. It can be seen that our generative
models achieve much better results than Open-
Brand and OpenTag. For example, the F1 metric
of GAVI significantly increases by 17.1% com-
pared with OpenBrand over all categories in the
dataset. This is because generative models use the
T5 transformer-based (Vaswani et al., 2017) archi-
tecture, which have been shown to outperform the
BiLSTM-CRF architecture in zero-shot settings
(Wang et al., 2020).

From Table 5, we can also observe that GAVI
outperforms the base T5 model on the zero-shot ex-
tractions (e.g., by 4.6% F1 score). This is because
knowledge about the category allows the model to
exploit similarities across product categories result-
ing in a better overall performance. However, it is
evident that the overall performance of the models
is worse as compared to the main results in Table
4. This is expected, as there are no examples from
the zero-shot brand values in our training set.

5.3 Results on New Categories

To examine the models ability in generalizing to
brand values in new categories, we conduct a set of
experiments using the AZ-new-cat benchmark. In
these experiments, we train the models on the train-
ing set of the AZ-base dataset and evaluate them
on three new product categories: Clothing, shoes,
& Jewelry, Pet Supplies, and Cell Phones & Acces-
sories. We report the results of our experiments in
Table 6. It can be seen that GAVI outperforms all
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Figure 3: Performance comparison of T5 and GAVI on
instances of AZ-base where the brands are not explicitly
mentioned in the product description.

the compared baselines. The increase in F1 score
is up to 9.3% as compared to OpenBrand. These re-
sults demonstrate the models ability in generalizing
to new domains in real-world scenarios.

There are several interesting observations in Ta-
ble 6. First, the performance of T5 and GAVI is
close. This is because using new categories that
are not seen during training does not benefit our
category-aware implementation. The model is not
able to generate category-specific token embed-
dings at inference time, as they are new categories
that are unseen during training. Second, and inline
with previous works (Sabeh et al., 2022b), the re-
sults on the Cell Phones & Accessories category
are significantly better than other categories for all
compared models. This is because many of the
brands in the Cell Phones & Accessories category
are also present in the Electronics category of the
training set (e.g., “LG”).

5.4 Results on Implicit Brands Examples

We further conduct a set of experiments on AZ-
base to analyze the performance of the models on
the instances where the brand value is not explicitly
mentioned in the product description. We refer to
those examples as implicit examples (e.g., the prod-
uct in Figure 1b). First, we separate the implicit
examples in the test set of AZ-base. This resulted in
9k implicit examples. Then, we fine-tune the mod-
els on the training set of AZ-base and test them
on these implicit examples. Figure 3 shows the
evaluation results of T5 and GAVI on the implicit
examples. Note that we do not include the other
extractive baselines in this experiment as they are
not able to extract those implicit brands.

GAVI achieves 64.9% F1 score on the implicit

examples. This indicates the effectiveness of our
approach compared to sequence tagging baselines,
which are incapable of performing the extraction.
In addition, GAVI significantly outperforms the
base T5 model in all compared metrics. This
clearly indicates that taking the categories into con-
sideration during the generation results in better
overall performance.

5.5 Examples of Extracted Brand Values

Figure 4 shows examples of product titles and
brand values extracted by OpenBrand or GAVI.
GAVI is able to identify brands that are not explic-
itly mentioned in the title: in Figure 4a, “Frame
pro” is the valid brand for this product. OpenBrand,
which is an extractive sequence tagging model, fails
to detect this value. Instead, it extracts “Mitsubishi”
as the brand. While GAVI successfully generates
“Frame pro” as the correct brand value. In Figure
4b, OpenBrand erroneously extracts “Fun” as the
brand for a Toys & Games product; on the other
hand, GAVI, which considers the product category
and textual context, generates the correct brand for
this product. Also, in the example of Figure 4c,
the model was able to correctly extract the brand
value, even though it was mentioned incorrectly in
the title.

6 Conclusions and Future Work

Brand value identification is a crucial task in many
real-world e-commerce applications. In this work,
we propose a novel generative approach for brand
value identification. In particular, we employ T5
language model as the backbone of our sequence-
to-sequence approach. We infuse category infor-
mation into the model by highlighting the product
categories inside the input. In contrary to previous
extractive approaches, our generative method al-
lows us to identify brands beyond the strings men-
tioned in the product description. Experimental
evaluations on public datasets demonstrate the ef-
fectiveness of the proposed approach.

We plan to investigate other sequence-to-
sequence language models such as BART (Lewis
et al., 2020) and GPT (Brown et al., 2020). Also,
improving the brand coverage and dealing with the
false negatives in the dataset is one of the future
directions.
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Title: Mitsubishi 3000GT License Plate Frame (Zince Metal)

Brand: Frame pro
OpenBrand = ”Mitsubishi”
GAVI = ”Frame pro”

(a)

Title: Fun Fire Truck Pinata Personalized

Brand: Personalized Pinatas
OpenBrand = ”Fun”
GAVI = ”Personalized Pinatas”

(b)

Title: Fisher-Price Thomas&quotFriends Take-n-play

Brand: Thomas & Friends
OpenBrand = ”Fisher-Price”
GAVI = ”Thomas & Friends”

(c)

Title: White Chocolate Caramel Gourmet Popcorn Kelly

Brand: Kelly
OpenBrand = ”Kelly”
GAVI = ”Kelly”

(d)

Figure 4: Examples of extracted brand values from OpenBrand and GAVI.

Limitations

In this paper, we introduce a novel generative ap-
proach for brand value identification from product
descriptions. The input to our models is limited to
up to around 500 tokens, and the same approach
can not be easily applied to longer product de-
scriptions. As far as languages are concerned, the
models developed here are English only. To adapt
our work to other languages, we need e-commerce
datasets to train and evaluate the models in those
languages. Also, our models assume that the brand
values can always be identified from the context
of the product descriptions. We do not consider
the case where the context does not include any
applicable brand value (i.e., negative values). As
future work, we will extend the model and datasets
to deal with those negative samples.
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Abstract

Automatic text simplification models face the
challenge of generating outputs that, while be-
ing indeed simpler, still retain some complexity.
This stems from the inherently relative nature
of simplification, wherein a given text is trans-
formed into a relatively simpler version, which
does not necessarily equate to simple. We thus
aim to propose a finer-grained method to assess
sentence complexity in French. Our solution
comprises three models, in which two address
absolute and relative sentence complexity as-
sessment, while the third focuses on measur-
ing simplicity gain. By employing this triad
of models, we aim to offer a comprehensive
approach to qualify and quantify sentence sim-
plicity. Our approach utilizes FlauBERT, fine-
tuned for classification and regression tasks.
Based on our three-dimensional complexity
analysis, we provide the WIVICO dataset, com-
prising 46,525 aligned complex-simpler pairs,
which can be further leveraged to fine-tune
large language models to automatically gener-
ate simplified texts, or to assess text complexity
with greater granularity.

1 Introduction

Automatic Text Simplification (ATS) aims at pro-
ducing a simpler version of a given input text, while
still preserving its original information, semantic
coherence and grammaticality (Horn et al., 2014).
The resulting text is expected to be linguistically
less complex, which can in turn have an interest
from a human-oriented perspective, so as to pro-
vide with adapted texts for different target read-
ers, like children (De Belder and Moens, 2010) or
people with dyslexia (Rello et al., 2013); and a
machine-oriented perspective, as a pre-processing
step for other NLP applications like information
extraction (Evans and Orasan, 2019).

Nevertheless, ATS models are subject to gen-
erating outputs that, while being indeed simpler,
still retain a level of complexity. This arises from

the inherently relative nature of simplification, in
which a given reference text is rewritten into a com-
paratively simpler version. Yet, simpler does not
necessarily equate to simple, and can result in out-
puts that still exhibit complex linguistic features.

Predicting sentence complexity seems a valuable
ancillary task in this respect, as it can help evalu-
ate the simplification effectiveness of the generated
output. In addition, it can contribute to the au-
tomatic creation of monolingual complex-simpler
pairs, which are a scarce resource in ATS, espe-
cially for less resource-rich languages than English.
Prior research has often addressed sentence com-
plexity assessment by relying on binary classifica-
tion models (Paetzold and Specia, 2016; Stajner
et al., 2017), through which an input is categorized
as either complex or simple on an absolute basis.
However, this approach proves somewhat coarse
in the context of simplification, considering its ac-
knowledged relative nature. Since ATS models
operate based on a provided text, we believe that
estimating the sentential complexity should also be
conducted in a reference-aware manner.

In this paper, we aim to contribute with a BERT-
based finer-grained method to assess sentence com-
plexity, specifically in French. Despite its substan-
tial resources, ATS research on this language re-
mains largely unexplored given the scarcity of par-
allel simplification data. To alleviate this issue, we
introduce a new triad of increasingly fine-grained
models so as to: i) determine whether a sentence
is inherently complex or simple; ii) assess if the
second sentence in a pair is simpler than the first;
and iii) measure the simplification gain achieved by
the second sentence in comparison to the original
one. Additionally, based on the proposed method,
we provide a general-purpose parallel sentence sim-
plification dataset for French language1.

1 Which is publicly released on the following GitHub
repository: https://github.com/lormaechea/
wivico.
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2 Background and related work

2.1 Simple and simpler: a fundamental
distinction often omitted in ATS

The performance of ATS models is normally
judged upon three criteria (Martin, 2021): i) how
fluent the simplified output is; ii) how well the
meaning of source text is preserved in the out-
put; and most notably, iii) how simple it is com-
pared to the original unsimplified text. A successful
model is thus expected to produce a fluent, lossless-
meaning text that is comparatively simpler in form
than its original counterpart. This implies that the
system is not necessarily designed to generate sim-
ple text, but rather to achieve or satisfice a simplic-
ity gain with respect to a given text. In other words,
the model is aimed at producing a comparatively
simpler version of a text, according to a provided
input. Yet simpler does not equal simple by defi-
nition. A complex text can be transformed into a
relatively simpler version, but still show complex
features that would make them inadequate to the
constraints of simple language.

Then the question that arises is: what is the no-
tion of simple? Is there such a thing as an absolute
and objective simplicity that defines one particular
text? The concept of simple language has been ex-
tensively investigated in prior literature, especially
in the context of text accessibility. It has been
broadly defined as a variety of language that shows
low lexical and syntactic complexity (Klaper et al.,
2013). Nevertheless, providing proper simplified
texts requires a more precise delineation, as it is
greatly influenced by the needs of specific target
readers (e.g., individuals with cognitive disabilities,
foreign language learners, children, etc.), which
condition the preferred simplification operations
accordingly. As can be noted, the audience is not a
negligible factor, as it shows that text simplification
is a strongly subject-dependent task: the perception
of a text as being more easily accessible or compre-
hensible may vary substantially according to the
target reader (Dmitrieva et al., 2021).

In recent years, the growing awareness of the
eventual reading comprehension difficulty arisen
by some types of documents (e.g., technical, admin-
istrative, but also general-domain) (Stajner, 2021),
as well as the regulations ratified from institutional
frameworks (Nomura et al., 2010), has fostered
the definition of easy-to-understand manual sim-
plification style guides, such as Easy Language or
Plain Language (Maaß, 2020). These initiatives

were created to provide standards for the writing of
comprehensibility-enhanced texts, and to guaran-
tee the quality and appropriateness of the resulting
simplifications. Nonetheless, such guidelines of-
ten advise the use of overly broad or imprecise
simplification-oriented rules, such as the usage of
short sentences and simple words, or the avoid-
ance of non-essential information (Candido et al.,
2009). Such haziness hinders their eventual appli-
cability within automated text simplification solu-
tions. And, more importantly, it makes it difficult
to objectively quantify the extent to which a text
complies with a specific guideline (Fajardo et al.,
2013; Sutherland and Isherwood, 2016), thus obfus-
cating a consensual definition of simple language
and a common characterization of simple text.

2.2 Existing approaches for building parallel
text simplification corpora

The creation of relevant resources for text simpli-
fication is a crucial procedure for the subsequent
training and evaluation of data-driven ATS models.
However, it poses a significant challenge due to
the intricacies associated with defining simplicity,
as discussed earlier, and also the strong reliance
on monolingual parallel corpora comprising repre-
sentative simplified texts and their corresponding
complex references. The paucity of such data col-
lections has significantly hindered progress on this
task, both method- and language-wise. To mitigate
this issue, previous research has employed two ap-
proaches for building parallel complex-simple(r)
text resources: manual and automatic, with a spe-
cial focus on sentence-level simplifications.

Manually-created Manually crafted monolin-
gual parallel corpora for ATS are usually created
from scratch, by asking experts (i.e., teachers, trans-
lators or speech therapists) to simplify a set of texts
(usually genre- or domain-specific), for a particular
audience (Brunato et al., 2022). By relying on pre-
existing or ad hoc target-aware style guidelines,
and professional editors’ expertise, the resulting
sentence simplification pairs are expected to pro-
vide a reliable and high-quality parallel dataset.

On this basis, several datasets have been released,
such as NEWSELA (Xu et al., 2015), in English
and Spanish, PORSIMPLES (Aluisio and Gasperin,
2010) in Brazilian Portuguese, or ALECTOR (Gala
et al., 2020) in French. Parallel corpora derived
from this approach are notable for their highly re-
liable simplification operations performed on the
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original text. However, this process is costly, both
economically and time-wise, due to the require-
ment of trained human editors. Furthermore, it
has an impact on the reduced size of the resulting
dataset, which with the exception of NEWSELA,
does not easily support the implementation of ML
algorithms that are able to infer the transformations
to generate simplified text.

Automatically-created With the goal of pro-
viding with ATS-oriented high-scale parallel mono-
lingual datasets, automatic data acquisition ap-
proaches rely on existing comparable corpora (usu-
ally Wiki-based) that associate standard texts with
their simplified versions. These resources are later
used to extract complex-simple(r) sentence pairs,
giving rise to labeled data collections, like WIK-
ISMALL (Zhu et al., 2010), EW-SEW (Hwang et al.,
2015) or WIKILARGE (Zhang and Lapata, 2017).

While being widely used in the training of ATS
models in prior literature (Nisioi et al., 2017; Mar-
tin et al., 2020; Sheang and Saggion, 2021), the ad-
equacy of the simplifications within these datasets
has been called into question (Xu et al., 2015).
This is due to the eventual disparity between the
source text and its comparatively simpler counter-
part, given the fact that comparable corpora being
used are often written independently. In addition to
this, their limited controllability has also been de-
bated, since it appears difficult to determine to what
extent they observe any style manual, or whether
the performed simplifications are target-aware or
target-oblivious. Nor is it any less of an impedi-
ment that such resources are often solely existing in
English, leading data-driven ATS in less resource-
rich languages to be harder to implement.

Yet, the main reason to emphasize the unsuit-
ability of these datasets is based on the eventual
suboptimality of the methods used to mine register-
diversified comparable corpora. So as to cap-
ture monolingual parallel data that is relevant for
ATS, prior research has typically relied on auto-
matic alignment algorithms and semantic similarity
scores (Paetzold et al., 2017; Stajner et al., 2018;
Nikolov and Hahnloser, 2019; Sun et al., 2023). Al-
though these strategies are prone to error, they aid
in assessing the semantic closeness between two
sentences, and thus serve as a proxy for meaning
preservation. However, they do not suffice on their
own, as they fail to ascertain whether the target text
genuinely constitutes a simpler version with respect
to the corresponding input. Given that simplicity

gain is a sine qua non condition for a simplified text
to be considered valid, recent studies have explored
the use of classification and regression models to
estimate sentence complexity, as we will see below.

2.3 Automatic assessment of sentence
complexity

Automatically determining the complexity of a sen-
tence proves to be a valuable ancillary task for ATS,
as it can potentially serve as a preliminary step in
creating labeled simplification data. Additionally,
it can aid in evaluating the simplification effective-
ness of the generated output.

Prior literature has approached sentence com-
plexity prediction in various ways, depending on
the ultimate objective. This typically includes: i)
detecting the complex sentences needing to be sim-
plified, and ii) quantifying the degree of simplifi-
cation achieved within a pair. As a result, it has
had an impact on the approach used for such as-
sessment. So as to address the first goal, previous
works have mainly employed absolute complexity
classifiers. These models assign a discrete label
to an input text that represents its difficulty. This
can in turn be treated as a binary classification
problem (Paetzold and Specia, 2016; Stajner et al.,
2017) or a multi-class discrimination problem, if a
greater granularity is considered (Vajjala and Meur-
ers, 2014; Khallaf and Sharoff, 2021). On the other
side, relative sentence complexity classifiers (Am-
bati et al., 2016) and, more particularly, regression
models have been prioritized to address the second
objective (Iavarone et al., 2021), as they can rep-
resent linguistic complexity in a continuum, and
help predict the degree of complexity reduction
obtained by a simplified sentence.

It is also worth noting that such regressors have
commonly been used from the perspective of au-
tomatic readability assessment (Lee and Vajjala,
2022). While it is a complementary notion to that
of simplification, they are not equivalent concepts.
Readability primarily focuses on language clarity
and accessibility, and it does not strictly target the
meaning preservation and simplicity gain relation.
In addition to this, readability formulae were de-
signed for a document-level application, which
means that they may not be completely reliable
on a sentential-level (Stajner et al., 2017). This
suggests the need to introduce new metrics within
ATS, so as to properly quantify the gain or loss of
simplicity in a complex-simpler pair.
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Figure 1: Overview of the pipeline to obtain complex-simpler sentence pairs from the French Wikipedia and Vikidia.

3 Corpora

As previously stated, automatically determining the
complexity of a sentence (or a pair of sentences)
can potentially serve as a helpful preliminary step
in creating labeled simplification data in languages
such as French, where ATS-specific aligned data
is scarce. In this section, we showcase the cor-
pora we used to make such prediction as well as to
automatically mine complex-simpler pairs.

3.1 WIKILARGE-FR

Assessing sentence simplicity in an automatic man-
ner is generally based on data-driven approaches.
Considering this, we opted to rely on WIKILARGE

(Zhang and Lapata, 2017), a well-established
dataset that has been utilized to develop and refine
simplification models in previous ATS research.
However, a significant obstacle was encountered
since the texts in WIKILARGE were originally
written in English, requiring to be translated into
French. To tackle this issue, we employed Google
Translate to obtain the respective translations for
every pair and produced WIKILARGE-FR.

WIKILARGE-FR
Train size 105,420
Dev size 13,177
Test size 13,179

Total 131,776

Table 1: Overview of size (in sentence pairs) and data
distribution of the WIKILARGE-FR dataset.

We identified that certain pairs were too similar
during this process, so we kept those with a Lev-
enshtein distance of less than 0.95. We then split
the data into a train, validation, and test set using
an 80:10:10 split and stratification (see Table 1).

3.2 Wikipedia-Vikidia data compilation
Prior studies have highlighted the potential use
of Wiki-based articles for the creation of ATS re-
sources (Brouwers et al., 2012). For this reason,
we decided to use the French-language editions
of register-differentiated comparable corpora to
subsequently extract parallel simplification pairs.
More precisely, we relied on Wikipedia and Vikidia,
where the latter constitutes an adapted version of
the former, and was created to provide with texts
that can be more easily understandable by children
between 8 and 13 years old. At present, French
Vikidia comprises about 40k articles, which makes
it a significant resource for ATS. Notwithstanding
French is a reasonably well-resourced natural lan-
guage, the available aligned data for this task is
limited (Seretan, 2012; Cardon and Grabar, 2019).

In order to retrieve the textual content from the
articles of both sources, we extracted the com-
plete URL list of articles from Vikidia using the
web scraping pipeline described in Ormaechea and
Tsourakis (2023). The output yielded a total of
34,357 article links2. We later parsed the HTML
content to find the corresponding Wikipedia ar-
ticles, by relying on inter-language links. After-
wards, we tokenized the text content and segmented
2 As of April 14th, 2023.
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it into sentences. We finally filtered out the sen-
tences exceeding 128 word pieces, so as to avoid an
eventual truncation when encoded into a sentence
embedding.

4 Meaning preservation filtering

As discussed in Section 2.1, the output produced
by an ATS model is expected to meet two primary
conditions: i) retain the meaning and information
conveyed in the input text, and ii) obtain a linguis-
tic simplicity gain with respect to the reference.
Based on this definition, we addressed these two
dimensions sequentially. In order to determine suit-
able complex-simpler pairs for ATS, we must first
assess whether they are semantically equivalent3.

We thus implemented a meaning preservation
filtering method to identify the Wiki-Viki pairs ex-
hibiting a high semantic overlap. To this effect, we
relied on SBERT (Reimers and Gurevych, 2019),
which modifies the pretrained BERT network (De-
vlin et al., 2019) by using a siamese architecture
to compute sentence embeddings4. After mapping
the sentences to a 768-dimensional dense vector
space, we computed the cosine similarity for the
resulting encoded pairs.

Once such values were obtained, we needed to
assess which pairs showed sufficient semantic con-
sistency. To this end, we chose to rely on a manual
annotation of 500 randomly picked sentence pairs
from our initial dataset. Two subjects were selected
for this purpose. They were given three judgment
labels to conduct the annotation: valid, where the
meaning from source to target is fully preserved;
partially valid, where information is partially lost
from source to target or vice versa; and non-valid,
where information between the two sentences di-
verges. After the first annotation round, the two
experts convened to discuss and reached a consen-
sus, resulting in a Cohen’s kappa score of 0.87.
With 500 annotated sentence pairs at our disposal,
we plotted the distribution of the SBERT scores for
each judgment label. On average, valid pairs show
higher SBERT-derived values, which confirms a
direct correlation between SBERT scoring and hu-
man judgments on sentence similarity. The mean
score for valid pairs was 0.81, which we consider
the cutoff threshold for the semantic filtering step.
3 If their meaning is divergent, no assessment on simplicity

gain is applicable.
4 We used multilingual sentence transformers: https:
//huggingface.co/sentence-transformers/
paraphrase-xlm-r-multilingual-v1.

5 Simplicity filtering

After addressing the meaning preservation dimen-
sion, we focused on how to extract the simplicity
gain obtained by the target sentence with respect
to the reference. Our approach consists of three
distinct steps to assess absolute and relative sim-
plification and estimate a gain score (as shown in
Figure 1), and aims to properly address the relative
nature of simplification. An absolute binary catego-
rization of a sentence as complex or simple seems
somewhat insufficient and not suited for ATS. In-
deed, a complex sentence (C) being transformed
into a simple one (S) results in a simplification.
Conversely, a S→C process gives rise to a complex-
ification. Nevertheless, an absolute classifier can
equally categorize a source and target sentences as
C→C or S→S. Given that simplification and com-
plexification operations are reference-dependent,
they may validly occur in both cases.

Because there are several phenomena involved
within simplicity assessment, we split the problem
into an increasingly fine-grained approach. First,
we incorporated the WIKILARGE-FR dataset to
elicit pairs of complex-simpler sentences that can
be used to fine-tune different versions of FlauBERT
(Le et al., 2020). For the classification task, we cre-
ated two models: one to assess the simplicity of
each sentence in the pair, and another to determine
whether the target sentence is simpler than the cor-
responding source. Subsequently, based on a set of
features, we calculated the simplicity gain for each
pair that allowed the creation of a regressor model
to automate this process. For a clearer depiction of
the specific steps involved, refer to Figure 2.

5.1 Classification models for sentence
complexity

Fine-tuning pre-trained classification models can
help leverage their learned knowledge and trans-
fer it to a new classification task. By adapting
the model to the target task with labeled data, we
can improve its generalization, capture domain-
specific nuances, and achieve better results. In our
work, we incorporated a specific architecture based
on the FlauBERT language model to perform sen-
tence complexity classification. It is a variant of
the model that has been adapted specifically for
sequence classification. In this architecture, the
model is combined with additional layers and a
classification head to enable it to classify sequences
into different categories.
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5.1.1 Absolute sentence complexity
assessment

In the first experiment, we treated each sentence in
the input pairs independently to determine whether
it is categorized as simple or complex. To achieve
this, we assigned a binary label for each of the
sentences in the WIKILARGE-FR dataset (see Sec-
tion 3.1). The performance on the test set is pre-
sented on the left side of Table 2. Utilizing differ-
ent variants of the FlauBERT model, we contrasted
the performance between each baseline model (un-
tuned) and the one after training (tuned). We ob-
serve significant improvement in the second case,
which is similar to all three variants. The baseline
untuned models’ performance was no better than
random chance in distinguishing between the two
classes (∼50%) versus the tuned ones (∼70%). It
is worth noting that the small version of the un-
tuned FlauBERT model is partially trained, which
may impact its performance. Nevertheless, it was
included for debugging purposes.

5.1.2 Relative sentence complexity assessment
The second classifier aims to assess the relative
simplification between the source and target sen-
tence pairs, answering the question of whether the
second is a simpler version of the first. To accom-
plish this, we juxtaposed the sentences alternating

their order into two sets of pairs to signify either
simplification or complexification. This time, we
significantly improved the baseline performance
(∼50% versus ∼93%). To reinforce the validity of
the previous outcome, we also utilized the manu-
ally annotated dataset of Section 4, which included
human annotations of relative simplification. The
results shown on the right side of Table 2 corrob-
orate our previous assessment. As the dataset is
imbalanced, the baseline classifiers’ performance
mirrors the class distribution and can largely be
attributed to chance. However, the tuned models
improve those significantly (∼94%).

5.2 A regression model for simplicity gain
The classification models presented above allow us
to discern in a binary manner whether a sentence is
complex or simple, or whether a pair of sentences
has undergone a process of simplification or com-
plexification. However, these models lack the ca-
pacity to indicate to what extent a target sentence is
simpler than its original counterpart. For these rea-
sons, we have aimed to quantify the simplification
shift produced within a pair of classically catego-
rized complex-simple sentences, with the training
of a regression model. In this way, we have sought
to measure the simplicity gain achieved from the
original sentence to its simplified version.
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Figure 3: Correlation heatmaps among the feature gains for the WIKILARGE-FR and ALECTOR datasets.

Classification task AC RC
Evaluation dataset Test set Test set Manual set
Transformer model untuned tuned untuned tuned untuned tuned
flaubert-small 49.54 70.11 49.78 92.99 34.58 92.52
flaubert-base 50.97 69.82 49.88 93.82 36.45 93.46
flaubert-large 52.29 69.19 52.18 94.16 75.71 95.33

Table 2: Accuracy results in % obtained for the absolute complexity classifier (AC) on the test set, and for the
relative complexity classifier (RC) on the test and manual evaluation sets.

As noted in Section 2.3, similar regression mod-
els have been used from a readability perspective,
but they prioritize the measurement of clarity and
accessibility aspects, and do not explicitly address
the challenges of ATS. This is why we sought to
examine the quantification of the simplicity gain.

5.2.1 Definition of features
We extracted a set of pertinent features, shown in
Table 4, that were chosen on the basis of previous
literature regarding sentence simplicity assessment
(Tanguy and Tulechki, 2009; Brunato et al., 2022).
These describe the WIKILARGE-FR dataset along
three dimensions and are grouped into structural,
lexical, and syntactic groups. Based on these fea-
tures, we calculated their values for each sentence
in the pair and performed an element-wise subtrac-
tion. The result is a list containing the differences
between the elements in the same positions of the
original feature lists that we also standardized.

While using a predictive model to estimate the
simplicity gain from complex-simpler pairs might
not be necessary when a direct calculation process
is available, there are potential benefits to consider.
Predictive models can assist in quality assessment
by identifying cases where direct calculations may
falter due to assumptions or heuristics. They offer

generalization capabilities, making predictions for
new data and variations that the direct process may
not cover. Additionally, these models can uncover
hidden patterns, adapt to changes in data distri-
butions, and provide robustness against noisy or
imperfect data, enhancing their value in real-world
scenarios. For that reason, LLMs can be beneficial
by leveraging their capacity to comprehend and
learn from intricate language patterns in the data.

To tackle the challenge of collinearity, we calcu-
lated the correlation of the simplicity gains shown
in the left heatmap of Figure 3. This heatmap aids
in detecting patterns and dependencies among the
features. This helps to identify the impact of each
one on the overall simplicity gain and to decide
on which to keep in the subsequent analysis. We
observe that certain pairs demonstrate a high corre-
lation, like Sentence length and Number of words
(row: 0 – col: 1) or IDT and IDT-DLT (row: 9 –
col: 19). We therefore excluded the second feature
in each pair, ending with 18 features in total.

We also performed a symmetric analysis on the
aforementioned ALECTOR dataset (shown in the
right heatmap of Figure 3). Given that it was man-
ually created by expert linguists, the produced sim-
plifications are expected to be highly reliable. This
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in turn helps to reinforce our decision to maintain
or exclude features according to their relevance to
the simplicity assessment. Interestingly, we ob-
serve similar patterns of correlation, indicating that
the features have a similar effect in both datasets.

5.2.2 Simplicity gain estimation
Similarly to the classification tasks, we fine-tuned
FlauBERT for regression. By utilizing the Mean
Squared Error (MSE) as the loss function, Adam
optimizer and a batch size of 16, we trained
FlauBERT to learn to map its linguistic represen-
tations to continuous target variables. The input
received by the regressor consisted on the complex-
simpler pairs appended to their simplicity gain
score, with a maximum input size of 512 tokens.

GR
Evaluation dataset Test set
Transformer model untuned tuned
flaubert-small 1.89 0.39
flaubert-base 1.18 0.35
flaubert-large 4.59 0.23

Table 3: MSE scores from the gain regressor (GR).

Table 3 contrasts the performance on the test
set using either an untuned or a tuned FlauBERT
model. We observe a significant improvement
in all three cases. Specifically, the tuned mod-
els achieved a much lower MSE, demonstrating
their ability to capture underlying patterns in the
data and provide more accurate predictions. The
flaubert-large model yields the best perfor-
mance with an MSE equal to 0.23, which seems
still insufficient in the context of our application.
These results may suggest further exploration in
the optimization of the model hyperparameters, but
they may also point towards a broader categoriza-
tion of each pair based on a range of gain values.

5.3 Wikipedia-Vikidia Corpus (WIVICO)

Having this triad of models in place, we were able
to finally implement our fine-grained method on
sentence simplicity to extract relevant pairs for ATS.
To do so, we implemented our best performing
models on the compiled data introduced in Sec-
tion 3.2. As a result, we were able to generate
the Wikipedia-Vikidia Corpus (WIVICO), that con-
tains 46,525 aligned sentence pairs5. These include
standard C→S labeled examples, but also C→C
5 Appendix C provides a detailed description of the dataset).

and S→S ones, where a simplification operation
was performed (as can be seen in Appendix B).

6 Conclusions and further work

This paper presents an increasingly fine-grained ap-
proach for assessing sentence simplicity. Through
a comprehensive three-dimensional analysis, our
objective was to estimate sentence simplicity in a
manner suitable for ATS, which is an inherently
relative operation. Additionally, we believe that
our work can serve as a relevant and reproducible
method to automatically create parallel simplifica-
tion datasets. This can in turn be of great interest
for reasonably well-resourced natural languages
like French that still lack sufficient resources for
the ATS task. Consequently, we provide public ac-
cess to the dataset that derives from the application
of our approach, WIVICO. This may allow other
researchers interested in this field to further use this
resource to fine-tune LLMs for the task at hand, or
to assess text complexity in a finer-grained manner.

As for the limitations of this work, it is impor-
tant to note that due to the volume of the WIKI-
LARGE corpus, we had to resort to Google Trans-
late to obtain the corresponding French texts, with-
out manually assessing the correctness of the pro-
duced outputs. A possible workaround to this draw-
back would be to compare a subset of the produced
WIKILARGE-FR with its original counterpart and
conduct a human evaluation of translation quality.

On another note, an extension of our investiga-
tions points to the creation of configurable ATS
models. We could incorporate our triad of models
into a larger pipeline designed for text simplifica-
tion and use them to rank a set of candidate simpli-
fied sentences, with the goal of selecting the most
simplified sentence that best preserves the origi-
nal meaning of the input. Similarly, the fine-tuned
model can serve as a guide during the simplification
process by providing a continuous feedback signal
to a generative ATS model and therefore adjust its
output to attain a desired level of simplification.

Last but not least, we also intend to work on
improving the interpretability of the assigned score
for simplicity gain. While based on a calculation
resulting from established linguistic features for
text simplicity, we believe it is also necessary to
contrast such scores to human judgments. By doing
so, we can examine the correlation between the two
in more depth, and measure the significance of each
feature in the simplicity gain estimation.
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A Set of features for simplicity gain

Table 4: Selected features for the definition of the simplicity gain score.

Group # ID Feature Description

St
ru

ct
ur

al 0 SL Sentence length n of characters comprising a sentence.
1 NW Number of words n of words comprising a sentence.
2 VSL Verbal subject length n of words comprising the verbal subject.
3 ATL Average token length Average n of characters per token in a sentence.

L
ex

ic
al

4 CEFR CEFR score Within a sentence, sum of the frequencies of CEFR
levels of all non-stop words multiplied by their lexical
complexity weight value (Ormaechea and Tsourakis,
2023).

5 NE Incidence of named en-
tities

n of named entities (organizations, people, places,
etc.) in a sentence.

6 LD Lexical density Ratio between the n of content words (i.e., nouns, ad-
jectives, adverbs and verbs) and the total n of tokens
in a sentence.

7 TTR Type-token ratio n of unique words divided by the total n of words in
a sentence.

Sy
nt

ac
tic

8 MDT Maximum depth tree Maximum depth of the dependency tree.
9 IDT Incomplete depen-

dency theory
Average number of incomplete dependencies be-
tween the current and next token.

10 DLT Dependency locality
theory

For every head token in a sentence, n of discourse
referents starting from the current token and ending
to its longest leftmost dependent. Values are then
combined using an average function.

11 LE Left embeddedness n of tokens on the left-hand-side of the root verb that
are not verbs.

12 NND Noun nested distance Average nested distance of all nouns within a phrase
that have as ancestor another noun in the dependency
tree.

13 CC Use of coord. clauses n of clauses linked by a coordinating conjunction.
14 SC Use of subord. clauses n of clauses linked by a subordinating conjunction.
15 PR Use of parenthetical re-

marks
n of parenthesized information items in a sentence.

16 NEG Number of negations n of negative adverbs in a sentence (that implies a
slower processing with respect to affirmative ones).

17 PAS Incidence of passive
forms

n of passive voice verbs in a sentence (that implies a
longer reading time with respect to active ones).

18 CT Incidence of complex
tenses

n of complex or unusual verb tenses, i.e., those other
than infinitive or present, present perfect, imperfect,
future indicative.

19 IDT-
DLT

Combined IDT-DLT Sum of IDT-DLT metrics for all tokens in a sentence.
Resulting values are then combined using an average
function.

131



B Application of classification and regression models to Wikipedia-Vikidia pairs

Table 5: Applying the triad models to Wikipedia-Vikidia sentence pairs. A gloss in English is provided below each
segment for clarity purposes.

Wikipedia sentence Vikidia sentence
Pair1 En France, ce lézard est strictement protégé

par la loi.
En France, il est protégé par la loi.

Gloss In France, this lizard is strictly protected by
law.

In France, it is protected by law.

AC Complex Simple
RC Simplification
GR 0.84
Pair2 Praticien précoce et représentant éminent du

concept français de la haute gastronomie, il
est considéré comme le fondateur de ce style
grandiose, recherché à la fois par les cours
royales et les nouveaux riches de Paris.

Il est considéré comme l’un des pionniers,
sinon le fondateur, de la gastronomie
française.

Gloss As an early practitioner and leading exponent
of the French concept of haute gastronomie,
he is considered the founder of this grandiose
style, sought after by both the royal courts and
the newly rich of Paris.

He is considered one of the pioneers, if not
the founder, of French gastronomy.

AC Complex Complex
RC Simplification
GR 2.45
Pair3 Makassar ou Macassar est une ville

d’Indonésie et la capitale de la province de
Sulawesi du Sud.

Macassar ou Makassar est une ville
d’Indonésie, située sur l’île de Sulawesi (ou
Célèbes), en bordure du détroit du même
nom.

Gloss Makassar or Macassar is a city in Indonesia
and the capital of the province of South Su-
lawesi.

Macassar or Makassar is a city in Indone-
sia, on the island of Sulawesi (or Celebes),
bordering the strait of the same name.

AC Simple Complex
RC Complexification
GR -2.65
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C Detailed description of the Wikipedia-Vikidia Corpus (WIVICO) dataset

Table 6: Detailed description of WIVICO. We purposely use texts and not sentences because our dataset includes
intersentential examples (i.e., texts comprising more than one sentence).

WIVICO dataset Original texts Simpler texts
# texts 46,525
# tokens 1,730,277 1,321,139
# types 100,357 73,926
Type/token ratio 5.80 5.60
Average word length 5.27 5.04
Average sentence length 38.63 29.08
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Abstract
Numerous approaches for the implementation
of automated fact-checking pipelines have been
proposed and reviewed recently (Guo et al.,
2022). A key part in these pipelines is a claim
matching module that seeks to match new in-
coming claims with potentially existing, ver-
ified claims in a database of completed fact
checks. To that end, we propose a modifi-
cation of the two-stage deep learning-based
approach for claim matching which won the
CLEF CheckThat! 2022 Subtask 2A Challenge
(Shliselberg and Dori-Hacohen, 2022). With
our modification, we were able to reduce the er-
ror rate of the winning algorithm by more than
20%. This was accomplished by employing a
loss function that fuses information from not
only a single, but from multiple non-matching
(i.e. negative) examples into the training pro-
cess at each iteration.

1 Introduction

Fact-checking became an increasingly important
step in journalistic work in response to the prolifer-
ation of fake news online. Misinformation on the
internet spreads at a speed and scale that makes it
more and more difficult for human fact-checkers
to react in a timely manner. It is therefore a desir-
able goal to automate parts of the process. Claim
matching is one portion of this process, in which
an incoming claim is checked against a database of
human-verified claims. The automation of claim
matching has received a considerable amount of in-
terest in recent years (Shaar et al., 2022a,b; Kazemi
et al., 2021; Nakov et al., 2021).

For the CLEF CheckThat! 2022 Subtask 2A
Challenge, Shliselberg and Dori-Hacohen (2022)
proposed a two-step pipeline as the winning entry.
First, a deep pre-trained language model based on
BERT (Devlin et al., 2019) is fine-tuned to generate
a selection of candidates of relevant claims from
the database. Second, the candidates are re-ranked
by fine-tuning a generative language model.

The contribution of this paper is an expan-
sion of the winning method of Shliselberg and
Dori-Hacohen (2022) by (1) including additionally
mined negative examples into the training objec-
tive, (2) investigating a Ranked List Loss (RLL)
as an alternative cost function, and (3) expanding
the analysis of the proposed scheme by including
Mean Average Recall (MAR).

2 Methods

We begin by introducing the employed dataset and
the statistical benchmark used for the mining of
negative examples. Then, we present the different
training objectives for the two stages of the ap-
proach. Lastly, we discuss the evaluation metrics.

2.1 Data and Statistical Benchmark

For the dataset, we used the English portion (Sub-
task 2A) of the dataset provided for the CLEF
CheckThat! 2022 Challenge (Nakov et al., 2022)
based on verified claims from Snopes.com. The
dataset consists of 13,835 verified claims, denoted
with c for claim, and 1,400 input claims, denoted
with t for tweet. The input claims are divided into
999 tweets for training, 199 tweets for development
and 202 tweets for testing. For neural network train-
ing, the body of each fact-checked article is tok-
enized before it is fed into the respective networks.

For our statistical benchmark, we applied a stan-
dard BM251 ranking algorithm (Robertson and
Zaragoza, 2009). The preprocessing for this step
includes concatenating the title, subtitle and body
of the claim, transforming everything into lower-
case, followed by Porter stemming (Porter, 1980).
BM25 provides a ranked list of claims for each
input tweet. Each non-matching claim is defined as
a ‘negative’ and the matching claim is defined as
the ‘positive’. The five highest-ranking negatives
are mined for our experiments.

1BM is an abbreviation for best matching.
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2.2 Candidate Selection
As suggested by Shliselberg and Dori-Hacohen
(2022), we use Sentence-T5 (Ni et al., 2022) for the
initial candidate selection. It is part of the family
of sentence transformers (Reimers and Gurevych,
2019), i.e. deep neural language models based on
self-attention mechanisms (Vaswani et al., 2017). It
produces sentence embeddings projected on the Eu-
clidean unit circle, which makes the angle between
the embeddings a measure of contextual dissim-
ilarity. We use the Multiple Negatives Ranking
(MNR) Loss (Henderson et al., 2017), which mini-
mizes the distance between the input and positive
example and maximizes the distance to all other
examples in the batch. Using batches B ∈ D of
sets D = {(ti, c+i , c−i )} with a tweet ti, a positive
c+i and a negative claim c−i , the dot product scoring
Sθ(ti, ci) by the specific neural network θ, and a
fixed temperature τ , the loss function becomes

LMNR(B, θ) = − 1

|B|
∑

i∈B
log

exp
(
Sθ(ti, c

+
i )/τ

)

Qθ,i

with Qθ,i =
∑

j∈B exp(Sθ(ti, c
+
j )/τ)+ (1)

exp(Sθ(ti, c
−
j )/τ).

As we will see in Section 3, the minimization of
the MNR loss can lead to significant performance
improvements of the overall system when it is ex-
panded by mining not one but multiple negatives
for every paired example. This gives the model
potentially even more context, as the tweet is com-
pared to every claim in the batch. We used up to
five negatives that ranked highest in the BM25 run.
For sets D = {(ti, c+i , c−i,1, c−i,2, c−i,3, c−i,4, c−i,5)} the
expanded loss is defined by

LMNR(B, θ) = − 1

|B|
∑

i∈B
log

exp(Sθ(ti, c
+
i )/τ)∑

j∈B Mθ,i,j

with Mθ,i,j = exp(Sθ(ti, c
+
j )/τ)+ (2)

∑5
k=1 exp(Sθ(ti, c

−
j,k)/τ).

2.3 Generative Re-Ranking
For the second step, we, again, follow closely the
setup proposed by Shliselberg and Dori-Hacohen
(2022). The fine-tuned S-T5 network from the first
step is used to generate ranked lists of the five most
similar claims to each input tweet. The combina-
tion of the claim and each input tweet is then em-
ployed separately to fine-tune the generative deep
language model GPTNeo2 (Black et al., 2022). The

2GPTNeo contains on the order of 1.3 billion parameters.

generative model has the capacity to calculate the
conditional probability p(t|c) for tweet and claim
pairs, which, in turn, can be utilized to re-rank the
given list of five tweet/claim pairs provided by the
preceding stage. The tweets and claims therefore
have to be converted into prompts with beginning-
of-sentence< bos > and end-of-sentence< eos >
tokens: < bos > c < eos >< bos > t < eos >.

For the fine-tuning of GPTNeo, we considered a
number of loss functions, primarily motivated by
the loss types recommended in the commensurate
literature. We expanded on the list of losses consid-
ered by Shliselberg and Dori-Hacohen (2022) by
also including the standard ranked list loss (RLL)
into our analysis. The RLL (Nogueira dos Santos
et al., 2020) is defined by

LRLL(B, θ) =
∑

i∈B
max{0, λ− log pθ(ti|c+i )

+ log pθ(ti|c−i )}, (3)

in which the notation pθ denotes the dependence
of the probability estimate on the network parame-
ters θ. The hinge margin λ is a hyperparameter of
the training procedure. The also employed NL3U
loss (Nogueira dos Santos et al., 2020) is based
on the negative log-likelihood loss (Lesota et al.,
2021). It incorporates the unlikelihood probability3

of the negative claim:

LNL3U (B, θ) = (4)

−
∑

i∈B
log pθ(ti|c+i ) + log(1− pθ(ti|c−i )).

Shliselberg and Dori-Hacohen (2022) also intro-
duced the mixed objective

LMix = LMI1 + LMI2 + LNL3U , (5)

which utilizes a hinged prior mutual information
loss (LMI1) and a posterior-based hinged mutual
information loss (LMI2). The loss LMI1 maxi-
mizes mutual information but reverts back to the
maximum likelihood estimate above a threshold λ:

LMI1 =

{
KMI

θ if − log pθ(t|c)
pθ(t)

< λ

KMLE
θ otherwise

(6)

with

KMI
θ = ET,C [− log pθ(t|c) + log pθ(t)]

KMLE
θ = ET,C [− log pθ(t|c)]

3The unlikelihood probability is defined as one minus the
probability.
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To also model the posterior, the input order is
flipped and LMI2 is defined as:

LMI2 = EC,T [max(0, λ−
log pθ(c|t) + log pθ(c))] (7)

We utilize LRLL, LNL3U , LMix and a sum of both
mutual information losses, i.e.

LMutInf = LMI1 + LMI2 , (8)
as training objectives to fine-tune the generative
model.

2.4 Evaluation Metrics

The CheckThat! Challenge uses Mean Average Pre-
cision (MAP) for evaluation. In addition to MAP
scores, we also considered the Mean Average Re-
call (MAR) in our analysis. Average Recall at length
k is defined as

AR@k{R, g} =
k∑

i=1

1[R[i] == g] (9)

for a ranked list R with one gold label g, using 1
as an indicator function. MAR is the mean over all
ranked lists and label pairs denoted as Ω:

MAR@k{Ω} =
1

|Ω|
∑

R,g∈Ω
AR@k{R, g} (10)

We are using the standard definition of MAP@k
as the mean value over the average precision
AP@k{R, g} =

∑k
i=1 1[R[i] == g]1i . MAP and

MAR values are bounded between zero and one.
MAP@1 equals MAR@1 by definition. We there-
fore only report MAP@1 scores.

3 Experiments
In our experiments we generated five S-T5 models
through fine-tuning: One with an MNR loss with
one negative, one with an MNR loss with two neg-
atives, and so forth, up to one with an MNR loss
with five negatives. Each S-T5 model is then paired
with four GPTNeo models, one for each of the four
loss functions described in Section 2.3, to create a
total number of 20 systems. The ranked lists gener-
ated by the S-T5 models are used to fine-tune the
respectively paired GPTNeo models. All training
was performed on a server with two NVIDIA RTX
A6000 GPUs with 48 GB memory each. We report
MAP@1, MAP@5, and MAR@5 scores in all our
cases. All evaluations are performed on the test
set defined by the CheckThat! Challenge. Finally,
we compare top performing methods to the BM25
benchmark.

3.1 Candidate Selection

S-T5 is fine-tuned using a batch size of 3, the
AdamW optimizer with a constant learning rate
of 5e-6, an MNR loss temperature τ of 0.1 and a
maximum of 128 tokens for each input for a sin-
gle epoch. Results are presented in Table 1. The
respective highest values in each column are high-
lighted in bold face.

#Neg MAP@1 MAP@5 MAR@5
1 0.896 0.932 0.975
2 0.896 0.933 0.980
3 0.901 0.936 0.980
4 0.896 0.934 0.980
5 0.891 0.931 0.980

Table 1: Evaluation of the S-T5 MNR Fine-Tuning.

Both, MAP@1 and MAP@5, peak for a training
with three negatives and then both decline again
for a training with four and five negatives. The
improvement that a training with three negatives
affords over a training with one negative is on
the order of 0.5 percentage points in both cases.
This finding supports our hypothesis that training
with more negatives provides better context for the
model. Yet, training with too many negatives ap-
pears to put too much weight on the rejection of
negatives and too little weight on the support of
positives. The MAR@5 values increase slightly for
two negatives and then stay constant at 0.980.

3.2 Generative Re-Ranking

Fine-tuning the re-rankers for one epoch includes
a batch size of 1, a maximum of 256 input tokens
for padded prompts, a hinge margin λ = 2 and the
AdamW optimizer with a learning rate of 2e-5. Our
system with one-negative-training is essentially the
system proposed by Shliselberg and Dori-Hacohen
(2022). The MAP@5 score we obtained for the one-
negative/mixed case matches the result reported by
them closely. We attribute slight deviations to dif-
ferences in random initialization, differing batch
sizes due to computational limits and batch shuf-
fling. We omitted the MAR@5 results, since these
did not change and stayed constant at 0.980 for ev-
ery number of negatives above one. The MAR@5
results for one negative all came out to 0.975. The
best-performing loss for each base model in each
column is highlighted in bold. It is apparent that
the mixed approach performed best for all candi-
date selection models and that the RLL approach
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#Neg Loss MAP@1 MAP@5

1

Mixed 0.921 0.947
NL3U 0.911 0.941
MutInf 0.896 0.935
RLL 0.658 0.778

2

Mixed 0.936 0.958
NL3U 0.901 0.938
MutInf 0.891 0.933
RLL 0.757 0.850

3

Mixed 0.926 0.953
NL3U 0.921 0.949
MutInf 0.891 0.933
RLL 0.223 0.475

4

Mixed 0.926 0.953
NL3U 0.921 0.947
MutInf 0.886 0.931
RLL 0.871 0.925

5

Mixed 0.926 0.953
NL3U 0.916 0.945
MutInf 0.906 0.942
RLL 0.183 0.421

Table 2: Evaluations over the test set of the CLEF
CheckThat! 2022 Subtask 2A Challenge with GPTNeo
re-ranking for four training objectives.

performed the worst. The NL3U loss alone per-
forms significantly better than RLL and achieves
a peak performance in MAP@1 and MAP@5 for
three negatives. The mutual information loss con-
sistently performs a bit worse than NL3U alone
and achieves its best performance for five nega-
tives. The mixed loss consistently outperforms
other losses and peaks for two negatives with a
MAP@1 value of 0.936 and a MAP@5 value of
0.958. When compared to the MAP@5 value of
0.947 for the training with a single negative, it can
be seen that the error rate, when defined as one
minus MAP@5, is reduced by over 20% with the
proposed multiple negatives training. We attribute
the superior performance of the mixed loss training
to the fact that it incorporates different aspects of
text similarity, measuring mutual information on
the one side and contrasting it with information
about negative examples on the other side.

3.3 Discussion

We present the BM25 evaluation, the best-per-
forming candidate selection model and the best-
performing generative re-ranking model in Table 3.
The BM25 method already provided comparatively

Model MAP@1 MAP@5 MAR@5
BM25 0.797 0.852 0.936

S-T53N 0.901 0.936 0.980
GPTMix,2N 0.936 0.958 0.980

Table 3: Performance summary for experiments over
the test set from the CLEF CheckThat! 2022 Subtask
2A Challenge.

high scores with a MAP@5 value of 0.852 and a
MAR@5 value of 0.936. The best-performing S-
T5 network, fine-tuned with a three-negatives MNR
loss, outperforms the BM25 baseline by more than
eight percentage points with a MAP@5 of 0.936.
The MAP@1 value increases by over ten points and
the MAR@5 value by over four points. The fine-
tuned GPTNeo system based on a two-negatives
S-T5 model with a mixed objective yields the best
performance with a MAP@5 value of 0.958. It
outperforms the reference model with mixed loss
and one-negative-training by about one percentage
point and the best candidate selection model by
over two percentage points.

4 Conclusions and Future Work
The winning algorithm of the CLEF Check-
That! 2022 Challenge for claim matching (Subtask
2A) consists of a two step process: (1) candidate
selection and (2) generative re-ranking. Both steps
are achieved with fine-tuned deep neutral networks.
We generalized the loss function used in the fine-
tuning of the candidate selection network by in-
cluding not just one negative example but multiple
negative examples. Through experimentation with
various configurations and loss functions we were
able to create an overall system that improves the
MAP@1 and MAP@5 scores by over one percent-
age points each, leading to an effective reduction
in error rate of around 20%. Future work may
include an incorporation of other, more powerful
large language models (LLMs) in lieu of GPTNeo.
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Abstract

Social media have given a new impetus to nat-
ural language processing, especially for Ara-
bic, by orienting research towards varieties of
languages called dialects, which are less presti-
gious linguistically than Modern Standard Ara-
bic (MSA) but are becoming more and more
important as informal communication channels
through different platforms: emails, blogs, dis-
cussion forums and SMS, offering a fertile
research area. Part-of-speech (POS) tagging
holds significant importance in various natural
language processing applications, particularly
in languages with complex morphological char-
acteristics like Arabic. While a substantial part
of research has concentrated on POS tagging
for MSA, studies on dialects are scarce due to
limited linguistic resources. This paper aims
to showcase our efforts in advancing a mor-
phosyntactic tagger tailored for the Algerian
dialect. We accomplish this through a series
of experiments employing a pre-trained Arabic
transformer model, fine-tuned on various writ-
ing styles of the Algerian dialect commonly
encountered in social media and everyday com-
munication. Our proposed model outperforms
previous state-of-the-art models, achieving an
accuracy rate of 87% for Dz writing style and
83% for Arabizi writing style.

1 Introduction

Recognizing the nature of a word in a context (clas-
sification of words according to their behaviour in
language) is a non-trivial task in natural language
processing (NLP). Indeed, making a machine ca-
pable of knowing the linguistic category of a word
requires the implementation of sophisticated meth-
ods, in particular for ambiguous words, i.e. those
that may belong to several morphosyntactic cat-
egories. Such automatic tools are called Part of
Speech tagger.

POS tagging is a fundamental task for NLP, on
which complex processes such as information ex-
traction or machine translation, syntactic analysis,

etc., are often based. By definition, POS tagging
is a process that assigns a morpho-syntactic tag to
each word in a text specifying, in particular, gram-
matical category, gender, number, tense, and mode
(Nerabie et al., 2021).

Arabic language represents a real challenge in
terms of POS tagging, mainly due to its particular
morphological system, both rich and complex as a
consequence of two linguistic phenomena which
are inflection and derivation, which make the pro-
cess of recognizing the parts of speech a tedious
task (Habash and Rambow, 2005). Arabic is a lan-
guage that is spoken by a population of about 428
million people 1 and extends over a huge geograph-
ical area from the Arabian Gulf to the Atlantic,
spread over 22 countries. This geographical expan-
sion has contributed to the emergence of several
variants of the Arabic language called "aammiyya"
dialect (colloquial Arabic) as opposed to fusha (lit-
erary Arabic). Although these dialects share some
common characteristics, they differ on many lin-
guistic levels from standard Arabic (Katz and Diab,
2011).

According to (Habash, 2010), we can enumerate
30 variants of Arabic dialects. The interest in this
variant of the language, in despite of the difficulties
it presents, in particular the lack of orthographic
normalization and standardization, is due to its ex-
pansion in terms of use, especially in social media,
offering a research field with many challenges.

In this paper, we outline our approach for the
development of morphosyntactic POS tagging in
the context of one of the most prevalent dialects
found on social networks—the Algerian dialect.
We achieve this by:

• Assessing and exploring several models based
on the BERT architecture (AraBERT v0.2-
base, AraBERT v0.2-Twitter-base, Dziribert,

1World Population Review. Arab Countries 2020. Wash-
ington, DC. https://worldpopulationreview.com/countries
/arab-countries/. Accessed August 9, 2023
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MARBERT and m-BERT).

• Tackle different Algerian writing styles includ-
ing: Arabic letters (Dz), Latin characters (Ara-
bizi), and code-switching.

• Addressing the research question of the per-
formance achieved by models trained solely
on MSA when tested in various writing styles
of the Algerian dialect.

The paper is organized into six sections. Section
1 introduces the research problem, while Section 2
provides a comprehensive review of related works
in the field of Arabic dialect POS tagging. Our
contribution is detailed in Section 3, and Section
4 offers insights into the dataset employed across
various stages of experimentation. The experimen-
tal results are deliberated upon in Section 5, and,
in conclusion, Section 6 summarizes our findings
and outlines a vision for future research endeavors.

2 Related work

The Part of Speech tagging (POS) is a process that
consists in assigning to each recognized entity a set
of morphosyntactic features (Albared et al., 2011).
This process has a crucial impact on the perfor-
mance of several tools (Chunkers and Parsers, etc)
and applications (Machine translation, Information
retrieval, Text summarization, Sentiment analysis,
etc) in NLP. For the MSA, POS tagging has been
the subject of several works involving different
approaches: rule-based, stochastic, and machine
learning. However, for the Arabic dialect, research
is scarce, due mainly to two factors: the lack of
resources (corpus and tools: morphological analyz-
ers, tokenizers, etc.), and there is no orthographic
standards. The Dialectical Arabic (DA) POS tag-
ging techniques follow two principal approaches.
The first approach suggests using MSA resources
and a few DA resources to create a POS tagger (Sal-
loum and Habash, 2011) and the second intends to
start from scratch.

Boujelbane et al. (Boujelbane et al., 2014), Re-
trained an MSA tagger which is the Stanford POS
Tagger (Toutanvoa and Manning, 2000), using a
corpus derived from a translation of the MSA Tree-
bank into Tunisian Dialect, and adapt it to perform
the tagging on the Tunisian dialect. The POS tagger
set up achieved an accuracy of 78,5%.

Al-Sabbagh and Girju (Al-Sabbagh and Girju,
2012a), described a POS tagging based on

the Brill’s Transformation-Based Learning (Brill,
1994), for the Egyptian Dialect. For training and
testing, the authors have built a golden corpus that
contains 22,834 tweets, 423,691 tokens and 70,163
types. The tool obtained an F-measure score of
87.6%.

Baniata et al. (Baniata et al., 2018), pre-
sented a Bidirectional Long Short-Term Memory
(Bi-LSTM)—Conditional Random Fields (CRF)
segment-level Arabic Dialect POS tagger model
for the Levantine Arabic (spoken variety of widely
used in Jordan, Syria, Palestine and Lebanon) and
Maghrebi (Morocco, Algeria and Tunisia), which
will be integrated into the Multitask Neural Ma-
chine Translation (NMT) model. For the exper-
imental part, they used the dataset described in
(Darwish et al., 2018), which contains 350 tweets
for four major Arabic dialects. Their POS tagger
achieved an accuracy of 98% and 99% for the Lev-
antine and Maghrebi dialect respectively.

Darwish et al. (Darwish et al., 2018), proposed
a POS tagger for several Dialects (Egyptian, Lev-
antine, Gulf, and Maghrebi), based on CRF. The
authors have defined 03 features including clitic
n-grams, clitic metatypes, and stem templates. For
training and testing, a dataset covering all 04 di-
alects was built from 350 tweets for each dialect.
For the results, the authors proposed 03 learning set-
ups: the first one consists on treating each dialect
alone, the model obtained the following results:
92.9% for Egyptian, 87.9% for Levantine, 87.8%
for Gulf, and 88.3% for Maghrebi. In the second
one, the dialects joined, the model gave the follow-
ing results: 93.2% for Egyptian, 88.6% for Levan-
tine, 87.2% for Gulf, and 87.7% for Maghrebi. In
the third configuration, the dialects combined with
the MSA, the model gave the following results:
93.4% for the Egyptian, 88.6% for the Levantine,
87.4% for the Gulf, and 87.6% for the Maghrebi.

Alharbi et al. (Alharbi et al., 2018), designed
a Gulf Arabic (GA) POS taggers using two ap-
proaches: Support Vector Machine (SVM) classi-
fier and BI-LSTM. For the SVM classifier, they
defined 03 set features: Clitic features, Probabilis-
tic features and Binary features. For the second
Bi-LSTM classifier, the authors used Java Neural
Network (JNN) toolkit for language modelling and
POS tagging (Ling et al., 2015). The input of the
network is a sequence of features: clitic, meta type,
and/or stem template. For the experimental part,
they used a gold annotated dataset which is built us-
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ing gold segmented GA tweets taken from (Samih
et al., 2017). Dataset consists of 343 Tweets with
6,844 tokens and 10,255 clitics. For the tag sets,
they adopted the same one proposed by (Darwish
et al., 2017) which composed of 18 tag sets. In
addition, they added 04 others new tags for twitter
specific data including: MENTION, URL, HASH,
and EMOT. The two models SVM and Bi-LSTM
obtained respectively an accuracy score of 85.96%
and 91.2%.

Duh and Kirchhoff (Duh and Kirchhoff, 2005),
built a Levantine and Egyptian POS tagger. They
used the Buckwalter Morphological Analyzer de-
signed for MSA, the LDC MSA Treebank corpus
and some dialectal resources (the CallHome Egyp-
tian Colloquial Arabic corpus ECA, the LDC Lev-
antine Arabic corpus) in combination with unsu-
pervised learning algorithms. The author’s contri-
bution consisted of bootstrap the Hidden Markov
Models (HMM) tagger using POS information
from the morphological analyzer. The developed
tool obtained an accuracy of 70.88%.

Darwish et al. (Darwish et al., 2020), built
a multi-dialectal POS tagger (covering Egyptian,
Levantine, Gulf, and Maghrebi dialects) based
on two approaches: CRF classifier combined
with linguistic features (stem templates and clitic
metatypes), word clusters from a large unlabeled
tweet corpus, and automatic dialect identifica-
tion; while the second combines word-based and
character-based representations in a deep neural
network with stacked layers of convolutional and
recurrent networks with a CRF output layer. They
achieve a combined accuracy of 92.4% across all
dialects, with per dialect results ranging between
90.2% and 95.4%.

Hamdi et al. (Hamdi et al., 2015), developed
a POS tagger for the Tunisian dialect. Their idea
was to convert Tunisian into an approximate form
of MSA, called pseudo MSA, and use an existing
MSA POS tagger. The output produced is then
projected back on the Tunisian text. The system op-
erates through a three steps process: firstly, conver-
sion is performed using MAGEAD, a morphologi-
cal analyzer/generator; secondly, disambiguation
is carried out; and finally, POS tagging is accom-
plished using HMM. For the evaluation, they used a
transcribed and annotated corpus of 805 sentences
containing 10,746 tokens and 2,455 types. The
system achieved an accuracy of 89%.

AlKhwiter and Al-Twairesh (AlKhwiter and Al-

Twairesh, 2021), proposed two supervised POS
taggers for both MSA and the Gulf Dialect that are
developed based on two approaches including CRF
and Bi-LSTM. For the experimentation, the authors
built three annotated datasets named Mixed, MSA,
and GLF containing respectively 3, 1000, and 1000
Arabic tweets. As a result for the Gulf Dialect, the
CRF and Bi-LSTM achieved an accuracy of 90%
and 95% respectively.

Inoue et al. (Inoue et al., 2022), proposed mor-
phosyntactic tagging model for three Arabic di-
alects: Gulf, Egyptian and Levantine, based on
Pre-trained Language Model (CAMeLBERT-Mix)
with two variants Factored and Unfactored Tags.
The authors report that they obtained an accuracy
of 94.6% for the Egyptian, 97.9% for Gulf, and
94.0% for Levantine, using respectively, ARZTB,
Gumar Corpus, and Curras Corpus.

Pasha et al. (Pasha et al., 2014), presented
MADAMIRA, which is a combined version of pre-
viously developed tools: MADA (Habash et al.,
2009) and AMIRA (Diab, 2009), based on SVM.
It provides various functions, such as tokeniza-
tion, POS tagging and phrase chunking. The
tool was trained on the Penn Arabic Treebank
corpus for MSA and the Egyptian Arabic Tree-
banks for the Egyptian dialect. The performance of
MADAMIRA was evaluated through a blind test
dataset, and achieved an accuracy rate of 92.4% for
the Egyptian Dialect.

3 Contribution

As previously stated, POS tagging is a preprocess-
ing phase and an essential block in numerous NLP
applications that require the syntactic category for
each text token. The related work section demon-
strates that the Arabic language has less work than
the other language owing to its highly inflectional
structure. Furthermore, the majority of Arabic
works in POS and cutting-edge POS taggers are
dedicated to the MSA variant, which is the for-
mal language used in journalism and government
administrations. DA is the more casual Arabic ver-
sion used in everyday life, got less attention by
researchers due to its great complexity when com-
pared to the MSA.

With the passage of time, DA grew more fre-
quently utilized, particularly in social media, and
MSA POS taggers struggled to acquire good results
when applying for DA texts (Pasha et al., 2014).
Our contribution focused on developing a dialec-
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Table 1: Arabic Dialect Annotated (POS) Corpus.

Corpus Dialect Token Annotation
YADAC (Al-Sabbagh and Girju, 2012b) EGY 6 M FST and Manually
ARZATB (Fashwan and Alansary, 2022) EGY 475 K CALIMA and Manually

NArabizi (Seddah et al., 2020) ALG 19770 Manually
LATB (Maamouri et al., 2006) LEV 26 K /
Gumar (Khalifa et al., 2016) GULF 112 M MADAMIRA
Curras (Jarrar et al., 2014) PAL 43 K DIWAN and Manually

Baladi (Al-Haff et al., 2022) LEB 9.6 K Manually (AnnoSheet)
MOR (Al-Shargi et al., 2016) MOR 64170 DIWAN
YEMS (Al-Shargi et al., 2016) YEM 32445 DIWAN

tal POS tagger for one of the more broadly used
Arabic dialects in social media, the Algerian di-
alect, using an Arabic pretrained model based on
the BERT architecture and fine-tuned on different
writing styles of the Algerian dialect found in so-
cial media and used in everyday life. Furthermore,
this study will investigate whether a POS tagger
trained on the Algerian dialect may outperform an
MSA POS tagger.

3.1 Transformers and BERT Models

With the rise of the RNN model and its variations
problems, recently developed techniques were pro-
posed to overcome those limitations including the
Transformer-based architecture built based on the
attention mechanism (Vaswani et al., 2017). The
Transformer-based model is known for their high
performance in terms of learning contextualized
text representation. BERT (stands for Bidirectional
Encoder Representations from Transformers) is
one of the most popular NLP models that utilizes
a transformer at its core and which achieved state
of the art performance on many NLP tasks includ-
ing Classification, Question Answering, and NER
Tagging when it was first introduced. Contextu-
alized text or word representation means that the
embeddings of a word is not static. That is, they
depend on the context of words around it. So in
a sentence like ’ èA �®Ê�K ¼ðX , 	àA ���
 	K hðP AK
ñ 	k’ ’my
brother go forward, you will find it’, and the other
sentence ’ 	àA ���
 	K ¼@P l�� ¼Y	J«’ ’you are right!’,

the two embeddings of the word ’ 	àA ���
 	K’ will be
different, which in the first means “forward” and
in the second sentence means ‘right’. While direc-
tional models in the past like LSTM read the text
input sequentially (left-to-right or right-to-left), the
Transformer actually reads the entire sequence of

words at once and thus is considered bidirectional.
The developed models for English such as BERT,

DistilBERT (Sanh et al., 2019), BART (Lewis et al.,
2020), were adopted and used in Arabic NLP show-
ing remarkable performance. In this study, we
will evaluate the performance of those Arabic pre-
trained models and take the one that achieves high
performance. For instance, the AraBERT (Antoun
et al., 2020) a pre-trained model on large MSA and
dialects data from Wikipedia and Twitter, MAR-
BERT trained on Maghrebi dialectes data represent-
ing coutries such as Algeria, Morocco, and Tunisia
(Abdul-Mageed et al., 2021), DziriBERT trained
on Algerian dialect (Abdaoui et al., 2022), mBERT
(Pires et al., 2019) trained on the top 104 languages
including Arabic and its dialects with the largest
Wikipedia data. Table 2 presents a comparison be-
tween those Arabic pre-trained models in terms of
size, dataset and vocab.

3.2 Fine-tuning Models

As mentioned previously, BERT is a big neural net-
work architecture, with a huge number of parame-
ters, that can range from 100 million to over 300
million. Given this complexity, training a BERT
model from scratch, particularly on a small dataset,
predisposes it to overfitting due to the dispropor-
tionate ratio of parameters to data points. Conse-
quently, it is more effective to utilize a pre-trained
BERT model, which has been subjected to rigor-
ous training on a voluminous dataset, as an initial
framework. Then further train the model on our
relatively smaller dataset and this process is known
as model fine-tuning. This mechanism can be done
in three ways, the first is to train the entire architec-
ture of the pre-trained model, the second consists of
training some layers while freezing others, and the
third one freezes the entire architecture and trains
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Table 2: Used Arabic pre-trained models.

Model Size
(params)

DataSet
(nwords)

Vocab
size

AraBERT v0.2-base 136M 8.6 Billion 64K

AraBERT v0.2-Twitter-base 136M
8.6 Billion + 60 Million Multi-
Dialect Tweets

/

Dziribert 124M 1 million tweets 50k
MARBERT 163M 6.2 Billion 100k
mBERT 110M 1.5 Billion 106k

Figure 1: Model fine-tuning architecture.

just the classification layer. In our study, we train
the entire pre-trained model on our dataset and feed
the output to a softmax layer. In this case, the error
is back-propagated through the entire architecture
and the pre-trained weights of the model are up-
dated based on the new dataset. Figure 1 describes
the overall architecture of fine-tuning a bert model
on POS tasks.

As shown in figure 1, our model is composed of
an Arabic pre-trained BERT model and a simple
linear layer. We can think of the BERT as an em-
bedding layer and all we do is add a linear layer on
top of these embeddings to predict the tag for each
token in the input sequence. The yellow squares
were the embeddings provided by the pretrained
BERT model. All inputs are passed to BERT at
the same time. The arrows between the BERT em-
beddings indicate how BERT does not calculate
embeddings for each tokens individually, but the
embeddings are actually based on the other tokens
within the sequence which give us at the end a con-
textualized embedding. Finally, we fed the output
of the pretrained BERT to the Linear layer of size

(embedding_dim x n_outputs) and added a soft-
max layer on top to predict the POS Tagging like
predicting noun, verb, or adjective.

4 Dataset

The dataset employed in this study, as delineated
in (Touileb and Barnes, 2021), originates from the
NArabizi treebank detailed by (Seddah et al., 2020).
It encompasses a corpus of 1,300 Arabizi sentences
sourced from an Algerian newspaper’s web forum
and an additional 200 sentences derived from song
lyrics manually collated from various online plat-
forms. Each sentence within this dataset is anno-
tated across five distinct layers: tokenization, mor-
phological analysis, code-switching identification,
syntactic structure, and translation into French.
This dataset was further augmented to include two
additional annotations for each token in the Ara-
bizi sentences. The first enhancement involves the
transliteration of each Arabizi token into the Ara-
bic script, with the resultant dataset designated as
’DZ’. The second augmentation entails the translit-
eration of each Arabizi token into a code-switched
script—either Arabic or Latin—depending on the
token’s origin, thus forming the code-switched
dataset. As (Touileb and Barnes, 2021) assert, these
annotations were meticulously conducted by bilin-
gual native speakers of Algerian Arabic and French,
adhering to standardized guidelines. Table 4, ex-
tracted from dataset’ paper, exemplifies these stylis-
tic variations within the dataset.
In the preceding sections, we outlined the focus of
this study, which centers on evaluating the perfor-
mance efficacy of a POS tagger specifically trained
on the Algerian dialect. This investigation aims
to ascertain whether such a dialect-specific POS
tagger can surpass the performance of a MSA POS
tagger. To facilitate a comprehensive and objective
comparison, an MSA dataset, specifically curated
for POS tagging, will be employed. For that, the
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MSA dataset used is available in UD 2 (Zeman
et al., 2020) and also has the same labels as the
NArabizi dataset just with difference in terms of
number of sentences and the average length. For
the NArabizi, we have 19,770 tokens, 1,276 sen-
tences with an average of 16.1 tokens. In MSA,
we found 262,803 tokens, 8,664 sentences with
an average of 42.3 tokens. Table 3 describe the
distribution of POS tags in both datasets.

Table 3: Distribution of POS tags in both datasets in
terms of numbers.

Category NArabizi UD (MSA)
NOUN 1981 10588
VERB 1819 3805
ADJ 624 4968
PROPN 552 1052
PRON 263 64
ADV 260 134
ADP 157 156
INTJ 120 5
DET 87 76
SCONJ 56 6
PART 36 36
PUNCT 36 18
CCONJ 32 95
NUM 9 994

5 Experiments and Evaluation

This section presents the experimental setup used,
the experiments carried out as part of our research
with a comparison between our best model and
previous works.

5.1 Experimental setup
For the performance measures, the models are eval-
uated by calculating the precision, recall, Accuracy
and F1-score of their output on the test dataset.
Precision and recall are often used metrics to pro-
vide more accurate outcomes as well as to provide
more information to the expert about the model’s
behavior, particularly in multi-class classification.
To accelerate the training and testing phase, all of
them were carried out using the Google Colab plat-
form with a GPU Tesla P100-PCIE-16GB and the
Hugging Face Transformers library (Wolf et al.,
2020), was used in all our experiments. Using the

2Universal dependencies Corpus: https://lindat.mff.
cuni.cz/repository/xmlui/handle/11234/1-3226.

test dataset, we fine-tuned the hyper-parameter to
find the optimal configuration for each pre-trained
model in order to achieve the best results. The
hyper-parameter settings for each model are listed
in table 5.

5.2 Results and discussion

This study comprises two experimental series, the
first series of experiments looks at the performance
of each Arabic pre-trained model indicated above
on the Algerian dataset. The second trial series in-
vestigates how much performance can be obtained
by applying MSA-specific models to adapt to Al-
gerian dialect.

5.2.1 Experimental series 1
We ran three separate trials in this experimental
series to assess the performance of each model
on the dataset. The experiments are as follows:
first, focus on the Dz writing style, which only
uses Arabic letters; second, on the Arabizi style,
which utilizes Latin characters; and third, on the
code-switched style, which combines Latin and
Arabic characters. Table 6 provides the results for
each model on the three writing styles in terms
of accuracy and F1 score. Finally, we compare
our best-obtained results to previously published
research in table 7.

The findings shown in table 6 demonstrated that
the models performed well on the three writing
styles of the Algerian dialect. The AraBERT twit-
ter model obtained the highest results for the first
style of writing that employs only Arabic words
(Dz), with an F1 score of 84.6%, followed by the
AraBERT base and DziriBERT models. This ac-
complishment is due to the variety of text sources
and the volume of MSA and dialectal data encoun-
tered in the pre-training phase, which allows the
model to represent the majority of Arabic words
while avoiding out-of-vocabulary words. In the
Arabizi writing style, the DziriBERT model exhib-
ited superior performance, attaining the highest F1-
score of 79.5%. Following closely behind was the
mBERT model, which was trained across multiple
languages, including French, predominantly used
by the Algerian community especially in the Ara-
bizi writing style. This multilingual training con-
tributed to its commendable results. Even though
DziriBERT’s vocabulary is limited and it has seen
less text in the pre-training phase compared to the
other models, this demonstrates that pre-training
a model for one dialect on a small training set
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Table 4: Examples of the writing styles exist in the dataset.

Arabizi ycombati la misere li las9at fina welat kiste
Arabic transliteration (Dz) �I��
» �HBð A 	JJ
 	̄ �I�®�Ë ú
Í P@

	Q�
Ó B ù
 £AJ.ÓñºK

Code-switched transliteration kyste �HBð A 	JJ
 	̄ �I�®�Ë ú
Í la misère ù
 £AJ.ÓñºK


English translation He fights the misery that sticks to us and which has become a cyst

Table 5: Hyper-parameters values for each used model.

Models Epochs learning rate warmup steps seed
AraBERT v0.2-base 20 5e-5 42 42
AraBERT v0.2-Twitter-base 20 5e-5 42 42
Dziribert 15 5e-5 0 42
MARBERT 15 3e-5 42 42
mBERT 15 5e-5 42 666

Table 6: Performance results on Algerian dataset for the three writing styles.

Dz Arabizi Code-switching
Model Accuracy F1 score Accuracy F1 score Accuracy F1 score

AraBERT base v0.2 0.871 0.845 0.801 0.764 0.893 0.873
AraBERT v02-twitter 0.867 0.846 0.795 0.752 0.892 0.869

MARBERT 0.861 0.834 0.795 0.757 0.892 0.864
DziriBERT 0.866 0.840 0.831 0.795 0.895 0.875

mBERT 0.841 0.812 0.807 0.773 0.888 0.863

may provide better results than pre-training a multi-
dialectal model on considerably larger data. In con-
trast to MARBERT, which underwent training on a
substantially larger corpus encompassing diverse
Arabic dialects, DziriBERT exhibited consistent su-
periority in performance. In the final phase of eval-
uating writing styles (Code-switching), DziriBERT
once again demonstrated its excellence, achieved
an impressive F1 score of 87.5%. This exceptional
performance is attributed to DziriBERT’s training
on a relatively modest yet substantial corpus of
Algerian text, comprising both Arabic and Latin
characters.
As seen in Table 7, our models performed the best
in terms of accuracy on both Dz and Arabizi writ-
ing styles. In this comparison, we compared our
models’ results to those of (Touileb and Barnes,
2021), who fine-tuned the multilingual BERT on
their own data, (Seddah et al., 2020), who used
a feature-based alVWTagger, and (Muller et al.,
2020), who use mBERT and the StanfordNLP tag-
ger.

5.2.2 Experimental series 2
The experiments are the same as in the previous
series, except this time we train all the models on
the MSA dataset and test them on the Algerian
dataset with the three writing styles. Table 8 shows
the accuracy and F1 score results for each model
on the three writing styles.

Table 8 demonstrated that the models performed
poorly on the three writing styles of the Algerian
dialect as compared to the results obtained when
the models were trained on the Algerian dataset.
With 43%, 20%, and 49.1% F1 scores in Dz, Ara-
bizi, and code-switched, respectively, DziriBERT
and MARBERT outperformed the other models
in the three writing styles. We may support this
with the pre-training corpus for both models, which
are trained only on Arabic dialects for MARBERT
and Algerian dialects for DziriBERT. Furthermore,
as compared to the Arabizi style, both models be-
haved well in the Dz and code-switched styles.

6 Conclusion

In this study, we assessed POS tagging for the Al-
gerian dialect using transformer-based pre-trained
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Table 7: Comparison of our best model with previous works in terms of accuracy.

Model Dz Arabizi
Touileb et al. (Touileb and Barnes, 2021) 82.5 76.3

Seddah et al. (Seddah et al., 2020) 80.4 -
Muller et al. (Muller et al., 2020) 81.6 -

Our model 0.871 0.831

Table 8: Performance results on Algerian test set with the use of MSA dataset as a training set.

Dz Arabizi Code-switching
Model Accuracy F1 score Accuracy F1 score Accuracy F1 score

AraBERT base v0.2 0.443 0.409 0.199 0.101 0.515 0.462
AraBERT v02-twitter 0.444 0.410 0.171 0.107 0.521 0.471

MARBERT 0.450 0.417 0.226 0.200 0.540 0.487
DziriBERT 0.462 0.430 0.223 0.196 0.538 0.491

mBERT 0.437 0.408 0.181 0.152 0.504 0.464

models. Our research was organized to evaluate
these models’ performance across diverse writing
styles of the Algerian dialect, with the primary
objective of ascertaining how effectively models
trained on MSA text can deal with the Arabic
dialects. As a results, DziriBERT consistently
achieved the highest F1 scores across all the writ-
ing styles, showcasing its adaptability and robust-
ness in handling these variations of the Algerian
dialect. Our model outperformed previous works
in accuracy for Dz and Arabizi styles. Moreover,
when models trained on MSA were tested on Al-
gerian data, performance dipped, but DziriBERT
and MARBERT maintained strong results, espe-
cially in Dz and code-switched styles due to the
amount of Algerian dialect data seen during the
pre-training phase. Overall, this highlights the
importance of tailoring models to dialects due to
significant differences. DziriBERT excelled, even
with a small training corpus, offering promise for
dialect-specific language tasks. Future research
will explore POS tagging’s impact in other tasks
like named entity recognition, machine translation,
and segmentation.
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Abstract

In the present article, five neural networks mod-
els for prediction of the number of elliptical
nodes in Ancient Greek sentences are com-
pared. The models are trained on dependency
treebank data, where elliptical nodes are intro-
duced if and only if they govern nodes that
would otherwise become orphans. As exact
word forms of elliptical nodes cannot often be
identified (and therefore be annotated) in An-
cient Greek, the task is modeled as a multiclass
classification one, where each sentence is asso-
ciated with zero, one, two, or more than two el-
liptical nodes. The study shows that pretrained
BERT token embeddings allow achievement of
the best performance. A model, which is the
first of its kind, is made available for further
research.

1 Introduction

In linguistics, “ellipsis” can be broadly defined as
the phenomenon whereby a sentence lacks one or
more constituents that are left implied, but can be
inferred from the linguistic context.

Depending on the language analyzed and the
theoretical framework, different descriptions and
definitions of ellipsis have been proposed in the
theoretical linguistics literature (see, for example,
Van Craenenbroeck and Temmerman, 2019 for a
general overview).

Ellipsis in Ancient Greek has often been asso-
ciated with, or treated as, a stylistic device in the
older literature (see, for example, Kühner et al.,
1965, pp. 558–571, who provide a long list of ex-
amples, and Schwyzer, 1971, pp. 707–710). In the
more recent literature, however, the phenomenon
has been investigated in word order studies. Gaeta
and Luraghi (2001), for example, distinguish three
different types of ellipsis: gapping, split coordina-
tion, and coordination reduction. Gapping occurs
when there are at least two contrasted constituents:

(1) ὥσπερ ᾿Εμπεδοκλῆς φησὶi φιλίαν, ἄλλος
δέ τις Øi πῦρ, ὁ δὲ Øi ὕδωρ ἢ ἀέρα
‘as Empedocles holds of Love, another
thinker of fire, and another of water or air’1

(Arist. Metaph. 996a 8)

In Example (1), the contrasted constituents are,
on the one hand, “᾿Εμπεδοκλῆς,” “ἄλλος (δέ) τις,”
and “ὁ (δὲ),” and, on the other, “φιλίαν,” “πῦρ,” and
“ὕδωρ ἢ ἀέρα,” the elliptical constituent being the
verb “φησὶ.” This sentence is an example of right-
ward gapping, because the elliptical verbs refer
back to “φησὶ.” This is not the only type of gapping
in Ancient Greek, in that an elliptical constituent
could also refer to a following constituent (leftward
gapping).

Examples of split coordination and coordination
reduction are given by Examples (2) and (3) , re-
spectively:

(2) ἕπεσθαιi δέ οἱz τῶν μαχίμων μὲν οὐδένα
ἀνδρῶν, καπήλους δὲ καὶ χειρώνακτας καὶ
ἀγοραίους ἀνθρώπους Øiz

‘and none of the warriors would go with
him, but only merchants and craftsmen and
traders’ (Hdt. 2.141.4)

(3) ἱστίαi μὲν στείλαντο, θέσαν δ᾿ Øi ἐν νηῒ
μελαίνῃ
‘they furled the sail, and stowed it in the
black ship’ (Hom. Il. 1.433)

In Example (2), the verb and its second argument
“οἱ” are omitted, while in Example (3) only the
object is.2 Ellipsis of direct object (and some other
second arguments)3 often occurs also in complex

1Translations in the article derive from the Perseus Digital
Library at http://www.perseus.tufts.edu/hopper/.

2As Ancient Greek has a rather free, information structure-
based word order, indication of the position of the ellipsis in
the examples is to be considered approximate.

3I leave aside the question of the relationship between
ellipsis and verb valency in Ancient Greek, which has not yet
been investigated satisfactorily. Indeed, in some examples,
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sentences, as in Example (4) (Luraghi, 2003, p.
170) :

(4) ὁ δὲ ἐμπιμπλὰς ἁπάντωνi τὴν γνώμην,
ἀπέπεμπε Øi

‘having satisfied the expectation of all, he
dismissed them’ (Xen. Anab. 1.7.8)

The variety of ellipsis types, of which Example (1)–
(4) just offer a meager glimpse, is clearly dependent
on information structure, which has been proved
to determine the high configurational complexity
of Ancient Greek word order (Celano, 2013; Dick,
1995). As can be expected, therefore, it is not
only challenging to describe and explain ellipsis in
Ancient Greek, but also to annotate it.

In the following sections, I present five models
built to predict the number of elliptical nodes in An-
cient Greek sentences. More precisely, an overview
of related work is given in Section 2. Section 3 pro-
vides details on the data used for the present study,
while Section 4 describes ellipsis annotation. Five
models to predict ellipsis are compared in Section 5.
A few concluding remarks are contained in Section
6.

2 Related Work

Most of the previous ellipsis-related work con-
ducted in computational linguistics/NLP has so far
focused on verb phrase ellipsis (VPE) in English.4

Hardt (1997) describes a rule-based system to
resolve ellipsis in 644 examples from the Penn
Treebank and, more recently, Hardt (2023) tests the
ability of a number of Large Language Models to
understand ellipsis. Nielsen (2004) tests a variety
of machine learning algorithms for VPE detection
using the British National Corpus and the Penn
Treebank. Bos and Spenader (2011) provide an
account for the creation of a new VPE corpus, by
detailing the annotation process of the 25 sections
of the Wall Street Journal contained in the Penn
Treebank. Bos and Spenader’s (2011) corpus has
also been used by Zhang et al. (2019), which seems
to be the first neural networks-based study on VPE.

In the above-mentioned literature, VPE process-
ing for English is divided into two main related
tasks: (i) VPE detection and (ii) VPE resolution.

one might posit one-argument verbs instead of two-argument
verbs with ellipsis of an object.

4Noun ellipsis detection, which is less relevant for the
present study, has recently been investigated by Khullar
(2020).

Codepoint F RF
Greek Coronis (U+1FBD) 7,224 0.16

Combining Comma Above (U+0313) 28,581 0.63

Apostrophe (U+0027) 11 0.00

Right Single Quotation Mark (U+2019) 4,481 0.10

Modifier Letter Apostrophe (U+02BC) 5,269 0.12

45,566 1

Table 1: Unicode characters used to encode the apostrophe
in the original treebank data with their (relative) frequencies.

VPE detection is modeled as a binary classifi-
cation task outputting whether or not auxiliaries,
such as “do,” “be,” or “have,” are used as triggers,
i.e., they replace a preceding VP. On the other hand,
VPE resolution aims to identify the antecedent a
given trigger refers to: more precisely, the task in-
volves identification of candidate antecedents, over
each of which a binary classification task is per-
formed (Zhang et al., 2019).

As will be shown in the following sections, the
task at hand to predict ellipsis in Ancient Greek
differs from the above-mentioned studies because
it only concerns detection of the number of ellip-
tical nodes in a sentence, without identification of
its word form or resolution. This task indeed de-
pends on the nature of the Ancient Greek language,
where, typically, there is no trigger constituent for
an elliptical node, and its exact form and position
are often unclear.

3 The Data

There exist two major related data sets contain-
ing morphosyntactic annotations of Ancient Greek
texts, which also include annotation for ellipsis:
the Ancient Greek Dependency Treebank5 and the
Dependency Treebanks of Ancient Greek Prose
(Gorman, 2020).6 7

The two treebanks, which have been annotated
using the same annotation scheme, have been
merged together (for convenience, I henceforth
refer to this data set as “Ancient Greek Depen-
dency Treebank”): the data set comprises 187 files,

5https://github.com/PerseusDL/treebank_data/
releases/tag/v2.1_IGDS.

6I downloaded the data from the main branch of https://
github.com/vgorman1/Greek-Dependency-Trees, which
contains more recent data than the released one at https:
//zenodo.org/record/3596076#.XlZ7CxP7Su4.

7I limited the study to the above-mentioned data sets.
There exist, however, a few others: in particular, Pedalion,
which is available in a beta version, is worthy of note (Keers-
maekers et al., 2019).
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Model Class Weights Accuracy Precision Recall F1
M w M w M w

FeedforwardBaseline

0.77 0.42 0.70 0.27 0.77 0.27 0.71

✓ 0.67*** 0.33 0.70 0.34 0.67 0.33 0.68

FeedforwardDBBE−BERT

0.85*** 0.64 0.84 0.50 0.85 0.55 0.84
✓ 0.80*** 0.58 0.81 0.53 0.80 0.52 0.80

TransformerDBBE−BERT

0.85*** 0.61 0.83 0.50 0.85 0.54 0.84
✓ 0.79*** 0.54 0.81 0.53 0.79 0.51 0.79

TransformerWordPiece35000

0.78** 0.44 0.71 0.28 0.78 0.29 0.71

✓ 0.54*** 0.31 0.69 0.39 0.54 0.26 0.59

LSTMDBBE−BERT

0.85*** 0.61 0.83 0.49 0.85 0.53 0.83

✓ 0.81*** 0.57 0.81 0.53 0.81 0.53 0.81

Table 2: Model metrics calculated on the test set (M = macro, w = weighted). Statistical differences from
FeedforwardBaseline are calculated using Stuart-Maxwell tests and reported in the accuracy column (p < 0.05 (*), p
< 0.01 (**), and p < 0.001 (***)). The highest values are indicated in bold.

amounting to 54,925 sentences and 1,063,984 to-
kens.8 In order to facilitate further processing, the
data set has been normalized with respect to (i)
Unicode form and characters and (ii) tokenization
scheme.

The texts have been NFC normalized, and there
has been an attempt to make the encoding of the
apostrophe uniform. There are at least five different
Unicode characters with indistinguishable glyphs
that are interchangeably used in the treebank texts
(see Table 1): they have all been converted into
Modifier Letter Apostrophe (U+02BC).

There has also been an attempt to normalize the
data with respect to the tokenization scheme: in-
deed, while most Ancient Greek graphic words co-
incide with morphosyntactic words (and therefore
with the tokens found in the Ancient Greek Depen-
dency Treebank), there are two main cases where
this does not hold true: (i) (negative) conjunctions
and (ii) words contracted by crasis.

Conjunctions include examples such as “οὐδὲ”
(“and/but not”), which is split into “οὐ” (“not”)
and “δὲ” (“and/but”): there are 12 such conjunc-
tions9 and, in the final data set, they have all been
segmented.

The words contracted by crasis are words that
are univerbated for phonological reasons: an ex-
ample is “κἀγὼ,” which consists of the word “καὶ”
(“and”) and “ἐγὼ” (“I”). In the original treebank

8The data set is made available at https:
//git.informatik.uni-leipzig.de/celano/ellipsis_
Ancient_Greek.

9The full list is available at https://git.informatik.
uni-leipzig.de/celano/ancientgreeknlp/-/blob/
master/tokenize/texts/to-tokenize.xml.

data, about half of all crases are split: it has been
found heuristically that 1,371 cases of crasis are
split, while 1,110 are not.10 Since identification,
segmentation, and morphosyntactic analysis of
crases is challenging, they have not been modified
in the final data set. The data and the best model
(Feedforward-DBBE-BERT) are made available
online11 for further research.

4 Ellipsis annotation

There are two main challenges with reference to
ellipsis annotation in treebanks: (i) identification
of ellipsis and (ii) its formal representation.

In Ancient Greek, ellipsis is typically not sig-
naled by a trigger such as auxiliaries in English.
On the contrary, its presence can be inferred from
linguistic context, as the following example shows:

(5) κρατουμένων μὲν γὰρ ἐπίστασθε ὅτι
πάντα ἀλλότρια
‘for when men are conquered, you are
aware that all their possessions become the
property of others’ (Xen. Anab. 3.2.28)

In Example (5), the object clause can be properly
annotated only by positing existence of an elliptical
verb connecting “πάντα” and “ἀλλότρια,” as Fig-
ure 1 shows. Indeed, there is only one annotation
rule for ellipsis annotation in the Ancient Greek
Dependency Treebank: an elliptical node is recog-

10According to this calculation, crases would amount to
about 0.23% of all treebank tokens.

11https://git.informatik.uni-leipzig.de/celano/
ellipsis_Ancient_Greek.
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nized if and only if it is necessary to build a correct
syntactic tree, i.e., the posited elliptical node has
syntactic dependents.

ἐπίστασθε ὅτι πάντα ἀλλότρια Ø
you know that all of others become

AuxC

OBJ

PNOM

SUBJ

Figure 1: (Partial) linguistic tree for Xen. Anab. 3.2.28.

If an elliptical node, as in Example (5), meets
this condition, a new token is added at the end
of the relevant sentence: such formalization has
the advantage of allowing for the elliptical node to
function as any other node, and therefore receive
annotation for its head and its syntactic function.
A disadvantage of this annotation is however that
the number of original sentence tokens changes un-
predictably, and therefore comparison of different
annotations, as well as further machine learning
processing, presents an added layer of complex-
ity.12

In Example (5), the elliptical verb is likely to be
“γίγνομαι,” to be added after “ἀλλότρια”: however,
both form and position of an elliptical constituent
are often ambiguous in practice. For this reason,
ellipsis representation has been normalized in the
data set, so that its form always corresponds, con-
ventionally, to a number in squared brackets (e.g.,
[0])13, and its position is always at the end of a
sentence, after any other non-elliptical node.

5 Experiment

Prediction of the number of elliptical nodes in An-
cient Greek sentences has been modeled as a mul-
ticlass classification task, with 4 class labels for
(i) none, (ii) 1, (iii) 2, and (iv) 3 or more elliptical
nodes per sentence, respectively.

As Figure 2 shows, sentences with no ellipsis
and up to 3 elliptical nodes represent about 99.5%
of all sentences: for better model performance,
therefore, rare sentences with more than 3 elliptical

12This is probably the reason why, in Universal Depen-
dencies, ellipsis is annotated at the level of syntactic la-
bel (https://universaldependencies.org/u/overview/
specific-syntax.html#ellipsis): this solution, however,
suffers from the disadvantage of rendering syntactic annota-
tion rather obscure.

13[0] means one elliptical node, [1] two elliptical nodes,
and so on and so forth.

Figure 2: Key statistics for elliptical nodes in the whole
data set.

nodes have been included in the class representing
3 elliptical nodes.

In the following sections, I compare five ma-
chine learning models. Each of them has also been
trained with class weights14 because of the class-
unbalanced data set. The data set has been divided
into training (∼80%), development (∼10%), and
test (∼10%) data sets.15 Accuracy, macro- and
weighted-average precision, recall, and F1 are the
metrics used for evaluation. To evaluate statistical
significance, Stuart-Maxwell marginal homogene-
ity tests are used.

5.1 Model Architectures

A feedforward neural network has been cho-
sen as a baseline model (Feedforward-Baseline),
and its output has been compared to those
of four different models: (i) a feedforward
model with pretrained BERT token embeddings
(Feedforward-DBBE-BERT); (ii) an encoder-only
transformer with pretrained BERT token embed-
dings (Transformer-DBBE-BERT); (iii) an encoder-
only transformer with randomly initialized token
embeddings (Transformer-WordPiece35000); (iv)
an LSTM neural network with pretrained BERT

14Weights are calculated using the method
compute_class_weight of sklearn.utils.class_weight
(with balanced argument).

15Because of unbalancedness, the development and test data
sets have been selected through stratified sampling, with strata
being the classes of the dependent variable.
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token embeddings (LSTM-DBBE-BERT).16

As Figure 3 shows, the baseline model con-
sists of 3 ReLU-activated linear layers (with 5,000,
2,000, and 1,000 units, respectively), a 0.2 dropout
layer, and a final linear layer with softmax activa-
tion. Sentences are vectorized using TF-IDF scores
calculated using the sentences themselves as docu-
ments.

An already existing BERT model (DBBE-BERT)
(Singh et al., 2021)17 has been fine-tuned for the
Feedforward-DBBE-BERT model. The DBBE-
BERT model is a Masked Language Model that has
been trained on Modern and Ancient Greek data.
The tokenizer vocabulary of the model consists of
35,000 tokens and each token embedding has 768
dimensions. The DBBE-BERT token embeddings
have been fed into a global average pooling layer
followed by a 0.2 dropout layer, two linear layers
with 500 and 100 units respectively, a 0.2 dropout
layer, and the final softmax-activated linear layer
outputting probabilities (the model architecture is
the same as that of the LSTM model shown in Fig-
ure 6, except for the LSTM layer, which is replaced
by a global average pooling layer).

Since sentences are composed of words, an
encoder-only transformer has been tested to lever-
age relationships between them. Two variants of
the encoder-only transformer have been tested.

The first variant (see Figure 4) aims to test
whether a transformer layer can improve the per-
formance of the DBBE-BERT token embeddings,
which also rely on a transformer-based architec-
ture.

The DBBE-BERT token embeddings are fed into
an encoder-only transformer based on Vaswani et al.
(2017), mainly consisting of a 2-head attention
layer and a feedforward network with two 768-
unit linear layers. The output of the transformer
is then fed into a further feedforward component,
with two linear layers with 500 and 100 units, re-
spectively. All dropout and layer normalization
layers have arguments 0.2 (rate) and 1e-6 (epsilon),
respectively.

The second variant of the encoder-only trans-
former aims to assess the contribution of pretrained
DBBE-BERT token embeddings. The model archi-

16These token embeddings, as emerges in the following
paragraphs, are the DBBE-BERT ones.

17The model is called by the authors “Extended Ancient
Greek BERT” and, in this paper, “DBBE-BERT” for brevity’s
sake (DBBE is the acronym of the project “Database of Byzan-
tine Book Epigrams,” within which the model was developed).

tecture is the same as the one described above (see
Figure 4), except for token embeddings, which are
not pretrained, but randomly initialized.

The tokens for the latter model are identified
by a WordPiece algorithm with a vocabulary of
35,000 based on the texts of Opera Graeca Adno-
tata (Celano, 2023), a 34,172,140 token standoff
annotation corpus. The texts in Opera Graeca Ad-
notata come from the Perseus Digital Library and
First1KGreek projects,18 and therefore coincide,
for the most part, with those used to calculate the
DBBE-BERT token embeddings. Each randomly
initialized token embedding has 2,000 dimensions,
with the transformer encoder’s feedforward net-
work consisting of two linear layers with 2,000
(and not 768) units each.

The last tested model is a LSTM neural network
(see Figure 6), with a LSTM layer of 1,000 units,
followed by two linear layers with 500 and 100
units, respectively, and ReLU activation (the rate
of both dropout layers is 0.2). Token embeddings
are calculated by the same pretrained DBBE-BERT
model used for the Transformer-DBBE-BERT and
Feedforward-DBBE-BERT models.

All models have been trained with the Adam op-
timizer with a learning rate of 1e-6. Early stopping
has been determined by monitoring validation loss
with a patience of 2 epochs.

5.2 Results

As Table 2 shows, the baseline model without class
weights seems to achieve a good accuracy score:
however, this score is misleading, in that it is the
same as that of a dummy classifier always predict-
ing the most frequent class label (i.e., the none
label, which means absence of elliptical nodes).

Notably, Transformer-WordPiece35000 without
class weights provides results very similar to the
baseline ones (see also Figure 5 and 7). The
model performance turns out to be statistically
different from the baseline’s one according to a
Stuart-Maxwell test, whose probability value is
greater than 0.001, but lower than 0.01. The feed-
forward model, the transformer, and the LSTM
model trained with the DBBE-BERT token embed-
dings (without class weights) show the best results,
with accuracy scores that are 8% higher than the
baseline’s one.19

18https://github.com/PerseusDL/
canonical-greekLit; https://github.com/
OpenGreekAndLatin/First1KGreek.

19The Feedforward-DBBE-BERT model is made available
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Figure 3: Baseline model architecture.

Figure 4: Encoder-only transformer architecture.

Figure 5: Confusion matrix for the baseline model show-
ing false negative rates and recall (test data set).

The performances of models with class weights
are worse than those of the corresponding mod-
els without weigths, and the their differences are
statistically significant (p < 0.001).

Feedforward-DBBE-BERT’s, Transformer-
DBBE-BERT’s, and LSTM-DBBE-BERT’s
performances are comparable: however, when
their outputs are tested with Stuart-Maxwell tests
(pairwise), only Feedforward-DBBE-BERT’s and
LSTM-DBBE-BERT’s results turn out to be not
statistically different (p > 0.05).

The results suggest that the pretrained DBBE-
BERT token embeddings play a crucial role.
The transformer architecture of Transformer-
WordPiece35000 guarantees a context-aware token
representation, but this seems to be not enough for

at https://git.informatik.uni-leipzig.de/celano/
ellipsis_Ancient_Greek.

the task at hand, if token embeddings are randomly
initialized.

5.3 Error Analysis
As Figure 5 shows, the baseline model without
class weights can almost exclusively classify sen-
tences as belonging to class none and 1. Most sen-
tences of class none are classified correctly (recall
0.97), even if the classifier also tends to incorrectly
label as none most sentences with classes 1, 2, and
>2. 12% of the sentences with label 1 are classified
correctly, but most of the sentences the classifier
labels as 1 are misclassified (see also Table 3). The
baseline model with class weights identifies more
sentences of class 2 and >2, but precision and re-
call scores for these classes are very low (0.08, 0.1
and 0.13 and 0.11, respectively), and, more in gen-
eral, its overall performance, as shown by Table 2,
is worse than that of the baseline model without
weights.

Figure 7 shows that the confusion matrix for
Transformer-WordPiece35000 is surprisingly com-
parable to the baseline’s one (without weights), in
that there are almost no predicted sentences of class
2 or >2, and the classifiers’ scores for class 1 and
none are also very similar.

Analysis of the confusion matrices for
Feedforward-DBBE-BERT, Transformer-DBBE-
BERT, and LSTM-DBBE-BERT in Figure 7
reveals that they are very similar. Most sentences
with no or one elliptical node are correctly
classified. Classification of sentences with 2 or
more than 2 elliptical nodes remains a challenge,
since most of them are misclassified. There
is however an improvement in comparison to
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Figure 6: LSTM architecture.

Figure 7: Confusion matrices for the models (without
class weights) showing false negative rates and recall
(test data set).

the baseline model: Feedforward-DBBE-BERT,
for example, correctly classify 24% of 2-class
sentences and 25% of >2-class sentences. The
improvement of the models trained with the
pretrained DBBE-BERT token embeddings is also
confirmed by the precision, recall, and F1 scores
per class reported in Table 3. I hypothesize that the
bad performance in identifying sentences with two
or more than two elliptical nodes much depends on
the data set being highly unbalanced.

6 Conclusion

The present study compared five neural network
models for prediction of the number of elliptical
nodes in Ancient Greek sentences. The compar-
ison showed that models with pretrained BERT
token embeddings fine-tuned for the task at hand
achieved the best results, with a good accuracy
score (0.84), but a not very high macro-averaged
F1 score (0.55 for Feedforward-DBBE-BERT). In
comparison, the transformer architecture with ran-
domly initialized token embeddings (Transformer-
WordPiece35000) scored significantly worse, with
a performance comparable to that of the baseline
feedforward network with TF-IDF sentence vector-
ization (without class weights).

Model Class Precision Recall F1

BASELINE

1 0.38 0.12 0.18

2 0.50 0.00 0.01

>2 0 0 0

none 0.80 0.97 0.88

FF-BERT

1 0.67 0.56 0.61

2 0.47 0.24 0.32

>2 0.52 0.25 0.34

none 0.90 0.96 0.93

TR-BERT

1 0.64 0.56 0.59

2 0.40 0.20 0.27

>2 0.48 0.30 0.37

none 0.90 0.95 0.93

LSTM-BERT

1 0.65 0.53 0.59

2 0.43 0.20 0.28

>2 0.46 0.25 0.32

none 0.89 0.96 0.92

Table 3: Precision, recall, and F1 scores per class for
the models Baseline, Feedforward-DBBE-BERT (FF-
BERT), Transformer-DBBE-BERT (TR-BERT), and
LSTM-DBBE-BERT (LSTM-BERT) (test data set).

The study also showed that performances of
model architectures of different complexity fed
with the same pretrained BERT token embeddings
(i.e., Feedforward-DBBE-BERT, Transformer-
DBBE-BERT, and LSTM-DBBE-BERT without
class weights) proved to be comparable.

Limitations

Since annotation was performed by single annota-
tors, some variability in ellipsis identification has
to be expected in the original data.

Acknowledgements

This work has been supported by the Ger-
man Research Foundation (DFG project number
408121292).

157



References
Johan Bos and Jennifer Spenader. 2011. An annotated

corpus for the analysis of VP ellipsis. Language
Resources and Evaluation, 45:463–494.

Giuseppe G. A. Celano. 2013. Argument-focus and
predicate-focus structure in Ancient Greek: Word or-
der and phonology. Studies in Language, 37(2):241–
266.

Giuseppe G. A. Celano. 2023. Opera
Graeca Adnotata. Version 0.1.0. Zenodo.
https://doi.org/10.5281/zenodo.8158675.

Helma Dick. 1995. Word Order in Ancient Greek:
A Pragmatic Account of Word Order Variation in
Herodotus. J.C. Gieben, Amsterdam.

Livio Gaeta and Silvia Luraghi. 2001. Gapping in Clas-
sical Greek prose. Studies in Language, 25(1):89–
113.

Vanessa B. Gorman. 2020. Dependency treebanks of
Ancient Greek prose. Journal of Open Humanities
Data, 6(1):1.

Daniel Hardt. 1997. An empirical approach to VP ellip-
sis. Computational Linguistics, 23(4):525–541.

Daniel Hardt. 2023. Ellipsis-dependent reasoning: a
new challenge for large language models. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 39–47, Toronto, Canada. Association for
Computational Linguistics.

Alek Keersmaekers, Wouter Mercelis, Colin Swaelens,
and Toon Van Hal. 2019. Creating, enriching and val-
orizing treebanks of Ancient Greek. In Proceedings
of the 18th International Workshop on Treebanks and
Linguistic Theories (TLT, SyntaxFest 2019), pages
109–117, Paris, France. Association for Computa-
tional Linguistics.

Payal Khullar. 2020. Exploring statistical and neural
models for noun ellipsis detection and resolution in
English. In Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International Joint
Conference on Natural Language Processing: Stu-
dent Research Workshop, pages 139–145, Suzhou,
China. Association for Computational Linguistics.

Raphael Kühner, Friedrich Blass, Bernhard Gerth,
and William M. Calder. 1965. Ausführliche Gram-
matik der Griechischen Sprache. Wissenschaftliche
Buchgesellschaft, Darmstadt.

Silvia Luraghi. 2003. Definite referential null objects
in Ancient Greek. Indogermanische Forschungen,
108:167–194.

Leif Arda Nielsen. 2004. Robust VPE detection using
automatically parsed text. In Proceedings of the ACL
Student Research Workshop, pages 49–54, Barcelona,
Spain. Association for Computational Linguistics.

Eduard Schwyzer. 1971. Griechische Grammatik,
volume 2. C.H. Beck’sche Verlagsbuchhandlung,
München.

Pranaydeep Singh, Gorik Rutten, and Els Lefever. 2021.
A pilot study for BERT language modelling and mor-
phological analysis for ancient and medieval Greek.
In Proceedings of the 5th Joint SIGHUM Workshop
on Computational Linguistics for Cultural Heritage,
Social Sciences, Humanities and Literature, pages
128–137, Punta Cana, Dominican Republic (online).
Association for Computational Linguistics.

Jeroen Van Craenenbroeck and Tanja Temmerman.
2019. The Oxford Handbook of Ellipsis. Oxford
University Press, Oxford.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 1–11.

Wei-Nan Zhang, Yue Zhang, Yuanxing Liu, Donglin
Di, and Ting Liu. 2019. A neural network approach
to verb phrase ellipsis resolution. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 33, pages 7468–7475.

158



AraBERT and mBert: Insights from Psycholinguistic Diagnostics

Basma Sayah
Lab. d’Informatique & Mathématiques

Université Amar Telidji, Algeria
b.sayah@lagh-univ.dz

Attia Nehar
Lab. d’Informatique & Mathématiques

Ziane Achour University, Algeria
neharattia@univ-djelfa.dz

Hadda Cherroun
Lab. d’Informatique & Mathématiques

Université Amar Telidji, Algeria
hadda_cherroun@lagh-univ.dz

Slimane Bellaouar
Lab. Mathématiques & Sciences
University of Ghardaia, Algeria

bellaouar.slimane@univ-ghardaia.dz

Abstract

BERT, a groundbreaking large language model,
has excelled in natural language processing
tasks such as question answering. Motivated
by a desire to understand BERT’s knowledge
and limitations across different languages, we
build upon Alysson Ettinger’s work by evalu-
ating BERT Arabic versions using psycholin-
guistics. These diagnostics, designed to assess
human brain linguistic abilities, cover aspects
like common sense and pragmatic inference,
which constitute fundamental knowledge for
any pretrained language model. Upon translat-
ing these diagnostics into Arabic, the results
of diagnostic assessments for mBERT in Ara-
bic and AraBERT reveal linguistic deficiencies
in mBERT and a moderate grasp in AraBERT.
This emphasizes the need for further training
on diverse texts, especially those related to ev-
eryday situations.

Keywords: AraBERT, mBert, Psycholinguis-
tic, Linguistic evaluation, Arabic language
models.

1 Introduction

Nowadays, large Language Models (LLMs) are the
base of almost every Natural Language Processing
(NLP) application. They are used in sentiment anal-
ysis (SA), question answering (QA), conversational
agents, personal assistants, and robotics (et al.,
2021).

Since the introduction of Transformers in
2017 (Vaswani et al., 2017), computers have
demonstrated remarkable linguistic abilities, often
comparable to those of humans. Consequently, a
multitude of language models has emerged from
the Transformer framework, addressing a variety of
languages. Examples include: ELMo (Peters et al.,
2018), BERT and mBERT (Devlin et al., 2019),

GPT through all its versions (Radford et al., 2018),
PaLM (et al., 2023).

Despite the popularity of these models and their
impact across various fields, there is an urgent
need for interdisciplinary efforts in order to under-
stand the knowledge they infer and to discover their
unknown failures. Previous studies have delved
into various performance aspects, including task-
specific evaluations (Jiang et al., 2021) (Wang
et al., 2018), probing different layer (Conia and
Navigli, 2022), and linguistics evaluations of hu-
mans on machines (Ettinger, 2020) (Lialin et al.,
2022).

Unlike other languages, Arabic LLMs have not
been extensively studied, despite some recent in-
vestigations (Albilali et al., 2021) (Abdelali et al.,
2022). In this paper, we aim to fill this gap by in-
vestigating the capabilities of Arabic LLMs. Our
initial step involves enhancing our understanding
of what Arabic LLMs comprehend about the Ara-
bic language by measuring their linguistic abilities
through the discipline of psycholinguistics. Psy-
cholinguistics, originally developed by linguists to
assess the human brain’s capacity to understand
and produce language (Harley, 2013), serves as our
guiding framework. Our investigation is specifi-
cally narrowed down to the Arabic language mod-
els araBERT and multilingual BERT

The rest of this paper is organized as follows.
First, in Section 2, we introduce some preliminaries
and concepts related to pre-trained LMs and psy-
cholinguistic diagnostics. In Section 3, we review
related literature that has considered the evaluation
of LMs’ linguistic abilities. The methodology of
our investigation is presented in detail in Section 4.
Finally, we report and discuss the results of the
evaluation in Section˜ 5
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2 Preliminaries

Driven by the purpose of this paper, this section of-
fers a concise overview of Multilingual BERT and
AraBERT. Subsequently, we delve into psycholin-
guistic aspects and psycholinguistic diagnostics
that examine predictive human responses, all of
which are relevant to the assessment of pre-trained
Language Models.

2.1 Arabic LLMs and BERT

Arabic language models, especially those built on
the BERT architecture, are pivotal in natural lan-
guage processing. BERT, or Bidirectional Encoder
Representations from Transformers (Devlin et al.,
2019), constitutes a highly parallel deep neural
network leveraging attention mechanisms for se-
quence prediction and generation (Vaswani et al.,
2017).

Originally designed for language modeling and
machine translation, transformers like BERT have
evolved to handle more complex tasks, including
computer vision (Nguyen et al., 2023). Specific
BERT variations tailored for Arabic have been
developed. Figure 1 provides a chronological
overview of Arabic BERT models and other trans-
formers pre-trained on diverse Arabic texts, en-
compassing dialects and Modern Standard Arabic
(MSA) from platforms like social media, news, and
academic content. For the purpose of this paper,
we will focus specifically on two models: mBERT
and AraBERT.

mBERT released by Devlin et al.,(2019) is a
single-language model that was pre-trained using
monolingual corpora in 104 languages, including
Arabic. This enabled BERT to learn and generalize
across multiple languages.

AraBERT developed by Antoun et al.,(2020) is
a widely adopted model pre-trained on an extensive
corpus of Modern Standard Arabic (MSA) texts.
AraBERT is applied in various natural language
processing (NLP) tasks, including text classifica-
tion, named entity recognition (NER), and senti-
ment analysis (SA) in the Arabic language.

2.2 Psycholinguistics

Psycholinguistics, a subfield of linguistics, stud-
ies the mental processes involved in language ac-
quisition, comprehension, and production (Harley,
2013). Within the domain of psycholinguistics, the
study of human language processing incorporates

fundamental metrics such as Cloze probability and
N400 amplitude (Kutas and Hillyard, 1984).

• Cloze probability is the likelihood or probabil-
ity that individuals choose a specific word to
complete a given context. It provides a quan-
tifiable measure of how well a word fits into a
particular linguistic context based on human
responses.

• The N400 amplitude is a quantifiable electri-
cal signal discerned in brain activity, particu-
larly in electroencephalogram (EEG) record-
ings. The measurement of the N400 compo-
nent’s amplitude helps comprehend the brain’s
reaction to words that disrupt the contextual
flow or are unexpected within a given sen-
tence.

3 Related Work

In the literature, there is a growing effort to bet-
ter understand the specific linguistic capacities
achieved by neural Natural Language Processing
(NLP) models. We have reviewed several studies
that measured their performances and behaviors,
categorizing them based on three criteria:

• Linguistic analysis: This category focuses on
assessing the lexical, syntactic, and figurative
skills of a language model.

• Tasks-based Analysis: This category in-
volves evaluating the language model through
specific tasks such as Sentiment Analysis
(SA), Question Answering (QA), Translation,
Named Entity Recognition (NER), and Di-
alect Identification.

• In-Depth Model Examination: This type of
analysis delves into the inner workings of the
model, considering aspects of explainability
and probing.

In linguistic analysis, Ettinger, (2020) presents
a set of diagnostics derived from human language
experiments to systematically investigate the infor-
mation utilized by language models during predic-
tion generation in context. The study applies these
diagnostics to assess the popular BERT model. The
findings reveal that BERT demonstrates a general
ability to distinguish between good and bad com-
pletions involving shared category or role reversal,
though with less sensitivity compared to humans.
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Arabic Transformers and GAN

MSA Dialectal Multilingual

multi-Bert

Arabert
Arabic-

ALBERT
ArabicBert

QaRiB
XML

MarBert
AraElectra

AraGPT2

AraTS

2018 2020 2021 2022

Figure 1: Some Arabic Transformers and GANs.

Additionally, BERT consistently retrieves noun hy-
pernyms effectively. However, the model faces
challenges in intricate tasks such as inference and
role-based event prediction. Notably, BERT ex-
hibits a clear insensitivity to the contextual impacts
of negation.

In task-based analysis, Rönnqvist et al., () in-
vestigated mBERT’s performance across languages
and tasks. They found mBERT to be inferior to
monolingual models, especially for Nordic lan-
guages. Chouikhi et al., (2021) addressed tokeniza-
tion issues in Arabic Sentiment Analysis. Their
approach, incorporating an Arabic BERT tokenizer
instead of the basic BERT tokenizer, outperformed
Arabic BERT and AraBERT models in classifica-
tion quality and accuracy, particularly for dialect
and MSA instances. Lialin et al., (2022) scru-
tinized 29 diverse model families, including T5,
BART, and ALBERT, using the oLMpics bench-
mark and psycholinguistic probing datasets. Their
study found that none of these models, when as-
sessed in a zero-shot manner, could effectively ad-
dress compositional questions, challenging the ade-
quacy of current pre-training objectives for acquir-
ing this skill.

In their in-depth model examination, Mickus
et al., (2020) examined the semantic coherence
of BERT’s embedding space. They mention that,
while showing a tendency towards coherence,
BERT does not fully live up to the natural expecta-
tions for a semantic vector space. They discovered,
in particular, that the position of a word in a sen-
tence, despite having no meaning correlates, leaves
an evident trace on the word embeddings and dis-
rupts similarity relationships. Li et al., (2021) intro-
duced a tool for probing surprisal at BERT’s inter-
mediate layers, employing density estimation with
Gaussian models. They found a high correlation
between surprisal and low token frequency in lower

layers, decreasing in upper layers. Regarding mor-
phosyntactic, semantic, and commonsense anoma-
lies, the best-performing model (RoBERTa) exhib-
ited surprisal in earlier layers for morphosyntactic
anomalies, but not for semantic or commonsense
anomalies. Abdelali et al., (2022) conducted a post-
hoc examination of transformer models trained on
diverse Arabic dialects. Using layer and neuron
analysis, they found that word morphology is pre-
dominantly learned in lower and middle layers,
syntactic dependencies are primarily captured in
higher layers, and despite vocabulary overlap, mod-
els based on Modern Standard Arabic struggle to
capture nuanced aspects of dialects. Neurons in em-
bedding layers exhibit polysemous characteristics,
while those in middle layers specialize in specific
properties.

4 Methodology

In the assessment of the psycholinguistic skills
of Arabic BERT models, we translated the psy-
cholinguistic diagnostics from Ettinger’s work into
Arabic with the assistance of three Arabic native
speakers, one of whom is a professional transla-
tor. Subsequently, we applied these diagnostics
to AraBERTv2base, AraBERTv2large, and mBERT
using the Python language in the Google Colab
platform. Each diagnostic test involves sentences
(contexts) with a missing word, and the task is to
predict that missing word. Accurate predictions re-
quire the application of the targeted linguistic skills
defined by these tests. The evaluation utilized the
following metrics:

• Word Prediction Accuracy measures how of-
ten the language model correctly provides the
expected item among its top k predictions and
is designed to be the equivalent of Cloze prob-
ability in psycholinguistics (refer to Section
2).
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• Sensitivity Test represents the percentage of
items for which the probability assigned to a
correct completion exceeds the probability as-
signed to the inappropriate one. This measure
is designed to be the equivalent of the N400
in psycholinguistics (refer to Section 2).

• Qualitative analysis is the process of man-
ually reviewing the results, making observa-
tions on the top k predictions, and understand-
ing their relationships with each other and
with the context, all in order to gain deeper
insights into the skills of AraBERT.

All the diagnostic datasets and experiment code
are shared and accessible on GitHub. 1 The follow-
ing subsection provides a detailed description of
the diagnostics employed in our evaluation.

4.1 CPRAG-102
This diagnostic is made up of 102 contexts. Each
context comprises two consecutive sentences with
a missing word (Federmeier and Kutas, 1999). In
these contexts, predicting the missing word re-
quires Common Sense to understand what is being
described and Pragmatic Inference to understand
how the second sentence relates to the first. Table 2
shows an example of CPRAG-102 and its Arabic
translation. The ’Expected’ column displays the
word most likely to be predicted by humans, tak-
ing into account synonyms in our experiments. In
contrast, the ’Inappropriate’ column lists some in-
correct word completions that fall within the same
category as the expected word. The inappropri-
ate completion is used to examine whether LMs
will prioritize unsuitable completions that share a
semantic category with the expected completions.

4.2 ROLE-88
It comprises 88 contexts, with one sentence per con-
text designed to target role reversal. (Chow et al.,
2016) illustrated the example in Table 3, "Complet-
ing the sentence requires semantic role identifica-
tion and event knowledge, which means finding the
accurate words associated with events and actions
to fill in the blank". Although each completion
(e.g., ’served’) is suitable for only one of the noun
orders and not the reverse, we use this diagnos-
tic to test whether Arabic BERT models will face
difficulty distinguishing appropriate continuations
based on word order and semantic role.

1https://github.com/BasmaSayah/
Psycholinguistic-Diagnostics-on-AraBERT

4.3 NEG-SIMP-136

This diagnostic targets understanding the meaning
of negation and category membership (Fishler et al.,
1983). Table 4 presents a negation example along
with its corresponding translation. The affirmative
sentence allows us to assess the model’s capacity
to associate nouns with their hypernyms. Through
this diagnostic, we investigate the model’s abil-
ity to distinguish between affirmative and negative
sentences, specifically whether it outputs the same
word as in the affirmative case, as indicated in the
’match’ column, or a different word, as shown in
the ’mismatch’ column.

4.4 NEG-NAT-136:

This diagnostic targets naturally occurring nega-
tive sentences and was derived from a human study
conducted by Nieuwland and Kuperberg (2008).
Building upon the experiment conducted by Fish-
ler et al.,1983, it involves the creation of affirmative
and negative sentences chosen to be more ’natural
for somebody to say,’ contrasting these with the
non-natural affirmative and negative sentences. Ta-
ble 5 shows an example of NEG-NAT-136 and its
Arabic translation.

5 Experiments and Discussion

In this section, we analyze the results of running the
diagnostics on AraBERTv2base, AraBERTv2large,
and mBERT. We compare these results with those
of the English BERT as presented in the paper
"What BERT Is Not". We manually reviewed the
results to ensure accuracy and to avoid instances
where the language models provided correct an-
swers not present in the diagnostic dataset.

5.1 Results for Common Sense and Pragmatic
Inference

Figure 2 illustrates the performance of
AraBERTbase, AraBERTlarge, mBERT, BERTbase,
and BERTlarge on the CPRAG-102 dataset, in
terms of accuracy. It represents the percentage
of items for which the ’expected’ completion
is among the model’s top k predictions, with
k ∈ {1, 5}. For accuracy at k = 1, both
AraBERTbase and mBERT achieved a score of
2.94%. In contrast, AraBERTlarge achieved
more higher accuracy of 8.82% on the same task.
On the other hand, BERTbase and BERTlarge

performed better with accuracies of 23.5%
and 35.3%, respectively. This indicates that
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Table 2: Example of CPRAG-102 and its Arabic translation.

Context Expected Inappropriate

. A ��®k �éºJ
ÖÞ�ð Z@Xñ� ðYJ. �K AîD��ñÓP Éªm.�
�' 	à


@ �HX@P


@

������������������ AëQ�
ª�K 	à

@ Aî �D�®K
Y� 	áÓ �IJ.Ê£ @ 	YË

She wanted to make her eyelashes look really black and thick.
So she asked to borrow her older friend’s ——

@PA¾�AÖÏ @
Maskara

�èXC�̄ - èA 	® ��Ë@ QÔg

@

lipstick | necklace

Table 3: Example of ROLE-88 and its Arabic translation.

Context Completion

�������������� H. ÈXA 	JË @ ÐA�̄ 	àñK. 	P ø


@ Ñª¢ÖÏ @ I. kA� ú
æ�

	�
The restaurant owner forgot which customer the waitress had ——–

é�JÓY 	g
served

�������������� H. 	àñK. 	QË @ ÐA�̄ ÈXA 	K ø


@ Ñª¢ÖÏ @ I. kA� ú
æ�

	�
The restaurant owner forgot which waitress the customer had ——–

é�JÓY 	g
served

Table 4: Example of NEG-SIMP-136 and its Arabic
translation.

Context Match Mismatch

������������� ñë Z
�
A�	JmÌ'@ ñK.


@

A robin is a ——–
QKA£
bird

�èQm.�
��

tree

������������� ��
Ë Z
�
A�	JmÌ'@ ñK.


@

A robin is not a ——–
QKA£
bird

�èQm.�
��

tree

AraBERTbase and mBERT do not perform well in
common-sense and/or pragmatic inference tasks,
while AraBERTlarge performs substantially better.

At k = 5, mBERT achieved the lowest accu-
racy of 5.88%, followed by AraBERTbase, which
showed an improvement with an accuracy of
17.6%. AraBERTlarge achieved the highest accu-
racy in Arabic, reaching 23.52%. In the English
part, both BERTbase and BERTlarge achieved a
52.9% accuracy. The low accuracy scores highlight
clear weaknesses in AraBERT’s ability to handle
common-sense and/or pragmatic inference.

Regarding completion sensitivity, Figure 2 il-
lustrates the performance of AraBERT, mBERT,
and BERT on the CPRAG-102 dataset in terms
of sensitivity. This metric represents the per-
centage of items for which the model assigns a
higher probability to the expected completion (e.g.,
’Maskara,’ as shown in Table2) than to any of the
inappropriate completions (e.g., ’lipstick’ or ’neck-
lace’). mBERT assigns the highest probability to
the expected completion only 5.88% of the time,
whereas AraBERTbase and AraBERTlarge achieve
this 17.65% and 20.59% of the time, respectively.
On the contrary, BERTbase and BERTlarge exhibit
a high sensitivity of 73.5% and 79.4% with English.
This suggests that both versions of AraBERT and
mBERT do not exhibit sensitivity in differentiat-
ing between good and bad completions within the
same semantic category, with AraBERT noticeably

better than the latter.
Upon introducing the threshold on the proba-

bility difference, mBERT’s sensitivity remains the
same, while AraBERTbase and AraBERTlarge sen-
sitivity drop slightly to 14.7% and 17.65%, respec-
tively. In contrast, BERTbase and BERTlarge sen-
sitivity drop drastically to 44.1% and 58.8%. This
still indicates that AraBERT lacks sensitivity in
distinguishing between good and bad completions,
whereas BERTbase and BERTlarge exhibit some
sensitivity, albeit with a small probability differ-
ence.

The qualitative analysis of the sentences where
AraBERTlarge has made incorrect predictions
shows that AraBERTlarge fails not only in one but
in both common sense and pragmatic inference. In
the phrase
	àA¿ @ 	X @ èPAg. È


A� . 	¬ñ 	̄QË @ 	�ªK. © 	J�Ë è@Q�� ��@ ø


	YË@ I. ��	mÌ'@ ©¢�̄ ñÊK. AK. X @P

@

èQ�
ªK
 	à

@ é 	K A¾ÓAK.

meaning ’Pablo wanted to cut the lumber he had
bought to make some shelves. He asked his neigh-
bor if he could borrow her’, AraBERTlarge pre-
dicted words related to wood but did not suggest
’saw.’ This suggests that it recognized that the word
to be predicted was related to the first sentence, suc-
ceeding in pragmatic inference, but failed to recog-
nize what it was, indicating a failure in common
sense understanding. In the phrase
	à

B A ��®k �èYJ
ª� ú


	GA 	®J
��� 	à

@ ðYJ. K
 . Aê �® 	J« Èñk AëQK
ðY�K ð AëQK
ðY�K ú


	̄ QÒ�J��� Aî 	E @
������������� ½Ë 	X AëA¢«


@ 	à@X

meaning "She keeps twirling it around and around
under her collar. Stephanie seems really happy that
Dan gave her that ——’, AraBERTlarge predicts
the words ’place’ and ’time.’ This indicates that
it only used the second sentence for predictions,
failing in pragmatic inference.

5.2 Results for role reversals and event
knowledge

As demonstrated in Figure 3 when k = 1, mBERT
exhibits poor performance (a 0% accuracy). This
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Table 5: Example of NEG-NAT and its Arabic translation.

Context target_aff target_neg
������������� ZAÖÏ @ �Im��' �ñ 	ªË@ YªK
 , �éJ.�A 	JÖÏ @ �H@YªÖÏ @ ©Ó 	áÓ

�
@ Q�
¢ 	k

With proper equipment, scuba-diving is very ——– safe dangerous
������������� ZAÖÏ @ �Im��' �ñ 	ªË@ YªK
 B , �éJ.�A 	JÖÏ @ �H@YªÖÏ @ ©Ó 	áÓ

�
@ Q�
¢ 	k

With proper equipment, scuba-diving isn’t very ——– safe dangerous

Figure 2: Performances of BERT, mBERT and AraBERT on the CPRAG-102 dataset.

suggests that mBERT is not suitable for role re-
versal and event knowledge tasks. In contrast,
BERTbase and AraBERTbase show similar accu-
racies, both approximately at 14.8%. However,
AraBERTlarge and BERTlarge, despite their larger
architectures, achieve slightly lower accuracies of
13.6% and 12.5%, respectively. These results indi-
cate that AraBERTlarge and BERTlarge may benefit
from further fine-tuning tailored to these tasks, em-
phasizing that model size alone does not guarantee
enhanced performance.

When k = 5, mBERT still lags with
an accuracy of 6.81%. AraBERTbase and
AraBERTlarge both demonstrate improved accu-
racies, with AraBERTbase surprisingly surpassing
AraBERTlarge. AraBERTbase achieves an accuracy
of 30.68%, while AraBERTlarge achieves 21.59%.
Although AraBERTbase and AraBERTlarge exhibit
better performance than mBERT for k = 5, they
are still outperformed by the English-language
models BERTbase and BERTlarge, which achieved
accuracies of 27.3% and 37.5%, respectively. Con-
sidering a larger number of predictions enhances ac-
curacy for all models. However, English-language
models BERTbase and BERTlarge consistently out-
perform the multilingual and Arabic-specific mod-
els in this task.

Figure 3 illustrates the sensitivity of BERT mod-
els to role reversals. mBERT performs poorly
for Arabic, exhibiting a sensitivity of only 4.54%.
AraBERTbase and AraBERTlarge show moder-
ate sensitivity, with AraBERTbase at 22.72% and

AraBERTlarge at 18.18%. In contrast, BERTbase

and BERTlarge demonstrate high sensitivity to
"good completions" with accuracies of 75% and
86.4%, respectively.

After introducing the threshold of 0.01,
mBERT maintains a low sensitivity of 4.54%.
AraBERTbase and AraBERTlarge also maintain
their sensitivities at 22.72% and 18.18%, respec-
tively, while BERTbase and BERTlarge maintain rel-
atively higher sensitivities at 31.8% and 43.2%, re-
spectively. Overall, the results suggest that mBERT
for the Arabic language is not well-suited for role
reversals and/or event knowledge tasks. The mod-
erate sensitivity of AraBERT models indicates their
ability to identify "good completions" to some ex-
tent. In contrast, the English-language models, par-
ticularly BERTlarge, exhibit better performance in
these tasks, highlighting potential challenges in
adapting these models for Arabic language tasks or
the need for further fine-tuning.

During manual analysis of sentences where
mBERT, AraBERTbase and AraBERTlarge failed,
all models frequently produced the unknown token,
indicating challenges in generating predictions for
the given contexts. In cases where words were gen-
erated, mBERT’s predictions often lacked coher-
ence and didn’t make sense whereas AraBERTbase

and AraBERTlarge produced logically consistent
predictions that differed from those generated for
their role-reversed versions of the sentence. This
suggests that mBERT struggles with producing
meaningful predictions. Conversely, the limitations
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Figure 3: Performances of BERT, mBERT and AraBERT on the ROLE-88 dataset.

of the AraBERT models appear to be primarily re-
lated to event knowledge, as they generate words
that are logically consistent within the sentence con-
text but struggle to predict the accurate word related
to the event or action. Furthermore, AraBERTlarge

showed more uncertainty than AraBERTbase , indi-
cating AraBERTlarge need for additional context.
However, its responses were grammatically more
accurate compared to AraBERTbase.

5.3 Results for negation understanding

Figure 4 illustrates the accuracy of BERT mod-
els in predicting affirmative and negative sen-
tences. Affirmative sentences were used to evaluate
BERT’s ability to associate nouns with their hyper-
nyms(categories). When we examine the accuracy
scores for affirmative sentences, we see mBERT
achieved the lowest accuracy, scoring 0%, indi-
cating it is not suitable for category membership
prediction. Both AraBERTbase and AraBERTlarge

achieved accuracies of 44.44% and 33.33% re-
spectively, in predicting category membership.
While English-language models BERTbase and
BERTlarge achieved a perfect accuracy of 100%.
This suggests that AraBERT models are less effec-
tive in category membership prediction compared
to the highly effective English models.

In the case of negative sentences, mBERT
achieved an accuracy of 0%, which is evident
given that it also failed with affirmative sentences.
AraBERTlarge also achieved an accuracy of 0% in
understanding negation, similar to BERTbase and
BERTlarge. This result suggests these models’ fail-
ure to understand negations. On the other hand,
AraBERTbase achieved a relatively low accuracy
of 5.55% in understanding negation. The correct
results it obtained may be attributed to its potential
understanding of negation or pattern recognition.

After checking predictions manually, AraBERT

mostly gives the same predictions for positive and
negative sentences, except for one sentence which
is

�������������� �é«ñÒm.× 	áÓ ¡�̄QÖÏ @ 	àñÒÊ�Ë@
meaning ’A trout is——-’ AraBERTbase predicted
"fish" as a first prediction for the affirmative state-
ment but provided a different answer, "chicken,"
for the negative statement. AraBERTlarge, on the
other hand, did not exhibit this distinction.

Figure 5 Illustrates the accuracies of BERT mod-
els for natural affirmative and negative sentences,
with the distinction that these affirmative sentences
do not test category membership. Regarding af-
firmative sentences, AraBERTlarge emerges as
the top-performing model in this context, achiev-
ing an accuracy of 87.5%, closely followed by
BERTlarge with an accuracy of 75%. BERTbase

and AraBERTbase achieved moderate accuracies
of 62.5% and 68.75%, respectively. In contrast,
mBERT failed to make any correct prediction,
yielding an accuracy of 0%, indicating its insta-
bility in making predictions.

Turning to negative sentences, AraBERTbase

and AraBERTlarge showed moderate performance,
achieving accuracies of 43.75% and 50%, respec-
tively, while BERTbase and BERTlarge demon-
strated strong performance with accuracies of
87.5% and 100%.

When examining the top Predictions of
AraBERTlarge, they all align with each other and
do not contradict each other, whether for affirma-
tive or their corresponding negative sentences, This
consistency suggests that there is an opportunity to
improve how the model handles negation.

6 Conclusion

In this study, we examined the capabilities of multi-
lingual BERT for Arabic, as well as AraBERT base
and large versions, using psycholinguistics. While
AraBERT is better than Multilingual BERT, it has
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Figure 4: Performances of BERT, mBERT, and AraBERT on the NEG-SIMP-136 dataset.

Figure 5: Performances of BERT, mBERT, and AraBERT on the NEG-NAT-136 dataset.

notable weaknesses in common sense and prag-
matic inference. In this task, the large version con-
sistently outperforms the base version of AraBERT.
Additionally, AraBERT faces challenges in recog-
nizing words related to events and actions, where
the base version consistently outperforms the large
version. In negation tasks, both AraBERT models
often struggle to distinguish affirmative from neg-
ative sentences, except in rare cases, marking an
improvement compared to English BERT models
that do not make this distinction at all. All mod-
els perform well with natural negative sentences,
likely relying on pattern recognition rather than a
deep understanding of negation cues. This situation
presents opportunities for enhancing language mod-
els’ grasp of negation. Further research is needed to
fully understand each model’s strengths and weak-
nesses, facilitating more informed decisions when
choosing a language model.
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Abstract

This paper explores the potential of ChatGPT in
simulating diverse personalities for application
in adaptive human-centric eXplainable Artifi-
cial Intelligence (XAI) interfaces. A dataset of
4329 text datapoints across 13 simulated per-
sonalities from ChatGPT were collected. Ex-
tensive linguistic analyses were conducted us-
ing metrics from Natural Language Processing
(NLP) for basic linguistic features, readabil-
ity, lexical richness, and sentiment. Addition-
ally, a personality classifier was trained with a
F1-score of 0.79 to understand which personal-
ities are unique in wording and style. This was
further substantiated through the application
of the SHAP (SHapley Additive exPlanations)
framework, which unveiled important words
in personality classification. It was found that
ChatGPT is capable of simulating several levels
of professionalism as well as more emotional
personalities that adapt human characteristics
and can be used in human-centric XAI inter-
faces, although specific user testing is still pend-
ing.

1 Introduction

With ChatGPT, large language models (LLM) and
generative artificial intelligence (generative AI) are
entering daily life at a speed never before seen with
any other technology. ChatGPT contributes to em-
powering people and assists with many everyday
and professional tasks. One reason for this high
adoption rate is the chosen interface in form of a
conversation, which is a natural way of interaction.
When a question is asked, ChatGPT tries to provide
accompanying descriptions and explanations. How-
ever, it is also known that ChatGPT tends to provide
false information and express it confidently and
also make up facts and sources. This effect is re-
ferred to as hallucination. (Ji et al., 2023) ChatGPT
is known for generating high-quality texts for vari-
ous situations, but it is also known to differ in its
wording from people. (Mitrović et al., 2023)

Due to its ability to produce well readable and
high quality text, ChatGPT has great potential to
assist in the development of human-centered ex-
plainable artificial intelligence (XAI) interfaces,
which help to increase trust in artificial intelligence
(AI) systems by making AI decisions more trans-
parent. Many machine learning (ML) models still
have the problem that they are opaque and cannot
be explained. The reason for this is the black-box
nature of these models, which makes it impossible
for a human to understand the decision paths of the
model. One task of XAI is to extract information
from the model that can be provided to a human so
that the model’s decisions can be understood. In ad-
dition, it is of high importance how the explanation
is given.

Miller (2019) describes that a good explanation
is social, referring to work by Hilton (1990), ac-
cording to whom a “causal explanation is first
and foremost a form of social interaction.” Con-
sequently, it is important for a good explanation
who the explainer is, who the receiver of the expla-
nation is (explainee) and what the context is. For
example, it makes a difference whether a profes-
sor is explaining something to another professor
within the same research field, or whether he/she
is explaining something to a student. The way the
explanation is given differs in both situations. In
contrast, ChatGPT responds to every request in the
same way, unless prompted otherwise. It has no
information about who it is having the conversation
with unless it is made aware of it. Miller (2019)
further elaborates on the work of Hilton (1990),
who describes that a causal explanation is always a
conversation. Accordingly, it would be desirable
to have XAI interfaces capable of generating ex-
planations in natural language and adapted to the
situation and to the human in form of a conver-
sation. This is further reinforced by the fact that
people demand that a good explanation can adapt
to their needs. (Zylowski, 2022) This includes,
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among other things, the ability to get explanations
on demand and in different formats and granulari-
ties. Before the developments in the field of LLM,
developing a conversational human-centric XAI in-
terface that can be adjusted to the requirements of a
person was very difficult or impossible and the im-
pact of intent-based conversational interfaces were
limited. (Jentzsch et al., 2019) Even if it was known
what a good explanation to a person should look
like, it was technically very difficult to actually
create an adequate explanation. With the potential
of ChatGPT to simulate different personalities, it
is possible to develop XAI interfaces that can be
adapted to different people and to different needs
and requirements of those people. However, it is
still an open question how well ChatGPT can simu-
late different personalities and how well responses
are adapted to people’s needs.

This paper investigates the ability of ChatGPT
to simulate different personalities and describes the
advantages for adaptive human-centric XAI inter-
faces. An NLP approach is chosen by applying
different metrics to ChatGPT texts in different per-
sonality styles and it is investigated how clearly
these personalities can be distinguished from each
other and which phrases and words are typical for
different personalities. By exploring the potential
of adapting explanations to individuals, this work
aims to address the current limitations and unlock
the full potential of ChatGPT in fostering trust and
transparency in AI systems.

2 Related Work

ChatGPT’s responses are currently being studied
by many researchers and the applicability in differ-
ent domains is being validated. It is investigated
whether texts generated by humans can be distin-
guished from those generated by ChatGPT and
what the differences are. Mitrović et al. (2023)
investigate whether a classifier can be trained
to distinguish human-generated texts from those
generated by ChatGPT, achieving 79% accuracy.
Through an analysis of the classifier with the XAI
framework SHAP, they look for differences be-
tween the formulations. They find that ChatGPT
tends to focus on describing experiences rather
than expressing feelings and it avoids using per-
sonal pronouns. Moreover, it has a tendency to
utilize uncommon or unusual words and never em-
ploys aggressive language or rude vocabulary in its
responses. Mindner et al. (2023) created several

text classifiers for the educational field to distin-
guish texts generated and rephrased by ChatGPT
from human-created texts, with F1-scores of over
96% and 78%, respectively, outperforming even
GPTZero1, the most prominemt approach, in the
best basic text rephrasing task. Other authors focus
on how trustworthy the texts generated by ChatGPT
appear to people. Li et al. (2023) analyze the ap-
plicability of ChatGPT for Information Extraction
(IE) tasks and found that ChatGPT performs poorly
on the Standard-IE setting, but performs very well
on the Open-IE setting. Furthermore, they inves-
tigated the quality and trustworthiness of the ex-
plainations of ChatGPT responses in a self-check
and by domain experts and judged them to be of
high quality and trustworthy.

One aspect that is not yet investigated in current
studies is the adaptability of the formulations of
ChatGPT in different situations and under different
user requirements. For effective use in human-
centered XAI interfaces, ChatGPT must be able
to generate different types of formulations that are
adapted to people’s needs. It is important that in-
terfaces also address humans on an emotional level
to enable trust. The fact that ChatGPT tends not
to express emotions (Mitrović et al., 2023), can be
challenging in this regard.

3 Method

This section presents the approach including data
collection and metrics used.

3.1 Data Collection

For this study, a total of 333 instructions were man-
ually selected from the ShareGPT2 dataset which
contains real world examples of conversations with
ChatGPT. For the selection process a set of 500
randomly selected instructions was created. The
instructions were then manually filtered based on
usefulness (i.e. instructions that were not written
in English or that consisted of only one word or
that contained only a technical command were re-
moved). The instructions were then utilized to
interact with the ChatGPT API. The gpt3.5-turbo
model was selected for the data collection process,
because it was the best accessible model at the time.
To ensure a comprehensive analysis, ChatGPT was
requested to respond to the instructions, in addition
to the default answer, using 10 distinct personality

1https://gptzero.me/
2https://sharegpt.com/
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styles as described in Section 3.2. In order to cater
to different user groups commonly encountered in
XAI interfaces, two additional styles were incor-
porated — one targeting laypeople and the other
aimed at experts. Thus, a total of 13 different styles
were applied during the interactions and resulted in
the acquisition of 4329 datapoints.

3.2 Personality Styles
In order to address people in different ways in an
XAI interface, besides ChatGPT’s default style, 10
personality styles were created to satisfy individ-
ual needs and requirements. Additionally the two
target groups laypeople and expert are described.
When selecting the personality styles, attention was
paid to a diverse range and existing findings were
taken into account (e.g. addressing laypersons and
experts). The styles should contain human char-
acteristics that can be useful for an explanation.
However, the real usefulness still has to be deter-
mined in user experiments.

Default: ChatGPT’s default personality if no spe-
cific prompt to change its personality is given.

Child-like: Simple, short and playful and targets
a younger audience or can be helpful when
explaining basic concepts to users who prefer
a more lighthearted and approachable expla-
nation.

Parent-like: A parent-like explanations could pro-
vide patience and empathy and may offer guid-
ance and support throughout the learning pro-
cess.

Professorial: High level of expertise and use aca-
demic language. Those styles could be use-
ful when catering to users who appreciate in-
depth knowledge and a more formal style of
explanation.

Friendly Companion: Supportive, uses conversa-
tional tone, engages in conversations and lis-
tens actively to user queries.

Expert Guide: Talks in a knowledgeable and au-
thoritative manner and can be effective when
users are seeking accurate and detailed infor-
mation from a trusted source.

Storyteller: Focus on narratives and anecdotes
and can give a more memorable experience,
enabling users to connect with the AI through
storytelling.

Helpful Assistant: Creates clear and concise ex-
planations and emphasizes practicality and
utility.

Humorous & Entertaining: Uses jokes, puns, or
witty remarks and can make the interaction
more enjoyable and help alleviate potential
boredom or monotony during the explanation
process.

Motivator: Inspiring and encouraging users and
can provide positive reinforcement, acknowl-
edge progress, and instill confidence in users’
ability to grasp the material.

Technician: Pays attention to detail and on the
technical aspects and can be valuable for tech-
nical professionals.

Laypeople: Aims at laypersons and will try to
present content in a way that is easy to un-
derstand.

Expert: Targets experts and will provide a lot of
expert knowledge.

The personality styles can be roughly di-
vided into two categories. One category in-
cludes more technical and professional person-
ality styles (ChatGPT’s default, professorial, ex-
pert, expert guide, technician). The other cat-
egory includes emotional, human-oriented per-
sonality styles (helpful assistant, storyteller, mo-
tivator, laypeople, friendly companion, humor-
ous/entertaining, parent-like, child-like). The two
categories are not strictly separated and overlap of
personality styles is possible.

3.3 Prompts
A separate prompt was created for each personality
style, with most of them following the scheme:

“I want you to communicate like a <person-
ality> in the following conversation. I will give
you a question or instruction and I want you to
answer it in a way a <personality> would do it.

<instruction>”

For personality styles like child-like or pro-
fessorial the personality tag was replaced with
words like “child” or “professor”. In cases where
this was not possible, the prompt was adjusted
to instruct ChatGPT to act in a specific way,
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e.g. “I want you to communicate in a humor-
ous/entertaining way [...]”. The two prompts,
aimed at laypeople and experts, follow the scheme:

“I want you to communicate in such a way that your
answers are directed at laypeople/experts. I will
give you a question or instruction and I want you
to answer it in a way that laypeople/experts can
understand.

<instruction>”

The instruction tag was replaced by an instruction
from ShareGPT.

4 Metrics

Metrics from the fields of NLP and linguistics were
used to analyze the responses of ChatGPT. In ad-
dition, a ML model was trained that attempts to
classify the different personality styles based on
the texts. An XAI framework was then used to
examine specific words and phrases of these styles.

4.1 Linguistic Metrics

For the linguistic analysis of ChatGPT’s responses
the spaCy framework3 in version 3.6 was used. The
average token-wise text length was calculated to
investigate if there are differences in the length of
the answers between the personalities. To check
how direct and precise a text is written, the average
number of stopwords was determined. Personalities
expected to produce text that is low in information
density are likely to have an increased number of
stopwords. These could include, for example, the
storyteller and the motivator personalities.

Further differentiation of responses could be pos-
sible by the average number of named entities used.
The more precise an answer is, the more named
entities it might contain. A more professional an-
swer will most likely contain more facts and details
that could also be expressed in named entities. To
compensate for the dependence on the length of the
texts, the average number of stopwords and named
entities per 100 words was calculated.

4.2 Readability

The readability of the responses in the different
personalities of ChatGPT is expected to differ sig-
nificantly. For this reason, the readability was com-
pared using the well established Flesch Reading

3https://spacy.io/

Ease (FRE) index (Flesch, 1948). The index has a
range from 0 to 100, where a value of 0 represents
very hard to read text and 100 represents very easy
to read text. The FRE is derived from a base value
from which the weighted average sentence length
and the weighted average number of syllables in a
word are subtracted.

4.3 Lexical Richness
Lexical richness is classically formed as the token-
type ratio (TTR), which is the relation of unique
words (types) and the set of total words (tokens)
(Templin, 1957). There are several variants of this
measure that make corrections to compensate for
a dependence on the length of the text (Torruella
and Capsada, 2013). One of these measures is the
Measure Of Textual Lexical Diversity (MTLD) as
described in McCarthy and Jarvis (2010). For the
calculation, the text is divided into segments for
which the TTR is calculated. A segment is ex-
panded until a TTR of a given threshold is reached.
Then the number of words in the text is divided
by the number of segments to calculate the lexi-
cal richness. A higher MTLD suggests that the
text uses a wider variety of words across its seg-
ments, and therefore has greater lexical richness. A
lower MTLD indicates that the text may have more
repetition and less varied vocabulary.

4.4 Sentiment Analysis
Personality styles that formulate text on an emo-
tional level (e.g. motivator personality) can be
expected to show increased positive or negative
sentiment. In order to investigate whether person-
alities exhibit a certain sentiment, a sentiment anal-
ysis of the texts was performed. The model used
is distilbert-base-uncased-finetuned-sst-2-english
which is a DistilBERT model (Sanh et al., 2020)
fine-tuned on SST-2 dataset (Socher et al., 2013).
The classification results in an assignment of a label
POSITIVE or NEGATIVE to the text with a per-
centage indication of the strength of the sentiment.
To distinguish positive and negative sentiments nu-
merically, all negative sentiments were converted
to a negative value. Thus, all positive sentiments
run from 0 to 1 and all negative sentiments from 0
to -1.

4.5 Personality Classifier
To gain a deeper understanding of the ChatGPT
texts, a classifier was trained that attempts to pre-
dict the respective personality based on the texts.
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It is reasonable to assume that there are personali-
ties that are very easy to predict because they have
unique phrases and style. Other personalities are
more similar to each other and more difficult to
predict. For the training, a distilbert-base-uncased
model was fine-tuned on the 4329 data points with
20% test data, 5 epochs of training, a learning rate
of 0.00002 and a batch size of 16.

4.6 Explaining the Classifier

The personality classifier was examined using the
XAI framework Shapley Additive Explanations
(SHAP) (Lundberg and Lee, 2017) to analyze
which words are typical of the different person-
alities. SHAP is based on the shapley values of
cooperative game theory and attempts to assign a
value to each feature, in the case of text each token,
indicating how much contribution that feature has
to the overall classification.

5 Results

Presented below are the results of the NLP anal-
ysis of the 4329 data points split between the 10
defined personalities, the two specific target groups
of laypeople and experts, and the default response
of ChatGPT. For simplified readability, the follow-
ing will always refer to 13 personalities.

5.1 Text Length

The average text length of the responses for the
different personality styles is shown in Figure 1.
The length of ChatGPT’s default response is in the
upper range of values with a average text length
of 332 tokens. The child-like personality has the
shortest average length with 148 tokens, while the
storyteller personality has the longest with 468 to-
kens on average. The more professional/technical
styles are in the upper range of values.

5.2 Stopwords

Figure 2 shows the average number of stopwords
for each personality style with ChatGPT’s de-
fault answer at the second position with 31 stop-
words per 100 words. It can be seen that the
technical/professional personality styles are in the
lower range of stop words and the more per-
sonal/emotional styles are in the upper range with
child-like (42 stopwords per 100 words) and parent-
like (43 stopwords per 100 words) at the top.
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Figure 1: The average token-wise lengths of the person-
ality styles.

5.3 Named Entities

The average number of named entities is shown
in Figure 3. The lowest number of named entities
occur for the personality styles motivator with 2.22
named entities per 100 words and storyteller with
2.23 named entities per 100 words, the highest
for ChatGPT’s default response with 4.42 named
entities per 100 words. The technical styles also
tend to be on the higher end for the number of
named entities. Surprisingly, the professorial style
is an exception.

When the named entities are split according to
their categories, it can be seen that the motivator
personality uses almost no numbers and the default
personality of ChatGPT uses no ordinal entities,
such as “first”, “second”, “third”, etc. The en-
tertaining personality contains the most named en-
tities with the category WORK OF ART, which
classifies book tiles, song names etc. The expert
personality has a high value for the FAC category
which contains building, airports, highways etc.

5.4 Readability

The scores for the Flesch Reading Ease index for
the different personality styles are shown in Fig-
ure 4. Low values mean that a text is more difficult
to read. The technical and more professional styles,
including ChatGPT’s default response, are on the
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Figure 2: Average number of stopwords of the personal-
ity styles per 100 words.

lower end. The professorial style is the hardest to
read with a score of 19.12, while the child-like is
the easiest with a score of 77.99. For all personali-
ties, the average is below 78, which means that on
average none of the texts are easy or very easy to
read.

5.5 Lexical Richness
The distribution of the MTLD lexical rich-
ness scores is shown in Figure 5. ChatGPT’s
default answer has the lowest MTLD score
(71.0), similar to the child-like personality, which
means, that the lexical richness is low. The
highest value is for the humorous/entertaining
personality (129.0). No distinction can be
made between technical/professional and non-
technical/non-professional as in the other results.
Lexical Richness seems to be a very individual
property of the respective personality styles.

5.6 Sentiment Analysis
In Figure 6 is shown, that the average sentiment
scores ranges from 0 to 1, with ChatGPT’s default
personality having a value close to 0. This does
not mean that this personality generates very neu-
tral texts. The opposite is true, as can be seen in
Figure 7. The distribution of negative and positive
sentiments balance each other, resulting in a neu-
tral value on average. In fact, all the personalities
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Figure 3: Average number of named entities of the
personality styles per 100 words.

behave in this way, with differing weights. For
example, the motivator personality has the predom-
inant amount of sentiments in the upper positive
range. In particular, there is no negative trend in
sentiment. All changes in the weights are in the
direction of more positive sentiment. Texts that
contain code tend to be classified with a negative
label.

5.7 Evaluating the Personality Classifier
The personality classifier to decide a personality
style out of the 13 classes reached a F1-score of
0.79. Although the value is already quite good,
a difference can be seen between the individ-
ual personality styles. As suspected, there are
styles that are particularly predictable. Humor-
ous/entertaining, storyteller and parent-like person-
alities with a F1-score of 0.97, child-like with 0.95
and professorial with 0.89. These personality styles
have very unique formulations and style. The story-
teller personality in particular has frequent unique
phrases, such as “once upon a time”, that are not
used by other styles. The hardest to predict person-
alities are technician with F1-score of 0.48, expert
with 0.61 and laypeople with 0.63.

A look at the confusion matrix, which can be
seen in Figure 8, shows that the technician per-
sonality is in 15 cases confused with the expert
personality and 6 times with the helpful assistant.
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Figure 4: Flesch’s Reading Ease (FRE) values of the
personality styles. FRE ranges from 0 to 100, with
higher values indicating better readability.

The expert personality is confused in 8 cases with
the technician, in 7 cases with the helpful assistant
and in 5 cases with ChatGPT’s default answer. The
laypeople personality is in 8 cases confused with
the helpful assistant, in 6 cases with ChatGPT’s
default answer and in 2 cases with the technician.
This shows very clearly that these personality styles
are very similar to each other and may use the same
phrases.

5.8 Extracting Important Words with SHAP
The most important words for the prediction of per-
sonalities with the personality classifier were ex-
tracted with the SHAP XAI framework. A global
explanation approach was chosen using summa-
rized text explanations. The extracted top 10 words
for each personality style are shown in Table 1.

6 Discussion

The lengths of personality styles generated by
ChatGPT are as expected. A child-like personality
is expected to have rather short texts, since many
details are omitted. In contrast, the storyteller per-
sonality generates very long texts because whole
stories are formulated with embellishments. An
explanation for why the professional/technical per-
sonality styles tend to generate longer texts is that
they contain more factual content, are described in
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Figure 5: Measure Of Textual Lexical Diversity
(MTLD) values of the personality styles, with higher
values indicating higher lexical richness.

more detail, and contain code. The average num-
ber of stopwords, the average number of named
entities, Flesch’s Readining Ease and the sentiment
score can be explained by the categorization into
professional/technical and non-professional/non-
technical personality styles. Personality styles that
are not so technical/professional but more human-
oriented, take into account other dimensions be-
sides the factual content, e.g. include motivational
phrases, descriptive texts, entertaining passages,
etc. This leads to the increased number of stop-
words. At the same time, due to a different fo-
cus (motivation, entertainment, etc.) the facts are
reduced, which explains the reduced number of
named entities. As professionalism and technical
focus increase, wording becomes more complex,
which degrades readability, explains the falling
Flesch Reading Ease, and aligns with expecta-
tion. ChatGPT’s ability of being able to switch
appropriately between professional/technical and
emotional/human-centered formulation of texts
through the presented prompts fits very well with
the requirement for adaptive human-centered XAI
interfaces to adapt to user needs and to provide
information in different preparations and different
granularities.

The distribution of MTLD indicates that the lex-
ical richness of personality styles has no simple ex-
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Personality Most Important Tokens
Default “Certainly”, “steps”, “bu”, “B”, “template”, “:”, “Firstly”,

“you”, “Python”
Child-like “!”, “Oh”, “.”, “and”, “,”, “”, “friend”, “Hi”, “or”
Parent-like “Parent”, “.”, “?”, “Child”, “,”, “sweetie”, “a”, “!”, “sweetheart”
Professorial “Indeed”, “pleased”, “scholarly”, “.”, “,”, “Thank”, “Colleagues”,

“intriguing”, “excellent”
Friendly Companion “absolutely”, “delighted”, “Hey”, “,”, “fascinating”, “Oh”, “course”,

“!”, “assist”
Expert Guide “walk”, “guide”, “Welcome”, “welcome”, “Certainly”, “Allow”,

“.”, “!”, “explorer”
Storyteller “Once”, “nestled”, “!”, “expertise”, “time”, “tale”, “upon”,

“a”, “qui”
Helpful Assistant “course”, “assist”, “helpful”, “Certainly”, “assistant”,

“,”, “.”, “!”, “As”
Humorous/Entertaining “!”, “Oh”, “jolly”, “Well”, “?”, “,”, “comrades”, “.”, “Don”
Motivator “!”, “welcome”, “Absolutely”, “Remember”, “inspire”, “amazing”,

“you”, “,”, “friend”
Technician “technician”, “Technician”, “assist”, “,”, “Sure”, “.”, “and”,

“V”, “X”
Laypeople “Certainly”, “Sure”, “”, “Singapore”, “Remember”, “,”, “guide”,

“memory”, “appropriate”
Experts “Certainly”, “examples”, “Experts”, “expert”, “,”, “experts”,

“subjective”, “I”, “Title”

Table 1: Most importants words for each personality extracted from the personality classifier using XAI framework
SHAP.

planation and that a separate explanation for each
style needs to be found in future work. However,
for the personality styles motivator, professorial,
storyteller, and humorous/entertaining, which are
in the upper range of values, the result is at least
plausible, since many unique words for these can
be expected. If the scores of the MTLD are com-
pared with the Flesch Reading Ease, there are cases,
such as the professorial personality, where the texts
are very difficult to read and have a high lexical
richness. A random examination of the data shows
that the texts are indeed particularly written in a
sophisticated way. There are other cases, such as
ChatGPT’s default personality, which is also diffi-
cult to read, but has a low lexical richness. Possible
explanations could be a more complex sentence
structures, advanced vocabulary and redundancies.

Sentiment analysis showed that for personality
styles for which positive sentiments are expected
(motivator, storyteller, friendly compation, humor-
ous/entertaining) the texts were adequately simu-
lated by ChatGPT. This is due to an increased use
of words with positive sentiment. The ability of

ChatGPT to provide an explanation to a human
in an appropriate sentiment is a strong feature for
human-centric XAI interfaces. Explanations con-
veyed with an appropriate sentiment seem more nat-
ural and it can be presumed that trust is increased.
The analysis of the personality classifier shows that
there are personality styles that are very distinct
from each other. The reason are words and phrases
typical for the personality. This finding becomes
even clearer by analyzing the words extracted with
SHAP. For example, the professorial style uses so-
phisticated words such as “indeed”, “pleased”,

“intriguing”, and “excellent”, which are very appro-
priate for this style. The friendly companion uses
very friendly words and the expert guide person-
ality is very welcoming. It can also be seen that
some styles reference themselves. For example, the
helpful assistant uses the words “assist” and “as-
sistant”, the technician uses the word “technician”,
and the expert style uses the words “expert” and

“experts” frequently. This is because ChatGPT gen-
erates phrases like “Ok I will give the answer like
a technician” at the beginning of the answer.
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Figure 6: Average sentiment score for each personality
style.
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Figure 7: Distributions of sentiment scores for
ChatGPT’s default personality.

7 Conclusion

The analysis showed that the personality styles sim-
ulated by ChatGPT are largely in line with require-
ments and expectations and can be used in adaptive
human-centric XAI interfaces. ChatGPT is able to
generate texts of appropriate length with a number
of facts adapted to the personality. A clear distinc-
tion could be made between professional/technical
and more emotional/human-centered personalities,
which is of great importance for adaptive human-
centered XAI interfaces. The use of stopwords
and the readability of the texts behave according to
the personality styles. ChatGPT is able to create
the appropriate sentiment of a text and words and
phrases are used that match the personalities. This
was shown by training and analysis of a personality

Figure 8: Confusion matrix of the personality classifier.

classifier and application of SHAP explanations.

8 Limitations

While ChatGPT has demonstrated the ability to
effectively replicate diverse personality styles in
textual analysis, the congruence of these simula-
tions with real human perception remains unestab-
lished. In order to provide clarity on this issue,
it is necessary to examine how the simulated per-
sonalities affect the individual. Also, whether the
personality styles can positively influence the im-
portant attributes of XAI interfaces, including trust,
fairness and transparency, must be shown in future
studies.
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Abstract
Promoting information coverage and sentence
diversity is an efficient method to handle the
fundamental issue of data heterogeneity or re-
dundancy in multi-document summarization.
We introduce a self-supervised algorithm for
multi-document summarization that employs
a multitask learning approach for topic diver-
sification. Our model is based on two varia-
tional autoencoders that combine the training
of a language model and a topic model to bias
text generation and control the topic content
of the produced summaries. We evaluate our
method on the Amazon product review dataset
and report ROUGE results and other metrics to
assess information coverage. We demonstrate
that our approach creates diversified outputs for
the same batch of reviews and aspect-focused
ones, allowing us to optimize text generation
strategies.

1 Introduction

E-commerce and online sales platforms have grown
substantially among the leading shopping media
1. They change how we purchase products or ser-
vices, allowing access to user experience. However,
due to the subjective nature of reviews, customers
must read many reviews to make an informed de-
cision. By distilling the most important content in
a reduced version of all opinions, automatic text
summarization becomes crucial to help users.

The recent success of deep learning systems has
led to significant improvement of extractive (Ange-
lidis et al., 2021) or abstractive (See et al., 2017a;
Paulus et al., 2017) document summarization mod-
els. With the domain-sensitive nature of product
reviews, manufacturing large parallel corpora be-
comes costly and hardly transferable. Therefore,
it has created a strong appetite for unsupervised
summarization approaches where salient informa-
tion depicts the consensual customer’s point of

1https://www.forbes.com/advisor/business/
ecommerce-statistics/

view. However, the data heterogeneity of opin-
ions distorts relevant content, resulting in overly
broad summaries (Amplayo et al., 2021). Thus, It
is essential to design strategies focusing on specific
product aspects and transcribing this fine-grained
content into the summary (Coavoux et al., 2019).

Since aspects can be implicitly grouped together
according to themes, the detection of product re-
view topics has naturally been associated with re-
view aspects (Zhai et al., 2015). Methods such
as Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) and its deep learning variants have proven to
be efficient in dynamically identifying these themes
for opinion datasets (Ozyurt and Akcayol, 2021).
In the context of opinion summarization, topic di-
versity increases the volume of the semantic space,
improves information coverage, and therefore sat-
isfies different needs of the user’s population (Yo-
gatama et al., 2015). The objective is then to opti-
mize the sentences’ topic relevancy and diversity
(Li et al., 2010; Fang et al., 2015). Conditional
variational autoencoders (Sohn et al., 2015) trained
with topic modelling systems (Gao and Ren, 2019;
Xiao et al., 2018) thus represent a promising avenue
in this context.

In this article, we introduce an abstractive
method for unsupervised customer opinion sum-
marization that can produce text segments focused
on various topics and combine them to maximize
the input coverage. More specifically, our approach
relies on a multi-task learning algorithm to train a
topic and a language model jointly, both based on a
variational autoencoder (VAE). We use the topic la-
tent representation to condition the language model
when learning review reconstruction. During the
generation phase, we can select a subset of differ-
ent topics to bias content included in the summary.
We evaluated our approach on the Amazon product
dataset, showing the importance of topic modelling
to bring detailed and meaningful messages in such
a heterogeneous context.

178



2 Related work

2.1 Multidocument Summarization for
Opinion

Recent unsupervised abstractive techniques encap-
sulate information redundancy from a group of
reviews into an average latent representation ei-
ther directly (Chu and Liu, 2019; Bražinskas et al.,
2020). However, such models suffer from aspects
and topic heterogeneity, thus resulting in overly
broad and almost irrelevant summaries. To address
this issue, authors in (Angelidis and Lapata, 2018)
create aspects-based representations with a partial
autoencoder and devise an optimization function to
select opinion that leverages their coverage. Opin-
ionDigest (Suhara et al., 2020) is another method
that clusters topically related reviews and employs
a ranking algorithm to increase diversity in the
output. Finally, (Amplayo et al., 2021) have in-
troduced an interesting hybrid procedure that clus-
ters opinions and extracts sentences to produce a
summary predicated on popular or specific aspects.
Regarding abstractive summarization, authors in
(Coavoux et al., 2019) combine Meansum (Chu and
Liu, 2019) with a clustering algorithm to conceive
a latent representation for each group and form a
text that maximizes input coverage. Our model is
closely related because we modify the hierarchical
VAE submitted in (Bražinskas et al., 2020) with
a topic model. However, we propose a multi-task
learning objective to produce dynamic topic repre-
sentations, letting us condition the summary on the
popular or specific topic/aspect.

2.2 Topic modeling
One of the most known and employed models is
the Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) because of its generative ability and inter-
pretability. The method has been applied in (Arora
and Ravindran, 2008) for extractive summariza-
tion by submitting an algorithm that selects phrases
with the highest probability of being produced by
both the main topic and the document collection.
Some authors have proposed increasing the cover-
age of the input texts by weighing the importance
of the LDA topics with their similarity to ensure
the diversity of sentences (Ren and de Rijke, 2015).
Regarding recent deep learning models, some au-
thors have adapted the re-parametrization trick of
VAEs (Kingma and Welling, 2022) to multinomial
distributions such as the Dirichlet distribution to
create deep topic models (Srivastava and Sutton,

2017). Thereafter, such techniques have been used
to obtain conditional language models to diversify
sentence outputs. The idea is to produce biased la-
tent representations by weighting input information
by topics (Gao and Ren, 2019) or to concatenate
directly the latent and the topic vectors (Xiao et al.,
2018). Our approach combines these principles
to learn relevant topics and optimize their selec-
tion for increasing opinion coverage in abstractive
summarization.

3 Proposed Model

This section presents the general architecture of
our multi-task learning approach as described in
the figure 1. We first modify the hierarchical VAE
summarizer proposed in (Bražinskas et al., 2020)
by adding another VAE for topic modelling. We
also introduce methods to select and condition sum-
mary generation regarding various topics.

The corpus is composed of customer reviews
on different products. The vocabulary of the cor-
pus is noted V . We define a batch of M cus-
tomer reviews regarding a specific product as
{R1, ..., Ri, ..., RM} used to train our model. Each
review Ri is composed of a set of words X =
{X1, ..., Xj , ..., XN}, where N represents each re-
view’s variable length.

3.0.1 Topic Model
For a given review Ri, we apply a Bag of Words
(BoW) encoding to obtain a vector BoWi of size
|V |, where dimensions indicate the word occur-
rence in Ri. This vector is then fed to a two-layer
Forward Neural Network with a softplus activation
function to create hbowi . We use this dense represen-
tation to encode the topic distribution through the
continuous latent representation ti. The objective
of the model is to maximize the following:

log

∫ M∏

i=1

pθ(BoWi|ti, β) (1)

where β represents the multinomial prior distri-
bution of the topics over the vocabulary. As for the
ProdLDA model (Srivastava and Sutton, 2017), we
approximate the mixture of two multinomial distri-
butions to their weighted multiplication. Therefore,
we combine β and ti to compute the probability of
generating the output Bag of Words BoW

′
i :

pθ(BoW
′
i ) = softmax([ti · β]) (2)
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Figure 1: The multitask architecture for topic diversification of summary generation. The right part presents how the
VAE is trained with a bag of word representation to obtain the topic distribution and the latent variable t. The left
part displays the language model VAE. The latent variable c encodes the whole group of reviews while z encodes
individual information. z is conditioned by c in training and is combined with t for the text reconstruction.

We train this part of the model with the mean
square error function.

3.0.2 Language Model

We transform every input review with a pre-trained
embedding model. The embedding matrix is fed
to our encoder, a bidirectional Gated Recurrent
Unit (GRU) (Cho et al., 2014). It produces an
encoding hij for each word j ∈ Ri and the last
hidden state output hiN used as the sentence repre-
sentation. We based the training of our language
model on the hierarchical VAE structure proposed
in Lsumm (Bražinskas et al., 2020). Therefore, we
first create the hidden representation hc for all the
group by computing the weighted sum over the
attention of mij = [hij ;Eij ], the concatenation of
the embedding and the GRU representations of the
term xj inRi. We also assume a standard Gaussian
distribution and apply a linear projection on hc to
sample the latent representation c encapsulating
the information from the batch of reviews. Then,
to perform the text reconstruction, we concatenate
hiN , the last GRU layer of Ri, and c to sample the
latent variable z and pass it to our decoder.

When reconstructing, we perform N decoding
steps to generate our sentence. We set the initial

hidden state of the decoder, a simple GRU, s0 to
[zi; ti] the concatenation of the topic and latent rep-
resentation of Ri. At each decoding step t, we
estimate the current hidden state st with the pre-
vious states st−1 and predicted word x

′
t−1. We

keep following the structure introduced in (Bražin-
skas et al., 2020) by calculating the attention dis-
tribution at, as in (Bahdanau et al., 2016), over
the whole group of reviews R_i, excluding Ri.
Once computed, we use every attention value at_i
to weight the representation h_i of terms not be-
longing to Ri to create the context vector ct. This
vector is concatenated with the decoder state st
and passed through a linear and a softmax layer to
determine the probability of generating the output
word pg(x

′
t):

Pg(x
′
t) = softmax(V

′
(V [st, c

t] + b) + b
′
) (3)

where V
′
, V , b, and b

′
are learnable parameters.

We finally deploy a copy mechanism as presented
in the Pointer Generator Model (PGN) (See et al.,
2017b) to consider Out-Of-Vocabulary words. We
compute the probability pgen with a forward net-
work and a sigmoid function over the context vector
ct, the hidden state st, and the previous predicted
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word x
′
t−1. The model uses pgen to decide if it

must preserve x
′
t or to copy a term from R_i. The

new probability then becomes:

P (x
′
t) = pgen×Pg(x

′
t)+ (1− pgen)×

∑

i∈Vext

(at_i)

(4)

where Vext is the extended vocabulary aggregat-
ing the training vocabulary and the source docu-
ment distribution. Finally, we let the model choose
to draw terms directly from the distribution of top-
ics p(BoW

′
i ) defined in equation 3.0.1 by modify-

ing the final probability:

Pfinal(x
′
t) = P (x

′
t) + p(BoW

′
i ) (5)

We empirically notice that letting the model
choose between the two probabilities helps the
model to converge better when learning the topic
distribution. The language model is trained with
the cross-entropy function.

3.0.3 General Architecture

Our complete approach combines the topic and the
language models. The objective is to maximize the
following function:

log

∫ [
pθ(c)

M∏

i=1

∫
pθ(Ri|zi, R_i, BoWi, ti)

pθ(zi|c)dzi
]
dc+ log

∫ M∏

i=1

pθ(BoWi|ti, β)dti
(6)

The right part of the function describes the topic
model, and the left part depicts our language model
conditioned by the topic content. This approach
enables the system to learn relevant topics and use
them to condition summary generation.

3.1 Model distributions

This section describes the assumptions about the
prior and posterior distributions. We rely on the
principles defined in (Bražinskas et al., 2020) for
approximating c and z and (Srivastava and Sutton,
2017) for t. We refer the lecturer to these articles
for further mathematical details.

3.1.1 Reconstruction latent variables: c ans z
For c, we assume a standard normal prior dis-
tribution p(c) = N (c; 0, I). For the posterior
distribution, we use the reparameterization trick
(Kingma and Welling, 2022) for Gaussian dis-
tribution with a linear projection on hc. We
estimate the mean µΦ(c) and variance σΦ(c)
the approximated inference network qΦ(c|hc) =
N (c;µΦ(hc), IσΦ(hc)). Regarding z, we also as-
sume a prior normal Gaussian distribution. The
major difference is that the latter is conditioned
by c to obtain pθ(z|c) = N(z;µθ(c), Iσθ(c)). As
for the mean µΦ(z) and the variance σΦ(z) of
the inference posterior distribution, we use the
same procedure by linearly projecting the con-
catenation [Ri; c]. Then, we sample z through
qΦ(zi|Ri, c) = N(zi;µΦ(Ri, c), IσΦ(Ri, c)).

3.1.2 Topic latent variable: t
We assume a Dirichlet prior distribution for the
latent topic variable t because it has been shown
beneficial to obtain good and interpretable topics
(Blei et al., 2003). The reparameterization trick
becomes a Laplace approximation with a softmax
estimation to compute the distribution and make
it tractable within the VAE framework. This ap-
proximation to the topic prior pθ(t|α) is equiva-
lent to considering a logistic normal distribution
with parameters with mean µθ(t) and covariance
matrix σθ(t) that are functions of α and K the
number of defined topics. Once we assume this
distribution, we can once again compute the param-
eters of the posterior distribution from an inference
network as a linear projection on hBoW

i to obtain
qΦ(ti|hBoW

i ) = N(ti;µΦ(h
BoW
i ), IσΦ(h

BoW
i )).

3.2 Model loss function

We seek to maximize the Evidence Lower BOund
(ELBO) for variational inference regarding the pa-
rameters θ and Φ. The following equations depict
the language model noted LLM and the topic model
loss LTM .

LLM (θ,Φ) = EqΦ(c|R)

[
M∑

i=1

EqΦ(zi|Ri,c)

[log pθ(Ri|zi, ti, BoWi)]−
M∑

i

DKL [qΦ(zi|Ri, c)||pθ(zi|c)]
]

−DKL [qΦ(c|R)||pθ(c)]

(7)
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LTM (θ,Φ) =

M∑

i=1

EqΦ(ti|BoWi) [log pθ(BoWi|ti, β)

−DKL [qΦ(ti|BoWi)||pθ(ti|α)]]
(8)

For both losses, the left part of the expressions
ensures the text reconstruction of Ri or its bag of
words representation BoWi. The right term is the
Kullback-Leibler divergence, which guarantees to
match our prior distributions. We then minimize
the joint loss as the sum of LLM and LTM .

3.3 Summary Generation

To condition summary generation, we must first
set up a strategy to designate the k = [1, ...,K]
main theme(s) on which to focus. We deter-
mine the relevant topics by identifying the ones
that deviate the most from their expected prior
distribution (AlSumait et al., 2009). To ensure
further their diversity, we have implemented a
Maximum Margin Relevance approach (Carbonell
and Goldstein, 1998). Therefore, we choose top-
ics from the posterior distribution that maximize
cos(tpriork , tk) − λ ∗ cos(tk, tj), where tk is the
topic distribution over our documents, tj are the
already picked ones, cos is the cosine similarity,
and λ = 0.5.

For each selected topic k, we bias the hidden
representation hc with the posterior topic-word dis-
tribution βk. We establish the set Xtopicsk by pre-
serving 1/8 of the most topically probable terms in
βk from the extended vocabulary. We tested multi-
ple filtering factors ranging from 1/2 to 1/32. Our
first observations let us think that if we keep too
many words, we do not impose enough diversity in
the outputs, and if we remove too much, sentences
become ungrammatical. Therefore, we empirically
chose to preserve 1/8 words as a good balance
between the produced summaries’ diversity and
coherency. When creating hc, instead of attending
to all the group reviews’ words, we attend only to
Xtopicsk; the remaining words are masked. Then,
we fix c to µΦ(c) constructed via the inference
model through this biased hc.

To further condition the summarization of our
text collection, we use the topic distribution tk to
set z to ztopic = µθ(z) ∗ tk, a topically biased rep-
resentation of its prior mean for each document.

We sample our summary by maximizing the proba-
bility expectation P (x

′
t) only. We instead apply

p(BoW
′
i ) in the beam search method to select

among our K best-generated hypotheses the one
that maximizes the sum of the two probabilities.

4 Experiment

4.1 Dataset

We trained our model on the Amazon Product
dataset composed of reviews on 29 product cat-
egories (He and McAuley, 2016). We have con-
sidered products with at least 15 and a maximum
of 100 reviews. We excluded texts under 8 and
above 200 tokens. We remove the ones above the
90th percentile each time. Since we aim to demon-
strate the model’s ability to handle heterogeneous
information, we sample reviews from 19 categories
and evaluate the model on the same 200 human-
generated summaries as in (Bražinskas et al., 2020).
Our final training data is composed of 17,497 re-
views drawn from 303 products and the validation
of 3,105 reviews from 50 products.

4.2 Implementation details

Our model uses the GloVe 200-dimensional pre-
trained word embeddings (Pennington et al., 2014).
The text was lowercased, and we used Spacy tok-
enizer and part-of-speech tagger 2 to preserve only
adverbs, adjectives and nouns for the BOW repre-
sentation. Both the model’s encoder and decoder
are composed of a single bidirectional layer with a
size of 512 hidden units. We set the dimensions of
the latent variable z and c to 600. We set the num-
ber of topics t to 30. We initialize the model during
training with a Xavier uniform distribution (Glorot
and Bengio, 2010). We trained the model for 150
epochs with the Adam optimizer (Kingma and Ba,
2017), a learning rate of 5 ∗ 10−4, a weight decay
of 10−6, a gradient clipping of 10, and a dropout
ration of 0.2. Regarding the KL divergence terms,
we have employed a cycling function with r = 0.8
(Fu et al., 2019) and a maximum value of 1 for z
and 0.65 for c. We have used a linear scheduling
function between epochs 0 to 40 with a max value
set to 1 for t. Finally, we apply the beam search
method with a beam size established to 5 and an
n-gram blocking method (Paulus et al., 2017) set
to avoid trigram repetitions. Our code is available

2https://spacy.io/
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on GitHub 3.

4.3 Evaluation

We compare our approach with 3 different base-
lines. The first is BERT for Text Summarization
(Miller, 2019), and the second is TextRank (Mihal-
cea and Tarau, 2004). These two extractive meth-
ods are regularly used as baselines for evaluating
general-purpose summarization. We also compare
to our unsupervised base abstractive model Lsumm
(Bražinskas et al., 2020). We trained and fine-tuned
it on our Amazon dataset with the same parameters
detailed in the section 4.2.

We report the average and maximum ROUGE F1
scores (Lin, 2004) for the different baselines on the
evaluation dataset, which encompasses 3 human-
created summaries for 60 products consisting of 8
reviews. We also provide the ROUGE scores with
filtered stop words to emphasize the presence of
content words in the generated outputs. We further
include BLEURT scores (Sellam et al., 2020) to
indicate to what extent the summaries convey the
meaning of the input. Finally, we disclose how well
methods can capture the topics addressed in the
opinions expressed. To that extent, we train a LDA
model with the Gensim library 4 on our training
dataset. We then measure the similarity of the topic
distributions and the semantic coherence of topics
as described in (Greene et al., 2014) between the
input reviews and the produced summaries.

5 Results and analysis

5.1 Model evaluation

We introduce two models based on our approach.
The first method, TopiCatSumm, generates one
summary based on K topically conditioned sen-
tences of lengthNmean/K, whereNmean is the av-
erage length of a batch of reviews. Since Nmean =
58 words, we set K = 3 to ensure diversity while
generating long enough texts to be coherent. For
the second, TopicNSumm, we have duplicated the
evaluation dataset by making 3 topically distinct
outputs of length Nmean. We report in the table 1
both the average score between the summary and
all the references and the maximum score with its
best matching reference. In the case of our second
configuration TopicNSumm, we first pair each hu-

3https://github.com/fcarichon/
TopicDiversifiedVAESumm

4https://radimrehurek.com/gensim/models/
ldamodel.html

man production with the summary that optimizes
its ROUGE score, and we report the average and
maximum for all associated metrics.

Contrary to previous observations, self-
supervised abstractive approaches appear worse
than unsupervised extractive ones. This result
likely represents the issues created by increasing
data heterogeneity in the training set. The results
also show that TopicNSumm allows an efficient
optimization for matching related summaries
with their reference. TopiCatSumm was the least
performing, partly due to the size constraint
penalizing the production of coherent sequences,
but both methods improve the topic diversity
and content coverage. We exhibit further these
observations in the table 2.

These results reveal that both our approaches sig-
nificantly improve content coverage and the topic
distribution of the original customer opinions com-
pared to the base abstractive approach. The filtered
ROUGE scores further emphasize that our methods
improve the ability to generate meaningful mate-
rial. We assume that the performance of extractive
strategies remains high because of the intrinsic ho-
mogeneity of a batch dealing with the same product.
Therefore, we conduct a quick analysis of ROUGE
for a batch of 16 reviews from 2 distinct products.
Once again, we pair the best matching results to the
summary to disclose average and maximum scores
in the table 3. Our approaches suffer less from
increasing heterogeneity, especially compared to
extractive approaches, where the drop is the most
important. In future studies, We plan to evalu-
ate our model’s capability to handle these extreme
cases.

Finally, we provide some examples of generated
documents by our model and the various baselines
in appendix Appendix A..

5.2 Model and configuration analysis

We integrated our topic model with our language
and summarization model during the training stage.
We used a BOW vector for each review in our
approach, but we could have created one for the
entire group instead. However, by doing so, we
observe that the model is unable to optimize both
LTM and LLM at the same time. The need to
capture individual and group information either
restricts too much or brings too much noise into
the latent variable t, penalizing the language or
the topic model. During training, we also directly
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Table 1: ROUGE scores on the Amazon dataset

Methods R-1 (avg) R-1 (max) R-2 (avg) R-2 (max) R-L (avg) R-L (max)
BERT Summarizer 25.03 30.33 4.17 7.39 15.31 18.67
TextRank 29.42 34.87 5.1 8.36 16.82 20.17
LSumm 17.57 21.92 0.51 1.14 10.91 13.59
TopiCatSumm 16.91 20.32 0.34 8.83 9.75 11.79
TopicNSumm 19.64 23.24 0.78 1.9 11.58 13.9

Table 2: Topic content and coverage evaluation on Amazon dataset

Methods R-1 filt. (avg) R-1 filt. (max) BLEURT Word topic overlap topic similarity
Human references NA NA -0.464 0.95 0.488
BERT Summarizer 18.64 25.04 -0.774 0.469 0.336
TextRank 21.24 27.29 -0.673 0.521 0.338
LSumm 6.67 9.89 -0.889 0.201 0.2
TopiCatSumm 9.39 12.71 -0,579 0.494 0.383
TopicNSumm 11.58 15.53 -0,677 0.678 0.477

concatenate z and t, but it would be tempting to do
it for c and t since we use this representation as a
condition for the summary generation. However, it
results again in a significant drop for both losses,
thus in low topic quality and inability to create
diverse outputs. Including t in early layers makes it
possible for the model to bypass learning the topic
distribution, and it does not facilitate the task of
capturing information for z as observed in (Xiao
et al., 2018).

We have tested several configurations to bias the
summary topically. The first experiments and the
study of the output texts have emphasized the im-
portance of employing the posterior distribution for
sampling t and β matrices. With the data hetero-
geneity, using prior distributions leads to inducing
broad topics, thus decreasing content quality and
increasing hallucinations. The remaining iterative
tests modify parameters in our current setup, stated
as configuration 0 hereafter and described in sec-
tion 3.3.

• Configuration 1: As for c and t, we have set t
at its mean mu(t) only.

• Configuration 2: We have tried to bias c
with the main topic distribution by creating
ctopic = muΦ(c) ∗ tk as we do for ztopic.

• Configuration 3: Inversely, instead of employ-
ing a topic biased ztopic, we have set it to its
mean z = muθ(z) as in Lsumm.

• Configuration 4: Rather than masking the at-
tention for hc, we could weight the attention
tensor with the word’s topic probability.

• Configuration 5.a: Rather than masking at-
tention at the group level, we have masked
attention used directly in the decoder.

• Configuration 5.b: As for configuration 4, we
have also tried to weight the decoder’s atten-
tion tensor with the word’s topic probability
rather than masking it.

• Configuration 6: We have employed the BOW
probability p(BoW

′
i ) for the summary gener-

ation.

We report the ROUGE-1 and BLEURT results
for the TopicNSumm model. We also provide a
diversity metric to emphasize issues met by some
configurations. To that end, we re-encode the gen-
erated summaries, and then measure the average
cosine distance between these encodings. The table
4 displays the results obtained.

Results from configuration 1 emphasize again
the value of having a precise and rich topic distribu-
tion to draw effectively relevant information from
the topic distribution. The absence of difference in
configuration 2 and the significant decrease of sum-
maries’ diversity in configuration 3 confirms the
importance of biasing z as in training and not the
group representation c, where the language model
might compensate for the topic conditioning. The
BLEURT and diversity scores of configuration 4
corroborate this hypothesis since implementing a
soft bias, such as weighting the attention, is not
enough to produce heterogeneous outputs. We can
also note from analysis of configurations 5.a, 5.b,
and 6 that directly impacting the text generation
with topic distribution, in the decoder or the final
probability distribution, is effective for producing
relevant content. However, it comes at the expense
of the summary coherency and readability.

Finally, another possibility is to let users bias
the summary toward specific topics by defining
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Table 3: Evaluation of the various approaches summarizing batches of 16 reviews sampled from 2 different products
categories of the Amazon dataset.

Methods R-1 (avg) R-1 (max) R-1 filt. (avg) R-1 filt. (max)
BERT Summarizer 18.63 25.04 13.35 21.96
TextRank 21.24 27.29 14.02 23.58
LSumm 18.39 25.58 4.13 6.17
TopiCatSumm 16.67 22.17 9.11 15.17
TopicNSumm 18.45 25.15 11.04 18.02

Table 4: Table introducing the different results from various model configurations. We repeat the results of our main
model in the first line for comparison.

TopicNSumm configurations R-1 (avg) R-1 (max) BLEURT Hidden diversity
Configuration 0 19.64 23.24 -0.677 0.578
Configuration 1 16.76 20.23 -0.656 0.513
Configuration 2 19.62 22.58 -0.69 0.534
Configuration 3 19.58 23.12 -0.65 0.328
Configuration 4 19.53 23.56 -0.72 0.469
Configuration 5.a 19.82 23.86 -0.63 0.557
Configuration 5.b 19.78 23.92 -0.61 0.558
Configuration 6 19.78 23.39 -0.677 0.562

their set of keywords Xuser = Xuser
0 , ..., Xuser

U .
In that case, we identify the U main topics that
maximize the probability p(Xuser|tu) in the topic-
word matrix. We provide 3 examples in table 7
in appendix Appendix B. of summaries generated
by inputting the term “price” in the appendix. We
observe that the model has conditioned the texts to
include terms such as “expensive”, “full cost”, or
even “budget”, which relate to the price. We also
note that the model cannot bias the summary if the
reviews do not deal with the input term. While this
can be frustrating for the user, it is beneficial that
the model does not hallucinate false information.

5.3 Limitations and future research avenues

The first limitation of our approach comes from
the additional hyperparameters we introduced. We
had to fine-tune many variables and distributions
to make the model efficient. Specifically, we no-
ticed that the number of topics selected is crucial
since it influences the output quality and is, unfor-
tunately, domain- or product-dependent. The sec-
ond impediment of our method can be generalized
to every system that tries to bias text generation.
Indeed, biasing language models can lead to pre-
dicting terms that should not have been otherwise,
inducing a potential loss of coherence or unwanted
hallucinations. Finally, we are aware of the lim-
itations of our architecture based on single-layer
RNNs. The text coherency is inferior to current
models predicated on pre-trained large language

models (LLMs). Beyond the problems of budget
and access to sufficiently powerful machines, study-
ing simpler models guarantees that the capacity of
these architectures does not absorb our approach
and does induce diversity. We leave the analysis of
its application to LLMs for future work.

6 Conclusion

In this paper, we introduced an unsupervised topic
method for multi-document summarization of prod-
uct reviews. It relies on two variational autoen-
coders combined in a multitask learning objective.
This approach improves abstractive summarization
models’ performance by increasing content cover-
age or focusing on specific important topics. With
this research, we hope that we have successfully
demonstrated that this model could enhance the
capacity of generative large language models to
handle heterogeneous data and bias and diversify
their outputs.
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Appendix A. Models’ generated texts

The table 5 presents the produced results by the
different models for batches of 8 reviews. We note
the better coherence and quality of the extractive
baseline. However, we can also observe for vac-
uum filter examples that our method generated texts
on the eating system, the filters and their price, or
the fans. It highlights the ability of our model to
increase the coverage of the inputs’ topics and as-
pects. The table 6 shows the generated texts for
a batch of 16 documents. The benefit of our ap-
proach is even more obvious here when we see 2
summaries focusing on the vacuum and the other
on the steamer. In contrast, our baselines cannot
manage this information diversity and have a con-
siderable loss of coherency and relevance.

Appendix B. Texts with an input keyword

The table 7 presents the produced summaries by our
model when we provide an input term to bias the
generation of the model. A summary is then gener-
ated for each given term. The products presented
here are the ones used in the previous examples to
allow output comparison with this new bias.
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Table 5: Table with examples of generated texts. For each product we provide the text generated by our two
configurations, the absractive model LSumm and the extractive model TextRank.

B0002U34HY
(CHV1510

Vacuum filter)

Our model
TopiCatSumm

Easy fix before expected not much monster filters but with reg-
ular use handles clean, seems sturdy. However this filter was
difficult with product support, I read comparable CHV1510 on
here as other. The dirty class hitting washable model construc-
tion of functionality CHV1510 ridiculous, quality functionality
washable.

Our model
TopicNSumm

summary 1
CHV1510 games was home from eating all i complained without
such cool 3rd CHV1510 brand I and amount on them off position
not one time with filter that are just guessing all color!

Our model
TopicNSumm

summary 2
that said filter and cheaper on shipping as hair fast shipping here
than what should is but for something changed after working. The
filter holder showed that, what appears it properly had different
place for filter like using generic brand at all!

Our model
TopicNSumm

summary 3
For the fans mounted cold lights: positive copies filters the world
has broken open when aid properly from CHV1510, so in some
amounts source on wrench breaking during these are fantastic
and I still recommend

LSumm it says harder. to install with filter as possible for filter! it takes
some amounts. it seems too strong as opposed the original one
of it and

TextRank This is the wrong filter if you are buying the CHV1510 Hand
Vacuum. This item list listed with the vacuum – ’frequently
bought together’ with the Black & Decker CHV9608 9.6 Volt
Cyclonic-Action Cordless DustBuster BUT this filter does NOT
fit!
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Table 5: Table with examples of generated texts (Continued)

B0013EQ20Y
(Frye Boots)

Our model
TopiCatSumm

it wish my face soft hat, the boots it cozy lifts up nice. Comfy
ugg Frye perfectly residue inside comfortable stretchy amounted
just what the doctor ordered from boots all. I served comfy, boot
though sticks right but quickly to safety snug evenly over, all
socks together is

Our model
TopicNSumm

summary 1
Indeed an excellent product and most excellent boots base and
nice as wide in between all sizes up. It needs enough for all
occasion beware of adjustments such all over cameras during!

Our model
TopicNSumm

summary 2
Indeed comfy! Securely packaged, the it too and I am wearing!
it makes great for heavy use thick rooms but tough construction
and comfort, sound nicely tasted Frye but

Our model
TopicNSumm

summary 3
comfy boots has already hanging down set I wish where had
them on fire if there have many on bugs like paper itself while
having. Overall this pair work well

LSumm it seems so sturdy enough like that is. it seems more sturdy than
expected to get them again and was worth to try them! it seems
more comfortable! it seems better with

TextRank they can be a beast to get on, like any boot fit to last; once on,
they are incredibly comfortable. With a 20year break from not
wearing Frye it was a pleasant surprise the quality has stood the
test of time.

Table 6: Table with examples of generated text by the various models for batches of 16 reviews sampled from 2
different products of two different categories.

B0002U34HY
vacuum filter

&
B00006IUVM
kitchen steamer

Our model
TopicNSumm

summary 1
quality filters not do any reviews and picture looks as usual but
for decades material seems fine but great purchase and deliver
quality packaged! yeah and trust with

Our model
TopicNSumm

summary 2
quality filter for many light steamer washable rice brand steamer,
although is just easy enough without sending to play using with-
out issues until much sized goes steamer easy too steam rice for
each nut only goes straight smoothly

Our model
TopicNSumm

summary 3
ladies! steam it has superior points of shelves from there : do
something that? this steamer gives all aspects go, some kind
opened without wearing them into this. So in some reviews from
dragon appeared steam as directed, received mine ripped rice
vegetables today

LSumm the filter is just what i needed. i have a lot of the filter and the
filter. is not the same as the original filter.. is a great deal. is a
great deal. is a great deal. is a very a very a very

TextRank This is the wrong filter if you are buying the CHV1510 Hand
Vacuum. Sometimes I use the steamer for just one vegetable, or
for rice, but it’s really nice to have the separate basket.
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Table 7: Examples of generated texts by our TopicNSumm where we input the word "price" to the model.

B0013EQ20Y
(Frye Boots) comfy noticeable! easy boots comfortable leather is inexpensive and wonderfully easy

quality although is heavy as long to high although! instead i do wish that i have ordering
it or worn on amazon.com since that it broke in two, only bought it 4 and times full cost

B00006IUVM
(Kitchen Steamer) updated hard 3 days! steam as use to force me rice is perfect with all customers at work

budget is able with hesitant help at night supply store, too expensive than to sell items.
B0002U34HY

(CHV1510 Vacuum filter) CHV1510 filters is too and save dust the legs on top because occasionally leave volume

under cycle i make sure look for washable filter or something. maybe it only keeps wet
VF08
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Abstract
We proposed a framework and its implemen-
tation as a Python library for converting En-
glish utterances into higher-order logic (HOL)
formulas. HOL extends first-order logic and
provides flexibility for representing natural lan-
guage semantics. Our library uses a broad-
coverage and robust HPSG grammar for En-
glish to produce minimal recursive semantics
(MRS) structures. These open-source technolo-
gies from the DELPH-IN Consortium balance a
rigorous linguistic grounding and composition-
ality with practical aspects for natural language
processing applications. Finally, we evaluated
our approach over SICK, a popular dataset for
text entailment.

1 Introduction

Over the last decades of research on natural lan-
guage processing (NLP) and computational linguis-
tics (CL), many approaches were proposed for ex-
tracting the meaning of linguistic utterances into
machine-understandable and unambiguous struc-
tures called meaning representations, a task called
semantic parsing or semantic analysis (Jurafsky
and Martin, 2023). More broadly, the construc-
tion and reasoning with meaning representations of
natural language expressions are in the context of
computational semantics.

This article presents MRS Logic, a library to
translate English sentences into logical formulas.
MRS Logic is based on methods and tools already
extensively studied in the literature and presented
in Section 2. Still, it presents some novelty in
integrating these resources, our representation lan-
guage, and how sizeable existing knowledge bases
can be easily reused for language understanding.

Consider the ambiguous sentence from Exam-
ple (1). MRS Logic elucidates all possible inter-
pretations for it, formalizing them in higher-order
logic (HOL) expressions. Figure 1 presents two
interpretations. Section 3 describes our transforma-
tion.

(1) The oil company ensured no chemicals poi-
soned the river.

From the last paragraph, we can highlight one as-
pect of our approach: we embrace the ambiguity of
natural language. Example (1) has 52 possible inter-
pretations, each representable by a logical expres-
sion. Dealing with all possible interpretations and
postponing pruning as much as possible may be re-
quired by knowledge-intense applications. In many
cases, only after linking the linguistic elements to
the non-linguistic knowledge of the world can one
effectively establish the pragmatics or the speaker’s
meaning (Quine, 1960; Bender et al., 2015).

Our proposal contrasts with the dominant ap-
proach in NLP, where tools shift from explicit sym-
bolic semantic representation to non-compositional
and opaque representations such as vector embed-
dings. Avoiding any strong claim about the re-
quirements for any system that aims at language
understanding, we shared some concerns reported
in (Mitchell, 2023; Bender et al., 2021) with purely
language-model-based tools. Nevertheless, we en-
vision combining large language models (LLM)
with symbolic methods in NLP. For instance, ex-
tracting relevant common-sense facts from a vast
collection of texts.

A well-known problem in the NLP/CL literature
is the appropriate metrics for evaluating text un-
derstanding and, consequently, the adequacy of the
semantic representation formalisms. (Condoravdi
et al., 2003) made a case for considering the recog-
nition of text entailment (RTE) between natural
language utterances, now broadly considered not
a sufficient criterion for language understanding.
Still, it remains accepted as a minimal necessary
criterion. With that in mind, we evaluate the pro-
posals for semantic representations by measuring
their performance on supporting entailment and
contradiction detection between pairs of sentences.
Section 4 discusses the performance of our system
in a balanced subset of a well-known RTE dataset.
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∃ x10, _oil_n_1 x10 ∧ (∃ x23, _river_n_of x23 ∧ (∃ x6, (∃ e9, compound e9 x6 x10 ∧ _company_n_of x6)∧
(∃ e3, _ensure_v_1 e3 x6 (∀x19, _chemical_n_1 x19 → ¬(∃ e24, _poison_v_1 e24 x19 x23)))))

(1)

∃ x10, _oil_n_1 x10 ∧ (∀x19, _chemical_n_1 x19 → ¬(∃ x23, _river_n_of x23 ∧ (∃ x6, (∃ e9,
compound e8 x6 x10 ∧ _company_n_of x6) ∧ (∃ e24 e3, _ensure_v_1 e3 x6 (_poison_v_1 e24 x19 x23)))))

(2)

Figure 1: Two possible logical formulas expressing the possible interpretations for Example (1).

In Section 5, we make some final remarks.
To sum up, our contributions are (1) a frame-

work to produce logical expressions in HOL from
English sentences, leveraging ERG grammar and
related technologies from the DELPH-IN Consor-
tium; 1 (2) a balanced subset of SICK corpus, shar-
ing our results on the evaluation of our tool on that
and some findings.

2 Background

Our library will be described in Section 3, but first,
we must describe the technologies we reused and
integrated.

The main component of MRS Logic is the En-
glish Resource Grammar (ERG) (Flickinger, 2000;
Flickinger et al., 2000; Copestake and Flickinger,
2000). The English Resource Grammar is a broad-
coverage, linguistically precise, general-purpose
computational grammar under continuous devel-
opment since 1994. It is implemented in the theo-
retical framework of Head-driven Phrase Structure
Grammar (Pollard and Sag, 1994) where both mor-
phosyntactic and semantic properties of English are
expressed in a declarative format. Combined with
specialized processing tools, it can map running
English text to highly normalized representations
of meaning called Minimal Recursion Semantics
(MRS) (Copestake et al., 2005). ERG is devel-
oped as part of the international Deep Linguistic
Processing with HPSG Initiative (DELPH-IN). It
can be processed by several parsing and realiza-
tion systems, including the LKB grammar engi-
neering environment (Copestake, 2002), as well as
more efficient parsers such as ACE (Crysmann and
Packard, 2012).2

MRS structures are expressive and have a direct
interface with syntax. It can be underspecified in
many ways; here, we will describe the underspecifi-
cation of fine-grained senses and quantifiers’ scope.
Underspecification allows a single MRS to capture
a set of interpretations. Figure 2 shows one among

1https://github.com/delph-in/docs/wiki
2http://sweaglesw.org/linguistics/ace/

the five possible MRSs for Example (1). It consists
of a multiset of relations called elementary predi-
cations (EPs). An EP usually corresponds to a sin-
gle lexeme but can represent grammatical features
(e.g., compound and udef_q, called abstract predi-
cates). Each EP has a label or handle, a predicate
symbol, which, in the case of lexical predicates,
encodes information about lemma, part-of-speech,
and coarse-grained sense distinctions, and a list of
numbered arguments: ARG0, ARG1, etc. The value
of an argument can be either a scopal variable (a
hole representing the places where alternative la-
bels could fill) or a non-scopal variable (events,
states, or entities). The ARG0 argument has the EP’s
distinguished variable. This variable denotes an
event, state, or referential or abstract entity (ei or
xi, respectively). Each non-quantifier EP has its
unique distinguished variable. Finally, an MRS has
a set of handle constraints describing how the EPs’
scopal arguments can be nested with EP labels. A
constraint hi =q hj denotes equality modulo quan-
tifier insertion. In addition to the indirect linking
through handle constraints, EPs are directly linked
by sharing the same variable as argument values,
capturing the predicate-argument structure of the
sentence. Finally, MRS also records properties
on variables indicating morpho-syntactic marks of
person, number, tense, aspect, etc.

In Figure 2, we see the MRS of the Exam-
ple (1) where the topmost relation is _ensure_v_1,
which has the non-empty arguments x6 and h16.
The x6 is the distinguished variable of the rela-
tion _company_n_of. A handle constraint equates
the sentential variable h16 with h22, the label of
_poison_v_1. The rest of the EPs can be explained
similarly. Note that h5 does not appear in the han-
dle constraints, suggesting that we have more than
one possible way to equate this hole with the avail-
able labels.

The underspecification of scopes in the MRS
of Figure 2 can be represented as the dominance
graph (Koller and Thater, 2005) in Figure 3, a di-
rected graph with two kinds of edges: tree edges
and dominance edges (in red). Dominance graphs
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⟨ h1, e3,
h4:_the_q⟨0:3⟩(ARG0 x6{PERS 3,NUM sg}, RSTR h7, BODY h5),
h8:compound⟨4:15⟩(ARG0 e9{SF prop, TENSE untensed,MOOD indicative, PROG -, PERF -}, ARG1 x6, ARG2 x10),
h11:udef_q⟨4:7⟩(ARG0 x10, RSTR h13, BODY h12),
h14:_oil_n_1⟨4:7⟩(ARG0 x10),
h8:_company_n_of⟨8:15⟩(ARG0 x6, ARG1 i15),
h2:_ensure_v_1⟨16:23⟩(ARG0 e3{SF prop, TENSE past,MOOD indicative, PROG -, PERF -}, ARG1 x6, ARG2 h16),
h17:_no_q⟨24:26⟩(ARG0 x19{PERS 3,NUM pl, IND +}, RSTR h20, BODY h18),
h21:_chemical_n_1⟨27:36⟩(ARG0 x19),
h22:_poison_v_1⟨37:45⟩(ARG0 e24{SF prop, TENSE past,MOOD indicative, PROG -, PERF -}, ARG1 x19, ARG2 x23),
h25:_the_q⟨46:49⟩(ARG0 x23{PERS 3,NUM sg, IND +}, RSTR h27, BODY h26),
h28:_river_n_of⟨50:55⟩(ARG0 x23, ARG1 i29)
{ h1 =q h2, h7 =q h8, h13 =q h14, h16 =q h22, h20 =q h21, h27 =q h28 } ⟩

Figure 2: The first MRS return by ERG for the Example (1).

h4: _the_q

(h7) (h5)

h8: compound & _company_n_of h2: _ensure_v_1

h11: udef_q

(h13) (h12)

h14: _oil_n_1

(h16)

h22: _poison_v_1

h17: _no_q

(h20) (h18)

h21: _chemical_n_1

h25: _the_q

(h27)(h26)

h28: _river_n_of

Figure 3: A dominance graph of the MRS from Figure 2.

are used as underspecified descriptions that can be
solved to sets of scope trees 3 that later can be real-
ized as formulas in some formal language. Figure 4
shows one of the 32 possible scope trees for the
dominance graph from Figure 3. For computing the
dominance graph and all possible scope trees for
an MRS, we use Utool (Koller and Thater, 2005,
2006, 2010), a GUI and library written in Java.4.

The scope trees are not directly useful for rea-
soning, and the CL literature has many proposals
for representing NL utterance semantics. One of
the most fundamental issues about which logic to
use is whether one assumes any structure on the
individuals. Other issues are the complexity, decid-
ability, and tools for reasoning in a particular logic.
So far, it is reasonable to accept that no existing
logic is adequate for all the phenomena of natural
language – although we acknowledge different log-
ics individually capture some of the phenomena
already studied.

Type theories are widely used in formal theories
of the semantics of natural languages (Chatzikyri-
akidis and Luo, 2020; Ranta, 1994; Winter, 2016).

3We are adopting the term suggested by (Emerson, 2020).
4https://github.com/coli-saar/utool/

h4: _the_q

h8: compound & _company_n_of h2: _ensure_v_1

h11: udef_q

h14: _oil_n_1 h25: _the_q

h17: _no_q

h21: _chemical_n_1 h22: _poison_v_1

h28: _river_n_of

Figure 4: One possible scope tree resolved from the
dominance graph from Figure 3.
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A subset of that, simple type theory, also called
higher-order logic (HOL), is a natural extension
of first-order logic, which is elegant, highly ex-
pressive, and practical (Farmer, 2008). Inspired
by modern implementations of simple type the-
ory, such as HOL Light (Harrison, 2009) and Is-
abelle/HOL (Nipkow et al., 2002), and also by in-
teractive proof assistants based on dependent type
theory, such as Lean (Moura and Ullrich, 2021)
and Coq (The Coq Development Team, 2021),
we implemented the ULKB Logic (Lima et al.,
2023). The formulas presented in Figure 1 are
HOL formulas encoded in ULKB Logic. ULKB
is an open-source framework written in Python
for logical reasoning over knowledge graphs. It
provides an interactive theorem prover-like envi-
ronment that can interact with external provers like
the E prover (Schulz et al., 2019) and the Z3 SMT
solver (de Moura and Björner, 2008).

Finally, consider the possible senses for the word
‘company.’ ERG only distinguishes senses that are
morphosyntactically marked. Since further sense
distinctions could never be disambiguated based
on grammatical structure alone, the ERG predicate
symbol _company_n_of intended to be an under-
specified representation of all the specific word
senses. Wordnet 3.0 (Miller, 1995) contains nine
possible nominal senses for this word. We use
UKB (Agirre and Soroa, 2009) for Word Sense
Disambiguation (WSD), the ERG predicates. It
is a collection of programs for performing graph-
based and lexical similarity using a pre-existing
knowledge base.

3 MRS to Logic

MRS Logic is a library built on top of PyDel-
phin (Goodman, 2019) and ULKB.5 It uses Py-
Delphin to coordinate the call to ERG and iterate
over all possible MRS. An MRS is transformed
into a scope tree using Utool and finally translated
to ULKB formulas. MRS-Logic integrates all tech-
nologies described in Section 2. This section de-
scribes the translation of scope trees into ULKB
formulas, skipping the implementation details of
data structures and some design decisions.

At the high level, the translation starts from the
topmost node of the scope tree, the handle in the
higher position, usually a quantifier. The trans-
formation sketched out in Figure 5 considered the

5The code is available at https://github.com/ibm/
mrs-logic.

scope tree from Figure 4 as input, and it works
recursively.

The node h11 is the implicit quantifier udef_q,6,
as all other ERG quantifiers, it is modeled as a gen-
eralized (binary) quantifier (Westerståhl, 2019). We
interpret this predicate as an existential quantifier
in HOL. Nodes h4 and h25 have the same inter-
pretation but are surface predicates.7 Node h17 is
another quantifier; our current interpretation is as a
universally quantified implication of the restriction
to the negation of the body.

Note that variable x10 is instantiated, and further
transformations of nodes h14 and h25 will be under
the scope of this existential quantifier. Nodes h14,
h21 are trivial; ERG predicates are transformed
into HOL predicates with the same arity. Node
h28 has one uninstantiated parameter; the lexical
entry for _river_n_of in ERG expects one optional
complement.8 Since the parameter was not sup-
plied in the sentence, we decreased the cardinality
of the generated HOL predicate. This behavior is
configurable in our transformation and may be dis-
abled if needed. The same simplification happens
in transforming the predicate _company_n_of in
h8.

Node h22 has a verbal predicate with an event
variable as its distinguished variable, ARG0 . Event
variables are not explicitly quantified in MRS, so
we must decide when to introduce them in the HOL
formula. The problem is that the existential quan-
tifier for the event should not get a broad scope if
negation is involved. Consider the sentence ‘No
man is walking’ and a problematic translation to
∃ e2,∀ x3, _man_n_1 x3 → ¬_walk_v_1 e2 x3.
We don’t want to instantiate e2 to say later that it
didn’t exist. The correct approach is to instantiate
the event variables as close as possible to the predi-
cate with this variable as its distinguished variable.

Node h2 is where HOL stands out. The verb
‘ensure’ can be taken as a factive verb (Hazlett,
2010) introducing a presupposition; that is, the
HOL predicate gets a HOL formula as an argument,
a higher-order construction not permitted in FOL.9

In this example, this is the only case where T is
applied recursively in a predicate argument.

6https://github.com/delph-in/docs/wiki/
ErgSemantics_ImplicitQuantifiers

7https://github.com/delph-in/docs/wiki/
ErgSemantics_Basics

8Consider ‘the river of Colorado.’
9We acknowledge that FOL translations for the same phe-

nomena are possible (Bos, 2014).
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We haven’t yet introduced in the system extra
axioms to impose the presupposition reading when
needed. Still, the translation presented here would
not be affected by such additional axioms once we
have a complete understanding of them.10

Finally, node h8 is the only one with more than
one EP; the transformation considers all EP with
the same label as a coordination of the transla-
tions of each EP. We notice the ERG predicate
compound; it can be considered an underspecified
preposition. ERG analyses noun-noun compounds
so that compound has the same structure as other ex-
plicit prepositions, e.g., ‘boxes on tables are blue’,
‘boxes for tables are blue,’ and ‘table boxes are
blue.’

The transformation creates the HOL predicates
inline, but it could also pre-declared them as poly-
morphic predicates, such as _oil_n_1 : a → bool
where a is a type variable in ULKB.11

The translation covers some additional phenom-
ena not illustrated in the example we used. Never-
theless, presenting it in the way we did gives the
reader better intuition about its general ideas. We
plan to extend our translation to all other ERG ab-
stract predicates that model additional NL phenom-
ena like normalization, disjunctions, conjunctions,
etc.

4 SICK Experiment

The SICK dataset includes 9,840 sentence pairs
taken from images and video captions. A selection
of sentences from each source was used to produce
pairs of sentences in 3 steps detailed reported in
(Marelli et al., 2014; Bentivogli et al., 2016). The
pairs were manually annotated regarding semantic
similarity and logical relation: entailment, contra-
diction, or neutral.12 The sentence pairs are rich in
lexical, syntactic, and semantic phenomena. Still,
the entailment test of the sentences was expected
to be supported by common sense and grammat-
ical knowledge and not to require encyclopedic
knowledge about entities of the world.

Given the sentence’s intended simplicity com-
pared to previous datasets for Recognising Textual

10Note that presuppositions are one of many NL phenomena
where the deep language processing with ERG, with a curated
lexicon, and the kind of semantic analysis we are carrying on
here makes the difference. For instance, if we take ‘ensure’ as
a factive verb, we can adequately formalize its meaning. If an
entity X ensures Y, Y should be taken as a true statement?

11A configuration can also specify a single type for all
predicate parameters.

12We are only interested in the logical relations.

Entailment (RTE), SICK is excellent for testing our
tool. Suppose our translation effectively captures
the meaning of the sentences in HOL expressions.
If sentences A and B are classified as an entailment,
we should be able to prove ∆ ⊢ T(A) → T(B)
where ∆ is a background theory.13 If they are clas-
sified as a contradiction, we should be able to prove
∆ ⊢ ¬(T(A) ∧ T(B)); otherwise, we consider
them as neutral. This is a very simple approach
compared to other logical-based RTE reports (Bos,
2014), but our goal here is to have a preliminary test
of our transformation, not to improve the results on
the SICK leaderboard.14

We start pre-parsing all sentences with ERG, ask-
ing for at most ten readings for each sentence. Of
the 6,077 unique sentences, 3,435 sentences have
the maximum number of readings we requested.
2,055 sentences had less than five readings, 564
between 5 and 9 readings, and only 23 sentences
were not parsed by ERG, some of them by being un-
grammatical (Kalouli et al., 2017a,b). This shows
that we have a high degree of ambiguity, even for
a collection of relatively simple sentences. Given
that, during the main loop of the experiment, when
we test each pair for logical entailment, we check
at most four combinations of interpretations (HOL
formulas) in a breath-first search strategy.

Unfortunately, SICK is very unbalanced regard-
ing the entailment test, as we can see in Table 1,
and the corpus contains a lot of repeated sentences.
To overcome these limitations, we created a sub-
set of SICK, called SB-SICK (small and balanced
SICK), with 330 pairs for each label and no sen-
tence repetition.

# label
1424 CONTRADICTION
2822 ENTAILMENT
5596 NEUTRAL

Table 1: distribution of SICK sentences for each entail-
ment label.

Table 2 summarizes the results we obtained.
In this experiment, we did not use the WSD
module, relying on the ERG predicates and its
coarse-grained senses. The ∆ is a small theory
of 24 axioms we added incrementally during the
tests, experimenting with the system’s adaptabil-

13The T(a) means the transformation of the NL sentence
A into HOL formulas as described in Section 3.

14https://paperswithcode.com/dataset/sick
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T[h11] = T[udef_q ARG0 x10 RSTR h14 BODY h25] = (∃ x10,T[h14] ∧T[h25])

T[h14] = T[_oil_n_1 ARG0 x10] = _oil_n_1(x10)

T[h28] = T[_river_n_of ARG0 x23 ARG1 i29] = _river_n_of(x23)

T[h21] = T[_chemical_n_1 ARG0 x19] = _chemical(x19)

T[h22] = T[_poison_v_1 ARG0 e24 ARG1 x19 ARG2 x23] = ∃ e24, _poison_v_1(e24, x19, x23)

T[h25] = T[_the_q ARG0 x23 RSTR h4 BODY h28] = (∃ x23,T[h4] ∧T[h28])

T[h4] = T[_the_q ARG0 x6 RSTR h8 BODY h2] = (∃ x6,T[h8] ∧T[h2])

T[h8] = T[compound ARG0 e9 ARG1 x6 ARG2 x10, _company_n_of ARG0 x6 ARG1 i15]

= (T[compound ARG0 e9 ARG1 x6 ARG2 x10] ∧T[_company_n_of ARG0 x6 ARG1 i15])

= (∃ e9, compound(e9, x6, x10) ∧ _company_n_of(x6))

T[h2] = T[_ensure_v_1 ARG0 e3 ARG1 x6 ARG2 h17] = (∃ e3, _ensure_v_1(e3, x6,T[h17]))

T[h17] = T[_no_q ARG0 x19 RSTR h21 BODY h22] = (∀ x19,T[h21]→ ¬T[h22])

Figure 5: The transformations of the MRS from Figure 4.

ity to incremental addition of background knowl-
edge. The axioms cover simple lexical seman-
tics gaps such as ∀x,man x → person x and
∀x, empty x → ¬full x that can be easily de-
rived from resources like Wordnet. We also have
some axioms related to the ERG abstract pred-
icates, such as ∀ e x y, compound e x y →
for e x y15 and an axiom to deal with the null
contribution to the semantics of expletive construc-
tions, ∀ x y, _be_v_there x y.

label true false %
CONTRADICTION 117 213 35
ENTAILMENT 132 198 40
NEUTRAL 330 - 100

Table 2: The results in the SB-SICK. The ‘true’ means
that using MRS Logic, we proved the expected logi-
cal relation, and ‘false’ otherwise. Since neutral is a
fallback in our method, we had no error for the neutral
label.

We analyzed the cases where we could not prove
the expected result, looking for possible translation
failures. We summarized some relevant cases we
found next, but none were related to problems with
translating the MRSs to HOL.

As reported in (Kalouli et al., 2017a,b), we also
found that some pairs have wrong labels. For in-
stance, Examples (2) and (3) were annotated as
entailment and contradiction, respectively. Exam-
ple (2) is far from a logical entailment, although
somehow related pragmatically. The SICK authors
acknowledge these cases as inconsistencies in their

15Remember that compound means an underspecified
preposition in the noun-noun compounds. This would be
one of many axioms for each possible preposition in English.

dataset.16

(2) a. “People are walking outside the build-
ing that has several murals on it.”

b. “Several people are in front of a color-
ful building.”

(3) a. “The black and white dog is running
indoors.”

b. “The black and white dog is running
in a green yard.”

Errors in logical reasoning were also expected
since we submitted the HOL formulas to FOL
provers, relying on their ability to reduce them
to FOL when possible.17 We also have not imple-
mented axioms to handle all ERG abstract predi-
cates, e.g., nominalization. Some additional back-
ground knowledge is undoubtedly necessary and
can eventually be induced (Ihsani, 2012), consider
formalizing that a guitar player is a guitarist in
Example (4).

(4) a. “A person has blonde and flyaway hair
and is playing a guitar.”

b. “A guitarist has blonde and flyaway
hair.”

We stressed our transformation rules without find-
ing errors. Second, aligned (Bos, 2014), we vali-
dated that the lack of a systematic way to produce
relevant background knowledge is the bottleneck
of logical inference in RTE.

16Notice that nothing blocks an interpretation of a situation
with two distinct dogs or groups.

17Some high-order predicates, in the absence of explicit
types, can be taken as functions.
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5 Conclusion

We presented an open-source library to trans-
late English sentences into HOL formulas. The
code is available at http://github.com/ibm/
mrs-logic. We tested the library in a dataset of
pairs of sentences classified as entailment, contra-
diction, and neutral. Despite the results, we have
collected the necessary insights to refine the RTE
procedure and learned that a lot depends on the
precise RTE task definition. Fine-grained deep lin-
guistic analyses reveal inconsistencies invisible for
purely statistical methods, hiding the real challenge
of language understanding.

Considering the most popular approaches for
RTE, we differ in using multiple interpretations
for each sentence (although limited to four combi-
nations) provided by the grammar-based analyses.
We suspect that background knowledge is crucial
for selecting the most plausible reading of the sen-
tences when a pair is being tested. Many cases
were not proved just because the expected readings
of each sentence were not among the tested combi-
nations limited by the computational resources we
had.

The literature on computational semantics is vast.
We are aware of the range of possibilities from non-
compositional representations such as AMR (Ba-
narescu et al., 2013) to inferences directly over
surface forms such as Natural Logic (MacCartney
and Manning, 2007). We focused on MRS, related
to (Lien, 2014), although using logic inference in-
stead of graph matching.
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Abstract

In this work, we study the features extracted
by English self-supervised learning (SSL) mod-
els in cross-lingual contexts and propose a new
metric to predict the quality of feature repre-
sentations. Using automatic speech recogni-
tion (ASR) as a downstream task, we analyze
the effect of model size, training objectives, and
model architecture on the models’ performance
as a feature extractor for a set of topologically
diverse corpora. We develop a novel metric, the
Phonetic-Syntax Ratio (PSR), to measure the
phonetic and synthetic information in the ex-
tracted representations using deep generalized
canonical correlation analysis. Results show
the contrastive loss in the wav2vec2.0 objec-
tive facilitates more effective cross-lingual fea-
ture extraction. There is a positive correlation
between PSR scores and ASR performance,
suggesting that phonetic information extracted
by monolingual SSL models can be used for
downstream tasks in cross-lingual settings. The
proposed metric is an effective indicator of the
quality of the representations and can be useful
for model selection.1

1 Introduction

Self-Supervised Learning (SSL) has become a
paradigm for learning feature representations from
unlabeled data (Liu et al., 2023). In speech process-
ing, self-supervised approaches for learning speech
representation are often used to extract features for
downstream tasks. These representations can re-
place the handcrafted feature such as Mel Spectrum
or MFCC in many tasks as they are able to extract
high-level properties in the speech data (Mohamed
et al., 2022; Chung et al., 2019).

English SSL Models take advantage of the high
availability of English data and outperform tradi-
tional feature extraction methods on a range of
downstream tasks in English (Chen et al., 2022;

1We make our work open-source for further explorations:
https://github.com/stellali7/SSL_PSR

Figure 1: Speech data of English (in-domain) and other
languages (out-of-domain) are passed through the SSL
models to extract speech representations. All informa-
tion is expected to aid downstream tasks in English
while phonetic content is expected to be useful for out-
of-domain downstream tasks; “other" content may in-
clude speaker information, etc.

Hsu et al., 2021; Liu et al., 2020). Since the acous-
tic and phonetic information of human speakers
across languages share a level of similarity, it is
crucial to study the cross-lingual transfer perfor-
mance of English SSL models as a feature extrac-
tor for non-English audio data (Li et al., 2020; Cho
et al., 2018). This will enhance our understanding
of the composition of knowledge learned during
pre-training, allowing more efficient use of data
during model selection. Furthermore, if we are
able to use English monolingual models effectively
in multilingual downstream tasks, the high cost of
training massive multilingual speech models such
as XLSR (Babu et al., 2021; Conneau et al., 2021)
and mSLAM (Bapna et al., 2022) can be reduced
by explicitly incorporating architectural designs
promoting cross-lingual transfer. Therefore, the
first purpose of this paper is to investigate the fac-
tors that improve the ability of monolingual SSL
models to extract useful speech representations for
ASR tasks in typologically diverse languages.
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The second objective of our study is to analyze
the amount of phonetic information versus syntac-
tic information learned by the model during train-
ing, and how the phonetic-syntax composition in
the model impacts the extracted features. Phonetic
content directly impacts the learned phonological
structure in the representations. Explicit integra-
tion of phonological knowledge has proven to be
extremely successful in speech processing (Zhan
et al., 2021). On the other hand, semantic and syn-
tactic knowledge learning in the target language
during fine-tuning is needed for ASR tasks so that
the SSL models do not retain source language se-
mantics and syntax, implying syntactic information
might be harmful for cross-lingual feature extrac-
tion (Li et al., 2020).

As shown in Figure 1, we expect the pre-trained
SSL models to efficiently extract phonetic, syntac-
tic, and other contents to help downstream tasks in
English (Chung et al., 2021). At the same time, the
extracted phonetic information in out-of-domain
and multilingual situations should also aid down-
stream performance. Therefore, we propose a novel
metric to quantify the amount of helpful phonetic
information. To the best of our knowledge, this
study is the first to quantitatively understand the
capabilities and limits of SSL models from a lin-
guistic perspective. Our contributions include:
• We examine five SSL models with different sizes,

data preparation methods, and training objectives
by analyzing their cross-lingual generalizability
as feature extractors on the ASR task.

• We propose a new metric, Phonology-Syntax Ra-
tio (PSR), to measure the phonetic and syntactic
content extracted by an SSL model on any given
out-of-domain/language dataset. A higher PSR
score correlates to a better ASR performance.

• We localize the phonetic content in the SSL
model to specific layers using the trained layer-
wise weights for the feature representations.

2 Related Work

2.1 Self-Supervised Models

Self-supervised learning (SSL) (Liu et al., 2023;
Bengio et al., 2013; Raina et al., 2007) takes ad-
vantage of easily accessible unlabeled data to learn
a model and then produces universal representa-
tions by solving upstream tasks (Liu et al., 2022b).
Then, the pre-trained SSL model can be used to
process unseen data based on its previous knowl-
edge and handle multiple downstream tasks. SSL

models have achieved superior performance in nat-
ural language processing (Devlin et al., 2019; Pe-
ters et al., 2018), computer vision (Chen et al.,
2020; Misra and van der Maaten, 2020), speech
processing (Chen et al., 2019; Chi et al., 2021), and
especially ASR (Baevski and Mohamed, 2020; Ra-
vanelli et al., 2020; Jiang et al., 2021). In our work,
we study a number of SSL models and their feature
extraction ability when presented with input from
other languages.

2.2 Audio Feature Extraction

Before any downstream speech processing tasks,
the audio data is converted to high-dimensional
feature vectors through an audio feature extrac-
tion system (Moffat et al., 2015). Classic meth-
ods, such as Mel-Frequency Cepstral Coefficients
(MFCCs), Linear Predictive Coding (LPC), and
Perceptual Linear Prediction (PLP) extract cep-
stral coefficients that contain low-level acoustic fea-
tures (Dave, 2013; Shanthi and Lingam, 2013). Re-
searchers have also delved into neural-based mod-
els, leveraging pre-trained models on large-scale
datasets to boost performance (Chi et al., 2021).
While progress has been remarkable, challenges
such as robustness to noise variations and inter-
pretability of learned features continue to stimulate
further research in this domain (Mohamed et al.,
2022). In our work, we explore the robustness of
the monolingual SSL models when generalized to
multilingual settings, from which we interpret the
features extracted by these models.

2.3 Automatic Speech Recognition (ASR)

ASR transcribes given audio to text in the script of
the spoken language (Malik et al., 2021; Yu and
Deng, 2016). Deep neural network (DNN) based
techniques (Hinton et al., 2012) have boosted the
accuracy of ASR by replacing the traditional Gaus-
sian Mixture Model in cascaded systems involving
separate acoustic, language, and lexicon compo-
nents (Li et al., 2022). End-to-end models (Graves
and Jaitly, 2014; Chorowski et al., 2014; Bahdanau
et al., 2016; Collobert et al., 2016) have recently
become a breakthrough in the speech community,
directly translating an input speech sequence into
an output text sequence with a single model. Some
publicly available and commonly used toolkits in-
clude Kaldi (Povey et al., 2011), CMU Sphinx (Lee
et al., 1990), SpeechBrain (Ravanelli et al., 2021)
and ESPNet (Watanabe et al., 2018).
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Figure 2: The pipeline to measure the performance of SSL model on different languages. We first use each SSL
model as a feature extractor for data in each language and compute a WER score for the ASR task. Then, we
calculate the PSR of the representations to analyze the correlation between the ASR performance and the PSR score.

2.4 Analysis Methods of SSL Models

There has been extensive research on analyzing
supervised speech models (Belinkov and Glass,
2019; Palaskar et al., 2019; Prasad and Jyothi,
2020). However, research on SSL models, es-
pecially in the speech domain, is still relevantly
under-explored. Some recent work in this field
includes a similarity analysis of self-supervised
speech representations, in which they only looked
into simpler models such as APA, CPC, and MPC
(Chung et al., 2021). Liu et al. (2022a) attempted
to distinguish useful representations in SSL mod-
els for spoken language identification and reduce
spurious information in the representations, but
was limited to a specific task. Pasad et al. (2021)
and Pasad et al. (2023) analyzed the layer-wise
acoustic-linguistic content of pre-trained models
by performing layer-independent Canonical Corre-
lation Analysis (CCA) (Hardoon et al., 2004) on
English data. However, since the features extracted
by DNN models often have high dimensionality
(Georgiou et al., 2020), CCA is limited in its ability
to freely model complex nonlinear relationships.

2.5 Cross-lingual Knowledge Transfer

Cross-lingual transfer learning has gained atten-
tion in the field as it effectively mitigates resource
constraints and language-specific challenges, but
most importantly to our work, it requires the model
to be able to adapt to unseen situations such as a
new language (Khurana et al., 2023; Conneau et al.,
2020). Effective cross-lingual transfer for speech
processing requires the model to have a high-level
understanding of both text linguistics and phonet-
ics. Previous work has shown that multilingual
models generalize well to target languages (Con-

neau et al., 2021; Singh et al., 2019; Radford et al.,
2023). Lauscher et al. (2020) shows that the qual-
ity of the cross-lingual transfer is correlated with
the linguistic similarity between the source and tar-
get languages. Inspired by this, we use English
monolingual models in our work to better compare
the linguistic distance between the pre-train data
and the target data. Studying the generalization
ability of monolingual models to unseen languages
allows us to better analyze the learned representa-
tions and localize the factors that facilitate cross-
lingual transfer for more efficient model design.

3 Analysis Methods

As shown in Figure 2, we first use the SSL models
trained on English to extract speech representations
on audio data from German (de), French (fr), Span-
ish (es), Russian (ru), and Chinese (zh). Then, we
use the ASR task to evaluate the quality of the ex-
tracted features against a Mel Spectrum baseline in
Section 3.1. We correlate the WER scores to tradi-
tional measures of linguistic distance in Section 3.2.
Finally, we quantitatively evaluate the phonetic and
syntactic content in the extracted features for each
language, as described in Section 3.3.

3.1 Measuring Multilingual Generalizability
We use the standard ASR task on 5 genealogically
and typographically diverse languages to evaluate
the generalizability of the English SSL models as
a cross-lingual feature extractor. To fairly compare
the models, we freeze the parameters of the models
and use the same downstream architecture (Con-
former + Transformer) for all SSL models and the
Mel Spectrum baseline feature extractor. We also
use the same language model setup and beam size
during decoding.
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Our pipeline is shown in Figure 2. We se-
lect SSL models based on their training methods.
These upstream SSL models can be categorized
into masked reconstruction model: Tera (Liu
et al., 2021b) and NPC (Liu et al., 2021a);
masked prediction model: HuBERT (Hsu et al.,
2021); auto-regressive reconstruction model:
VQ-APC (Chung et al., 2020); and contrastive
model: wav2vec2.0 (Baevski et al., 2020). In-
spired by the setup in SUPERB (wen Yang et al.,
2021) and ELMO (Peters et al., 2018), we take the
weighted sum from all layers as the extracted repre-
sentation, and the weight vector is updated during
training.

For the downstream model, we use the Con-
former (Gulati et al., 2020) as the encoder and
the Transformer (Vaswani et al., 2017), which has
achieved state-of-the-art (SOTA) results in many
speech recognition tasks (Ma et al., 2021). Dur-
ing data analysis, we isolate the effect of the SSL
model as a feature extractor by taking the differ-
ence (∆) between the SSL feature extractor and the
Mel Spectrum baseline performance. This elimi-
nates any potential noise introduced by data size
differences, speech formality levels, and other lin-
guistic differences between languages, allowing
a fair comparison between different SSL models.
When decoding, we use a simple RNN as a lan-
guage model and keep the parameters consistent
across all tasks.

Indo-European

Germanic

de en

Romance

fr es

Slavic

ru

Sino-Tibetan

zh

Figure 3: Phylogenetic Tree of Target Langauges

3.2 Measuring Linguistic Distance

We examine the performance of self-supervised
models on languages across a diverse range of fam-
ilies and groups in order to investigate the rela-
tionship between model performance and linguistic
distance. In our analysis, we employ the phyloge-
netic tree in Figure 3 derived from the theory of
language evolution with genetic distance equaling
the Levenshtein distance (Serva and Petroni, 2008)
as a measure of linguistic distance. Since languages
evolve with both their written and spoken forms,

the phylogenetic tree will contain the most compre-
hensive information about the language.

3.3 Measuring Phonetic & Syntactic Content

In this section, we describe approaches to quan-
tify phonetic and syntactic content in the extracted
speech representations of SSL models.

Figure 4: DGCCA pipeline. The model aims to compare
the representation extracted by the SSL model to the
pure acoustic representation (from Mel Spectrum) and
pure syntactic/semantic representation (from BERT).

3.3.1 DGCCA
In order to better analyze the phonetic and syn-
tactic content of the features, we use a tool called
Deep Generalized Canonical Correlation Analy-
sis (DGCCA), which is a deep learning technique
that measures the nonlinear relationship between
arbitrarily many views of the data and learns a view-
independent representation (Benton et al., 2019).
DGCCA effectively quantifies the phonetic and
syntactic content of SSL models when treating the
features extracted with different models as different
views of the same data.

As shown in Figure 4, DGCCA takes N pairs
of data vectors across J views as input and re-
turns a correlation score as a measure of the sim-
ilarity between the vectors. Using standard back-
propagation to optimize the weight matrices Wj =

{W j
1 , . . . ,W

j
Kj

}, we try to find the linear transfor-
mation Uj ∈ Rdj×N of fi(Xj) ∈ Roj constrained
by GGT = Ir such that:
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minimize
Uj∈Rdj×N ,G∈Rr×N

J∑

j=1

∥G− UT
j fj(Xj)∥2F , (1)

where Xj ∈ Rdj×N is the input feature vectors
of the jth view; fj is the function learned using
a multilayer perceptron of Kj layers; dj is the di-
mension of the jth view and r is the dimension of
the learned representation G.

In our case, N is the number of utterances in
the test data, where we have the SSL features and
Mel Spectrum features of each utterance, as well
as the BERT representations of its transcript. The
monolingual BERT model in each target language
is used when extracting the textual representations.

Features extracted by the SSL models, pure pho-
netic features (Mel Spectrum), and pure textual
features (BERT representations) can be considered
as different views (fi) of the data. The correla-
tion scores between different views are the loss of
the converged DGCCA network. We compute the
correlation scores between each of the latter two
views and the SSL features. The correlation scores
between the SSL features and the Mel Spectrum
measure the Phonetic Content in the extracted
features; the correlation scores between the SSL
features and the BERT representations measure the
Syntactic Content in the extracted features.

3.3.2 Phonetic-Syntax Ratio (PSR)

We introduce a new metric: the Phonetic-Syntax
Ratio (PSR) in order to quantitatively investigate
the phonetic and syntactic content on SSL represen-
tation. As described in Section 3.3.1, the similarity
to phonetic features and the similarity to syntactic
features of the SSL representations are both opti-
mized and quantified as correlation scores when
training the DGCCA network. We define the PSR
as the ratio between the phonetic correlation score
and syntactic correlation score, weighted equally
among all data points:

PSR = (
1

n

n∑

i=1

phonetic scorei
syntax scorei

−1)·100%, (2)

where phonetic scores and syntax scores are the
output of DGCCA when the SSL representations
are fed in with the Mel Spectrum and BERT contex-
tualized embedding, respectively. The PSR score is
model-agnostic and language-agnostic, and can be
used for a range of contrastive analysis for inferring
cross-lingual transferability.

4 Experimental Setup

4.1 Datasets

We investigate the cross-lingual adaptation capa-
bility of English SSL models in five languages.
For training the ASR models, we use the Mozilla
Common Voice 5.1 dataset (Ardila et al., 2020) for
German, French, Spanish, and Russian, and we use
the OpenSLR ST-CMDS-20170001_1 Free ST Chi-
nese Mandarin Corpus2 for Chinese. The Common
Voice English test set is used for DGCCA analysis.
More details about the datasets are in Table 1.

Lang hr voices train dev test
de 751 11,731 196,464 15,341 15,341
fr 605 11,960 254,863 15,621 15,621
es 522 18,906 138,878 14,860 14,860
ru 117 927 13,189 7,242 7,307
zh - - 92,280 4,299 4,483
en 1933 61528 435,947 16,029 16,029

Table 1: Dataset description; the number of hours,
voices, and utterances for each split. Hour and voice
statistics for the Chinese corpus are not available as it is
distributed after preprocessing. The number of speakers
for the Chinese dataset is 855. Train and dev splits of
English were not used.

4.2 Multilingual Generalizability Setup

We use the ASR performance on a range of ty-
pologically diverse languages as a metric to infer
the models’ multilingual generalizability. In or-
der to fairly compare the performance of each SSL
model in different language datasets, we use the
same downstream model for all languages and fea-
tures and focus on the within-language difference
between the SSL model and the baseline model.

Self-supervised feature extractors We examine
a number of English SSL speech models including
HuBERT (Hsu et al., 2021), wav2vec 2.0 (Col-
lobert et al., 2016), NPC (Liu et al., 2021a), TERA
(Liu et al., 2021b), and VQ-APC (Chung et al.,
2020) with model details shown in Table 2. Unlike
the baseline model, we use a smaller learning rate
considering that self-supervised training usually
uses a small learning rate. We use a learning rate
of 0.0025 with 40000 warmup steps.

Model architectures After multilingual features
are extracted, we use a standard Conformer encoder
and a Transformer decoder in our downstream ASR
model and a stacked RNN as the language model

2http://www.openslr.org/38
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Model architecture train objective model size pre-train input stride
HuBERT-BASE

CNN + Transformer Predictive
95m LS-960

wav 20ms
HuBERT-LARGE 317m LL-60k
wav2vec2-BASE

CNN + Transformer
Contrastive 95m LS-960

wav 20ms
wav2vec2-LARGE + Diversity 317m LV-53.2k

NPC Masked Conv Block L1 Reconstruction 19.4m LS-C-360 Mel 10ms

TERA-BASE
Unidirectional LSTM

L1 Reconstruction 21.3m LS-C-100 Mel 10ms
+ Prediction Network

VQ-APC Unidirectional LSTM L1 Reconstruction 4.63m LS-C-360 Mel 10ms

Table 2: SSL Model Summary. For the pre-training data description, LS = Librispeech, LS-C = Librispeech-clean,
LL = Libri-light, and LV = Libri-vox.

during decoding. More details on the ASR model
architecture and training are in Appendix A.

4.3 PSR Computation
We use the DGCCA pipeline shown in Figure 4 to
compute the PSR scores for each langauge. The
DGCCA model used consists of an MLP network
with a Linear layer, a Sigmoid function, and a Batch
Norm layer. Each group of tensors has one MLP
network, and its output is passed into the DGCCA
loss. We used SGD to optimize the network with a
learning rate of 1e-6. We use features extracted by
the HuBERT model from five different languages
(German, French, Spanish, Russian, and English)
and also extract its corresponding Mel Spectrum
and BERT features. Chinese PSR is not reported
because CER was used to evaluate the ASR per-
formance, hence the comparison across languages
would not be fair (more details in Section 5.2).
When calculating the correlation scores, we use
the test set in each target language as input to the
DGCCA model with a batch size of 32. Details
on the implementation and hardware of the SSL
models and the DGCCA model can be found in
Appendix B.

5 Results and Analysis
5.1 Multilingual Generalizability
Results from the multilingual ASR tasks are shown
in Table 3, with both WER scores and the differ-
ence from the Mel Spectrum baseline (∆).

In the zero-shot setting, it is generally expected
that the SSL feature extractor trained on English,
without any domain adaptation, performs poorly on
the cross-lingual ASR tasks compared to the Mel
spectrum baseline. Although it can extract higher-
dimensional features, additional English syntactic
information in the SSL model can be projected onto
the new language (Georgiou et al., 2020). There-
fore, the purpose of this experiment is not to im-

prove the SOTA results but rather to probe the SSL
models for further phonetic-syntactic analysis.

There are five SSL models being evaluated in
this experiment in five languages. The column Avg
on the right marginal of Table 3 shows the overall
performance of each SSL model in all languages.
In general, wav2vec2.0-LARGE significantly out-
performs other feature extractors and has a con-
sistent result across languages. There are two in-
stances in which wav2vec2.0-LARGE outperforms
the pure acoustic Mel Spectrum baseline. This can
be attributed to the cross-lingual phonetic informa-
tion transfer that the model learned from English
pre-training.

5.1.1 Effect of Training Objectives

The HuBERT and wav2vec2.0 models consistently
perform better than NPC, TERA, and VQ-APC.
HuBERT and wav2vec2.0 both effectively combine
CNN encoders with Transformers in their architec-
ture. The attention mechanism allows the models
to effectively encode speech features into the latent
embedding space and learn contextualized repre-
sentations. Both HuBERT and wav2vec2.0 use
similar architectures and identical pre-training data
and setups. However, HuBERT as a cross-lingual
feature extractor does not perform as well due to
its predictive loss compared to the contrastive loss
of wav2vec2.0. The masked prediction task during
HuBERT pre-training forces the model to learn the
language model as well as the acoustic model from
continuous English speech inputs (Hsu et al., 2021),
so the model might be overfitted to English syntax.

Now we discuss the performance of NPC, TERA,
and VQ-APC, which are significantly smaller than
wav2vec2.0 and HuBERT both in model and data
size. TERA and NPC have comparable model sizes,
training objectives, input format, and stride dur-
ing pre-training, but TERA outperforms NPC with
less than one-third of the training data. This is
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Model/Lang de ∆ fr ∆ es ∆ ru ∆ zh ∆ Avg. ∆

Mel (Baseline) 10.0 - 15.8 - 11.5 - 7.9 - 9.4 - 10.92 -
HuBERT-BASE 11.3 1.3 16.5 0.7 13.1 1.6 7.8 -0.1 9.8 0.4 11.70 0.78

HuBERT-LARGE 12.4 2.4 16.6 0.8 12.0 0.5 8.3 0.4 9.1 -0.3 11.68 0.76
wav2vec2-BASE 11.8 1.8 16.7 0.9 13.4 1.9 8.5 0.6 9.8 0.4 12.04 1.12

wav2vec2-LARGE 9.2 -0.8 16.6 0.8 12.3 0.8 7.6 -0.3 9.4 0 11.04 0.10
NPC 16.2 6.2 18.1 2.3 16.1 4.6 11.0 3.1 10.7 1.3 14.42 3.5

TERA-BASE 15.6 5.6 17.1 1.3 14.8 3.3 10.3 2.4 10.0 0.6 13.56 2.64
VQ-APC 13.5 3.5 17.2 1.4 17.3 5.8 12.1 4.2 10.8 1.4 14.18 3.26

Avg. 12.86 2.86 16.97 1.17 14.14 2.64 9.37 1.47 9.94 0.54 - -

Table 3: Word Error Rate (WER) of German (de), French (fr), Spanish (es), and Russian (ru). For Chinese (zh), we
apply Character Error Rate (CER) as the evaluation metric. ∆ is the difference from Baseline, the lower the better.
wav2vec2.0-LARGE achieves the best performance and the Transformer-based models generally perform better.

due to the alterations in the time, frequency, and
magnitude axes of the data during pre-training,
which increases data diversity and enforces accu-
rate phoneme prediction (Liu et al., 2021b). On the
other hand, VQ-APC achieves comparable results
as NPC with a much smaller model size. With
all the other setups identical, this suggests that
the sequential structure learned by the Unidirec-
tional LSTM (APC) and the quantization layers
are more effective at capturing speech representa-
tions than convolutional blocks in NPC, implying
that speech should be treated as sequential data.

5.1.2 Effect of Model Size
Comparing the HuBERT-BASE / HuBERT-LARGE

and wav2vec2.0-BASE / wav2vec2.0-LARGE pairs
gives insight into the effect of model size on down-
stream ASR tasks. The LARGE models generally
perform better than the BASE models. This is con-
sistent with a previous study by Pu et al. (2021),
in which they empirically showed that scaling SSL
models results in improvements in both L1 loss
and accuracy on downstream tasks consistent with
the power law. Larger models are also more data-
efficient when labeled data is scarce. The advan-
tage of the LARGE model over the BASE model
is especially apparent on the wav2vec2.0 pair, as
wav2vec2.0-LARGE consistently performs better
across all languages. As discussed in Section 5.1.1,
the more efficient use of data in HuBERT-LARGE

may have caused it to learn even more syntactic
and semantic representation, which does not benefit
cross-lingual speech feature extraction.

5.2 Linguistic Analysis
Now we discuss the performances of all five lan-
guages based on their average scores. Smaller ∆
indicates better generalizability. According to the
phylogenetic tree shown in Figure 3, both Ger-
man and English belong to the Germanic branch;

French, Spanish, and Russian are in different lan-
guage groups as English; Chinese belongs to an-
other language family. As shown in Table 3, En-
glish SSL models have better generalizability in
French than in German. This is because French
has a profound phonological influence on the de-
velopment of English (Roth, 2010), and the latter
not only borrows some French pronunciation rules,
but also shares contextual phonetic similarities of
pitch contours (So and Best, 2014). For German,
although it appears to have poor SSL performance
with high ∆ values, the absolute WER is the lowest
among German, French, and Spanish, which have
similar training sizes. From this, it can be observed
that SSL representations has diminishing returns in
high-resource situations.

Features extracted by the SSL models also per-
form well in Russian and Chinese ASR tasks. This
might seem surprising, but it is because both Rus-
sian and Chinese are low-resource with less than
100k utterances. This demonstrates the robustness
of SSL models in low-resource settings and estab-
lishes promising directions to generalize to other
low-resource languages. Moreover, although Chi-
nese is in the Sino-Tibetan language family, it actu-
ally has some phonotactic similarities with English
(Ann Burchfield and Bradlow, 2014; Yang, 2021).
It is important to note that the CER was used as the
metric for Chinese ASR to avoid additional noise
introduced by a word segmentation model, so the
Chinese results should only be compared across
models rather than across languages.

Analysis by linguistic distance can provide some
plausible explanations for the results, but there still
exist some inconsistencies. These inconsistencies
motivate our next section, PSR Analysis, in which
we use our novel metric to explain the model perfor-
mance by categorizing and quantifying linguistic
information in the extracted representations.
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5.3 PSR Analysis
PSR scores of HuBERT-BASE on English and the
target languages are shown in Table 4. As described
in Equation 2, the larger the PSR, the more pho-
netic content in the feature set. First, to validate
the PSR scale, we test the SSL features extracted
from an English corpus by the SSL model. The
PSR value from the English corpus is close to zero,
which conforms with the intuition that the English-
trained HuBERT model is able to extract useful in-
formation in both the phonetic and syntactic fields.

Lang en de fr es ru
PSR .01 .15 .16 .13 .23

WER ∆ - 1.3 0.7 1.6 -0.1

Table 4: PSR Results for Target Languages. A positive
PSR means that the phonetic content in the extracted
representations is stronger than the syntactic content.

Combined with the information in Table 3, we
show that there is a positive correlation between
the PSR scores of the feature group and the ASR
performance of the model in that language. For ex-
ample, the ∆ value of HuBERT-BASE on German
is higher (worse) than that of French and lower
(better) than that of Spanish as shown in Table
3, and we see the corresponding relationship of
their PSR values in Table 4: German PSR is lower
(worse, less phonetic info) than French and higher
(better, more phonetic info) than Spanish. This
phenomenon indicates that the more phonetic infor-
mation contained in a set of features, the better the
performance of that set of features on cross-lingual
or out-of-domain downstream tasks. Therefore,
when the SSL model trained with English mod-
els is applied to the non-English corpus, phonetic
features are the main contributors to effective in-
formation compared with syntactic features.

5.4 Layer Weights Analysis
All PSR scores shown in Table 4 are positive, sug-
gesting that the features extracted by speech SSL
models tend to have more phonetic information
than syntactic information. This is partially due
to the fact that the weighted sum of layers is used
as input features to the ASR model and that the
weights are optimized during training to put more
emphasis on the phonetic information. Figure 5
shows the magnitude of the weights across all lay-
ers of HuBERT-BASE.

First, the layer-wise trend is consistent across all
languages, suggesting each layer contains similar
information even when trained on different datasets,

Figure 5: Layer-wise Weight Analysis.

i.e., the weights get updated similarly given the
same task. The optimized weights gravitate toward
layers that are crucial for the ASR task. The posi-
tive correlation between the ASR and PSR scores
implies that the layers with large weights contribute
to the high PSR scores, i.e. have denser phonetic
than syntactic information. From Figure 5, Layers
4, 11, and 12 contribute significantly to the ex-
tracted features. Since lower layers contain lower-
level information and vise versa, Layer 4 (and its
adjacent layers) contain low or intermediate-level
information on acoustic and phonetics important
for the ASR task. The last two layers are the most
salient because they contain high-level informa-
tion related to human phonetics. Additionally, the
weight for Layer 4 is larger in German and French,
which are closer to English. This shows that when
the pre-training and target languages are highly sim-
ilar, the low-level phonetic features become more
helpful. Our work to localize the phonetic content
encoded in specific layers of HuBERT draws simi-
lar conclusions with Pasad et al. (2021) and Pasad
et al. (2023), which localized various acoustic and
linguistic properties in SSL models using CCA.

6 Conclusion
In this work, we studied English self-supervised
speech models and probed for the phonetic and syn-
tactic content in the extracted speech representa-
tions. We accomplished this using the SSL models
as a feature extractor for downstream ASR task in
multiple languages. Higher multilingual adaptabil-
ity of a model is found to be positively correlated to
the amount of phonetic information in the extracted
representations. Most importantly, we propose a
novel metric - the Phonetic-Syntax Ratio (PSR) - to
quantify the phonetic and syntactic composition in
the representations. PSR can serve as an effective
indicator during model selection. We were also
able to localize the phonetic information to certain
layers in the SSL model. This is a call to other
researchers to design smarter objectives when pre-
training large models (such as focusing more on
phonetic information learning) rather than simply
increasing the model size.
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Limitations

There are several limitations to our work. First,
the value of our PSR was only tested on HuBERT
due to limited computing resources. Although the
scores reflect the ratio of acoustic and linguistic
information in the features extracted by the SSL
model, the performance of the corresponding down-
stream ASR task is not yet empirically shown in
every SSL model. Second, the parameters in the
SSL models are frozen during ASR training. Multi-
lingual adaptability might be evaluated differently
by unfreezing some or all layers of the SSL feature
extractor. Finally, we did not calculate the PSR
value for Chinese, as we did not find it to be a valu-
able data point given the Chinese ASR results are
reported in CER only. Our choice to evaluate En-
glish SSL models is motivated by the abundance or
English data, but other monolingual or multilingual
models could be used given the abundance of data
in the chosen langauge(s). For future directions, we
believe that exploring spurious correlations among
language pairs (e.g. phonotactical similarities be-
tween Chinese and English) is a fruitful direction
that might shed light on language selection during
cross-lingual transfer in speech models.
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A ASR Model Architecture and Training

The downstream ASR model is composed of a Con-
former encoder and a Transformer decoder. The
encoder consists of 12 blocks and 4 attention heads
with an output size of 256, and the decoder consists
of 6 blocks. We use an Adam optimizer with 25000
warmup steps. The model is initialized with Xavier
Uniform distribution and trained for 50 epochs with
early stopping. We take the average of the best 10
models as the prediction model in the ASR task.
To focus on the performance of the SSL feature
extractor, we used a simple stacked RNN as the
language model during decoding. The RNN lan-
guage model has 2 layers and each layer has 650
units optimized by the SGD algorithm. We train
this language model for 20 epochs and only keep
the best one as our language model. During de-
coding, we use 0.3 as the weight of the language
model and decode data with a beam size of 10.

B Implementation and Hardware

We obtain the upstream SSL models and DGCCA
model from the S3PRL Speech Toolkit (wen Yang
et al., 2021). The ASR training and DGCCA com-
putation were both done on NVIDIA Tesla V100
for all model-language pairs. The average time of
each experiment depends on the dataset size but
cost about one week to complete on two GPUs for
ASR and one day for DGCCA.
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Abstract

DEF2VEC introduces a novel paradigm for
word embeddings, leveraging dictionary def-
initions to learn semantic representations. By
constructing term-document matrices from def-
initions and applying Latent Semantic Analysis
(LSA), DEF2VEC generates embeddings that
offer both strong performance and extensibility.
In evaluations encompassing Part-of-Speech
tagging, Named Entity Recognition, chunking,
and semantic similarity, DEF2VEC often
matches or surpasses state-of-the-art models
like WORD2VEC, GLOVE, and FASTTEXT.
Our model’s second factorised matrix resulting
from LSA enables efficient embedding
extension for out-of-vocabulary words. By
effectively reconciling the advantages of dictio-
nary definitions with LSA-based embeddings,
DEF2VEC yields informative semantic repre-
sentations, especially considering its reduced
data requirements. This paper advances the
understanding of word embedding generation
by incorporating structured lexical information
and efficient embedding extension.

1 Introduction

Nowadays, semantic representations are the core of
Natural Language Processing (NLP), allowing ma-
chines to capture the intricate relationships between
words and their meanings (Liu et al., 2020b). Word
embeddings have emerged as a cornerstone of this
representation, enabling the translation of textual
data into numerical vectors that encapsulate seman-
tic nuances (Jurafsky and Martin, 2023, Chapter 6).
These embeddings facilitate a wide range of
NLP tasks, from sentiment analysis to machine
translation, by endowing algorithms with means
to comprehend and manipulate language, (Raffel
et al., 2020; Brown et al., 2020; Sanh et al., 2022).

Contemporary advances in NLP have witnessed
a paradigm shift from traditional static word embed-
dings to dynamic contextual embeddings, enabled
by Transformer network-based models (Vaswani

et al., 2017). Contextual embeddings, such as those
derived from BERT (Devlin et al., 2019), GPT
(Radford et al., 2018, 2019; Brown et al., 2020;
OpenAI, 2023), and their variants, capture not just
the inherent meaning of a word, but also its signif-
icance within the surrounding context (Liu et al.,
2020a; Wang et al., 2022). While these contextual
embeddings have undeniably revolutionised NLP
benchmarks, the utilisation of static word embed-
dings persists. These embeddings, often generated
through methods like WORD2VEC (Mikolov et al.,
2013a,b), GLOVE (Pennington et al., 2014), and
FASTTEXT (Bojanowski et al., 2017), remain
valuable for their simplicity, interpretability, and
efficiency (Hosseini et al., 2023).

In this paper, we introduce DEF2VEC, an inno-
vative approach to constructing word embeddings
that marries traditional static embeddings’ virtues
with dictionary definitions’ information-rich
nature. Recognising the enduring utility of static
embeddings alongside the dominance of contextual
embeddings, we propose exploiting the structured
knowledge encapsulated in dictionary definitions.
This unique strategy involves building term-
document matrices from the definitions of words,
which are subsequently factorised using Latent
Semantic Analysis (LSA) (Deerwester et al., 1989,
1990). Remarkably, the embeddings extracted
from this factorisation exhibit competitive perfor-
mance on various tasks, often matching or even
outperforming state-of-the-art static embeddings.

Our primary contribution lies in the extensibility
of DEF2VEC embeddings. With a twofold
factorisation approach, DEF2VEC generates robust
embeddings from existing definitions and offers
a seamless mechanism for accommodating new
words into the embedding space. This scalability
addresses a longstanding challenge in word
embeddings, where adding new words necessitates
retraining the entire model. The presented empirical
evaluations across multiple tasks underscore the
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strengths of DEF2VEC embeddings, making it a
valuable alternative for static embedding models.

We divide this paper into the following sections.
In Section 2, we discuss related works in the domain
of word embeddings. Section 3 elaborates on the
DEF2VEC model, detailing the term-document
matrix construction and the factorisation process.
Section 4 presents the data set employed for
experimentation. Section 5 outlines our evaluation
methodology, encompassing benchmarks and met-
rics. Subsequently, Section 6 dissects these results,
offering insights into the efficacy of DEF2VEC

embeddings. Finally, Section 7 summarises our
findings and proposes possible future extensions.

2 Related works

Nowadays, word and sentence embeddings are
fundamental tools in NLP, capturing the essence of
language in numerical representations. In this sec-
tion, we provide a taxonomy of embedding models,
classifying them based on the level of the linguistic
unit (words vs. sentences/documents) and the nature
of the representation (static vs. contextual for word
embeddings, parametric vs. non-parametric for
sentence/document embeddings).

2.1 Word Embeddings

Word embeddings are the cornerstone of NLP,
encapsulating word meanings in vector spaces.
These embeddings can be broadly categorised into
two main classes: static and contextual.

Static (or shallow) word embeddings capture
word meanings independently of context, repre-
senting words as fixed vectors. Examples of this
category include WORD2VEC (Mikolov et al.,
2013a,b), GLOVE (Pennington et al., 2014), and
FASTTEXT (Bojanowski et al., 2017), which
generate embeddings through methods like skip-
gram, Continuos-Bag-of-Words (CBoW), global
co-occurrence statistics, and sub-word information.

Contextual (or deep) embeddings, on the other
hand, integrate contextual information to produce
dynamic representations. Models like ELMO (Pe-
ters et al., 2018), BERT (Devlin et al., 2019), GPT
(Radford et al., 2018), and their variants generate
embeddings by considering the surrounding words
or sentences (i.e., the context), resulting in nuanced
and context-sensitive representations (Liu et al.,
2020b). These models build on top of word em-
beddings, starting from static representations and
using Deep Neural Networks (DNNs) for sequence

processing such as Recurrent neural network (El-
man, 1990; Hochreiter and Schmidhuber, 1997) or
Transformer (Vaswani et al., 2017) neural networks.

2.2 Sentence and Document Embeddings

While word embeddings capture individual word
meanings, sentence and document embeddings
aim to capture the meaning of larger textual units.
These embeddings can be classified into parametric
and non-parametric based on their approach to
representation and generation.

Parametric sentence embeddings are generated
using neural network architectures trained to
produce fixed-size vectors from input sequences
(e.g., sentences). SKIP-THOUGHT vectors (Kiros
et al., 2015), SENT2VEC (Pagliardini et al., 2018),
and SENTENCE-BERT (Reimers and Gurevych,
2019, 2020; Thakur et al., 2021) are examples of
such approaches. As for contextual embeddings,
these models are often built using DNNs for
sequence processing.

Non-parametric sentence embeddings rely
on pre-trained models for word embeddings or
statistical methods to generate representations.
Examples include averaging word embeddings,
Smooth Inverse Frequency (SIF) WEIGHTING

(Arora et al., 2017), and DYNAMAX (Zhelezniak
et al., 2019), SFBOW (Muffo et al., 2021, 2023).

3 Model

DEF2VEC presents a novel approach to construct-
ing word embeddings that exploits the structured
information contained within dictionary definitions.
The underlying principle of DEF2VEC involves
the generation of term-document matrices from
dictionary definitions, followed by LSA to yield
semantically informative and extendable embed-
dings. In this section, we explain how to build the
term-document matrix and how LSA is applied to
this matrix to extract the embeddings. Additionally,
we explain how the model can be extended with new
embeddings without requiring any re-training, and,
to conclude, we summarise the model capabilities.

3.1 Building the Term-Document Matrix

Given a vocabulary V of |V| terms (either words of
multi-word expressions), each term in V is associ-
ated with one or more definitions extracted from
linguistic resources. DEF2VEC constructs a term-
document matrixD, where each row corresponds to
the Term Frequency-Inverse Document Frequency
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(TF-IDF) representation of the definitions associ-
ated with a term. In the case of terms with multiple
definitions (e.g., polysemous words), the TF-IDF
vectors of individual definitions are averaged.

Mathematically, given a termw∈V represented
as a one-hot vector x∈1|V| (where 1≡{0,1} and
∥x∥=1) and its corresponding TF-IDF definition
vector y ∈ R|V|, we establish the relationship
defined in Equation (1).

y=x·D (1)

Where D∈R|V|×|V| is a sparse matrix, connect-
ing terms to their definitions. Di, the i-th row of
D, is such that Di=y (supposingw is the i-th term
in V).

3.2 Latent Semantic Analysis

To distil semantic information and generate
embeddings, DEF2VEC applies LSA to the
term-document matrix D. LSA is de facto reduced
(or truncated) Singular Value Decomposition
(SVD), a method for matrix factorisation.

The term-document matrix D is factorised as
reported in Equation (2). The process is represented
in Figure 1.

D≃U·Σ·V⊤ (2)

Here, Σ ∈ Rd×d is a diagonal matrix with the
singular values and U ∈ R|V|×d and V ∈ R|V|×d

are matrices containing the left and right singular
vectors, respectively. d is the desired embedding
dimensionality, a tunable hyperparameter of the
DEF2VEC model.

3.3 Extensibility and Reconstruction

The significance of DEF2VEC lies in its extensi-
bility. SVD decomposition yields embeddings as
rows of the matrix U. However, the right singular
vectors in V and the singular values in Σ can be
exploited to generate embeddings from the TF-IDF
representation of a term’s definition as presented
by Equation (3):

x·U=Ui=u≃y·V·Σ−1 (3)

Both processes of embedding fetching from U and
the embedding reconstruction from V and Σ are
visualised in Figure 2.

This approach makes the embeddings extensible,
enabling adding new terms without retraining the
entire model. The downside of the approach is the

Table 1: Comparison of vocabulary size and data set size
of the considered word embedding models.

Model Vocabulary
size ×109

No. training
tokens ×109

DEF2VEC 0.76 0.05
WORD2VEC 3 100
GLOVE 2 840
FASTTEXT 2.19 600

small reconstruction error the truncation introduces
after the SVD process. However, neural networks,
which operate based on these embeddings, are
expected to remain robust to the slight variations
introduced by the reconstruction process (as we
show in our evaluation).

3.4 Robustness and Quality of Representations
DEF2VEC’s embeddings benefit from the semantic
richness of dictionary definitions while preserving
the efficiency of static embeddings. This model
leverages LSA’s decomposition to capture latent
semantic relationships within definitions, yielding
embeddings that demonstrate semantic coherence
even in the presence of noise and variation inherent
in textual definitions.

In summary, DEF2VEC introduces a novel
methodology that combines the interpretability and
extensibility of static embeddings with the rich se-
mantic information present in dictionary definitions.
We realised our implementation of DEF2VEC using
Scikit-Learn (Pedregosa et al., 2012), which offer
utilities for TF-IDF vectorisation and SVD.

4 Data

The foundation of the DEF2VEC model lies in
the use of the WIKTIONARY1 as a rich source
of linguistic information. WIKTIONARY, a
project by the Wikipedia Foundation, offers a
comprehensive dictionary encompassing various
languages, providing definitions, pronunciations,
etymologies, and more for a wide array of terms. To
construct the DEF2VEC data set, we “mined” the
English-language instance of the WIKTIONARY,
extracting definitions to form the basis of our
semantic representations.

To the end of this work, we used the dump file of
the English WIKTIONARY from September 20202.

1Website: https : / / en.wiktionary.org / wiki /
Wiktionary:Main_Page.

2The latest dumps of the WIKITIONARY are available
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Figure 1: DEF2VEC term-document matrix decomposition.
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Figure 2: DEF2VEC embedding fetching and reconstruction processes.

The XML structure of the dump file consists of
individual pages, each corresponding to a dictionary
entry. A page includes a title, which is the term
being defined, and a text section encapsulating the
various elements of the entry, such as definitions,
examples, synonyms, and more.

We cleaned and processed the data to generate a
cohesive data set suitable for training the DEF2VEC

model. We filtered out non-English entries and
definitions associated with multiple languages,
retaining only English ones. Additionally, we re-
moved formatting tags, comments, and extraneous
information, focusing solely on the textual content
relevant to our work.

Each definition is preceded by the symbol # ,
which we removed during the parsing process. Our
parser also excluded definitions marked with the
label rfdef , indicating that the definitions did not
exist on the corresponding WIKTIONARY web page.

at the following link: https://dumps.wikimedia.org/
enwiktionary/.

We further addressed links to other WIKTIONARY

pages, Wikipedia pages, or appendices, ensuring
that only relevant words were retained.

We made distinctions between locutions (multi-
word expressions) and proper nouns. While generic
locutions were excluded, locutions related to proper
nouns were retained. Proper nouns carry distinct se-
mantic significance and enrich the contextual under-
standing of terms. The data set consists of approx-
imately 764,595 tokens and 1,023,372 definitions.
Additionally, it comprises 12,903 locutions. No-
tably, the data set includes 39,251 tokens containing
punctuation, allowing the model to capture the nu-
ances of language even in the presence of punctuated
terms. Compared to other word embedding models,
ours is less “data-hungry” as highlighted in Table 1.

By leveraging the structured information in
WIKTIONARY, we constructed a comprehensive
data set that serves as the foundation for training
the DEF2VEC model. The subsequent sections
delve into the architecture of DEF2VEC and its
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Table 2: Main statistics of the benchmark data sets.

Bechmark Split No.
samples

Avg. no.
tokens

CONLL-2003

Train 14,041 14.5
Val. 3250 15.8
Test 3453 13.5

Total 20,744 14.5

STS

Train 5749 22.8
Val. 1500 26.4
Test 1379 22.6

Total 8628 23.4

Table 3: Fraction of sentences containing tokens
removed for the reconstruction evaluation.

Bechmark Split Faction of
sentences [%]

CONLL-2003
Train 40.7
Val. 40.5
Test 42.6

STS
Train 46.5
Val. 50.0
Test 60.2

performance across various tasks, illustrating its
unique approach to word embeddings.

5 Evaluation

This comprehensive section presents our evaluation
strategy for the DEF2VEC model. We describe the
selected benchmarks, the evaluation approach, and
the baselines we used for comparison.

5.1 Benchmarks

Our evaluation benchmarks encompass diverse
linguistic tasks, providing a comprehensive
understanding of DEF2VEC’s performance.

We employed the CONLL-2003 data set (Tjong
Kim Sang and De Meulder, 2003) for sequence
labelling tasks: namely Part-of-Speech (POS)
tagging, Named Entity Recognition (NER) and
chunking (CHUNK). The CONLL-2003 data set
was proposed as NER benchmark in the CoNLL
conference (Daelemans and Osborne, 2003) and
provides tags in BIO format for POS, NER, and
CHUNK tasks. The data set, divided into training,
validation, and test splits, facilitated an evaluation

of DEF2VEC’s capabilities in capturing linguistic
structures and semantic nuances. Each sample is a
pre-tokenised sentence (the input); each token of the
sentence has its reference labels (the target output).

For sentence similarity, we turned to the Semantic
Textual Similarity (STS) data set (Cer et al., 2017),
evaluating DEF2VEC’s ability to capture semantic
relationships. The STS Benchmark comprises a
selection of the English corpora used in organised
in the context of the SemEval challenges between
2012 and 2016 (Agirre et al., 2012, 2013, 2014,
2015, 2016). The selection of corpora composing
the data set includes text from image captions, news
headlines, and user forums. Each sample in the
corpus comprises a pair of sentences (the input) and
their similarity score (the target output).

5.2 Approach
Our evaluation approach involves a two-pronged
strategy: assessing embedding quality and recon-
struction effectiveness. We trained Convolutional
Neural Networks (CNNs) tailored to the tasks to
evaluate embedding quality. These CNNs featured
essential layers to ensure robust evaluations while
mitigating overfitting risks:

• Dropout Layers: We introduced dropout layers
with a 10% dropout probability, serving as
regularisation mechanisms during training.

• Convolutional Layers: Our architecture
included a convolutional layer with a kernel
width of 5 embeddings, using the Gaussian
Error Linear Unit (GELU) activation function
for non-linearity.

• Additional Dropout: An extra dropout layer for
further regularisation, with a 10% probability,
followed the convolutional layers.

For sequence labelling tasks (POS, NER,
CHUNK), our approach incorporated a linear layer
to map input vectors to logit scores. Applying
sequence-wise softmax operations yielded label
probabilities. This enabled an in-depth evaluation
of DEF2VEC’s capacity to capture syntactic and
semantic features across various linguistic tasks.

We utilised the Semantic Textual Similarity (STS)
data set to train parametric sentence embedding
models. We generated the sentence embeddings
by employing a siamese network architecture
with attention pooling. We computed the cosine
similarity of these embeddings to quantify the
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sentence similarity. This benchmark evaluated
DEF2VEC’s appropriateness to capture nuanced
semantic relationships at sentence level.

The choices in the neural network architectures
were mainly guided by the reference work of Col-
lobert et al. (2011), where word embeddings were
first used to improve results on different NLP tasks.

In addition to assessing embedding quality, we
examined DEF2VEC’s reconstruction capabilities.
We pruned the WIKTIONARY data set, removing
words with frequencies of 10 or fewer occurrences.
Subsequently, we retrained DEF2VEC on the
remaining 30,174 terms and their definitions.

We employed this reduced model to reconstruct
embeddings for words in the benchmark samples
lacking embeddings. We reported the statistics on
the affected samples in Table 3. These reconstructed
embeddings were generated from their Wiktionary
definitions.

5.3 Baselines

Throughout all benchmark tasks, we conducted ex-
tensive comparisons between DEF2VEC (D2V) and
established word embedding models: WORD2VEC

(W2V), GLOVE (GV), and FASTTEXT (FT). These
comparisons allowed us to gauge DEF2VEC’s
performance against widely recognised methods.

This comprehensive evaluation approach, supple-
mented by a thorough assessment of reconstruction
capabilities, is the foundation for our analysis
of DEF2VEC’s performance in the subsequent
results section. By investigating both embedding
quality and reconstruction effectiveness, we aim
to understand DEF2VEC’s capabilities in capturing
and representing semantic information within
dictionary definitions.

6 Results

This section presents and discusses the results of
our proposed DEF2VEC model across various
linguistic tasks.

6.1 Sequence Labelling Tasks

Tables 4 to 6 showcase the classification results of
DEF2VEC, along with comparisons to established
embedding models, on the CONLL-2003 data
set for the POS, NER, and CHUNK tasks, respec-
tively. Across all tasks, DEF2VEC demonstrates
competitive performances.

In the POS task, DEF2VEC achieves accuracy
scores of 73.64% (Validation) and 72.42% (Test),

Table 4: Classification results on the POS task from
CONLL-2003.

Model Split Metric [%]

Acc. Prec. Rec. F1 AUC

D2V Val. 73.64 85.68 73.64 77.62 95.84
Test 72.42 85.41 72.42 76.55 94.63

W2V
Val. 64.13 85.70 64.13 70.20 94.99
Test 60.01 85.92 60.01 67.45 94.07

GV
Val. 82.53 90.49 82.53 85.43 97.94
Test 82.38 90.79 82.38 85.51 97.86

FT
Val. 80.27 90.47 80.27 83.72 97.81
Test 79.90 90.31 79.90 83.30 97.73

Table 5: Classification results on the NER task from
CONLL-2003.

Model Split Metric [%]

Acc. Prec. Rec. F1 AUC

D2V Val. 73.89 99.31 73.89 83.89 97.24
Test 71.98 99.28 71.98 83.09 96.28

W2V
Val. 75.00 99.21 75.00 84.50 96.52
Test 73.31 99.25 73.31 83.95 95.44

GV
Val. 91.80 99.58 91.80 95.34 99.29
Test 90.52 99.47 90.52 94.60 99.21

FT
Val. 90.30 99.57 90.30 94.51 99.20
Test 89.32 99.47 89.32 93.93 99.12

Table 6: Classification results on the CHUNK task from
CONLL-2003.

Model Split Metric [%]

Acc. Prec. Rec. F1 AUC

D2V Val. 77.79 86.81 77.79 81.34 94.37
Test 77.69 86.56 77.69 81.45 93.07

W2V
Val. 66.12 82.97 66.12 71.35 90.28
Test 64.94 82.19 64.94 71.00 87.91

GV
Val. 80.09 89.86 80.09 84.09 95.18
Test 79.43 89.20 79.43 83.51 94.49

FT
Val. 82.38 90.21 82.38 85.60 95.03
Test 82.28 89.63 82.28 85.39 94.55

showing its proficiency in capturing syntactic
information. It clearly outperforms WORD2VEC,
but is still distant from GLOVE and FASTTEXT.

For NER, DEF2VEC achieves 73.89% (Val-
idation) and 71.98% (Test) accuracy. While
GLOVE and FASTTEXT yields the highest accuracy,
DEF2VEC remains competitive in precision, recall,
F1, and AUC. Results against WORD2VEC are still
comparable on all metrics.
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Table 7: Spearman correlation score on the different
subsets of the STS benchmark.

Model Split
Spearman correlation [%]

Subset Total
Caption Forum News

D2V Val. 76.27 30.17 60.84 69.98
Test 75.52 42.68 57.43 63.72

W2V
Val. 83.33 49.61 63.22 77.67
Test 81.57 52.46 59.18 69.45

GV
Val. 83.45 55.96 66.60 78.37
Test 80.17 53.49 63.16 69.00

FT
Val. 86.08 58.95 70.08 81.14
Test 83.27 59.92 61.48 72.49

In the CHUNK task, DEF2VEC achieves an
accuracy of 77.79% (Validation) and 77.69% (Test),
consistently competing with established methods
and again outperforming WORD2VEC.

Across these tasks, DEF2VEC demonstrates its
proficiency in capturing syntactic and semantic
features, effectively supporting sequence labelling
tasks. DEF2VEC consistenstly performs better
or similar to WORD2VEC embeddings. However,
DEF2VEC only gets close, but never outperforms
more sophisticated embeddings like GLOVE and
FASTTEXT.

6.2 Sentence Similarity Benchmark

The Spearman correlation scores for the STS bench-
mark are shown in Table Table 7. Here, we can see
that DEF2VEC’s performance in capturing semantic
relationships among sentence pairs is satisfactory.

For the validation subset, DEF2VEC achieves a
Spearman correlation score of 69.98% (Total), with
a string drop on the Forum subset (30.17%). All the
other models share this drop, but it is not equally
remarkable.

In the test subset, DEF2VEC obtains a correlation
of 63.72% (Total). Differently from sequence
labelling tasks, the gap with the validation results
is more significant, but, again, it is a behaviour
similar to that of all the baselines. Differently from
the other models, the gap (absolute or relative)
between validation and test is lower, hinting at
higher robustness of the sentence embeddings.

While outperformed by the other model in all
subsets, DEF2VEC maintains competitive perfor-
mance and robustly captures semantic information,
yielding overall Spearman correlations>60%.

Table 8: Classification results on the CONLL-2003
tasks of the reconstructed DEF2VEC embeddings.

Task Split Metric [%]

Acc. Prec. Rec. F1 AUC

POS
Val. 74.35 86.53 74.35 78.40 96.11
Test 73.38 86.35 73.38 77.54 94.99

NER
Val. 74.19 99.32 74.19 84.09 97.23
Test 72.28 99.29 72.28 83.30 96.37

CHUNK
Val. 77.84 86.97 77.84 81.47 94.44
Test 77.84 86.61 77.84 81.56 93.08

Table 9: Differences between the classification scores on
the CONLL-2003 tasks of the reconstructed DEF2VEC
word embeddings and the original ones.

Task Split ∆Metric [%]

Acc. Prec. Rec. F1 AUC

POS
Val. 0.71 0.85 0.71 0.78 0.27
Test 0.95 0.94 0.95 0.98 0.36

NER
Val. 0.29 0.01 0.29 0.20 −0.01
Test 0.30 0.01 0.30 0.21 0.08

CHUNK
Val. 0.05 0.16 0.05 0.13 0.07
Test 0.15 0.05 0.15 0.12 0.01

Table 10: Spearman correlation score on the STS
benchmark of the reconstructed DEF2VEC embeddings.

Task Split
Spearman correlation [%]

Subset Total
Caption Forum News

STS
Val. 75.93 34.15 61.74 70.73
Test 73.19 43.05 57.47 62.57

Table 11: Differences between the Spearman correlation
scores on the STS benchmark of the DEF2VEC
reconstructed word embeddings and the original ones.

Task Split
∆Spearman correlation [%]

Subset Total
Caption Forum News

STS
Val. −0.34 3.98 0.90 0.75
Test −2.32 0.36 0.05 −1.15

6.3 Reconstruction Capabilities

We evaluate DEF2VEC’s reconstruction capabil-
ities using the CONLL-2003 data set and the
STS benchmark with reconstructed embeddings.
Tables 8 and 10 depict the results of the models
trained with the reconstructed embeddings, and
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Tables 9 and 11 highlight the differences between
the results obtained by the original DEF2VEC

(trained on all the WIKITIONARY data) and the
reconstructed embeddings.

For sequence labelling tasks (POS, NER,
CHUNK), DEF2VEC’s reconstructed embeddings
exhibit slightly lower accuracy, precision, recall,
and F1 than original embeddings. However, the
differences are generally marginal, showcasing the
effectiveness of the reconstruction process.

Reconstructed embeddings exhibit varying
performance across subsets in the STS benchmark.
Some subsets show minor decreases in Spearman
correlation scores, while others display improve-
ments. Notably, the Forum subset’s performance
sees improvement in correlation scores, indicating
the effectiveness of the reconstruction process in
capturing specific nuances.

6.4 Model Discussion

DEF2VEC consistently showcases competitive
performance across sequence labelling tasks
and sentence similarity benchmarks. While its
reconstructed embeddings exhibit slight variations
in performance, the overall impact remains
limited. This highlights DEF2VEC’s robustness
and potential to effectively capture and represent
semantic information.

In conclusion, the DEF2VEC model presents a
promising approach for learning word embeddings
from dictionary definitions. Its semantic embedding
quality and reconstruction capabilities demonstrate
its utility in various linguistic tasks, making it a
suitable alternative for advancing natural language
understanding tasks in diverse applications.

7 Conclusion

In this study, we introduced DEF2VEC, a novel ap-
proach for learning word embeddings by leveraging
dictionary definitions. DEF2VEC capitalises on the
rich semantic information present in definitions to
create embeddings that capture syntactic and seman-
tic features. Through a comprehensive evaluation,
we demonstrated the efficacy of DEF2VEC across
various linguistic tasks, showcasing its ability to
compete with established embedding models.

In the sequence labelling tasks of POS, NER,
and CHUNK, DEF2VEC exhibited competitive
accuracy, precision, recall, and F1, illustrating
its effectiveness in capturing linguistic nuances.
Additionally, the model’s performance on the STS

benchmark reflected its capability to discern seman-
tic relationships among sentence pairs, highlighting
its utility in gauging semantic similarity across
different contexts.

Moreover, we explored the dynamic extensibility
of DEF2VEC, evaluating its ability to reconstruct
embeddings of out-of-vocabulary words from their
definitions. The results indicated that while the re-
constructed embeddings displayed slight variations
in performance, the overall impact remained limited,
underscoring the robustness of the approach.

Our work opens for several future developments:

• Extending DEF2VEC to incorporate sub-word
information, such as morphemes or character-
level embeddings, could enhance its ability to
capture finer linguistic nuances and improve
its performance on tasks involving rare or
out-of-vocabulary words.

• Adapting DEF2VEC to other languages can
uncover cross-lingual variations in lexical se-
mantics and offer insights into the universality
of the approach. This could lead to the creation
of embeddings that facilitate multilingual
natural language processing tasks.

• Exploring different corpora than the Wiki-
tionary could help assess the effect of the
training data and identify better data sources.

• Conducting a more extensive evaluation of
DEF2VEC on a broader array of linguistic
tasks, such as syntactic parsing and semantic
role labelling, could further validate its
robustness and versatility.

• Utilising DEF2VEC embeddings as initial-
isation for training deep contextual models
like BERT, GPT, or their successors could
enhance language understanding and gener-
ation capabilities, potentially contributing
to advancements in various natural language
processing applications.

In conclusion, DEF2VEC introduces a novel per-
spective on word embedding learning that exploits
dictionary definitions to produce embeddings with
both syntactic and semantic information, which
are also extensible. Its competitive performance
across tasks and the potential for future extensions
make it a promising candidate for enhancing the
landscape of word embeddings and advancing
natural language understanding.
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Abstract

This paper presents the first comprehensive
study on automatic readability assessment of
Turkish texts. We combine state-of-the-art
neural network models with linguistic features
at lexical, morphosyntactic, syntactic and dis-
course levels to develop an advanced readabil-
ity tool. We evaluate the effectiveness of tradi-
tional readability formulas compared to modern
automated methods and identify key linguistic
features that determine the readability of Turk-
ish texts.

1 Introduction

Automatic Readability Assessment (ARA) is an
important task in computational linguistics that
aims to automatically determine the level of dif-
ficulty of understanding a written text, which has
implications for various fields, such as healthcare,
education, and accessibility (Vajjala, 2022). In
the healthcare sector, medical practitioners can use
ARA tools to ensure patient information and con-
sent forms are easily understandable (Ley and Flo-
rio, 1996). In the field of education, teachers and
learners alike can benefit from ARA systems to
adapt materials to the appropriate language profi-
ciency level (Kintsch and Vipond, 2014). The ap-
propriate readability of technical reports and other
business documents is critical to ensure that the
intended audience can fully understand the content
and can make informed decisions (Bushee et al.,
2018). In areas such as cyber-security, readability
is particularly important as it can impact response
time to risk closures and case materials (Smit et al.,
2021).

The task of assessing readability presents chal-
lenges, particularly when dealing with large cor-
pora of text. Although manual linguistic analysis
by domain experts provides valuable insights, it
is time-consuming, costly and subject to individ-
ual interpretation, which can lead to variability and
subjectivity in the annotation results (Deutsch et al.,

2020). Recent research in the field has focused on
developing automated methods for extracting lin-
guistic predictors and training models for readabil-
ity assessment. Despite these crucial applications
and developments, the readability efforts in Turkish
have largely been confined to traditional readability
formulas, such as Flesch-Kincaid (Kincaid et al.,
1975) and its adaptations (Ateşman, 1997; Bezirci
and Yilmaz, 2010; Çetinkaya, 2010). Several pre-
vious studies have pointed out the shortcomings
of these formulas (Feng et al., 2010, 2009). They
typically rely on superficial text features such as
sentence length and word length. The integration of
complex morphological, syntactic, semantic, and
discourse features in modern ARA approaches of-
fers the possibility of significantly improving the
current readability studies in Turkish. In this paper,
we present the first ARA study for Turkish. Our
study combines traditional raw text features with
lexical, morpho-syntactic, and syntactic informa-
tion to create an advanced readability assessment
tool for Turkish. We demonstrate the effective-
ness of our tool on a new corpus of Turkish popu-
lar science magazine articles, published for differ-
ent age groups and educational levels. Our study
aims to contribute to the development of automated
tools for accessibility, educational research, and
language learning in Turkish.

The rest of the paper is organized as follows. In
Section 2, we review related work on readability as-
sessment and machine learning-based approaches.
In Section 3, we describe our corpus and the lin-
guistic features used in our study. In Section 4, we
present the results of our experiments and analyze
the effectiveness of our tool. Finally, in Section 5,
we conclude our research and discuss future direc-
tions.

2 Previous Work

The research of quantifying text readability, or the
ease with which a text can be read, has a history
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spanning over a century (DuBay, 2007). Initial
research was centered on the creation of lists of dif-
ficult words and readability formulas such as Flesch
Reading Ease (Flesch, 1948), Dale-Chall readabil-
ity formula (Dale and Chall, 1948), Gunning FOG
Index (Gunning, 1969) and SMOG (Mc Laugh-
lin, 1969). These formulas are essentially simple
weighted linear functions that utilize easily measur-
able variables such as word and sentence length, as
well as the proportion of complex words within a
text. Initially developed for the English language,
the Flesch Reading Ease formula required recali-
bration for its application to Turkish, a task under-
taken by Ateşman (1997). However, a significant
obstacle in its adoption was Atesman’s failure to
disclose the statistical variables used in the recali-
bration process. This gap was later addressed in the
work of Çetinkaya (2010), which also assigned ap-
propriate grade levels, thus facilitating its practical
use in the Turkish educational context. Not long
after the adaptation, Bezirci and Yilmaz (2010)
introduced an important refinement, akin to the ap-
proach taken in the SMOG formula. They propose
that features based on polysyllabic words and the
total number of syllables present in the document
provide distinct indications of text complexity. Ac-
cordingly, they included the counts of polysyllabic
words (those with 3-, 4-, and 5+ syllables). Sönmez
(2003) encountered inconsistencies when applying
the Gunning FOG Index to Turkish texts which led
to the development of their adaptation. The limi-
tations are mainly due to the subjective nature of
the formula in identifying complex words and con-
cepts, which contrasts with other formulas that use
easier-to-identify criteria such as syllable counts.

Readability assessment has found practical appli-
cations in several areas in Turkish, particularly in
the fields of medicine and education. For instance,
researchers have used the Flesch-Kincaid and Ates-
man readability formulae to assess the readability
of anaesthesia consent forms in Turkish hospitals,
which led to valuable insights into how these docu-
ments could be optimised for better comprehension
(Boztas et al., 2017; Boztaş et al., 2014). In the
realm of education, readability studies have been
employed to evaluate the complexity of textbooks,
thereby ensuring that these crucial learning mate-
rials are appropriate for the targeted student age
group. For example, research has been conducted
to determine the readability levels of Turkish tales
in middle-school textbooks, providing insights that

could potentially enhance the quality of education
by aligning learning materials with students’ com-
prehension abilities (Turkben, 2019; Tekşan et al.,
2020; Guven, 2014). While traditional readabil-
ity formulas have significantly contributed to the
field of readability assessment, they are not with-
out their limitations. They often rely heavily on
surface-level text features, such as word and sen-
tence length, and fail to account for deeper linguis-
tic and cognitive factors that influence readability
(Collins-Thompson, 2014).

Readability formulae have inherent limitations
that can affect their accuracy and applicability.
Given the unique phonetic attributes, sentence for-
mation patterns, and mean syllable length in each
language, each language requires its own calibrated
readability formula. The validity of studies em-
ploying readability formulae calibrated for the En-
glish language to evaluate texts in other languages
remains questionable. In practice, applying an
English-calibrated formula to Turkish texts may
result in an overestimation of readability levels. In-
deed, most studies that have used this approach
have reported inflated levels of readability require-
ments (Akgül, 2019; Akgül, 2022) without account-
ing for the issues of calibration. Furthermore, the
evolution of language over time may necessitate
periodic re-calibration of these formulas (Lee and
Lee, 2023). As language trends evolve and new
words and phrases become more common, read-
ability formulas must adapt to remain accurate and
relevant. Previous research shows that traditional
readability metrics perform unreliably when ap-
plied to non-traditional document types such as
web pages (Petersen and Ostendorf, 2009).

Traditional readability formulas, despite their ex-
tensive use, have been criticised for their lack of
wide linguistic coverage (Feng et al., 2009, 2010).
These formulas predominantly focus on superficial
text features, largely ignoring other linguistic as-
pects that significantly contribute to text readability.
Factors such as syntactic and semantic complexity,
discourse structure, and other linguistic branches
recognised by (Collins-Thompson, 2014) which are
integral to comprehending a text, remain largely
unaccounted for in these traditional models. This
narrow linguistic focus can lead to inaccuracies in
readability assessment, especially when applied to
languages or texts with diverse linguistic structures.
These scores are relative measures of readability
that should be interpreted in the context of the text’s
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overall features and the target audience’s reading
ability. They are not absolute measures and treating
them as such can result in a misunderstanding of
the text’s actual readability.

Practitioner errors in applying readability formu-
las often stem from methodological shortcomings
and misinterpretations (Wang et al., 2013). The re-
quirement of considerable text sample sizes for tra-
ditional measures introduces another impediment,
even though the theoretical minimum size for a text
sample has yet to be conclusively established. A
common methodological error is the inappropriate
sampling of text. Some studies might only con-
sider a limited section of a text, such as the first
100 words, leading to skewed results, especially in
scientific texts where complexity often increases
later in the document. Similarly, the selective as-
sessment of text sections that do not accurately
mirror the overall complexity of the text, like fo-
cusing solely on the introduction or conclusion, can
misrepresent the readability level.

In recent years, research in ARA has shifted
from traditional linear models, which use simple
metrics such as word and sentence length to es-
timate the reading level of a text, to fine-grained
features (Collins-Thompson, 2014). These features
often include output of machine learning models
trained on a combination of word counts, lexical
patterns, discourse analysis, morphology, and syn-
tactic structures. There has been an emerging trend
toward using neural models for ARA. These mod-
els have demonstrated the capacity to implicitly
capture the previously mentioned features without
the need for manually-defined feature extraction
(Jawahar et al., 2019). Martinc et al. (2021) and
Imperial (2021) experimented with contextual em-
beddings of BERT (Devlin et al., 2019) for the read-
ability assessment task, achieving par or better re-
sults than feature-based approaches. However, both
studies omitted cross-domain evaluation, leading
to uncertainty about the extent to which language
models rely on topic and genre information, as op-
posed to readability. Other studies have further
explored various strategies to integrate linguistic
features with transformer models, promoting a fu-
sion of traditional and neural approaches (Lee et al.,
2021; Deutsch et al., 2020). The state-of-the-art re-
sults are currently being achieved by hybrid models
that ensemble linguistic features with transformer-
based models, highlighting the combined strength
of traditional and modern approaches.

3 Corpus

Most widely used readability corpora include One
Stop English (OSE) (Vajjala and Lučić, 2018), the
WeeBit corpus (Vajjala and Meurers, 2012) and
the Newsela corpus (Xu et al., 2015). While the
majority of these benchmark datasets and corpora
are predominantly available in English, there is a
growing interest in the development of readabil-
ity corpora in other languages. In the context of
low-resource languages, limited access to digital
text resources necessitates reliance on conventional
learning materials, such as classroom materials and
textbooks. There are currently no existing readabil-
ity corpora available for Turkish.

3.1 TUBITAK PopSci Magazine Readability
Corpus

Our corpus was constructed using popular science
articles from TUBITAK Popular Science Maga-
zines 1 spanning the period 2007 to 2022. The
articles are openly published and made available
for non-commercial redistribution and research pur-
poses. We selected 2250 articles from three mag-
azines, each catering to readers of different age
groups. These magazines include Meraklı Minik
(for ages 0-6), Bilim Çocuk (for ages 7+), and
Bilim ve Teknik (for ages 15+). Accordingly, we
consider the articles from these magazines as ele-
mentary, intermediate, and advanced level reading
material. Our corpus is non-parallel and encom-
passes a diverse range of topics, including instruc-
tions for laboratory experiments and brief articles
about recent scientific discoveries. This character-
istic is similar to that of the WeeBit corpus (Vajjala
and Meurers, 2012), which also includes articles
from various topics and resources. Given that the
articles in our corpus are written by experts and
specifically tailored for distinct age groups, it can
be appropriately regarded as an ’expert-annotated’
corpus. We used a off-the-shelf pdf-to-text con-
verter to extract the relevant article text and manu-
ally corrected the articles to ensure the conversion
accuracy of Turkish characters and the layout in-
tegrity. Table 1 displays descriptive statistics for
the finalized corpus.

As expected, the advanced texts display a greater
average length compared to the elementary texts.
However, the high standard deviation values for
each level indicate that other factors beyond text

1https://yayinlar.tubitak.gov.tr/
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Level Avg. Words Std. Dev Nr. of Articles
ELE 120.95 67.35 750
INT 154.99 93.57 750
ADV 327.08 187.54 750

Table 1: Descriptive Corpus Statistics

length may have a significant impact on determin-
ing the reading level of a given text.

We also performed a preliminary analysis on
the three reading levels of the corpus using tradi-
tional formulae and showed the results in Table 2,
presenting readability metrics Atesman, Cetinkaya-
Uzun and Type-Token Ratio (TTR). Atesman and
Cetinkaya readability scores decrease from one
level to the next indicating that texts become more
complex at higher reading levels. In contrast, the
TTR score increases suggesting that texts become
more diverse and less repetitive at higher reading
levels. It should also be noted that the readability
levels of the elementary-level articles in both for-
mulas were not suitable for the intended age group
and that the magazine’s disclaimer states that cer-
tain articles may require the assistance of an adult
or parent. Table 3 presents examples of articles
representing each of the three reading levels.

Feature ELE INT ADV
Atesman 66.06 59.73 42.32
Cetinkaya 39.31 36.62 29.81

TTR 0.65 0.71 0.76

Table 2: Readability features across reading levels

4 Linguistic Features

In this study, we explore five subgroups of linguis-
tic features from our Turkish readability corpus:
traditional or surface-based features, syntactic fea-
tures, lexico-semantic features, morphological fea-
tures, and discourse features. We employ spaCy
v3.4.0 (Honnibal et al., 2020) with the pre-trained
tr_core_news_trf model2 for the majority of gen-
eral tasks, including entity recognition, POS tag-
ging, and dependency parsing. We use the Stanford
Stanza parser version 1.5.0 (Qi et al., 2020) for
constituency parsing.

4.1 Traditional Features (TRAD)
Traditional or surface-based features are commonly
used to predict the readability of Turkish texts, and

2https://huggingface.co/turkish-nlp-suite/tr_
core_news_trf

we also adopt them as a baseline for our study.
Specifically, we extract 7 traditional features, in-
cluding Turkish adaptations of well-known read-
ability formulas such as Atesman and Cetinkaya-
Uzun, as well as average numbers of words and
syllables per document. As noted by (Bezirci and
Yilmaz, 2010) in their evaluation of the Turkish
readability formulae, the impact of the number of
polysyllabic words on text complexity is different
from that of the total number of syllables present
in the text. Therefore, we also included the counts
of polysyllabic words (3-, 4-, and 5+ syllables) as
separate features in our analysis.

4.2 Syntactic Features (SYNX)

Syntactic properties have a significant impact on
the overall complexity of a given text, which serves
as an important indicator of readability. We extract
an array of syntactic features that capture various
dimensions of sentence structure.

Phrasal and dependency type features: Read-
ing abilities are related to the ratios involving
clauses in a text (Lu, 2010). We extract features
based on noun and verb phrases at sentence and
article levels. We integrate features based on the
unconditional probabilities of their dependency-
based equivalents (Dell’Orletta et al., 2011). These
encompass various types of syntactic dependen-
cies, including subject, direct object, and modifier,
among others.

Parse tree depth features: The depth and struc-
ture of dependency trees in a text can reflect the
level of sentence complexity. Following this princi-
ple, we extract the average and maximum depths
of the constituency and dependency tree structures
present in the text (Dell’Orletta et al., 2011).

Part-of-Speech features: Part-of-speech (POS)
tags provide essential information about the syn-
tactic function of words in sentences. Adapting the
work of Tonelli et al. (2012) and Lee et al. (2021),
we include features based on universal POS tag
counts. Such features offer insights into the dis-
tribution and usage of different word categories,
adding another layer of syntactic information.

4.3 Lexico-Semantic Features (LXSM)

Lexico-semantic features are a set of linguistic at-
tributes that can reveal the complexity of a text’s
vocabulary. These features can be used to identify
specific words or phrases that may pose difficulty or
unfamiliarity to readers (Collins-Thompson, 2014).
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Reading Level Example
Elementary Burası bir doğa koruma merkezi. Burada annesi ve babası olmayan turna yavruları

var. Merkezde çalışanlardan biri özel bir giysi giyip koluna bir turna kuklası geçirmiş.
(This is a nature conservation centre. There are crane chicks without a mother and
father. One of the workers at the centre wears a special suit and a crane puppet on
his arm.)

Intermediate Robotlar, insanların yaptığı işleri, onların yerine yapan karmaşık makinelerdir. Bu
işleri yapmak için programlanırlar. Otomatik olarak ya da uzaktan kumanda edilerek
belirli komutları yerine getirirler. (Robots are complex machines that do the jobs
that humans do, instead of them. They are programmed to do these jobs. They fulfil
certain commands automatically or by remote control.)

Advanced Pek çok canlıda manyetik algının varlığı bilimsel olarak biliniyor. Bakteri, salyangoz,
kurbağa ve ıstakoz gibi canlılar Dünya’nın manyetik alanını algılıyor, göçmen kuşlar
ve deniz kaplumbağaları yönlerini bu sayede buluyor, köpekler eğitildiklerinde sak-
lanmış çubuk mıknatısın yerini gösterebiliyor. (The existence of magnetic perception
in many living things is scientifically known. Bacteria, snails, frogs and lobsters can
sense the Earth’s magnetic field, migratory birds and sea turtles can navigate, and
dogs can point out a hidden bar magnet when trained to do so.)

Table 3: Example sentences for three reading levels

Lexical Variation features: Secondary lan-
guage acquisition research has found a correlation
between the diversity of words within the same
Part-Of-Speech (POS) category and the lexical rich-
ness of a text (Vajjala and Meurers, 2012). We
extract noun, verb, adjective, and adverb variations,
which represent the proportion of the respective
category’s words to the total.

Type Token Ratio (TTR) features: TTR is a
commonly used metric to quantify lexical richness
and has been widely employed in readability assess-
ment studies. We compute five distinct variations
of TTR from (Vajjala and Meurers, 2012). The stan-
dard TTR variations of a text sample are susceptible
to the text length, which can introduce bias in the
readability assessment. To address this limitation,
we also consider the Moving-Average Type–Token
Ratio (MATTR) (Covington and McFall, 2010).
The MATTR mitigates the length-dependency is-
sue by calculating the TTR score within a moving
window across the text.

Psycholinguistic features: We adopted word
frequencies obtained from the Turkish psycholin-
guistic database created by Acar et al. (2016). This
resource was built from transcriptions of children’s
speech and corpora of children’s literature, thus
containing words commonly acquired during early
development. It also includes words typically ac-
quired during adulthood from a standard corpus.
We extracted the average word and sentence fre-

quency for both early and late-acquired words. We
calculate features based on the average log10 val-
ues similar to the SubtlexUS corpus (Brysbaert and
New, 2009).

Word Familiarity features: Familiarity with
specific words can greatly affect readability. Based
on prior work on Italian (Dell’Orletta et al., 2011)
and French (François and Fairon, 2012) readability
studies, we assessed the vocabulary composition
of the articles using a reference list of 1700 basic
words essential for achieving elementary reading
proficiency in Turkish. This list, a combination of
the first 1200 words taught to children aged 0-6
(Keklik, 2010) and a set of essential words from
an open-access textbook3 for learning Turkish, pro-
vides a benchmark for vocabulary familiarity. We
calculated the percentage of unique words (types)
in the text based on this reference list, performed
on a lemma basis.

4.4 Morphological features (MORPH)

Morphological complexity plays a significant role
in readability assessment, particularly in languages
that are morphologically richer than English such
as German (Hancke et al., 2012) and Basque
(Gonzalez-Dios et al., 2014). In our study, we inte-
grate the Morphological Complexity Index (MCI)
from Brezina and Pallotti (2019). The MCI cap-

3https://www.turkishtextbook.com/
most-common-words/
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tures the variability of morphological exponents of
specific parts-of-speech within a text by comparing
word forms with their stems. We calculate MCI
features for verbs, nouns, and adjectives, consider-
ing different sample sizes and sampling techniques
with and without repetition. MCI has been lever-
aged in cross-lingual readability assessment frame-
works, proving its applicability across languages
with varying morphological structures (Weiss et al.,
2021). However, these studies have not explored
agglutinative languages such as Turkish and Hun-
garian.

4.5 Discourse features (DISCO)

The final group of features we examine are entity
density features. The presence and frequency of
entities within a text can significantly impact the
cognitive load required for comprehension. Enti-
ties often introduce new conceptual information,
thereby increasing the burden on the reader’s work-
ing memory. This relationship between entities and
readability was previously shown by Feng et al.
(2009, 2010).

5 Experiments

We experiment with four different setups: trad-
baseline (non-neural model with shallow features),
modern-baseline (non-neural model with linguis-
tic features), neural (pretrained transformer mod-
els), and hybrid (modern-baseline + neural). We
use 10-fold cross-validation (10FCV) and evaluate
our models using standard metrics such as accu-
racy, precision, recall, and macro F1-score. Specif-
ically, we choose traditional learning algorithms
such as Logistic Regression, Support Vector Ma-
chines, Random Forest and XGBoost as our base-
line models. We perform a randomised search to
explore a reasonable range of hyper-parameter val-
ues. We apply a grid search to identify the optimal
combination of hyper-parameter values within this
range.

5.1 Non-Neural Models with Linguistic
Features

Given the lack of available baselines for the read-
ability task in Turkish, our first objective is to es-
tablish a baseline for the readability task. This
baseline (trad-baseline) is designed to be on par
with traditional readability formulas and is reliant
on shallow linguistic features such as sentence and
word lengths. By establishing this baseline, we

are effectively creating a benchmark that allows
for meaningful comparison between the traditional
readability formulas, which are the only available
methods in readability assessment for Turkish. We
expand our feature set and include a more diverse
set of linguistic feature groups (modern-baseline).
We are interested in the performance of individ-
ual features, but we also aim to identify the best-
performing combinations when these features are
assembled into linguistic groups.

5.2 Neural Models

We extend the established usage of transformer-
based models in readability assessment (Deutsch
et al., 2020; Martinc et al., 2021; Lee et al., 2021)
and opt for the BERTurk model4 for our analysis.
We tested multiple learning rates and batch sizes
to ascertain the optimal configuration for our task.
Specifically, we examined the learning rates of [1e-
5, 2e-5, 3e-5, 1e-4] and the batch sizes of [8, 16,
32]. Our final model used AdamW optimizer, linear
scheduler with 10% warmup steps, batch size of 8,
and learning rate of 3e-5. The sequence lengths of
our input documents were all set to 512 tokens. We
fine-tune our model for three epochs.

5.3 Hybrid Model

In our study, we experiment with a hybrid model
approach that aims to leverage the strengths of both
neural and non-neural models in an ensemble learn-
ing strategy. The premise behind the hybrid model
is based on the observation that while neural mod-
els such as BERT have demonstrated robust per-
formance across diverse tasks, they could still ben-
efit from incorporating human-defined linguistic
features, which have been key components in tra-
ditional non-neural models (Deutsch et al., 2020).
Our hybrid model takes a straightforward approach
similar to that of Imperial (2021) and Lee et al.
(2021). It combines the soft label predictions gen-
erated by the neural model with handcrafted fea-
tures. These features are then used as input to a
non-neural (Random Forest) model.

6 Results

We compare the performance of traditional and
modern baselines to illustrate the process of arriv-
ing at the best-performing model. The process of
feature and model selection for the baseline models

4https://huggingface.co/dbmdz/
bert-base-turkish-uncased
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Model Acc (%) Rec Prec F1
SVM 78.1 78.1 79.0 77.6
RandomF 85.3 85.3 85.1 85.1
LogR 83.7 83.6 83.7 83.5
XGBoost 84.1 84.0 84.0 83.7

Table 4: Performance comparison (modern-baseline) of
readability models

was carried out based on the results obtained from
different combinations.

6.1 Baseline: Feature and Model Evaluation

Linguistic Features Acc (%)
TRAD 65.7
+ LXSM 76.4
+ SYN 82.5
+ MORPH 83.6
+ DISCO (ALL) 85.3

Table 5: Incremental contribution of each feature to the
RandomF model

Through evaluation of four distinct models,
namely Support Vector Machines (SVM), Random
Forest (RandomF), Logistic Regression (LogR),
and XGBoost, we assessed combinations of five
different linguistic groups: traditional (TRAD),
lexico-semantic (LXSM), syntactic (SYNX), mor-
phological (MORPH), and discourse (DISCO) fea-
tures. Table 6 provides a comparative view of these
models’ performance when trained using the full
combination. Among the four models evaluated,
the Random Forest model delivered the highest per-
formance with 85.3%. Importantly, all of the lin-
guistic groups used provide orthogonal or distinct
information. Table 5 demonstrates how each con-
tributing linguistic group incrementally improves
the accuracy of the Random Forest model. Their
combined strength ultimately achieves the highest
overall accuracy score.

Model Acc Prec Rec F1
trad-baseline 65.7 67.5 66.8 66.7
modern-baseline 85.3 85.3 85.1 85.1
neural 92.8 93.1 92.6 92.8
hybrid 96.1 96.1 95.6 95.8

Table 6: Performance comparison of readability ap-
proaches

The varying levels of performance between dif-

ferent approaches is demonstrated in Table 6. The
hybrid model, which combines the strengths of
both traditional and neural methodologies, outper-
forms all other models, securing the highest val-
ues for accuracy, precision, recall, and F1 score.
Following the hybrid model, the neural model per-
forms the best. The neural model (BERT) demon-
strates an enhanced ability to capture nuanced
characteristics of text readability, exhibiting supe-
rior performance to the baseline models without
any handcrafted linguistic features. The modern
baseline, incorporating five different linguistic sub-
groups, achieves superior performance compared
to the traditional baseline. This highlights the ad-
vantage of leveraging an extended set of linguistic
features over merely relying on surface-level fea-
tures typical of traditional readability formulae.

7 Discussion

7.1 Model Interpretation
In order to gain insights into the significance
of individual linguistic features within our best-
performing model, the RF model, we utilised two
well-established model interpretation techniques
specifically designed for Random Forest models:
Feature Permutation and Mean Decrease in Impu-
rity (MDI) as shown in Figure 1 and 2.

Figure 1: Feature importance by permutation on full
model

7.2 Feature Correlation
We also considered model-independent analysis
through Spearman correlation to gain additional
perspective into the importance of features with
respect to readability levels. Table 7 presents the
ten features with the highest Spearman correlation
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Figure 2: Feature Importance importance by MDI on
full model

coefficients highlighting the significance of read-
ability assessment.

Group Feature ρ

TRAD Sentence Length Mean 0.487
TRAD Polysyllable Count 0.467
LXSM Child Corpus Proportion 0.433
SYNX Mean Tree Depth 0.419
LXSM Lexical Verb Variation 0.403
LXSM Early Frequency PW 0.385
LXSM Corrected TTR Score 0.352
LXSM Lexical Density 0.321
LXSM Lexical Noun Variation 0.297
SYNX Noun Phrase Per Word 0.278

Table 7: Top ten features ranked by their Spearman
correlation coefficients

7.3 Lingustic Features

The analysis of feature importance consistently
highlights the significant role of simple measures
such as average sentence length and polysyllable
counts. These findings align with previous research,
where it has been shown that even compared to
more complex feature extraction methods, a sim-
ple measure such as sentence length can indirectly
capture multiple linguistic aspects of readability.
Furthermore, our analysis demonstrates that lexico-
semantic features play a prominent role in deter-
mining readability. This is evident from the per-
formance improvement observed when including
LXSM linguistic feature set in the modern-baseline
method. It indicates that while traditional features
are indeed valuable, incorporating fine-grained in-

formation at the semantic and lexical level can lead
to an even better understanding of overall readabil-
ity. The consistent presence of the syntactic feature
"mean tree depth" further supports the relationship
between sentence length and syntactic complexity.
The correlation between mean tree depth and mean
sentence length suggests that the structural com-
plexity captured by syntactic features aligns with
the overall complexity of sentences.

8 Conclusion

We introduced a new readability corpus based on
popular science magazine articles, providing a valu-
able resource for future research in Turkish read-
ability assessment. By exploring the effectiveness
of linguistic features at different levels, we have
demonstrated their superiority over traditional read-
ability formulae and shallow-level features. Our
findings emphasise the importance of incorporat-
ing fine-grained linguistic features, as they provide
more comprehensive insights into the complexity
of Turkish texts. We showed the potential of hy-
brid models that combine fine-grained features with
neural models by leveraging the strengths of both
linguistic features and state-of-the-art transformers.
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öğretilmesi gereken en sık kullanılan 1200 kelime.
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eStopEnglish corpus: A new corpus for automatic
readability assessment and text simplification. In Pro-
ceedings of the Thirteenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 297–304, New Orleans, Louisiana. Association
for Computational Linguistics.

Sowmya Vajjala and Detmar Meurers. 2012. On improv-
ing the accuracy of readability classification using
insights from second language acquisition. In Pro-
ceedings of the Seventh Workshop on Building Ed-
ucational Applications Using NLP, pages 163–173,
Montréal, Canada. Association for Computational
Linguistics.

Lih-Wern Wang, Michael J Miller, Michael R Schmitt,
and Frances K Wen. 2013. Assessing readability
formula differences with written health information
materials: application, results, and recommendations.
Research in Social and Administrative Pharmacy,
9(5):503–516.

Zarah Weiss, Xiaobin Chen, and Detmar Meurers. 2021.
Using broad linguistic complexity modeling for cross-
lingual readability assessment. In Proceedings of
the 10th Workshop on NLP for Computer Assisted
Language Learning, pages 38–54, Online. LiU Elec-
tronic Press.

Wei Xu, Chris Callison-Burch, and Courtney Napoles.
2015. Problems in current text simplification re-
search: New data can help. Transactions of the Asso-
ciation for Computational Linguistics, 3:283–297.

232



Comparison of Wav2vec 2.0 Transformer Models
for Speaker Change Detection
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Abstract
The state-of-the-art for various speech tasks
is a sequence-to-sequence model based on
a self-attention mechanism known as Trans-
former. The broadly used Wav2vec 2.0 is a
self-supervised transformer model pre-trained
on large unlabeled datasets and subsequently
fine-tuned for a particular task. The data, along
with the size of the transformer model, play a
crucial role in both these training steps. In this
paper, we utilize Wav2vec 2.0 models for find-
ing the speaker change in a speech signal. Our
goal is to compare different model sizes with
different training datasets to show that data sim-
ilar to the task domain bring better performance
than larger models. The speaker change detec-
tion task was tested on four real conversation
corpora with consistent top results.

1 Introduction

Speaker change detection (SCD) is the task of find-
ing the point in a conversation where the speaker is
changing. It is a basic speech-processing task that
is relevant to various speech applications such as
speaker diarization (Bullock et al., 2020; Kunešová
et al., 2017; Zajíc et al., 2016), automatic speech
recognition (Wu et al., 2023), and other tasks re-
lated to processing multi-speaker audio (Aronowitz
and Zhu, 2020; Zajíc et al., 2018).

Legacy approaches for the SCD task include
computing a distance between two sliding win-
dows (Rouvier et al., 2013), detecting differences
in pitch (Hogg et al., 2019), or using precom-
puted features based on i/x-vectors (Aronowitz and
Zhu, 2020), Mel-frequency cepstral coefficients
(MFCCs) (Hogg et al., 2019), spectrograms (Hrúz
and Zajíc, 2017), and combinations of multiple
types of features (Su et al., 2022), even including
lexical information gained from automated tran-
scripts (Anidjar et al., 2021; Zajíc et al., 2018)
or word embeddings (weon Jung et al., 2023) for
speaker change detection. Different neural net-
work model architectures have been applied, such

as LSTM (Hrúz and Hlaváč, 2018), CNN (Hrúz
and Zajíc, 2017), or sequence-level modeling meth-
ods (Fan et al., 2022). Nowadays, the transformer
network concept uses the attention mechanism of
deep learning (Vaswani et al., 2017), which has
recently seen great success on a variety of tasks,
including but not limited to speech processing (Liu
et al., 2021). The main benefit is self-supervised
learning on unlabeled data.

In this paper, we investigate the wav2vec
2.0 (Baevski et al., 2020) framework in an end-
to-end approach for SCD, first proposed in our
previous paper (Kunešová and Zajíc, 2023), where
it was shown to achieve state-of-the-art results. The
main focus of this paper is to explore the capabil-
ities of different pre-trained wav2vec 2.0 models
of various sizes. The results are evaluated on four
conversational speech corpora broadly used in the
SCD task.

Figure 1: Illustration of the multitask wav2vec 2.0 de-
tector of speaker changes. The model outputs a label for
each audio frame (every 20 ms).

2 Wav2vec 2.0 models

Self-supervised audio transformers are known
to scale well with the size of pre-training data.
Wav2vec 2.0 (hereafter referred to as “wav2vec2”)
is a transformer-based self-supervised framework
for speech representation, which has been used
for a wide range of speech processing tasks,
such as automatic speech recognition (Lehečka
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Table 1: Pre-trained wav2vec2 models used in this paper.

Model #Trans. #Param. Datasets Hours Lang.

wav2vec2-base (Baevski et al., 2020) 12 ∼ 95M Librispeech 960 English
wav2vec2-large (Baevski et al., 2020) 24 ∼ 317M Librispeech 960 English
wav2vec2-large-xlsr-53 (Conneau et al., 2021) 24 ∼ 317M MLS, CV, BABEL ∼ 56k 53 lang.
wav2vec2-base-cs-80k-ClTRUS (Lehečka et al., 2022) 12 ∼ 95M various ∼ 80k Czech

et al., 2022) and many others (Yang et al.,
2021). There is a huge family of these mod-
els with different numbers of parameters trained
on different datasets. From this zoo, we pick
four models1 for our evaluation: two that were
used in (Kunešová and Zajíc, 2023) – the base
model wav2vec2-base and the large cross-lingual
(XLSR) model wav2vec2-large-xlsr-53, plus
two others. We added the English large model
wav2vec2-large and, to show the efficiency of
models trained on different than clean data, also the
Czech model wav2vec2-base-cs-80k-ClTRUS,
which is trained on data from a greater variety of
different domains (Lehečka et al., 2022). Their
parameters are summarized in Table 1.

3 Speaker Change Detection (SCD) task

Speaker change in the SCD task is defined as a
point in the audio signal where the speaker changes
to another speaker, silence, or overlapping speech.
The point where a speaker starts to speak after a
silence is also a speaker change.

SCD is generally language-independent because
language can be seen as one part of the speaker’s
characteristics. We try to discriminate these speak-
ers from each other (to find their change). On the
other hand, the discrepancy in the train and test
acoustic domains plays a significant role in the
speech representation by the end-to-end model.

The absence of a large quantity of labeled data
needed for the deep learning approach forces us to
use a self-supervised model as wav2vec2.

3.1 SCD model

As described in our previous paper (Kunešová and
Zajíc, 2023), we treat the SCD problem as an audio
frame classification task. We use the wav2vec2
model to get a contextual representation of the in-
put signal, with an additional last decision layer
as a speaker change detector. The outputs from

1Downloaded from https://huggingface.co/
facebook/wav2vec2-base, .../wav2vec2-large, .../wav2vec2-
large-xlsr-53 and https://huggingface.co/fav-kky/
wav2vec2-base-cs-80k-ClTRUS

the transformer are fully connected to the decision
layer (one neuron with a linear activation func-
tion), which outputs information about the speaker
changes in each audio frame every 20 ms, as per
the pre-trained wav2vec2 model. Due to the char-
acter of the labeling function (see Section 3.2), the
model is trained for regression (with mean square
error loss) rather than a simple binary classification.
The AdamW algorithm was used as an optimizer
except for the wav2vec2-large model, where an
Adamax provided more stable training behavior.

For the fine-tuning on SCD-labeled data, only
the first CNN layer is frozen. For this step, we are
using the HuggingFace Transformers (Wolf et al.,
2020) library, as in our aforementioned previous
paper2. The system’s architecture is in Figure 1.

Because of the high memory requirements of the
wav2vec2 models, the 16 kHz input signal is given
in segments of 20 seconds, with a 10-second over-
lap between segments. Then when the resulting
predictions are joined back together for evaluation,
we use the middle part of each segment and discard
the duplicate 5 s intervals at the edges. This ensures
that there is always sufficient context on both sides
of a potential speaker change point.

3.2 Reference labels for SCD

Reference labels for the SCD task are based on
the annotation files in the Rich Transcription Time
Marked (RTTM) format (i.e., the standard annota-
tion format for speaker diarization). Each line in an
RTTM file specifies the time interval and speaker
ID of one unbroken speaker turn. In our work, we
consider the beginnings and ends of all these in-
tervals as speaker change points, with one minor
adjustment: during fine-tuning, if two turns of the
same speaker have only a small gap (less than one
second) between them, we merge the two turns,
ignoring the gap. This helps to prevent the model
from becoming too sensitive and reporting “speaker
changes” even in brief pauses between words.

Additionally, in order to deal with time inaccu-
2Our code is available at https://github.com/mkunes/

w2v2_audioFrameClassification.
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Table 2: Our results (%) for SCD task with models fine-tuned either on in-domain data or on an artificial dataset.

Evaluated Feature In-domain train data Artificial train data

corpus model Cov Pur F1 Cov Pur F1

AMI wav2vec2-base 90.94 90.06 90.50 83.45 81.34 82.38
wav2vec2-large 91.52 90.31 90.91 80.25 82.77 81.49
wav2vec2-large-xlsr-53 92.20 90.39 91.28 83.45 83.76 83.61
wav2vec2-base-cs-80k-ClTRUS 92.41 89.97 91.18 85.02 79.61 82.22

DH-I wav2vec2-base 93.74 89.65 91.65 92.93 86.09 89.38
wav2vec2-large 94.98 89.25 92.03 91.29 87.32 89.26
wav2vec2-large-xlsr-53 95.56 89.00 92.16 89.43 89.79 89.61
wav2vec2-base-cs-80k-ClTRUS 94.61 89.17 91.81 91.04 88.31 89.65

DH-II wav2vec2-base 92.93 92.09 92.51 95.00 85.90 90.22
wav2vec2-large 94.75 91.04 92.86 93.67 87.24 90.34
wav2vec2-large-xlsr-53 95.59 91.19 93.33 92.46 89.51 90.96
wav2vec2-base-cs-80k-ClTRUS 94.88 91.45 93.13 95.29 86.75 90.82

CallHome wav2vec2-base 93.48 92.70 93.09 92.83 86.38 89.49
wav2vec2-large 92.62 93.36 92.99 89.62 89.40 89.51
wav2vec2-large-xlsr-53 93.51 93.49 93.50 93.79 88.47 91.05
wav2vec2-base-cs-80k-ClTRUS 94.51 92.54 93.51 94.51 84.55 89.25

racies in the human-annotated references, we also
use a fuzzy labeling strategy, which we first devel-
oped in (Hrúz and Zajíc, 2017): speaker change
points are given a reference label with a value of 1,
which linearly decreases to zero over an interval of
±0.2 s around each boundary. Audio frames more
than 0.2 s away from the nearest speaker change
point are labeled as 0.

During evaluation, we detect speaker change
points by first finding peaks (local maxima) in the
predicted labels and then applying a threshold –
peaks above the threshold are considered speaker
change points. In this paper, unlike (Kunešová and
Zajíc, 2023), we also set a minimum distance be-
tween detected peaks as 0.25 s – if there are multi-
ple peaks within 0.25 s, only the highest one is kept
(this brings a very minor but consistent improve-
ment in F1-score). However, the fine-tuned “base”
and “xlsr-53” models themselves were identical to
the previous work. No other post-processing of the
model outputs is performed.

4 Datasets

To evaluate the effectiveness of different wav2vec2
models, we tested our system on several widely
used English-language conversational speech cor-
pora, which have annotated speaker turns for SCD
evaluation.

The tested corpora were the following: AMI
Meetings Corpus (AMI) (Carletta, 2007), the
American English subset of the CallHome
(CallHome) (Canavan et al., 1997), and the

First and Second DIHARD Challenge data (DH-
I) (Ryant et al., 2018; Bergelson, 2016) and (DH-
II) (Ryant et al., 2019; Bergelson, 2016).

To also compare the effectiveness of the individ-
ual wav2vec2 models on out-of-domain data, we
designed a synthetic training dataset in (Kunešová
et al., 2019; Kunešová and Zajíc, 2023), made from
the LibriSpeech corpus. This way, we can control
the speaker change points and also ensure that ref-
erence labels are accurate.

5 Results and discussion

Predicted speaker change points were evaluated
in terms of audio segmentation, as segment pu-
rity (Pur), coverage (Cov), and F1-score, using
the Python library pyannote.metrics3 (Bredin,
2017). Purity measures how homogeneous the seg-
ments are, and coverage expresses whether each
speaker turn is fully contained within one segment.
F1-score is the harmonic mean of the two.

Results4 for individual corpora can be seen in Ta-
ble 2. We used identical settings for all our models
and corpora. We set these values in such a way as
to obtain high F1 scores on the AMI development
set across all models that were trained or evaluated
on AMI – as five training epochs and a threshold of
0.35. The consistency of our tested models is evi-
dent from the Coverage vs. Purity graph in Figure 2
for all four corpora.

3Downloaded from: https://pyannote.github.io/
4Unlike our results in (Kunešová and Zajíc, 2023), a mini-

mum distance between peaks (0.25 s) is applied in this study.
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Figure 2: Cov vs. Pur for different thresholds with mod-
els fine-tuned on in-domain or artificial data.

Table 3: Previously reported SCD results (%) on differ-
ent corpora, with models fine-tuned on in-domain data.

Corpus and SCD method Cov Pur F1

AMI (Su et al., 2022) 91.75 85.68 88.61
AMI (Fan et al., 2022) 89.81 83.92 86.76
AMI (Bredin et al., 2020) 84.2 90.4 –

DH-I (Fan et al., 2022) 92.56 86.24 89.29

DH-II (Bredin et al., 2020) 93.7 86.8 –

CallH. (Hrúz and Hlaváč, 2018) 72.57 72.57 –

In comparing the base and large models, where
the number of parameters and the amount of pre-
training data are substantially different, the larger
models (three times more parameters), especially
“xlsr-53”, expectedly outperform the base model.
The results for the “ClTRUS“ model are more inter-
esting. The better-trained “ClTRUS“ model with
the same architectural size as the base model also
consistently brings better results, and is mostly bet-
ter than the larger models on in-domain data.

The base and large models were trained mainly
on clean Librispeech data and are unfamiliar with
real wild acoustics conditions in tested data. On the
other hand, the “ClTRUS” model saw “wild” data
during the pre-training phase, and the fine-tuning
on in-domain data can benefit from this. Similarly,
the larger “xlsr-53” model, which was trained on
more variable data from a few different datasets,
also supports this trend.

For a comparison with other systems from dif-
ferent state-of-the-art articles, we present Table 3,
showing the best results on the selected corpora we
could find in the literature.

6 Conclusion

In this paper, we tested four different wav2vec2
models with an additional decision layer for the
SCD task. Wav2vec2 is a relatively complex model
with a high computation cost, but we want to use
this approach in a transcription system in combi-
nation with existing ASR (Lehečka et al., 2022),
where the first wav2vec2 layers can be shared. The
results of our system with all the tested models
surpass all previous results on the same datasets.
A comparison of these models shows us the im-
portance of in-domain data not only in fine-tuning
phase but also in the self-supervised pre-training
phase. According to the results, we believe that
richer data for pre-training the models brings more
gain than bigger models.
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Abstract
Devoicing in European Portuguese fricatives
is an extensive phenomenon, especially when
compared to other languages. Small scale
acoustic studies have shown that devoicing
rates and voicing profiles of fricatives are more
similar to those of Germanic languages, set-
ting European Portuguese (EP) apart within the
Romance language family. The present study
tests whether voicing in EP fricatives diverges
from its sister languages by using empirically
motivated combinations of different languages
(EP, Italian, German) acoustic phone models on
large EP corpora, allowing an ASR system to
choose the best fitting one when force aligning
the data. Results confirm that voicing in EP
fricatives is more similar to German, suggest-
ing EP voicing patterns are shifting away from
classic voicing systems known for Romance
languages.

1 Introduction

Romance languages are generally known as "true
voicing languages" - implementing the voice-
voiceless contrast through the use of the [voice]
feature (Lisker and Abramson, 1964), opposing
prevoiced with unaspirated voiceless obstruents.
"Aspirating languages", such as most of the Ger-
manic languages, make use of the [spread glot-
tis] feature (Jansen, 2004), contrasting unaspirated,
phonetically voiceless obstruents with long-lag as-
pirated obstruents. There are however exceptions
such as Dutch (van Alphen and Smits, 2004) or,
more recently, European Portuguese (Pape and Je-
sus, 2011, 2015). More specifically, in the latter
case, both small scale acoustic studies (Jesus and
Shadle, 2003; Pape and Jesus, 2011) and large
scale corpus-based studies (Wu et al., 2022; Hutin
et al., 2022) have found higher rates of devoicing
of phonemically voiced obstruents in EP than in
other Romance languages. Furthermore evidence
from voicing profiles shows that while Italian and
Spanish voicing probability remains high (close

to 1) throughout the obstruent, in EP and German
there is a decrease in voicing probability starting
with 30% of the obstruent. (Pape and Jesus, 2015;
Shih and Möbius, 1999, 1998).
The present study tests these patterns on a much
larger scale (100+ hours of speech) via forced
alignment of the speech with the orthographic tran-
scription. EP speech data is aligned using parallel
multiple-language acoustic models and pronuncia-
tion variants for fricatives to answer the following
theoretical research question:

• Does EP fricative voicing show consistency
within the Romance languages family, or does
it take a different path, more similar to lan-
guages that are both genetically and geograph-
ically different?

To answer this question we chose one Germanic
- German - and one Romance - Italian - language.
The choice of languages mirrors the set of lan-
guages tested in the original acoustic study (Pape
and Jesus, 2015). Based on the chosen language
set we can now fine-tune our experimental research
question to:

• Is voicing in EP fricatives more similar to
German than to Italian ?

2 Methods

To answer this experimental research question we
analyzed an EP corpus consisting of 114 hours of
mostly standard dialectal broadcast news speech
from TV and radio shows. Multiple sources were
used for acquiring the data: LDC, ELRA and in-
ternational projects. The phone level segmentation
was generated using a Portuguese acoustic model,
estimated using language-specific annotated (man-
ual transcription) training data and pronunciation
dictionaries. The output is a sequence of phone seg-
ments with labels selected by aligning the reference
transcriptions via a language specific dictionary.
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To test whether voicing in EP fricatives is more
similar to German than Italian, two additional sets
of fricative phone models, one for German and one
for Italian, were added in parallel to the original
Portuguese one. The phone models for all other
phonemes are kept in their original Portuguese
form. For each language the acoustic models were
all trained on roughly 100 hours of transcribed
broadcast news data (Portuguese: 1.1 million word
tokens, 46k word types; Italian: 1.8 million word
tokens, 58.8k word types; German: 1.8 million
word tokens, 90k word types). All three (EP, Italian
and German) acoustic models are speaker-, context-
and word-position-independent monophone mod-
els. Each phone model is a 3-state left-to-right
continuous density hidden HMM with Gaussian
mixtures with up to 32 Gaussians per state (silences
are modeled by a single state with 256 Gaussians).
Each acoustic model used the same acoustic pa-
rameterization (cepstral - PLP (Hermansky, 1990)
and pitch (F0) features), similar to (Lamel et al.,
2011). Figure 1 illustrates the speech modeling
and alignment process. By using different combi-

Figure 1: Illustration of the speech modeling and align-
ment process for the Portuguese word cavar ’to dig’

nations of language acoustic models on EP speech
data we force the recognition system to choose the
best fitting phone model (be it the original EP, or an
Italian or German one) for each individual phone-
mically voiced fricative in the corpus (illustrated
in Figure 2). The set of voiced fricatives in the cor-
pus consisted of a total of 37.563 coronal /z/ and
36.354 labiodental /v/. The postalveolar /Z/ was
left out of the study since it is not included in the
Italian phoneme inventory and it appears only in
loanwords in German.
Two different combinations of the three acoustic
models were tested: (1) a three way choice of
acoustic models between Portuguese, Italian or Ger-
man, and (2) a two way choice of acoustic models
between Italian or German (Portuguese fricative

Figure 2: Combination of three acoustic models (Italian,
EP and German) for the fricative /v/ in the Portuguese
word cavar ’to dig’

phone models were no longer available to the ASR
system). Each combination will be described in
a different section. If voicing in EP fricatives is
indeed more similar to German, as attested by pre-
vious acoustic studies, we would expect the system
to choose the German fricative phone models to
a higher degree than it does the Italian fricative
phone models. If, however the opposite stands (i.e.,
EP voicing does not behave similarly to a Germanic
language, but is still related to its sister language
Italian), we would expect the system to prefer the
Italian fricative phone models.
We ran a third experiment which involved using
one acoustic model at a time (not in parallel) with
the addition of pronunciation variants. The lan-
guage specific (European Portuguese) dictionary
was enriched with pronunciation variants for frica-
tive voicing. For example the Portuguese word
/vinho/ - ’wine’ had two possible pronunciations:
the original [viño] and a devoiced variant [fiño].
The procedure is similar to that described for En-
glish and French in (Lamel and Adda, 1996; Adda-
Decker and Lamel, 1999). The system then had to
choose which phone model (phonetically voiced or
phonetically voiceless) best fitted the phonemically
voiced fricative in the data. This experiment will
be described in section 5.

3 Experiment 1: Three-way choice of
acoustic models - European Portuguese,
Italian and German

In this first experiment, for each fricative /v,z / the
system was presented with three phone models in
parallel, the original EP phone model completed
with the German and Italian ones. The system then
had to choose which of the three phone models
for the phonemically voiced /v,z/ best fitted the
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acoustic realization of the fricatives in European
Portuguese. Figure 3 shows the percentages of
selected phone models per language as a function
of place of articulation (labiodental /v/, coronal
/z/).

Figure 3: Percentages of phone occurrences aligned
with either the original Portuguese, the Italian or the
German acoustic model for the labiodental /v/ (left) and
the coronal /z/ (right)

As expected, the original Portuguese phone
model was markedly preferred (83.7% of cases
for the labiodental /v/ and 66.9% of cases for the
coronal /z/). For the rest of the cases the system
preferred either the German or the Italian phone
models. For both the labiodental /v/ and the coro-
nal /z/ the German models were preferred. There
is an effect of place of articulation with more mis-
matches (i.e., the original Portuguese model is less
preferred) in the case of the more back fricative
(coronal /z/).

4 Experiment 2: Two-way choice of
acoustic models - Italian and German

In the second experiment the original EP phone
models for fricatives was no longer an option, forc-
ing the ASR system to choose between either an
Italian or a German fricative phone model. Figure
4 shows the counts and percentages of phone oc-
currences aligned with the Italian or the German
phone model as a function of place of articulation.

Results mirror those of experiment one, suggest-
ing the German acoustic models seem to be pre-
ferred in 89.5% of cases for the labiodental /v/ and
61.7% of cases for the coronal /z/ over the Italian
acoustic models. Similar to experiment 1 there is
an effect of place of articulation with Italian acous-
tic models being chosen to a higher degree in the

Figure 4: Percentages of phone occurrences aligned
with either the Italian or the German acoustic model for
the labiodental /v/ (left) and the coronal /z/ (right)

case of coronal /z/ as compared to the labiodental
/v/.

5 Experiment 3: Italian and German with
pronunciation variants

In this third experiment, the Portuguese language
dictionary was enriched with pronunciation vari-
ants for fricative voicing (voiced fricatives /v,z/
could be produced either as phonetically voiced
[v,z] or voiceless [f,s]) allowing the system to
choose the best phone model (voiced or voiceless)
for each phonemically voiced fricative in the data.
Two separate alignments were run using either the
Italian or the German [v,z - f,s] phone models. For
example, when using the Italian acoustic model for
fricatives on the data, if a Portuguese phonemically
voiced fricative /v/ better matched the Italian phone
model [v] the output would be [v]. If however the
acoustic realization of the Portuguese [v] better
matched the Italian [f] phone model, the output
would be the Italian [f]. The same procedure was
applied using the German fricative phone models.
This experiment differs from the first two, in that it
allows us to test the similarity/difference between
EP and Italian/German from a different angle.
Based on previous acoustic studies, we know that
voicing profiles differ based on language: while
Italian voicing probability remains high (close to
1) throughout the fricative, the EP and German
voicing probability decreases starting with 30% of
the fricative (Pape and Jesus, 2015). This suggests
that both EP and German exhibit partial devoic-
ing during the fricative, whilst Italian does not. If
this is indeed the case we would expect to find
higher percentages of voiceless variants when us-
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ing the Italian acoustic model (i.e., Italian voiceless
fricative models better match the partially devoiced
phonetically voiced EP fricative).
Figure 5 shows the percentages of phonetically
voiceless variants (greyer shades) identified when
using the Italian and German voiced-voiceless
acoustic models. White shades correspond to the
phonetically voiced variants identified by the sys-
tem. Results yet again confirm the higher degree

Figure 5: Percentages of phone occurrences aligned
with either the voiceless (grey shades) or the voiced
(white shade) for the labiodental /v/ (left columns) and
coronal /z/ (right columns) per language (Italian on the
left and German on the right)

of similarity between EP and German fricatives.
As predicted when aligning the data with the Ital-
ian fricative phone models, the voiceless variants
are preferred at higher rates than in the case of the
German alignment: for the phonemically voiced
Portuguese /v/ the Italian [f] models are preferred
in 89.8% of cases compared to only 72.2% cases
of German [f]. For the Portuguese phonemically
voiced /z/ the Italian [s] models are preferred in
72.2% of cases compared to only 29.9% cases of
German [s]. All the attested differences are statisti-
cally significant.

Limitations

The goal of the present study was to (in)validate ty-
pological classification results derived from small
scale acoustic studies on large scale corpus data.
The proposed methodology (i.e., using different
combinations of trained acoustic phone models)
does not permit a direct replication: while the
acoustic studies relied on Praat’s (Boersma and
Weenink, 2019) autocorrelation (AC) pitch extrac-
tion algorithm, the present study relies on the acous-
tic models of the systems, which include multiple

acoustic features. An acoustic analysis pinpointing
the most relevant acoustic features is needed. A
second limitation of the current study is the non-
inclusion of several acoustic correlates of voicing
in the analysis. It is known that adjacent segments,
position in the word/syllable and stress have a sig-
nificant effect on devoicing rates (Pape et al., 2003;
Bybee and Easterday, 2019; Hutin et al., 2022).
The phonological/phonetic context is all the more
pertinent given the use of German as a comparison
language, whose acoustic correlates for voicing are
dependent on word position (word medial vs. ini-
tial vs. final) and stress (Jessen, 1998; Fuchs, 2005).
Positional effects in the case of fricatives are more
reduced in the case of EP since the only licensed
consonants in coda position are /l/, /r/ and /S/ and
word initial /v,z/ are rare (in our data /v/: 1671 to-
kens and /z/: 122 tokens) and found mainly in loan-
words. Stress on the other hand is relevant: EP, like
German, and unlike Italian is said to be stress-timed
(Cruz-Ferreira, 1999) or partially stressed and par-
tially syllable-timed (Frota and Vigário, 2006). The
corpora is not annotated for prosodic information
which limits our analysis. Another well known
correlate of voicing that has only indirectly been
included in the analysis (via the trained acoustic
models) is segmental duration. A more detailed
analysis including phonological context and du-
ration information is needed to better explain the
patterns.

6 Conclusion

The present study tested whether voicing in Euro-
pean Portuguese fricatives is more similar to Italian,
a closely related Romance language, or to German,
a more distantly related language, on large scale
corpora using ASR acoustic modeling and pronun-
ciation variants. By allowing the system to choose
a preferred model when making the alignment we
replicated results from small scale acoustic studies
that showed EP tends to diverge from other Ro-
mance languages when it comes to fricative voic-
ing. The results also show that the effect seems
to be modulated by place of articulation, with the
more posterior fricative (the coronal /z/) behaving
differently than the more anterior labiodental /v/.
Results support the use of speech technology
methodologies to replicate and test phonological
hypotheses on large amounts of data (Yuan and
Liberman, 2011; Ryant et al., 2013).
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Abstract

This paper discusses two pipelines for the auto-
matic collection of automatic speech recogni-
tion (ASR) transcripts and audio content from
YouTube videos and subsequent phonetic anal-
ysis: PEASYV (Phonetic Extraction and Align-
ment of Subtitled YouTube Videos) and YTPP
(YouTube Phonetics Pipeline). The pipelines
differ somewhat in terms of processing steps as
well as the tools used for forced alignment, but
produce comparable results. The two pipelines
may be useful for large-scale collection of
acoustic data for phonetic analysis.

1 Introduction

Widespread availability of high-quality audio and
rapid advances in the quality of ASR transcripts
have opened new doors for data collection in
phonetics. This paper presents two systems de-
signed to collect transcript and audio data from
YouTube for the purposes of phonetic forced align-
ment and analysis: PEASYV (Phonetic Extraction
and Alignment of Subtitled YouTube Videos) and
YTPP (YouTube Phonetics Pipeline). The pipelines
make use of open-source libraries collect data from
YouTube, align the transcripts with the audio tracks,
and analyze the acoustic data therein. While both
pipelines make use of yt-dlp for data collection,
PEASYV aligns audio with text by means of the
Penn Forced Aligner (p2f) and SPPAS (SPeech
Phonetization Alignment and Syllabification, Bigi
2012), and YTPP uses the Montreal Forced Aligner
(McAuliffe et al., 2017a). For Acoustic analy-
sis, for example of F1 and F2 formant values,
both pipelines ultimately use Praat (Boersma and
Weenink, 2023). YTPP is Python-based and its
code is available (see Section 4 below).

The rest of the paper is structured as follows.
Section 2 discusses a few papers in which forced
aligners are compared. Section 3 provides details
on PEASYV, and Section 4 introduces YTPP. In

Sections 3 and 4, as proof of concept, we demon-
strate analyses of an example YouTube video using
the two pipelines. Section 5 provides a brief sum-
mary and future outlook, including caveats that
may be relevant for the automatic harvesting of
phonetic data from YouTube and other platforms.

2 Forced aligner comparisons

Forced alignment of speech, or the exact matching
of an audio transcript with an audio file, is a neces-
sary prerequisite for the phonetic analysis of acous-
tic segments such as phrases, words, or phones. A
number of software tools have been developed for
forced alignment, for example the Munich Auto-
matic Segmentation System (MAUS), which has
a web-based implementation (Kisler et al., 2017).
Many are based on HTK, the Hidden Markov
Model Toolkit (Young et al., 2006), or Kaldi (Povey
et al., 2011). The Penn Forced Aligner is based on
HTK, while the Montreal Forced Aligner builds on
Kaldi. The SPPAS aligner is derived from Julius
(Lee and Kawahara, 2019).

MacKenzie and Turton (2020) compared align-
ments for British English speech produced by com-
posite tools that build upon HTK and Kaldi: They
found that while both underlying algorithms pro-
duce acceptable alignments, the Montreal Forced
Aligner (built upon Kaldi) performed somewhat
better than the Penn Forced Aligner (built upon
HTK). Similarly, Gonzalez et al. (2020) compared
several aligners for Australian speech, finding them
to be suitable even when using default models
trained on American English. They found a Kaldi-
based aligner to be slightly better than HTK-based
aligners.

3 PEASYV: Phonetic Extraction and
Alignment of Subtitled YouTube Videos

PEASYV is a modular tool for phonetic analysis of
YouTube content. The workflow of the tool is au-
tomatically managed by shell scripts providing the
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sequence of commands described in Figure 1. Sub-
titled videos are scraped by yt-dlp. The down-

YouTube link

yt-dlp

Video file

Sound file

Subtitles

TextGrid

ffmpeg praat

praat

Sound file

Textgrid

Sound file

Textgrid

Sound file

Textgrid

SPPAS P2FA LPD praat

DataTextgrid

Figure 1: The PEASYV workflow.

loaded video is then converted to a wav file using
ffmpeg, and the subtitles file is converted to a
preliminary TextGrid using praat (Boersma and
Weenink, 2023). The time stamps from the subti-
tles serve as boundaries for the TextGrid, and the
created intervals are labeled with the subtitles them-
selves. The sound file and the TextGrid are then
split into short files extracted from the intervals.
These short sound files, usually lasting under three
seconds, are then fed into two forced alignment
tools, SPPAS (Bigi, 2012) and the Penn Phonet-
ics Lab Forced Aligner (P2FA, p2f). Both align-
ers use the Carnegie Mellon University dictionary
(CMU, Weide 1994) for grapheme to phoneme cor-
respondences1. This procedure contains potential
cascading alignment errors and increases accuracy.
The resulting short TextGrids are then concatenated
back into the main TextGrid, and syllabic tiers, one
for each aligner, are created following the syllabifi-
cation of the Longman Pronunciation Dictionary

1The transcriptions of the CMU are however different:
SPPAS uses a version of SAMPA, P2FA ARPAbet.

(LPD, Wells 2008). Extra steps are taken regard-
ing prosodic annotation but their description falls
beyond the scope of this article (cf. Méli and Bal-
lier 2023 for further details). The resulting main
TextGrid features segmental, syllabic, and lexical
tiers for both aligners, and a Momel (Hirst and Es-
pesser, 1993; Hirst, 2007) and INTSINT tier for
SPPAS;2 two "matching" tiers have also been added
(see below). Finally, vocalic data is collected in
separate csv spreadsheets, one for each aligner.

ALIGNER1
SYLLABIC TIER

ALIGNER2
SYLLABIC TIER

σ1 σ2 σ3 σ4 σ5

Match Mismatch

σ1 σ2 σ3 σ4 σ5

Figure 2: Schematic representations of a "MATCH"
(left) and "MISMATCH" (right) case on a PRAAT
TextGrid.

Because PEASYV uses two aligners based on
two different speech recognition engines (Julius
and HTK), assessing the degree of agreement of the
generated alignments may arguably provide some
insight into their reliability, if not their accuracy.
This can be done by comparing local discrepancies
and measuring the frequencies of these discrepan-
cies. One way to do this is by flagging vocalic dat-
apoints on a given aligner according to whether the
other aligner matches these datapoints. PEASYV
implements one such system, and its characteris-
tics are represented in Figure 2. PEASYV uses the
LPD-based syllabic tiers as references. The mid-
point of σ1’s duration on Aligner1’s tier, marked by
a vertical dashed line, falls within the boundaries of
σ1’s duration on Aligner2’s tier. When collecting
the phonetic data (e.g. formants) corresponding
to σ1 as aligned by Aligner1, the vowel will be
marked as "matching". Conversely, σ4’s midpoint
on Aligner1’s tier, marked by the dashed line on
the right, falls outside σ4’s interval on Aligner2’s
tier: it will therefore be marked as "mismatching".

This experimental feature makes it possible to
filter out potential alignments errors and obtain
more reliable measurements, especially for size-
able datasets. In contrast with other forced aligners,
PEASYV also enables direct comparisons, on the
same TextGrid, of two aligners, and provides syl-

2"Momel" stands for "Modelling melody", "INTSINT" for
"INternational Transcription System for INTonation".
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labic tiers for future analyses.

3.1 Results

Table 1 presents the total number of vowels aligned
by SPPAS and P2FA respectively. 27.4% of all
2661 SPPAS-aligned vowels appear in syllables
whose mid-temporal values are not included within
the corresponding P2FA-generated intervals (i.e.
they are flagged as "mismatching"). 30.8% of the
2743 P2FA-aligned vowels are "mismatching".

SPPAS P2FA
Vowels: 2661 2743
– in matching syllables: 1933 1899
– in mismatching syllables: 728 844

Table 1: Per-aligner counts of vowels.

The PEASYV-generated vocalic spaces for
monophthongs in a video chosen for test purposes
with the identifier _P7_69FeqnU are represented in
Figure 3. The formant values of each monophtong
are plotted in the F1/F2 space. The ellipses encom-
pass the values within one standard deviation of
all the measurements for each monophthong. The
label of each monophthong is located at the cen-
ter of each value (i.e. the mean F1/F2 values of
the vowel’s measurements), and the number next
to it gives the number of tokens detected for that
vowel. The top row (i.e. Figures 3a and 3b) fea-
tures all monophthongs, while the bottom row (i.e.
Figures 3c and 3d) only features matching monoph-
thongs (cf. previous section and Figure 2).

3.2 Discussion and Prospects

Cursory visual inspection of Figure 3 shows that
restricting the data to matching cases yields ellipses
which are more clearly defined and less overlap-
ping than using all vowels, regardless of whether
their alignment on a given aligner matches that of
the other aligner. This is particularly clear with
SPPAS-aligned mid front vowels and back vow-
els. One striking characteristic is the great vari-
ation that formant measurements for vowel /u:/
undergo compared to its token count. We contend
that the matching procedure may be a simple way
to filter out outliers and improve the quality of
the extracted data, although no ground truth align-
ment has been prepared. Of course, the quality of
PEASYV-generated data is highly dependent on
the original quality of the subtitles. Future research
will have to establish whether transcriptions based

on automatic speech recognition systems such as
Whisper yield more reliable data.

PEASYV is meant to be deployed on a website3

where links to subtitled videos can be uploaded
and generated TextGrids can be downloaded. The
source code may also be made partially available
for deployment on Linux servers. PEASYV will
hopefully be useful to study less common varieties
of English. Corpora of Nigerian and Ugandan En-
glish are under way.

4 YTPP: YouTube Phonetics Pipeline

The YouTube Phonetics Pipeline is a Python-based
series of scripts for the automatic extraction of au-
dio (or video) content from YouTube and other
streaming services. Its main characteristics are de-
scribed in Coats (2023c). Like PEASYV, YTPP
makes use of the open-source yt-dlp library for har-
vesting YouTube’s automatic speech recognition
transcripts and audiovisual content; transcripts are
then aligned using the Montreal Forced Aligner
(MFA) (McAuliffe et al., 2017a). The output from
the aligner, in the TextGrid format, is then sent to
Parselmouth-Praat (Jadoul et al., 2018; Boersma
and Weenink, 2023), a Python port of functions
from Praat. This approach allows for the automated
analysis of vowel formants, pitch, prosody, or other
acoustic parameters within the functionality of a
Jupyter notebook. The basic methods of YTPP are
available in a Colab environment.4 Because YTPP
is developed in a Jupyter environment, it is fully
modifiable, and data can be analyzed statistically
or visualized for exploratory analysis with widely
used libraries, according to user needs. Transcript
data for several publicly available corpora has been
collected using the basic approach employed by
YTPP (Coats, 2023a).

YTTP was used to extract F1 and F2 formant
values for monophthongs from the YouTube test
video noted above in Section 3. Figure 4 depicts the
vowel space for the video _P7_69FeqnU, entitled
“Sentence Stress and Intonation in English” from
the Pronunciation with Emma channel, using an
acoustic models trained on UK English, a pronun-
ciation dictionary for UK English, and a phoneset
meant to represent UK English.5 As in Figure 3,

3Current information is at https://www.
adrienmeli.xyz/peasyv.html

4https://github.com/stcoats/phonetics_
pipeline

5English (UK) MFA dictionary v2.2.1; English
MFA acoustic model v2.2.1, https://mfa-models.
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(a) SPPAS-aligned tokens.
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(b) P2F-aligned tokens.
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(c) Matching SPPAS-aligned tokens.
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Figure 3: PEASYV flowcharts of video _P7_69FeqnU.

the centers of the circles represent the mean mea-
surement values for the monophthong vowels in
F1/F2 formant space and the ellipses values within
one standard deviation of the mean values; the IPA
symbol for each vowel is followed by the num-
ber of vowel tokens detected by the aligner in the
video.6

Figure 4 differs somewhat from Figure 3, not
only due to different plotting software being em-
ployed, but also due to differences between the
acoustic models and phonemic representations in
the three systems under consideration. Neverthe-
less, the figures suggest that the speaker in the
video, as the name of her channel suggests, has
vowels that correspond to standard English pro-
nunciation norms. Future work may undertake
more careful comparison of these (and other align-

readthedocs.io/en/latest/acoustic/index.
html. MFA’s functionality includes a variety of acoustic
models, dictionaries, phonesets, and other options.

6In this example, the script has set the number of measure-
ments per phone at 9, at equally spaced intervals within the
total duration of the phone, but formant intensity could not be
registered at all measurement intervals due to acoustic quality.
The number of measurements per phone can be changed in
the script.

ers) by controlling for the acoustic models em-
ployed by the different algorithms and the underly-
ing graphemic representations.
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Python plotting functionality can also be used to
generate Praat-style charts of sound intensity and
frequency, as in Figure 5.

Figure 5: Sound intensity and frequency for an excerpt
of _P7_69FeqnU

5 Discussion, caveats, and outlook

No longer must the phonetician travel to distant
locales with a tape recorder and painstakingly inter-
view informants: both PEASYV and YTTP offer
researchers in phonetics and acoustic analysis the
means for the automatic and extraction and analysis
of hundreds or thousands of hours of speech.

PEASYV output grids include the results of two
aligners: the overlap method described above may
help to identify and extract segments more accu-
rately, especially for audio files with acoustic back-
ground noise. PEASYV also includes syllabifica-
tion information, making it potentially useful for
automated studies of lexical stress patterns or other
prosodic features.

YTPP utilizes the MFA aligner, which is more
recent and possibly more accurate than HTK- or
Julius-based aligners (see the citations above). In
addition, YTPP is available and can already be used
"out-of-the-box" for data collection and analysis
tasks. Its code is fully available and customizable.

The pipelines both offer the means to collect and
analyze online speech recordings, but two consid-
erations should be noted pertaining to the accuracy
of ASR transcripts and the legal contexts in which
online data collection can be undertaken.

5.1 ASR Accuracy

While ASR has made great advances in recent
years, many ASR transcripts of videos on YouTube
(and other platforms) contain errors due to issues
such as poor audio quality, out-of-vocabulary lex-
ical items, or strongly accented speech not ac-
counted for in the training data. Despite this,

given sufficient quantities of data, transcript errors
in phonetic analysis pipelines such as PEASYV
and YTPP may tend to cancel each other out:
Coto-Solano (2022), for example, found that even
pipelines that utilize error-ridden transcripts are
generally able to accurately capture the formant
values of a given speaker.

5.2 Legal context

While content from YouTube and other streaming
platforms is generally owned by the content creator
and/or the platform, use of copyrighted content
for non-profit purposes such as academic research
is generally permitted in most jurisdictions. In
the US, for example, the "Fair Use" provisions of
copyright law (U.S.C. Title 17, § 107) permit re-
use of copyrighted material for research purposes;
other Anglophone jurisdictions have similar laws.

In the EU, Directive 2019/790 of the European
Parliament and of the Council instructed member
states to pass legislation allowing the re-use of
copyrighted content for purposes of scientific re-
search or teaching; the directive has since been
implemented by most member state legislatures
(see also the discussion in Coats).

We expect that legislation will continue to permit
fair and reasonable use of copyrighted materials for
non-profit research purposes and that researchers
who follow the appropriate ethical guidelines will
be able to make use of PEASYV and YTPP for
data collection.

5.3 Outlook

A paradigm shift in data collection and analysis
practices in the language sciences is underway, and
PEASYV and YTPP represent potentially valuable
tools for researchers in a wide variety of linguistic
subfields. Future work with the pipelines may in-
clude, as noted above, more detailed comparison
of aligners and of outputs; the development of in-
teroperability with other data formats (for example,
PolyglotDB McAuliffe et al. 2017b, an SQL-based
system with a Python API for the organization of
speech data and alignments); and the creation of
searchable online databases that include aligned
audio content. In a broader perspective, it is hoped
that the tools will help researchers to collect and
study the rich acoustic variation of the speech sig-
nal.
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Abstract

Learning similar representations for spoken ut-
terances and their written text involves under-
standing both forms in a shared manner. This
process of developing similar representations
for semantically related speech and text is es-
sential, particularly for tasks like speech-to-text
(S2T) translation. To that end, we propose a
SimSiam-based S2T (S3T) model that lever-
ages the SimSiam network, a state-of-the-art
unsupervised learning architecture, to bridge
the modality gap between speech and text. The
proposed model does not require negative sam-
ple mining. The comparative study using four
directions of the standard MuST-C (Di Gangi
et al., 2019) dataset demonstrates that the pro-
posed S3T translation model beats all the exist-
ing methods, and achieves an average metric of
30.02 BLEU score. Our analysis affirms that
S3T effectively bridges the representation gap
between the two modalities.

1 Introduction

Speech-to-text (S2T) translation is to map speech
input in a given language to text output in another
language. It has applications in video subtitling,
facilitating communication across different demo-
graphics, education, etc. Traditional approaches for
solving S2T tasks cascade two models: machine
translation (MT) and automatic speech recogni-
tion (ASR). Cascade models suffer from high la-
tency, error propagation, and memory cost. There-
fore, recent works addressing S2T use end-to-end
(E2E) models based on pre-trained models such as
(Inaguma et al., 2020; Bérard et al., 2018; Wang
et al., 2020b; Bansal et al., 2019; Le et al., 2021)
or multi-task learning (joint-training) approaches
(Chuang et al., 2020; Anastasopoulos and Chiang,
2018; Wang et al., 2019; Ye et al., 2022; Sperber
et al., 2019; Le et al., 2020; Tang et al., 2021b).
A very recent work (Ye et al., 2022) hypothesizes
that the low performance of E2E models is due to

"How are you?" How are you?
[Text]

"How are you?" How are you?
[Text]

Positive Pair

(a)

"How are you?" Thank You!
[Text]

"How are you?" Thank You!
[Text]

Negative Pair

(b)

Figure 1: Depiction of representations for speech and
textual transcripts. An ideal representation is where two
different modalities with the same meaning (positive
pair) should be close to each other as shown in (a) and
it’s the opposite for negative pairs in (b).

the modality gap between speech and text repre-
sentations. Building on the same hypothesis, we
present a novel methodology based on the Sim-
Siam (Chen and He, 2021) network, leveraging the
cosine similarity (CS) loss, to mitigate the modal-
ity gap between speech and textual representations.
Unlike (Ye et al., 2022), the proposed model learns
joint representations in an unsupervised way and
does not need negative sample mining. Our major
contributions are given as follows: (a) We utilize
SimSiam architecture to reduce the modality gap
between textual and speech representation for the
first time. As per our knowledge, such a study has
not been done before, and (b) Empirical results
on benchmark MuST-C data show the superiority
of our approach where it outperforms the baseline
by 0.17 BLEU score. Analysis indicates that the
proposed approach is able to fill the modality gap.

2 Related Work

Our work jointly studies end-to-end (E2E) S2T
tasks and methods to counter the modality gap be-
tween speech and text.

2.1 Speech-to-Text
The traditional approach to solve S2T problem con-
sists of cascaded systems using an ASR followed
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Figure 2: Proposed model architecture.

by an MT module. This method still has some lim-
itations such as being susceptible to error propaga-
tion and having high latency (Anastasopoulos and
Chiang, 2018). Recently, various authors have ex-
plored the end-to-end S2T models (Le et al., 2020;
Weiss et al., 2017; Tang et al., 2022a; Di Gangi
et al., 2019; Inaguma et al., 2020). Earlier, major
work in this domain only produced modest results
for S2T data (Tang et al., 2022a; Weiss et al., 2017),
whereas the current work approached the results of
the cascaded S2T models closely (Ye et al., 2022,
2021; Bentivogli et al., 2021; Xu et al., 2021; Tang
et al., 2021a).

2.2 Speech and Text Alignment

The previous S2T models have worked on aligning
text and speech embeddings, e.g., using an adver-
sarial loss (Alinejad and Sarkar, 2020) in super-
vised pre-training, in self-supervised pre-training
(Ao et al., 2022; Chen et al., 2022; Bapna et al.,
2021), and using Euclidean distance (Dong et al.,
2021; Liu et al., 2020; Tang et al., 2021a), cosine
distance (Chuang et al., 2020), Kullback–Leibler
divergence (Tang et al., 2022b), and contrastive loss
(Han et al., 2021; Ye et al., 2022; Ouyang et al.,
2022) in multi-task learning. All these methods
require negative samples from the corpus to train
the model, whereas our approach works without
the need for any negative sample.

3 Problem Definition

The problem of S2T is defined as follows. Given
the sequence of input audio features x =
(x1, . . . , x|x|) and its transcript t = (t1, . . . , t|t|),
the goal is to learn a representation as shown in
Figure 1. More formally, the cosine similarity (CS)
between positive pairs of speech and text represen-
tations (xp, tp) is less than the CS between negative
pairs (xn, tn) in the embedding space.

CS(f(xp), f(tp)) < CS(f(xn), f(tn)) (1)

Where f is the representation learning function.
The new representations are used for the down-
stream S2T task, where the S2T model seeks to
optimize the following objective function:

θ∗ = argmax
θ

L(f(x, t), y) (2)

Where L(·) denotes the loss function of the S2T
model and y = (y1, . . . , y|y|) is the sequence of
target text translations.

4 Method

The S2T baseline used to optimize the objec-
tive function (2) is a transformer-based encoder-
decoder model. The core idea behind our ap-
proach is to use CS to align the source speech
and transcript pairs and use it for downstream S2T
tasks. The hypothesis is that source speech and
corresponding transcript representations should be
closer in the embedding space since they represent
the same semantics. To that end, we seek to em-
ploy the approach originally proposed for visual
recognition task handling similarity learning using
SimSiam (Chen and He, 2021). Motivated by its
recent application, we ask the following research
question: Will the same approach be able to learn
similar representations in an S2T setting? We con-
firm that using Siamese-like encoders for speech
and transcript in an earlier stage can yield better re-
sults for the S2T task and help bridge the modality
gap without negative sample mining.

4.1 SimSiam Network

Our main goal is to reduce the modality gap in S2T,
which arises due to the distance between speech
and textual representations. To propose a solution
for this issue, we introduce an architecture influ-
enced by (Chen and He, 2021) comprising two
encoders as shown in Figure 2: One for speech and

251



the other for text input.

H =∆ (h1, . . . , h|x|) =
∆ ENCODE(x; θm)

K =∆ (k1, . . . , k|t|) =
∆ ENCODE(t; θn)

where H and K are the hidden feature vectors of
audio speech sequences and their transcripts, and
θm and θn are the parameters of the text and speech
encoders respectively. We use Wav2Vec (Baevski
et al., 2020) followed by CNN as speech encoder
and as the text encoder we use a BERT base un-
cased (Devlin et al., 2019) model. The input pair
of speech x and its parallel text t are fed to the
corresponding encoders as shown in Figure 2. The
SimSiam network is trained by minimizing nega-
tive cosine similarity in an unsupervised manner
to generate features that are close to each other in
the embedding space. The gradients from the text
encoder’s contribution to the loss are not used to
update the speech encoder’s parameters in (3) and
vice versa, and this is achieved by applying the
stop-gradient (SG) operation. We utilize SG with
symmetric CS loss defined as follows:

LCS =
1

2
D(H, SG(K)) +

1

2
D(K, SG(H)) (3)

This allows the model to learn more meaningful
features from the input data.

4.2 S2T Transformer
The S2T Transformer model is a variant of the
Transformer architecture adapted for processing
the aligned speech-text representation as input.
These features are passed through the S2T encoder
containing multiple layers of self-attention mech-
anisms that allow the model to process different
parts of the input sequence and effectively capture
long-range dependencies. A self-attention mecha-
nism computes attention weights to emphasize im-
portant features while decoding the output. During
training, the model is typically tuned to a ground
truth target transcript of the spoken audio by opti-
mizing the following loss function:

L = LCS + LST (4)

where
LST = −

∑

n

logP (xn|yn)

LST is the label-smoothed-cross-entropy loss on
<speech, target text> pairs. The output of the S2T
transformer is a sequence of predicted tokens rep-
resenting the translated text.

Methods
BLEU

De Fr Nl It Avg
NeurST 22.8 33.3 27.2 22.9 26.55
ESPnet-
ST

22.9 32.7 27.4 23.8 26.7

Dual-
decoder

23.6 33.5 27.6 24.2 27.22

FAIRSEQ
S2T

24.5 34.9 28.6 24.6 28.15

XSTNet 25.5 36 30 25.5 29.25

ConST 25.7 36.8 30.6 26.3 29.85
S3T 26.8 37 30.2 26.1 30.02

Table 1: Performance of baselines and proposed model
on MuST-C test split.

5 Experiment

In this section, we explain the (a) datasets, (b) base-
lines, (c) training and testbed followed by (d) met-
rics used during the evaluation.

5.1 Dataset

We conduct experiments on four pairs of transla-
tion directions available in MuST-C1 (Di Gangi
et al., 2019) dataset: English (En) to German (De),
French (Fr), Dutch (Nl) and Italian (It). It contains
audio, transcript and translation from TED talks
for each direction.

5.2 Baselines

We compare our model with two kinds of base-
line: (1) standard E2E S2T models, and (2) E2E
S2T models with modality bridging techniques. In
the first category, we compare performance with
NeurST (Zhao et al., 2021), ESPNet-ST, S2T with
Dual Decoder, FAIRSEQ-S2T, and XSTNet (Ye
et al., 2021). For the second category, we compare
with ConST which uses contrastive loss to attract
positive pairs and repel negative pairs. Note that
such a scheme requires negative sample mining
which is costly.

5.3 Training and Testbed

The method in this work is implemented using
FAIRSEQ S2T toolkit (Wang et al., 2020a). The
backbone framework consists of an S2T Trans-
former encoder-decoder model as shown in Figure
2. The number of self-attention layers for both the
encoder and decoder is set to 6, with 8 attention

1We use v1.0. https://ict.fbk.eu/must-c/

252



D
is

ta
nc

e

# Samples

0 20 40 60 80 100

0.050
0.025
0.000

-0.025
-0.050
-0.075
-0.100
-0.125

Positive Pair
Negative Pair

(a)

# Samples

0.2

0.1

0.0

-0.1

-0.2

1.100

1.000

0.900

Positive Pair
Negative Pair

0 20 40 60 80 100

(b)

Figure 3: Scatter plot showing distances between pos-
itive and negative speech-text pairs (a) before, and (b)
after training. The positive and negative pairs form
separate clusters.

heads in each layer. Due to training resource con-
straints, the encoder and decoder architecture is
medium and consists of 512 hidden units. The
training is halted when the performance is not im-
proved for 15 consecutive epochs. The SpecAug-
ment (Park et al., 2019) is used for data augmenta-
tion, and the GELU activation function is used to
shift normalization and improve convergence and
training stability. The S2T model is trained using
label-smoothed-cross-entropy loss with a value of
0.1 as the label smoothing factor. Adam optimizer
with a learning rate of 1e-4, and the learning rate
schedule using an inverse square root scheduler
was used.

5.4 Performance Metric

Case-sensitive detokenized BLEU using sacre-
BLEU is used to report the performance of the
model. We average the ten best checkpoints and
predict the output using a beam size of five. All
experiments are repeated with three different ran-
dom seeds, and we report the average BLEU on the
MuST-C tst-COMMON set.

6 Results

This section presents the results of the comparative
evaluation followed by an analysis of our proposed
method.

6.1 Comparative Evaluation

Table 1 shows the main results. We compare our
method with several S2T baselines. Many existing
works utilize external data, such as ASR/MT data,
to boost their model performance. We include mod-
els without external MT data for fair comparison
and compare results with the model’s medium ar-

-0.8 -0.4 0.0 0.4 0.8-1.2

-0.4

0.0

0.4

0.8 Speech
Transcript

(a)

-1.8 -1.2 -0.6 0.0 0.6-2.4

Speech
Transcript

(b)

Figure 4: Bivariate KDE contour plot for the embed-
dings of English speech and text(a) before and (b) after
training. The red lines denote the text and the blue lines
denote the speech representations.

chitecture due to computational constraints. Com-
parison with standard E2E S2T models shows that
our method consistently outperforms in all direc-
tions with an average BLEU of 30.02. Compared
to ConST, the proposed method outperforms in
two directions (De and Fr) and achieves a gain in
average BLEU score of 0.17. Additionally, our ap-
proach does not need to mine any negative samples
as ConST does.

6.2 Analysis

The effectiveness of our approach is shown in Fig-
ure 3. Although our method works without any
positive or negative sample mining, we aim to de-
termine its capacity to distinguish between posi-
tive and negative pairs without requiring explicit
labeling. We plot the distance between pairs of
speech and text samples (positive pairs with the
same meaning and negative ones with different
meanings) before and after the model is trained.
It shows a reduction in the distance between the
positive pair of samples and an increase in the dis-
tance between the negative pair of samples. To look
more into it, the bivariate kernel density estimation
(Parzen, 1962) (KDE) contour of the features are
plotted as shown in Figure 4. If the speech and its
parallel text embeddings are similar, their contour
lines will overlap as much as possible. As shown
in Figure 4(b), the proposed method is able to align
the two representations and close the gap.

7 Conclusion

We propose S3T, a S2T framework bridging the
speech-text modality gap in an unsupervised way.
Results on MuST-C indicate the effectiveness of the
proposed method compared to baselines. Future
works may explore designing even better modality
bridging techniques leveraging external data.
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Limitations

Although our proposed method outperforms most
baselines on the S2T benchmark, it still has some
limitations: (1) the choice of hyperparameters such
as learning rates, batch sizes, and the length of
the projection network can significantly impact the
training process and the quality of learned repre-
sentations, so we need to make careful choices
about it’s settings; (2) with a smaller dataset, this
approach might not work as effectively, because
there is less variety and fewer examples for the
model to learn from during training; (3) how to
apply our method to other tasks also needs to be
studied further.
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Abstract 

Current state-of-the-art (SOTA) Automatic 

Speech Recognition (ASR) models are 

multilingual. While these models have 

greatly improved transcription accuracy for 

high-resourced languages, under-resourced 

languages still require further language 

specific optimizations and finetuning to 

achieve acceptable levels of accuracy. In 

this work we explore ways of improving 

ASR for Dhivehi, an under-resourced 

South Asian language, by finetuning 

pretrained multilingual ASR models, Sub-

word Modelling, Language Model (LM) 

decoding and Automatic Spelling 

Correction. We finetune 5 Dhivehi ASR 

models and apply our accuracy boosting 

techniques, with one of our models 

achieving a new state-of-the-art Word Error 

Rate (WER) of 14.26% on the Dhivehi 

Common Voice ASR benchmark, which is 

a 31.93% relative WER improvement over 

the existing SOTA of 20.95%. We create a 

new Dhivehi text corpus, and train 2 new 

Dhivehi LMs to support our accuracy 

boosting techniques. 

1 Introduction 

Recent work on Automatic Speech Recognition 

(ASR) has focused on training multilingual 

models; (Zhang, et al., 2023; Hou, et al., 2020a; 

Pratap, et al., 2023; Conneau, et al., 2020; Radford, 

et al., 2022). While these multilingual models have 

produced state-of-the-art (SOTA) results for high-

resource languages, results (Hou, et al., 2020a) 

show that, especially for low-resource languages, 

there is room for improving transcription accuracy 

using language specific optimizations and fine-

tuning. In this work, we focus on improving ASR 

accuracy for Dhivehi (ިިދިވެހ), the native language of 

the Maldives. 

Modern ASR models follow all-neural 

architectures that enable End-to-End (E2E) speech 

recognition by training directly on audio recordings 

and producing text transcriptions as output 

(Prabhavalkar, et al., 2023). E2E ASR models 

either explicitly or implicitly align the output text 

to the input audio. 

Connectionist Temporal Classification (CTC) 

(Graves, et al., 2006) based E2E models use 

explicit alignment by assigning an output text 

token to each element of the input audio sequence 

(Hannun, 2017). CTC models simply learn a 

mapping from aspects of speech such as phonemes 

and diphones to output character sequences 

(Prabhavalkar, et al., 2023; Hannun, 2017). 

Therefore, CTC models can benefit from sub-word 

modelling of the output vocabulary, which better 

corresponds with the phonemes of the target 

language  (Xu, et al., 2019; Zhou, et al., 2021). 

Moreover, CTC model accuracy can be further 

improved by incorporating the probabilities from a 

Language Model (LM) into the output decoding 

process, which can implicitly model the syntax and 

semantics of the language (Baevski, et al., 2020). 

The outputs generated by LM decoding can be 

further improved by Automatic Spelling 

Correction (Zhang, et al., 2019). 

Attention-Based Encoder-Decoder (AED) ASR 

models contain an Encoder which produces context 

vectors using the input acoustic frames and a 

Decoder which uses the Attention Mechanism 

(Bahdanau, et al., 2016) to generate a text sequence 

from the context vectors, without explicitly 

aligning the text and audio (Prabhavalkar, et al., 

2023). AED models implicitly learn a language 

model over the training outputs (Prabhavalkar, et 

al., 2023). As a result, they benefit less from 

external LMs and spelling correction. 

E2E models pretrained on high-resourced 

languages can be fine-tuned on under-resourced 

languages like Dhivehi through transfer learning to 

give better results than training from scratch 
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(Baevski, et al., 2020; Conneau, et al., 2020; 

Radford, et al., 2022; Pratap, et al., 2023; Hou, et 

al., 2020b). In this work, we finetune pretrained 

XLSR (Conneau, et al., 2020), MMS (Pratap, et al., 

2023) and Whisper (Radford, et al., 2022) models 

on Dhivehi speech data from the Mozilla Common 

Voice 13.0 (CV-13) (Ardila, et al., 2019) dataset 

and experiment with applying different accuracy 

boosting techniques. 

2 Related Work  

Tyers & Meyer (2021) used the Coqui STT 1 

toolkit to train ASR models for several different 

under-resourced languages including Dhivehi. 

They used transfer learning by finetuning an 

English ASR model based on the Mozilla Deep 

Speech architecture, which is an open-source 

implementation of the Deep Speech ASR 

architecture from Baidu (Hannun, et al., 2014). 

They used hyperparameter search to optimize the 

model hyperparameters for specific languages 

(Tyers & Meyer, 2021). LM decoding was utilized 

to further boost the results. For Dhivehi, the authors 

used 3:56:12 of training data from Common Voice 

(CV) 2  for the ASR model and 6.8MB of text 

containing 419k tokens of 76k different types for 

LM training. For Dhivehi, the authors obtained a 

WER of 88.37% without LM and 66.49% with LM 

decoding (Tyers & Meyer, 2021).  

Pham, et al. (2021) trained multi-lingual ASR 

models for 27 languages (including Dhivehi) based 

on the Transformer architecture (Vaswani, et al., 

2023) and LSTM architectures (Hochreiter & 

Schmidhuber, 1997) using a novel weight 

factorization scheme for efficient multi-lingual 

training. The models contained weights shared 

across all the languages as well as language 

specific adapter layers (Pham, et al., 2021). Under 

this work, the best result obtained for Dhivehi was 

a WER of 63.72% using the weight factorized 

version of the Transformer based model (Pham, et 

al., 2021). 

Hou, et al. (2020a), trained multilingual ASR 

models for 42 languages based on a hybrid 

CTC/attention architecture using 5,000 hours of 

speech. One of these models were trained using a 

 
1 https://github.com/coqui-ai/STT 
2 https://commonvoice.mozilla.org/ 
3 
https://huggingface.co/shahukareem?so

rt_models=downloads#models 

character level output vocabulary while the other 

was trained using a sub-word vocabulary (Hou, et 

al., 2020a). It was shown that, generally the larger 

sub-word vocabulary produced better results across 

all 42 languages. After training these multilingual 

models, transfer learning was used to finetune ASR 

models for 14 different low-resource languages 

including Dhivehi. For each of these 14 languages, 

a language specific model was finetuned as well as 

a joint 14-language multilingual model. The 

authors experimented with finetuning these models 

using the pretrained models as well as training the 

models from scratch. For Dhivehi, the authors had 

used 6 hours of training data from CV. The best 

result obtained was a WER of 54.7% using the 

Dhivehi specific model with pretraining (Hou, et 

al., 2020a). 

Hassaan, et al. (2018) trained Dhivehi ASR 

models using CMUSphinx speech recognition 

toolkit. These models were Hidden Mark Model 

(HMM) based acoustic models which were boosted 

using N-gram LMs (Hassaan, et al., 2018). The 

authors had initially trained a model to recognize 

spoken numerals in Dhivehi which had a reported 

accuracy of 75%. They also trained another model 

to recognize general Dhivehi speech, which had a 

reported accuracy of 42.5%. The LM used by the 

authors was trained on 600MB of Dhivehi text 

scraped from the web and the acoustic model was 

trained on 48:33 of speech data collected through a 

web interface, mobile app, and Telegram bot that 

the authors created, which presented users with 

samples from the text corpus that were read and 

recorded. 

Apart from formal work conducted on Dhivehi 

ASR, there has been some personal work done on 

the topic by some individuals as well. The most 

notable of these works are the Dhivehi ASR models 

trained by Shahuza Abdul Kareem 3 and published 

on Hugging Face. Specifically, her Wav2Vec2-

XLS-R-1B-dv model 4 has the best reported WER 

of any Dhivehi ASR model known publicly so far. 

This model is a finetuned version of Facebook’s 

Wav2Vec2-XLS-R-1B checkpoint (Conneau, et 

al., 2020) which follows the hybrid 

CNN/Transformer/CTC architecture introduced in 

Baevski, et al. (2020). The model was trained using 

4 
https://huggingface.co/shahukareem/wa

v2vec2-xls-r-1b-dv 
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around 25 hours of speech from Common Voice 

(Ardila, et al., 2019) version 8.0 with a character-

based output vocabulary. The reported WER was 

21.23% on Common Voice 8.0 evaluation set, 

which can be considered as the state-of-the-art for 

Dhivehi ASR. 

3 Design 

3.1 Pretrained ASR Models 

Based on the results from previous works, a 

transfer learning approach of finetuning pretrained 

models was chosen instead of training models from 

scratch. The models chosen for finetuning were 

pretrained multilingual models from recent works 

that had claimed state-of-the-art performance 

results on common English ASR benchmarks. Here 

we will list and discuss the architectures of these 

models. 

XLSR: XLSR (Conneau, et al., 2020) is a 

model pretrained on 53 languages following the 

Hybrid CTC architecture of (Baevski, et al., 2020). 

This architecture consists of a Convolution Neural 

Network (CNN) based feature extractor which 

extracts log-mel features from the input audio 

which are quantized through product quantization 

(Baevski, et al., 2020). The feature vectors are then 

passed into a Transformer based encoder network, 

which learns context vectors from these feature 

vectors using Contrastive Loss (Baevski, et al., 

2020). For fine tuning of the model, the CNN 

layers can be frozen and a linear output layer 

corresponding to the desired output vocabulary can 

be initialized on top of the encoder network and 

trained using CTC loss (Baevski, et al., 2020). For 

the XLSR model, the authors were able to 

demonstrate that pretraining the encoder on a large 

number of languages produced improved 

performance when finetuning on low-resource 

languages (Conneau, et al., 2020). The authors had 

publicly released different sizes of the pretrained 

model checkpoints, out of which the Wav2Vec2-

XLS-R-1B (XLSR-1B) 5  model checkpoint with 

1B parameters was chosen for finetuning. 

Whisper: Unlike Baevski, et al. (2020) which 

has relied on unsupervised pretraining on large 

amounts of raw speech, the authors of Whisper 

(Radford, et al., 2022) took the approach of 

pretraining a Transformer (Vaswani, et al., 2023) 

 
5 
https://huggingface.co/facebook/wav2v

ec2-xls-r-1b 

model with semi-supervised learning. The authors 

collected 680,000 hours of speech audio and 

corresponding text transcription data of different 

qualities from web sources for training (Radford, et 

al., 2022). Apart from just speech transcription, the 

authors trained the model in a multitask training 

format to perform a variety of speech processing 

tasks including, speech translation, language 

identification and voice activity detection 

(Radford, et al., 2022). Whisper uses a byte-level 

Byte Pair Encoding (BPE) text tokenizer and as 

opposed to typical ASR models, does not 

normalize the transcription text during training 

(Radford, et al., 2022). This results in more natural 

transcription that doesn’t require further processing 

such as punctuation restoration (Radford, et al., 

2022). The authors demonstrated that Whisper is 

able to achieve good performance on its supported 

languages in a zero-shot setting without any 

finetuning (Radford, et al., 2022). However, 

finetuning has been shown to further improve this 

performance. More interestingly, it has also been 

shown that Whisper could be finetuned on a new 

language that was not included in the original 

training data, by setting the target language to the 

phonetically closest language among the supported 

languages. Dhivehi is not officially supported by 

Whisper, but its closest neighbour Sinhalese is 

supported, which was used as a target language to 

finetune the model for Dhivehi. Whisper authors 

had also released pretrained checkpoints of 

different sizes, out of which, the Whisper Small 6 

checkpoint containing 244M model parameters 

was chosen for this work. 

Massively Multi-lingual Speech (MMS): 

Whereas XLSR was pretrained on 53 languages, 

the authors of MMS (Pratap, et al., 2023) scaled 

this to 1,107 languages. Their primary data source 

consisted of recordings of people reading 

translations of the New Testament in different 

languages (Pratap, et al., 2023). The authors 

created a GPU accelerated version of the Viterbi 

algorithm for computing the forced alignment of 

these recordings to the corresponding texts (Pratap, 

et al., 2023). Using this forced alignment method, 

the training dataset was constructed by chunking 

the recordings and texts into samples of short 

durations (Pratap, et al., 2023). The authors had 

used the same model architecture as XLSR 

6 
https://huggingface.co/openai/whisper

-small 
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(Radford, et al., 2022) for MMS (Pratap, et al., 

2023). Some of the models they had trained were 

fully multilingual with all the weights shared 

across all the training languages, while other 

models had used language specific adapter layers 

added to the encoder Transformer blocks (Pratap, 

et al., 2023). These language adapters constitute an 

additional 2M parameters which can be swapped 

out on the fly depending on the language being 

transcribed. They can also be finetuned separately 

without finetuning the whole model (Pratap, et al., 

2023). The authors recommend finetuning only the 

language adapters for low-resource languages, but 

do suggest that full model finetuning is beneficial 

when more training data is available (Pratap, et al., 

2023). The authors had released pretrained model 

checkpoints of different sizes, out of which MMS-

1B-ALL (MMS-1B) 7  model checkpoint with 1B 

parameters was chosen for finetuning. 

3.2 CTC Output Vocabularies 

For finetuning the CTC based XLSR and MMS 

models, an output vocabulary had to be modelled. 

Previous works (Wav2Vec2-XLS-R-1B-dv) had 

used a character-based vocabulary of all 49 Thaana 

symbols and the Arabic ligatures Allah الله 

(U+FDF2) and Sallallahou Alayhe Wasallam 

(Peace be Upon Him)  صلى الله عليه وسلم (U+FDFA) which 

commonly appear in Dhivehi text. However, Xu, et 

al. (2019) and Zhou, et al. (2021) had shown that 

training on sub-word based vocabularies where the 

tokens better correspond to phonemes can produce 

better results than simple character-based 

vocabularies. Similarly, Hou, et al. (2020a)’s 

results also show sub-word vocabularies generally 

giving better performance. Therefore, it was 

decided to also train using a more acoustically 

relevant sub-word vocabulary modelled with all 

consonants, all consonant-vowel pairs and 

aforementioned Arabic ligatures. Vowel diacritics 

were not included separately in this vocabulary as 

phonetically in Dhivehi, the vowels by themselves 

do not make any sound. In both vocabularies, 

additional special tokens were included, which 

were: the word delimiter token for spaces, the 

“[UNK]” token for unknown tokens, and the 

“[PAD]” token for the CTC blank token 𝜖 . The 

character-based vocabulary had 54 tokens while 

the sub-word vocabulary had 461 tokens. 

 
7 https://huggingface.co/facebook/mms-
1b-all 

3.3 Speech Dataset 

The Dhivehi speech dataset chosen for training the 

ASR models were taken from Mozilla Common 

Voice (Ardila, et al., 2019). Common Voice (CV) is 

a crowd-sourced dataset where volunteers 

contribute recordings by reading text samples 

through a web interface (Ardila, et al., 2019). For 

version 13.0 of Common Voice that was used for 

this work, there were in total 64 hours of Dhivehi 

recordings from 331 different speakers. Out of 

these, only 38 hours were validated by contributors 

to be correct. The publishers further split these 

validated hours into different splits, out of which 

the “train” and “other” splits were selected for 

model training, “validation” split for evaluation 

during training and the “test” split for final model 

evaluation. The average length of samples in the 

dataset is 4.9 seconds. 

3.4 Text Corpus 

To train the language models for CTC LM 

decoding and for building synthetic spelling 

correction datasets, a Dhivehi text corpus was 

needed. For this, a text corpus was built using 

4.2GB of text extracted from 1,197,470 news 

articles provided by ArchiveMV 8 , a Maldives 

online news archive. To build the text corpus, the 

raw texts were tokenized into sentences using 

NLTK (Bird, et al., 2009), and the sentences were 

normalized by removing punctuation and replacing 

multiple whitespaces with single whitespaces. The 

text corpus contained 18,117,809 sentences and 

258,345,316 tokens of 3,744,110 types. 

3.5 Pretrained Text-to-Text Models 

For the spelling correction task, a suitable Text-to-

Text model architecture had to be chosen. As with 

8 https://archive.mv/ 

Split Duration Samples 

Train* 25:19:33 19,072 

Validation 3:18:39 2,227 

Test 3:21:26 2,212 

Total 31:59:38 23,511 

Table 1: Dataset splits. *For the train split, the original 

"train" and "other" splits have been combined. 
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the ASR models, it was decided to use a pretrained 

model for this task to take advantage of the benefits 

of transfer learning. The model chosen was the 

UniMax (Chung, et al., 2023) model by Google 

Research. This is a multilingual version of the T5 

(Raffel, et al., 2020) Text-to-Text Transformer 

model trained using a novel fairer language 

sampling method. The authors had released 

different sized pretrained checkpoints of this 

model, and the specific checkpoint chosen was the 

umT5-Small 9 checkpoint containing 300M model 

parameters. 

4 Implementation 

4.1 Data Processing 

For preprocessing of the speech dataset for 

training, the text samples were normalized to 

remove all punctuation marks, which included 

removing the following characters;  ،؟,?.!-

;:"“%‘”�—’…– . Furthermore, any newline 

characters or multiple spaces were replaced with 

single spaces. For training the Whisper model, the 

text was not normalized, but the generated output 

text and the reference text were normalized when 

calculating the WER. For the audio data, the audio 

files were resampled to 16Khz as this was the 

sampling rate the pretrained models were trained 

on. 

4.2 ASR Model Training 

The ASR models were trained using Hugging Face 

Transformers package (Wolf, et al., 2020), using 

PyTorch (Paszke, et al., 2019). All the models were 

trained using the AdamW (Loshchilov & Hutter, 

2019) optimizer using a linear learning rate 

schedule with a warmup of 500 steps. For the MMS 

and XLSR models, a learning rate of 4.5e-05 was 

used, while a learning rate of 1e-5 was used for 

Whisper models. MMS and XLSR models were 

trained for 30 epochs (except for the MMS-1B-VL-

DL-dv which was trained for 40 epochs) while 

Whisper models were trained for 15 epochs. 

During training, the models were evaluated every 

400 steps using the validation set and a checkpoint 

saved. At the end of training, the checkpoint with 

the lowest WER was loaded and saved. 

It was noted for MMS and XLSR models using the 

character-based vocabulary, the training reached 

 
9 https://huggingface.co/google/umt5-
small 

the best performance around epoch 2, and beyond 

this the loss and the WER goes back up. This 

behaviour was not observed for the models using 

the sub-word vocabulary, which had a smooth 

decline of WER until the end of the training.  

For both the MMS and XLSR models, the CNN 

feature extractor layers (Baevski, et al., 2020) were 

frozen during training. For the MMS models, initial 

experiments were conducted to train only the 

language adapter layers (Pratap, et al., 2023), 

however this resulted in relatively poor 

performance. So, for the final model training, full 

model training was performed for the MMS 

models.  

The training was conducted on a AMD Ryzen 9 

7950X 16-Core Processor machine with 128GB of 

RAM and dual RTX 3090 Ti 24GB GPUs running 

Ubuntu 23.04. Even though the machine had 2 

GPUs, training was conducted using single GPUs 

as there were issues with parallel training the MMS 

and XLSR models. However, training sessions 

were conducted two at a time, with sessions 

assigned to either of the GPUs to take advantage of 

them both. The XLSR and Whisper models on 

average took around 11.5 hours to train, while the 

MMS model trained for 30 epochs took around 13 

hours and the model trained for 40 epochs took 

around 17 hours. 

 

Model Name Base Model Vocab. 

XLSR-1B-VS-DL-dv XLSR-1B character 

XLSR-1B-VL-DL-dv XLSR-1B sub-word 

MMS-1B-VS-DL-dv MMS-1B character 

MMS-1B-VL-DL-dv MMS-1B sub-word 

Whisper-Small-DL-dv Whisper-Small - 

4.3 Language Models 

The language models were trained using KenLM 

(Heafield, 2011) as 5-gram word-based models. 

KenLM uses modified Kneser-Ney smoothing 10 

and produces efficient inference once trained. The 

language models were trained using the 

ArchiveMV text corpus. The first LM was the 

ArchiveMV-5gram (Amv-5g) model, trained 

10 http://www.foldl.me/2014/kneser-ney-
smoothing/ 

Table 2: ASR models trained. 
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without any restrictions. The second LM was the 

ArchiveMV-5gram-500k (Amv-5g-500k) model 

which was trained with the vocabulary limited to 

500k common Dhivehi words to see whether this 

had any effect on the performance. For decoding of 

the CTC ASR model outputs using these LMs, 

pyctcdecode 11 Python package was used. 

4.4 Spelling Correction Models 

 To train the spelling correction models, first 2 

different spelling correction datasets were created 

which were the 1M and 10M datasets. To create the 

datasets, random text samples from the ArchiveMV 

corpus were taken, which were then normalized, 

and synthetically spelling mistakes introduced into 

them using a series of random transformations. 

These transformations were designed to mimic the 

specific types of errors observed in the ASR model 

outputs. These include; randomly repeating 

characters at the end of the string, randomly 

inserting spaces within words, randomly removing 

spaces, interchanging phonetically similar letters 

and vowels (such as ިޝ sheenu and ިށ shaviyani), 

and random insertions, deletions and modifications 

of characters. These transformed texts were used as 

the inputs for the 1M and 10M datasets, and the 

corresponding original normalized texts were used 

as the labels. The 1M dataset contained around 1 

million samples while the 10M dataset contained 

around 10.3 million samples. For evaluation, a 

third dataset was created using the MMS-1B-VS-

DL-dv model outputs decoded using the 

ArchiveMV-5gram LM on the validation set of  the 

speech dataset. 

The models were trained using the Hugging Face 

Transformers package, using PyTorch (Paszke, et 

al., 2019). All the models were trained for only 1 

epoch as Transformer models are shown to overfit 

quickly to training data. AdamW optimizer was 

used with a learning rate of 4e-5. During training, 

the model was evaluated using the evaluation 

 
11 https://github.com/kensho-
technologies/pyctcdecode 

dataset and the relative WER improvement was 

recorded. At the end of the training the checkpoint 

with the highest relative WER improvement was 

loaded and saved. The spelling models were also 

trained using the same machine as the ASR models. 

The 1M model took around 5 hours to train, while 

the 10M model took around 56 hours. 

5 Evaluation 

5.1 Experimental Setup 

All the experiments were conducted on the same 

machine as used for training. Each experiment was 

conducted on a single GPU using an evaluation 

script that ran the ASR inference using all the 

trained ASR models, language models and spelling 

correction models and recorded the results into 

CSV files. For the spelling correction evaluations, 

for the CTC-based ASR models, the outputs from 

the ArchiveMV-5gram LM decoding was used as a 

baseline. For the Whisper model, the normalized 

text outputs were used as inputs to the spelling 

correction models. 

5.2 Baseline ASR Model Results 

First, we evaluate the baseline WER of all the 

trained models on the test sets of all the speech 

datasets without using any LM decoding or 

spelling correction and compare the results with the 

state-of-the-art Dhivehi ASR model Wav2Vec2-

XLS-R-1B-dv. Here, for the CTC based XLSR and 

MMS models, Greedy Search decoding was used. 

And for the Whisper models, the generated texts 

were normalized as described in 4.1 before 

calculating the WER. 

 

Model Vocabulary WER 

Wav2Vec2-XLS-R-1B-dv character 20.95 

This work   

XLSR-1B-VS-DL-dv character 56.29 

XLSR-1B-VL-DL-dv sub-word 19.94 

MMS-1B-VS-DL-dv character 38.26 

MMS-1B-VL-DL-dv sub-word 16.19 

Whisper-Small-DL-dv - 43.13 

Model Name Base Model 
Training 

Samples 

umT5-S-1M-dv umT5-Small 1,043,532 

umT5-S-10M-dv umT5-Small 10,351,970 

Table 3: Spelling Correction Models 

Table 4: Baseline ASR Model Results 
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As can be seen from the results, our XLSR and 

MMS based XLSR-1B-VL-DL-dv and MMS-1B-

VL-DL-dv models were able to beat the state-of-

the-art model on the CV-13 test benchmark. MMS-

1B-VL-DL-dv had the best result with a relative 

improvement of 22.72% as compared to the state-

of-the-art. It must be noted that MMS-1B-VL-DL-

dv was trained for 10 additional epochs as 

compared to the other XLSR and MMS models. 

Therefore, this suggests that the other models also 

could potentially benefit from longer training.  

Interestingly, the best performing CTC based 

XLSR and MMS models had used the sub-word 

vocabulary. This is consistent with the results 

observed by Xu, et al. (2019) and Zhou, et al. 

(2021) as the sub-words better correspond to 

phonetic characteristics of Dhivehi, making it 

easier for the models to learn a relationship 

between them and the audio. The sub-word 

vocabulary was able to improve the average WER 

for both MMS and XLSR models, with an average 

relative WER improvement of 61.79%. This goes 

to show that better sub-word modelling using just 

a little domain knowledge of the target language 

can go a long way in improving ASR model 

performance. The current sub-word vocabulary 

doesn’t include all possible Dhivehi phonemes, 

such as consonant-vowel pairs followed by sukun 

(eg. ްއަނ un) or diphones like ިިއައ a-i. Further 

investigations need to be done to see whether 

expanding the sub-word vocabulary to include 

these phonemes would improve performance. 

5.3 Language Model Decoding Results 

Model 
Amv-5g-

500k 
Amv-5g  

Wav2Vec2-XLS-R-1B-dv 20.03 19.85 

This work   

XLSR-1B-VS-DL-dv 52.63 52.42 

XLSR-1B-VL-DL-dv 18.66 18.44 

MMS-1B-VS-DL-dv 39.50 38.99 

MMS-1B-VL-DL-dv 14.69 14.49 

The results show a further improvement of WER 

when LM decoding is used. Using the ArchiveMV-

5gram LM, the WER of the MMS-1B-VL-DL-dv 

model is reduced to 14.49%, which is a 10.50% 

relative improvement over baseline. The 

ArchiveMV-5gram LM showed the overall best 

performance, followed by the ArchiveMV-5gram-

500k LM which had the vocabulary limited to 500k 

words. This indicates that, for this particular case, 

limiting the LM vocabulary is worse for 

performance. Table 6 shows that the ArchiveMV-

5gram LM improves the WER by 5.65% on 

average across all models. 

 

Model 
Amv-5g-

500k 
Amv-5g  

Wav2Vec2-XLS-R-1B-dv 4.39% 5.25% 

This work   

XLSR-1B-VS-DL-dv 6.50% 6.88% 

XLSR-1B-VL-DL-dv 6.42% 7.52% 

MMS-1B-VS-DL-dv -3.24% -1.91% 

MMS-1B-VL-DL-dv 9.26% 10.50% 

Average 4.67% 5.65% 

5.4 Spelling Correction Results 

Model 
umT5-S-

10M-dv 

umT5-S-

1M-dv 

Wav2Vec2-XLS-R-1B-dv 20.83 21.28 

This work   

XLSR-1B-VS-DL-dv 50.14 50.73 

XLSR-1B-VL-DL-dv 18.17 18.95 

MMS-1B-VS-DL-dv 38.52 39.01 

MMS-1B-VL-DL-dv 14.26 15.27 

Whisper-Small-DL-dv 42.77 43.54 

Table 5: LM decoding results; WER for each of the 

trained XLSR and MMS models and the state-of-the-

art Dhivehi ASR model when decoded using the 2 

different LMs. Marked in bold is the best WER 

obtained for each LM. 

Table 6: Relative WER improvement for LMs; 

Showing the relative WER improvement for all XLSR 

and MMS models using the 2 different LMs as 

compared to their baseline overall WER without LM 

decoding. 

Table 7: Spelling correction results; WER for each of 

the trained models & the SOTA Dhivehi ASR model 

when spelling correction applied. For the MMS and 

XLSR models, spelling correction was applied after 

decoding with the ArchiveMV-5gram LM. For the 

Whisper model, spelling correction was applied after 

normalizing the output text. 
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The results show even more WER reduction with 

spelling correction. Using the umT5-S-10M-dv 

spelling model, WER for the MMS-1B-VL-DL-dv 

model is now reduced to 14.26%, which is the new 

state-of-the-art WER for CV-13 Dhivehi 

benchmark 12  13  as of August 2023. This is a 

31.93% relative WER improvement as compared 

to the 20.95% baseline WER of the SOTA Dhivehi 

ASR model on CV-13.  

As can be seen from Table 8, only the umT5-S-

10M-dv spelling correction model trained on 10M 

samples produced any overall WER improvement 

on average across all the models. This indicates the 

importance of training on more data. Interestingly, 

the Whisper model seem to benefit less from 

spelling correction, which is to be expected as the 

AED architecture of Whisper essentially learns a 

language model on the training transcriptions, 

negating the need for further text processing. 

While spelling correction in addition to LM 

decoding seems to be a viable technique to boost 

the accuracy of CTC models, the relative 

improvement going from LM decoding to spelling 

correction is markedly less compared to the relative 

improvement going from baseline to LM decoding. 

Moreover, doing spelling correction on top of LM 

decoding adds additional memory and processing 

time overhead. The memory overhead could be 

 
12 
https://paperswithcode.com/sota/speec

h-recognition-on-common-voice-dhivehi 

mitigated by loading the spelling model after ASR 

inference is complete, however, the processing 

time can still be up to 1.6 times slower than LM 

decoding alone. 

6 Conclusion 

Our results show that pretrained multilingual ASR 

models can greatly benefit from language specific 

finetuning and optimizations. Specifically for CTC 

based models, proper sub-word modelling and 

language model decoding seems crucial. 

Multilingual models could also benefit from these 

techniques, as the language optimized sub-word 

vocabularies can be incorporated back into 

multilingual models and language specific LMs 

can be swapped out on the fly when decoding 

outputs for a specific language. While AED models 

seem to benefit less from these accuracy boosting 

techniques, they also seem to benefit from 

language specific finetuning. As for further 

accuracy improvement of Dhivehi ASR, more 

labelled speech data is needed for training, which 

could be generated using forced alignment as was 

done by Pratap, et al., 2023. Moreover, further 

expansion of the CTC sub-word vocabulary can be 

explored to see if it yields any improvement. 

Furthermore, for production systems, punctuation 

restoration Alam, et al., 2020 will need to be 

performed on the generated text to produce more 

readable transcripts, especially for the CTC based 

models. 
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Abstract

We present a comparative study of a state-of-
the-art traditional modular Automatic Speech
Recognition (Kaldi ASR) and an end-to-end
ASR (wav2vec 2.0) for a well-resourced lan-
guage (Spanish) and a low-resourced language
(Irish). We created ASRs for both languages
and evaluated their performance under differ-
ent update regimes. Our results show that the
end-to-end wav2vec 2.0 outperforms the modu-
lar ASR for both languages in terms of Word
Error Rate (WER) but performs worst in terms
of real-time decoding. We also addressed the
issue of non-lexical words in wav2vec 2.0’s
output. We found that in wav2vec 2.0 by LM
integration with shallow fusion and increasing
LM weight to 0.7 and 0.8 respectively for the
Spanish and Irish provided the optimum ASR
performance by reducing non-lexical words.
However, this does not eliminate all non-lexical
words. Finally, our study found that Kaldi ASR
would perform best for real-time decoding for
longer audio inputs compared to wav2vec 2.0
model trained on the same dataset on the mini-
mal infrastructure, although wav2vec 2.0’s per-
formance can be improved with a GPU accel-
eration in backend. These results may have
significant implications for creating real-time
ASR services, especially for low-resourced lan-
guages.

1 Introduction

Traditional modular ASR frameworks decompose
the ASR task into acoustic, pronunciation, and lan-
guage modeling e.g. Povey et al. (2011). The
modular approach of ASR is knowledge-based and
provides flexibility in training one’s own acoustic
model (AM) and language model (LM), in com-
bination with a dedicated customised vocabulary.
The knowledge-based modular approach allows
adequate performance in specific domains like spe-
cific languages, dialects or speakers. A modular
ASR can be tailored to the specific domain or
task, which can lead to further improvement of

the performance of the system (Roy et al., Easy-
Chair, 2022). However, the traditional modular
approach of ASR requires a significant amount
of transcribed speech recording for training, large
text resources, and explicit grapheme-to-phoneme
(G2P) mappings or complete dictionaries as basic
requirements. This poses a significant challenge
for low-resourced languages that do not have a sig-
nificant digital footprint with a limited amount of
labeled data available (Srivastava et al., 2018).

Self-supervised learning (SSL) has emerged as
a powerful technique for settings where annotated
audio data is scarce. The key idea behind this ap-
proach is to learn (pretrained) general representa-
tions from substantial amounts of unlabeled source
data, and subsequently leverage them to improve
the performance (finetuning) on downstream target
tasks with a very limited amount of transcribed
data. This is particularly useful for tasks such
as speech recognition, where obtaining labeled
data can be a time-consuming and costly process.
Models based on SSL, e.g. wav2vec 2.0 (Baevski
et al., 2020), have shown their powerful representa-
tion ability and feasibility for ultra-low-resourced
speech recognition, making self-supervised end-to-
end models a desirable alternative to the flexible
and useful modular infrastructure.

This paper aims to evaluate and compare the per-
formance of two different approaches for develop-
ing ASR systems: modular Kaldi ASR e.g., Povey
et al., 2011 and end-to-end ASR based on wav2vec
2.0 (Baevski et al., 2020), for two languages: Span-
ish (well-resourced) and Irish (low-resourced). The
study not only assesses the performances of both
approaches in terms of WER but also addresses
challenges with wav2vec 2.0 such as generating
non-lexical word forms (such as ‘weekent’, ‘hal-
loo’) and the impact of LM weights. Additionally,
we examine the latencies and real-time factor (RTF)
while deploying both ASRs under the same client-
server network environment. In this way, we aim
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to determine which approach is more effective for
developing ASR systems for different languages
and resource levels, specifically with minimal in-
frastructure.

2 Related Work

Since the emergence of self-supervised learning
methods, various studies showcased the potential
of self-supervised end-to-end approaches in speech
technology across different languages and modal-
ities (Zuluaga-Gomez et al., 2023; Coto-Solano
et al., 2022; Al-Ghezi et al., 2021; Yi et al., 2021).
One such study by Zuluaga-Gomez et al. (2023)
examines the robustness of two end-to-end models
wav2vec 2.0 and XLS-R trained in a new domain,
air traffic control (ATC) communications. Their
findings show significant reductions in relative
WER ranging from 20% to 40% compared to the
hybrid-based ASR baseline, indicating the effec-
tiveness of self-supervised end-to-end approaches
in this domain. Another study by Coto-Solano
et al. (2022) was conducted on Cook Islands Maori
(CIM), a low-resourced indigenous language, to
compare the performance of three ASR models:
A traditional modular system (Kaldi; Povey et al.,
2011) and two deep learning-based systems (Deep-
Speech (Hannun et al., 2014) and XLSR-wav2vec
2.0 (Conneau et al., 2021)) and their results also
indicated that Deep Learning ASR systems XLSR-
wav2vec 2.0 are performing at the level of mod-
ular ASR methods on small datasets, and they
are also effective in dealing with extremely low-
resourced Indigenous languages like CIM. A study
on Swedish L2 learners by Al-Ghezi et al. (2021)
found that models pre-trained on large size of un-
transcribed L1 Swedish speech data give a compet-
itive performance to that of modular ASR without
the need for customized language and pronuncia-
tion models. Their best model managed to correctly
decode words that do not appear in the training
dataset whereas the modular ASR failed to do so.
In Enzell (2022), domain adaptation with an N-
gram LM is shown for Swedish, where the effects
of LM weights on end-to-end models are briefly
discussed.

3 Data

In our research, we utilized various open-source
datasets and public speech corpora. For the Spanish
ASR, we utilized the Common Voice (CV) Span-
ish (Ardila et al., 2020) dataset for the AM. The

CV dataset includes rich metadata such as speaker
age, accent, and gender, and consists of 213244
utterances for training, equating to 313.56 hours of
speech material. For building the LM, we utilized
the Spanish Billion Words Corpus (Cardellino,
2019) which has nearly 1.5 billion Spanish tokens
and 0.54 million types with a frequency higher than
10. For testing, we used the CV Spanish Dev and
Test sets, which consist of 26.1 and 25.9 hours of
speech, respectively. For pronunciation lexicons
we used a dedicated G2P tool based on SAMPA
(Speech Assessment Methods Phonetic Alphabet)
(Wells et al., 1997). It’s worth noting that obtaining
datasets for Spanish was relatively easy as it is a
well-resourced language with a substantial digital
footprint. See the Table 1.

Table 1: Overview of Common voice Spanish Datasets

Dataset #Utterances Duration #Word
Token

#Word
Type

Train 213244 313.56h 2124011 83604
Test 15440 26.1h 151681 23314
Dev 15440 25.9h 151819 23602

For Irish, the situation is essentially different.
Acquiring speech data for this language is a signifi-
cant challenge due to the scarcity of open-source
resources available for this language. To tackle
this scarcity problem, we combined multiple small
open-source Irish datasets. For the AM training we
utilized the CV Irish dataset (Ardila et al., 2020).
We used only the validated utterances from this
dataset and excluded those that were part of the
test set. Additionally, we used the “Living Audio"
dataset (Braude et al., 2019) which contributed an
additional hour of Irish speech data. We also in-
corporated all Irish utterances from the “Google
Fleurs" dataset (Conneau et al., 2023). After com-
bining these three datasets, we were able to train on
a total of 9,274 utterances equating to 13.5 hours of
speech. For testing, we used the CV Irish Test set,
containing 513 utterances (0.5 hours of speech), in
combination with a set of ‘Invalidated‘ CV Irish ut-
terances, with 282 utterances (0.3 hours of speech,
after removing speech samples with background
noise or no speech). The ’invalidated’ clips in the
CV dataset are the clips that have received more
downvotes than upvotes. In Table 2, the overview
of Irish datasets is provided.

For the LM, we used the CC-100: Monolingual
datasets from Web Crawl Data (Conneau et al.,
2020), which includes data for over 100 languages
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including Irish, with in total 84 million word to-
kens and 0.12 million word types having frequency
higher than 10. Lastly, for permitting the experi-
ments with Kaldi ASR, we trained a G2P model
based on Joint-sequence models (Bisani and Ney,
2008) using 13300 seed Irish pronunciations ac-
quired from Wikipron (Lee et al., 2020).

Table 2: Overview of Irish Datasets. CV, LA and GF ab-
breviated for Common Voice, Living Audio and Google
Fleurs respectively.

Dataset #Utterances Duration #Word
Tokens

#Word
Types

CV Train 4097 4.1h 27880 2341
LA Irish 1122 1h 11360 3542
GF Irish 1947 8.4h 48929 9866
CV Test 513 0.5h 3423 1109

CV Invalidated 282 0.3h 2230 707

4 Experiments

Our experiment setup is composed of four objec-
tives: 1. Evaluate the performance of both the mod-
ular and end-to-end ASR approaches in terms of
WER and Character Error Rate (CER), 2. Exam-
ine the influence of LM weights when integrating
with fine-tuned wav2vec 2.0 models 3. Evaluate
the presence of non-lexical words in the generated
transcriptions and 4. Measure the latency of the
ASR systems when deployed using both methods.

4.1 Modular ASR Training
We established the first baseline modular ASR for
Spanish and Irish languages, using the dataset spec-
ified in Section 3. For the Spanish ASR, the base-
line was built using a Kaldi (Povey et al., 2011)
chain model adapted from the Librispeech recipe1,
while for the Irish ASR, it was adapted from the
mini-Librispeech2 recipe. Both recipes follow a
similar training pattern, but the hyperparameters
such as the number of leaves, number of Gaussians,
neural network size, L2 regularization, learning
rate, and the number of epochs were optimized to
fit the data size. The AM in both recipes is a combi-
nation of a Time-Delayed Neural Network (TDNN)
and a Convolutional Neural Network (CNN). Ad-
ditionally, 4-gram statistical LMs for Spanish and
Irish were generated using the SRILM tool (Stol-
cke, 2002), based on the text resources for these
languages. Finally, the pronunciation lexicons were
created using a rule-based approach for Spanish

1
github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/

2
github.com/kaldi-asr/kaldi/blob/master/egs/mini_librispeech/

and a data-driven approach for Irish as explain in
the section 3.

4.2 Finetuning with End-to-End Approach
We utilized a publicly released pre-trained wav2vec
2.0 model (Baevski et al., 2020), XLS-R (Babu
et al., 2022), which was trained on 436K hours
of publicly available speech audio and is avail-
able on HuggingFace3. During its self-supervised
pre-training, XLS-R learned contextualized speech
representations by randomly masking feature vec-
tors and passing them through a transformer net-
work. For fine-tuning on our speech recognition
task, we added a single linear layer on top of the
pre-trained network and finetuned the model on our
labeled speech data for both Spanish and Irish. We
used the 300 million-parameter version of XLS-R4,
which is among the smaller versions (mid 2023,
models range from 300 million to two billion pa-
rameters). The fine-tuning was performed on an
NVIDIA Tesla T4 GPU using the Adam optimizer,
with a learning rate starting with a warm-up for
500 steps, peaked at 3e−4 for all global steps, and
then decayed exponentially. The total number of
global steps for fine-tuning to Spanish and Irish
was 44415 and 7180, respectively. In our research,
the same language-dependent statistical LM was
used for the modular and on end-to-end approach,
for both Spanish and Irish. These LMs were ini-
tially created in ARPA format but were transformed
into binary using KENLM (Heafield et al., 2013) to
decrease the time required to load the models. The
integration of the LM with the AM was performed
using shallow fusion through the CTC decoder li-
brary pyctcdecode5.

4.3 Non-lexical Words
An ASR system based on CTC may produce non-
lexical word forms. In wav2vec 2.0, the output of
the model is represented as the probability distribu-
tion of the predicted phonemes at each time frame
(each 20ms) of the input signal. While the model
can generate both lexical and non-lexical word
forms through its sequence of phonemes, the use
of a (word-based) LM helps to refine non-lexical
predictions by incorporating information about the
likelihood of different sequences of phonemes that
form words (legal grapheme sequences or legal
phone sequences) in the language.

3
huggingface.co/docs/transformers/model_doc/wav2vec2

4
huggingface.co/facebook/wav2vec2-xls-r-300m

5
github.com/kensho-technologies/pyctcdecode/
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In contrast, Kaldi’s lexicon search space is lim-
ited to the pronunciation lexicons. The HCLG
graph in Kaldi uses the lexicon FST (Povey et al.,
2011; Mohri et al., 2007) to determine the possible
words based on the AM’s predictions, effectively
restricting the search space to the words defined in
the lexicon. This ensures that Kaldi only produces
words that we provide, rather than generating non-
existing words, leading to more accurate results.

In wav2vec 2.0, we investigated the effect of
varying the weight of the LM during the shallow
fusion process, by calculating the number of unique
words (word types) in each experiment for different
values of LM weights ranging from 0 to 1, with
intermediate values of 0.1, 0.3, 0.5, 0.7, 0.8, 0.9,
and 1.0. The results of these experiments allowed
us to observe the effects of non-lexical words in
hypothesis transcripts generated by wav2vec 2.0.

4.4 ASR Usability in Deployment

The ASR created using both approaches was de-
ployed as a web service. The Kaldi-based ASR
pipeline is capable of processing most speech files
faster than real-time using only CPUs (Parikh et al.,
2022).

However, decoding with large wav2vec 2.0 mod-
els with an integrated LM is prohibitively slow on
a CPU and therefore requires the availability of at
least one GPU for real-time decoding. Addition-
ally, the wav2vec 2.0 models needed to be manually
loaded for the first time setup. The latency of the
ASR web service is an important feature for the
usability of the entire system and user satisfaction.
We calculated the latency results in terms of RTF
for audio files of varying durations for both Kaldi
ASR and wav2vec 2.0 models while maintaining
a consistent connection environment. Linear re-
gression was used to obtain equations. The linear
trendlines were obtained by fitting linear models
to each dataset using the Ordinary Least Squares
(OLS) method. The slope and intercept coefficients
of each line were calculated using the linear regres-
sion model.

5 Results

The initial evaluation of both systems is based on
WER. For the modular approach, we conducted
online decoding with Kaldi ASR, and for the end-
to-end wav2vec 2.0 approach, we computed the
WERs for the finetuned model and for the shallow-
fused model with various weights of LM.

Table 3: Experimental Results of Kaldi ASR using a
CNN-TDNN Architecture for AM: Testing Datasets and
Corresponding WER and CER

Spanish ASR
Dataset WER CER
CV Test 15.69% 5.89%
CV Dev 13.68% 4.90%

Irish ASR
CV Test 22.69% 11.54%

CV Invalidated 43.06% 24.44%

As shown in Table 3 and 4, the end-to-end
wav2vec 2.0 method outperformed the modular
Kaldi ASR approach. In Spanish ASR, with Kaldi,
we obtained WERs of 15.69% and 13.68% on the
CV Test and CV Dev sets, respectively, which were
improved to 10.63% and 9.38% by wav2vec 2.0
without an LM. Similarly, in Irish ASR, we ob-
tained WERs of 19.98% and 39.19% using the
wav2vec 2.0 without an LM on the CV Test and
Invalidated sets, compared to the Kaldi ASR with
WERs of 22.69% and 43.06%.

We also determined the impact of an LM on the
finetuned model with wav2vec 2.0. As described in
section 4.3, we computed the WER and CER for a
number of LM weight values. For the Spanish ASR,
the lowest WER of 6.73% and 5.92% on the CV
Test and CV Dev sets, respectively, was achieved
with an LM weight of 0.7. In the Irish ASR, the
lowest WER was obtained at an LM weight of 0.8,
with WERs of 13.78% and 30.85% on the CV Test
and CV Invalidated sets, respectively. These results
demonstrate a significant improvement in WER
compared to the baseline modular ASR, using the
same training data.

We evaluated the impact of the LM weight on the
non-lexical words in the hypothesis transcripts gen-
erated by Spanish and Irish wav2vec 2.0 models.
The non-lexical words were defined as words that
were not present in the unigrams of the LM shallow-
fused with the wav2vec 2.0 model. As seen in Table
5 initially, without using an LM, there were 6220
and 5770 non-lexical words in the Spanish CV Test
and Dev hypothesis transcripts, respectively. By
integrating an LM and increasing the weight of LM
to 0.5, the non-lexical words were reduced to a
minimum of 1317 and 1235 in CV Test and Dev
transcripts, respectively corresponding to a reduc-
tion of approximately 79% of the total non-lexical
words. Similarly in Irish ASR, without using an
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Table 4: WER and CER of two test sets for Spanish and Irish ASR by wav2vec 2.0. We recorded WER and CER for
fine-tuned model integrated with different LM weights.

Dataset Evaluation
Matrix

No
LM

LM Weights
0 0.1 0.3 0.5 0.7 0.8 0.9 1

Spanish ASR

CV Test WER 10.63% 10.44% 9.03% 7.43% 6.85% 6.73% 6.82% 6.98% 7.20%
CER 3.09% 2.95% 2.73% 2.44% 2.34% 2.35% 2.39% 2.44% 2.49%

CV Dev WER 9.38% 9.06% 7.86% 6.53% 6.03% 5.92% 6.01% 6.15% 6.39%
CER 2.59% 2.47% 2.28% 2.03% 1.94% 1.93% 1.97% 2.01% 2.06%

Irish ASR

CV Test WER 19.98% 19.07% 17.23% 14.95% 13.96% 13.87% 13.78% 13.78% 13.87%
CER 7.24% 6.91% 6.52% 6.03% 5.79% 5.84% 5.85% 5.88% 5.89%

CV
Invalidated

WER 39.19% 39.95% 37.62% 33.45% 31.88% 31.07% 30.85% 31.07% 31.39%
CER 16.81% 16.54% 16.11% 15.39% 15.16% 15.20% 15.15% 15.23% 15.28%

Table 5: Count of non-lexical words in transcripts gen-
erated by wav2vec 2.0

LM
Weight

Test Dataset
Spanish Irish

CV Test CV Dev CV Test CV Invalidated
No LM 6220 5770 339 357

0 3408 3046 257 238
0.1 2440 2184 207 197
0.3 1538 1404 149 150
0.5 1317 1235 124 125
0.7 1404 1324 119 122
0.8 1555 1438 122 128
0.9 1769 1622 124 132
1 1999 1820 127 141

LM, in CV Test and Invalidated, there were 339
and 357 non-lexical words which were reduced to
119 and 122 using an LM with 0.7 weight corre-
sponding to a reduction of approximately 65% of
the total non-lexical words. Although the optimal
WER and CER were achieved with only marginal
differences at LM weights of 0.7 for Spanish and
0.8 for Irish, it can be said that there is still a pres-
ence of a small number of non-lexical homophones
in hypothesis transcripts. However, even with a
high LM weight, not all non-lexical words were
removed. A slight increase in the number of non-
lexical words was observed as the weight of the
LM was increased from 0.7. This highlights the
fact that even with low CER produced by wav2vec
2.0 models, there can still be a significant num-
ber of non-lexical words present in the generated
transcripts.

In Figure 1, we present a comparative analysis of
latency times and Real-Time Factors (RTF) for two
ASR systems, Kaldi and wav2vec 2.0. This analy-
sis covers audio files ranging from 5 to 102 seconds
in duration, all processed under identical testing
conditions, including network settings and beam

size. Additionally, we consider a scenario where
the wav2vec 2.0 model is utilized with a NVIDIA
Tesla T4 GPU with 15.36GB of memory. The key
observation is that both Kaldi and wav2vec 2.0
exhibit linearly increasing latency times as audio
duration extends. For Kaldi, the latency equation
is given by y = 0.1074x + 0.50190 (y: latency;
x: duration in seconds), while for wav2vec 2.0 on
the identical testing condition as Kaldi ASR, it is
y = 0.2380x− 0.8749. When using wav2vec 2.0
with GPU backend, the latency equation becomes
y = 0.0426x+ 0.8357. These equations describes
how the latency of ASR system increases as the du-
ration of the audio input increases. In summary, the
latency is same in all the ASRs for audio utterances
up to 10 seconds. It is also evident that all three
systems experience increased latency with longer
audio segments. Wav2vec 2.0 displays a higher lin-
ear increase, while Kaldi exhibits a slower rate of
increase, indicating greater efficiency with longer
audio. Notably, wav2vec 2.0 with GPU acceler-
ation demonstrates significantly reduced latency,
underscoring the advantages of GPU processing
for longer audio tasks. These insights are invalu-
able for selecting the ideal system for real-time or
near-real-time audio processing, considering ex-
pected processing times based on varying audio
durations.

The RTF values for both systems show an in-
verse relationship with audio file length. For Kaldi,
the estimated RTF is y = −0.0008x+ 0.1791 (y:
RTF; x: duration in seconds). Kaldi’s performance
is only 0.0161 times better (RTF = 0.129 for 20
seconds of audio to RTF = 0.113 for 102 seconds
of audio) for files from 20 to 102 seconds long. In
contrast, wav2vec 2.0 model when same system
as Kaldi ASR in backend gives an RTF estimated
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Figure 1: Latency measured in terms of system time
for wav2vec 2.0 models and Kaldi vs. Audio Duration

Figure 2: Real-time Factors (system time/length of audio)
for wav2vec 2.0 models and Kaldi vs. Audio Duration

by y = 0.00079x+ 0.1588. In this case, the RTF
value is increasing with the audio duration, i.e. the
system’s processing time becomes relatively slower
as the audio duration becomes longer. This sug-
gests that the system might not be able to keep up
with the real-time demands of longer audio seg-
ments, and it could experience prohibitive delays
in processing or decoding longer audio. While this
issue can be solved with an acceleration at backend
as GPU and with GPU, wav2vec 2.0’s performance
is 3.5 times better for files from 20 to 102 seconds
long, with an RTF of y = −0.0009x + 0.1351.
The initial loading time of the wav2vec 2.0 model
(which takes around 10 to 20 seconds) is not taken
into consideration in the charts.

6 Discussion

From our experimental results, it is evident that
the end-to-end wav2vec 2.0 approach outperforms
the modular Kaldi ASR for both well-resourced
and low-resourced languages. In particular, we
found that in end-to-end wav2vec 2.0 during shal-
low fusion increasing the LM weight from 0.0 to
0.7 and 0.8 for Spanish and Irish, respectively, led
to a decrease in non-lexical words, WER, and CER,
resulting in optimum performance. Interestingly,
beyond a certain threshold, further increasing an
LM weight led to an increase in non-lexical words,
WER, and a decrease in performance. The wav2vec
2.0 model outputs a sequence of token probabili-
ties represented in an alphabet set and an arg-max
followed by a tokenizer provides sufficiently good
accuracy but when an LM is integrated on top of
it, words with lower probability and poor acous-
tic support are more likely to be overruled by the

LM. Hence a reduction in WER and non-lexical
words is found but after a certain limit for the LM-
weight, the LM starts replacing correctly identified
words resulting in an increase in WER. The default
weight of LM in pyctcdecode is 0.5, but finding
the optimum weight for the combination of LM and
AM is crucial for achieving the best performance.
In the modular ASR, after the decoding process
performing lattice rescoring with recurrent neural
LMs (Xu et al., 2018) can also further improve the
ASR performance.

The knowledge-based hybrid system and end-
to-end systems that we have compared here differ
in terms of WER. This does not at all imply that
the classical approach can defaultly be replaced
by an SSL end-to-end approach. In the experi-
ments reported on above, we observed that both sys-
tems often (but not always) make different errors,
which opens the possibility to consider them as
first-level audio-to-text transformations after which
both ’streams’ could be merged on a second level,
based on considering confidence measures associ-
ated to each word in the hypothesized outputs in
each stream. This stream-based merging of mul-
tiple different hypotheses is topic for a follow-up
investigation.

In terms of time performance, the fitted latency
and RTF lines are reliable indicators of trends in
the data and can be used for predictions and in-
sights. For real-time decoding, wav2vec 2.0 takes
considerably more time to decode the longer than
10 seconds audio, compare to Kaldi ASR in the
same network connection and server infrastructure
but with a GPU acceleration, wav2vec 2.0 decod-
ing times outperform Kaldi in all cases, but a first
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model loading time must be taken into account in
the case of wav2vec 2.0.

7 Conclusion

We compared the performance of modular and end-
to-end approaches for creating ASR on a low and
well-resourced language and results showed that
the end-to-end wav2vec 2.0 ASR outperforms the
modular Kaldi ASR even without an LM. Incor-
porating an LM with weights of 0.7 and 0.8 for
Spanish and Irish languages, respectively, further
improves the performance of the end-to-end ap-
proach. However, we observed that the end-to-end
approach generates non-lexical words, which can
be partially resolved but not entirely eliminated
by integrating an LM. Also, a dedicated GPU is
required to achieve the best time performance for
end-to-end ASR, which is 3.5 times faster than
modular ASR. Therefore, modular ASR can still
be a relevant option for in-domain tasks with lower
CPU/GPU requirements.

Limitations

There are mainly three limitations with our study.
1. The main limitation of this study concerns the
data preparation phase, especially for low-resource
languages. Conducting experiments, as presented
in this paper, requires adequate linguistic resources.
It includes not only audio material but also essen-
tial components such as lexicons or a grapheme
to phoneme conversion system. The scarcity of
such linguistic resources for minority languages
can pose a significant challenge so the availability
of such an ASR system remains crucial for this
comparison. 2. Another significant limitation re-
lates to the availability of suitable large models,
such as Whisper, for the purpose of comparison.
Not all pre-trained end-to-end ASR systems encom-
pass support for every minority or low-resourced
language. So the availability of such an ASR sys-
tem remains crucial for this comparison. 3. Third
limitation is the hardware dependent performance.
In our case, AMD 32-Core Processor with a total
of 64 CPUs, which is also quite capable. However,
the performance of ASR systems can be impacted
by factors at server side such as CPU load, avail-
able memory, and system usage by other processes
and at network side such as bandwidth, processing
speed, and transmission protocol. This variability
can affect the latency and RTF of the ASR sys-
tem, meaning that the time it takes to process and

transcribe speech can vary under different system
conditions.
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Abstract

This paper explores the potential of construct-
ing an AI spoken dialogue system that "thinks
how to respond" and "thinks how to speak" si-
multaneously, which more closely aligns with
the human speech production process com-
pared to the current cascade pipeline of in-
dependent chatbot and Text-to-Speech (TTS)
modules. We hypothesize that Large Language
Models (LLMs) with billions of parameters
possess significant speech understanding ca-
pabilities and can jointly model dialogue re-
sponses and linguistic features. We conduct
two sets of experiments: 1) Prosodic struc-
ture prediction, a typical front-end task in TTS,
demonstrating the speech understanding abil-
ity of LLMs, and 2) Further integrating dia-
logue response and a wide array of linguistic
features using a unified encoding format. Our
results indicate that the LLM-based approach
is a promising direction for building unified
spoken dialogue systems.1

1 Introduction

As we are developing more advanced AI systems,
such as Large Language Model (LLM)-based chat-
bots like ChatGPT and GPT-4 (OpenAI, 2023),
we also hope to establish natural, seamless, and
efficient communication between humans and AI
systems. In addition to typing and reading through
the screen, the speech channel represents a valu-
able alternative for interpersonal exchange, given
its convenience and capacity to convey richer in-
formation than text alone. Recently, researchers
from both academia and the industry have made
successful attempts to concatenate AI chatbots with
off-the-shelf text-to-speech (TTS) (Tan et al., 2021)

Xinyu Zhou and Delong Chen contributed equally.
This work is partially supported by National Social Sci-

ence Fund of China (20&ZD295).
1Codes and datasets are publicly available at https://

github.com/XinyuZhou2000/Spoken_Dialogue.
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Figure 1: A high-level comparison of different speech
production processes. As noted by the red dotted boxes,
the novel LLM-based unified framework proposed in this
study can “think how to respond” and “think how to speak”
at the same time, which aligns better with the speech pro-
duction process of humans.

modules as in Figure 1 (a), representative applica-
tions include Siri, Xiaomi Xiaoai2 and Call Annie3.

However, the expressivity and interactivity of
speech responses synthesized by these two-stage
cascaded models are heavily limited. The reasons
are two-fold. Firstly, TTS modules are usually
based on small language models (e.g., BERT model
with 0.1B parameters), which have limited capac-
ity for understanding complex dialogue contexts.
Secondly, the dialogue response generation mod-
ule (i.e., the LLM Chatbot) and the TTS module
work independently. During speech synthesizing,
the TTS module can not access the information
from the dialogue context, which is proven to be
valuable for generating plausible and appropriate
speech responses.

The current two-stage pipeline also has a funda-
mental difference with our understandings of the
human speech production process (Levelt, 1993),
where the “grammatical encoding” and “phono-
logical encoding” are done in parallel within the
“conceptualization-formulation-articulation” pro-

2https://xiaoai.mi.com
3https://callannie.ai
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cess, as shown in Figure 1 (b). Inspired by this,
we want to explore the possibility of building an
AI speech dialogue system that “thinks how to re-
spond” and “thinks how to speak” at the same time.
In order to accomplish this goal, a model must pos-
sess a deep understanding of natural language and
dialogue context, exhibit extensive world knowl-
edge and commonsense, and demonstrate adequate
learnability to handle text-speech joint modeling.

We hypothesize LLMs with (hundreds) billions
of parameters (in comparison with BERT-based
TTS front-ends (Chen et al., 2022) with only 0.3B
parameters) are capable of achieving this goal. To
verify this, in this paper, we provide two groups
of experiments to demonstrate the possibility of
building such LLM-based unified speech dialogue
system.

Firstly, we get started with the prosodic struc-
ture prediction (Section 3), a typical task within the
TTS text analysis front-end, to showcase the speech
understanding ability of LLMs. Results show that
both prompting-based ChatGPT and fine-tuning
based ChatGLM (Zeng et al., 2022) model achieve
competitive performance against traditional meth-
ods. We also show that LLM can utilize linguistic
knowledge to improve prediction accuracy.

Secondly, we aim to further integrate a wide
array of linguistic features into the model, and
maintain LLM’s dialogue capability at the same
time (Section 4). To address the lack of a parallel
dataset of dialogue response and linguistic annota-
tions, we employ an automated dialogue context
generation approach inspired by LongForm (Kök-
sal et al., 2023), then train an LLM to produce both
dialogue response speech features at the same time.
Experiments show that LLM learns successfully.

2 Related Work

2.1 Human Speech Production

The process of human speech production is a long-
standing research area. In 1993, Levelt (Levelt,
1993) proposed an encoding model for human
speech production. First, concepts are generated,
followed by the selection of appropriate vocabu-
lary and the arrangement of these words according
to grammatical rules. Then, the phonetics of the
words are extracted in sequence, and motor pro-
grams are executed to initiate speech. The genera-
tion of spoken sentences is parallel and incremen-
tal, involving multiple stages of processing. Experi-
ments (Schnur, 2011; Jaeger et al., 2012) prove that

the phonetic planning of words begins as the gram-
matical structure of a sentence unfolds. Although
there are many efforts to understand and explain
human speech production process, TTS methods
rarely take inspiration from these research results.
To our best knowledge, this is the first study that
attempts to build an AI system that imitates the si-
multaneous “grammatical encoding” and “phono-
logical encoding” process of human speech pro-
duction.

2.2 TTS Front-end and Expressivity

Typical TTS systems (Tan et al., 2021) usually con-
sist of three main modules: front-end, acoustic
model, and vocoder. The TTS Front-end models
convert text into linguistic features, and are primar-
ily BERT-based small language models, while the
power of LLM is not well validated in this task
yet. Hsu et al. (Hsu et al., 2021) and Stephenson
et al. (Stephenson et al., 2022) have demonstrated
that fine-tuning BERT can enhance the prosodic ex-
pression capabilities of TTS systems. Nevertheless,
issues such as homograph ambiguity, ineffective-
ness in stress, emotion and prosody still exist. Re-
cent studies have explored the use of interactional
resources (Chen, 2023), such as breathing (Székely
et al., 2020), laughter (Xin et al., 2023), phonation
type (Lameris et al., 2023), filled pauses and prolon-
gations (Li et al., 2023), to improve the spontaneity
and expressiveness. However, these studies have
only focused on one single interactional resource,
which limits their ability to capture rich and diverse
subtle variations in natural conversation.

2.3 LLMs for Speech Processing

Understanding and generating speech signals are
strongly related to natural language processing.
With the recent explosion of LLM, many re-
searchers in the field of speech processing also
attempt to use LLMs to benefit speech or audio
related tasks. AudioLM (Borsos et al., 2023)
leverages a masked language model to capture the
long-term structure and generate natural and co-
herent audio continuations given short prompts.
SpeechGPT (Zhang et al., 2023), a multi-modal
large language model, leverages its inherent ca-
pabilities to perceive and generate multi-modal
content. PromptTTS (Guo et al., 2023) and
PromptTTS2 (Leng et al., 2023) take prompts with
both style and content descriptions as input to syn-
thesize the corresponding speech.
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Figure 2: Standard pipeline of current spoken dialog sys-
tems. A dialogue model generates a response to user input,
and the TTS model (front-end→acoustic model→vocoder)
converts text to audio subsequently.

3 Prosodic Structure Prediction based on
Large Language Model

Prosodic Structure Prediction (PSP) is a typical
task in the Chinese TTS front-end (Chen et al.,
2022), among others like grapheme-to-phoneme
prediction, text-normalization, word segmentation,
part-of-speech tagging, etc. As illustrated in Fig-
ure 2, a PSP model needs to identify multiple
levels of prosody hierarchy, including Prosodic
Word (PW), Prosodic Phrase (PPH), and Intona-
tion Phrase (IPH), which can be denoted as #1, #2,
and #3 respectively in the output sentence.

Prosodic structure is one of the most important
linguistic features in Chinese TTS, and it is strongly
related to the syntax of the sentence. In this section,
we want to validate whether the LLMs, which have
been well-proved to have superior semantic under-
standing abilities, but are trained on the text-only
corpus, can handle this speech-related task. In the
following, we present two methods for adapting
LLM to the PSP task: prompting (Section 3.1), and
fine-tuning (Section 3.2).

3.1 Prompting LLM for Prosodic Structure
Prediction

Prompting is the most convenient way to adapt an
instruction-following LLM to new tasks. In Fig-
ure 3, we present an overview of our proposed
prompt structure for PSP on LLM, which consists
of linguistic knowledge of Chinese prosodic struc-
ture, few-shot demonstrations as in-context learn-

You have learned the theoretical knowledge of prosodic levels, and learned
the rules of prosodic level labeling from examples.

Next, please carefully understand the following sentences, annotate the
prosodic hierarchy, and output the resulting sentences directly without
adding any additional content (such as 'output:' or line breaks).

Now that you are a prosodic hierarchy annotator, please learn the following
about prosody hierarchies:

• Prosodic word (#1): A prosodic word is often a dictionary word…
• Prosodic Phrases (#2): is a medium rhythmic module between…
• Intonation Phrases (#3): Intonation phrases are composed of multiple…

You have learned the theory of the prosodic hierarchy. Next, please
understand the following example carefully.

Example 1
• Input: 地藏菩萨铜像由洛阳铜加工集团金像公司负责监制。
• Output: 地藏#1菩萨#1铜像#3由#1洛阳铜#2加工#1集团#2金像#1公司

#2负责#1监制#4。
Example 2
• Input: 冲锋在前的他，遭遇对方拼命拒捕反抗，右手肘粉碎性骨折。
• Output: 冲锋#1在前的他#3，遭遇#1对方#2拼命#1拒捕#1反抗#3，右

手肘#2粉碎性#1骨折#4。
...

“结果今天早上一上班，萨摩耶很幽怨的趴在那，哈士奇却不见了。”

Your prediction is:

System
Message

Linguistic
Knowledge

System
Message

Few-shot
Demonstrations

drawn from 
training split

System
Message

Input Text

结果#2今天#1早上#1一上班#3，萨摩耶#2很幽怨的#1趴在那#3，哈士
奇#1却#1不见了#4。

OpenAI ChatGPT

System
Message

Figure 3: Our proposed prompt structure for LLM
(ChatGPT)-based prosodic structure prediction. We in-
corporate expert linguistic knowledge and few-shot demon-
strations to enable LLMs to perform the prosodic structure
prediction task.

ing examples, input sentence, and interleaved sys-
tem messages to explain each part to the LLM.

Linguistic Knowledge contains formal defini-
tions of Chinese prosodic structure summarized
from recognized research literature (Cao, 2003).
It describes distinct characteristics and positions
within sentences and phrases of three levels of
prosodic structure in Chinese.

Few-shot Demonstration provides input-output
pairs to LLM for in-context learning. Examples
are either randomly drawn from the training split
or carefully selected based on the assessment of
their representativity and quality from the linguis-
tic perspective. The maximum number of few-shot
demonstrations is 16, as more examples would ex-
ceed the context window length of LLM.

3.2 Fine-tuning LLM for Prosodic Structure
Prediction

Context window length is a crucial limit for
prompting-based methods, as it prohibits the LLM
from learning from more (than 16) training exam-
ples. Furthermore, all model parameters remain
fixed and unlearnable, resulting in limited learning
capacity. To address these constraints, we propose
the fine-tuning of a Large Language Model (LLM)
to enhance Prosodic Structure Prediction learning
from a substantially larger number of training ex-
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amples, up to 8,000.
It has been proved that using a Pretrained Lan-

guage Model (PLM) such as BERT (Devlin et al.,
2018) to be the initialization of the PSP model is
beneficial, such as SpanPSP (Chen et al., 2022), J-
TranPSP (Shen et al., 2022), and MLC-PSP (Chen
et al., 2023), our methodology of fine-tuning LLM
has some difference from them. Despite the differ-
ence in model scale (0.1B vs 6B), previous BERT-
based methods regard PSP as a token classifica-
tion problem, where the model needs to deter-
mine whether there is a prosodic boundary after
each character and what level is it. In contrast,
here we formalize PSP as a sequence-to-sequence
(Seq2seq) prediction task, where input x is the raw
sentence and the output y is a string of character
sequence with “#n” (n ∈ {1, 2, 3}) notation of
prosodic structure.

We apply standard cross-entropy loss for auto-
regressive language modeling as the learning ob-
jective, and we only calculate the loss on output
tokens. We add a prefix c of “Please perform
prosodic prediction on the given sentence:” into
the input for better initialization. The following
is the loss function L(θ) of the LLM θ, where
N is the number of training samples: L(θ) =
−∑N

i=1 log pθ(yi|xi, ci).

3.3 Experiment Setup

Dataset. We utilize the DataBaker open-source
Chinese Standard Mandarin Speech Corpus4,
which contains 10-hour speech recordings of
10,000 sentences with an average length of around
16 words per sentence. It was articulated by a single
Chinese female speaker. The corpus also encom-
passes diverse domains, including news, novels,
technology, entertainment, etc.

Furthermore, the dataset is enriched with various
linguistic annotations, including character, pinyin,
and prosodic hierarchy information, as well as
phoneme level interval and boundary data. An-
notations for prosodic hierarchy comprise PW (#1),
PPH(#2), IPH (#3), and the end of a sentence (#4).
We discard the #4 annotations as every sample is a
single sentence and only has a “#4” in the end. The
remaining labels collectively form a hierarchical
prosodic tree structure with three distinct layers.

We split 10k samples with an 8:1:1 ratio for train-
ing, validation, and testing. Few-shot demonstra-
tions are drawn from the 8k training split. For the

4https://www.data-baker.com/data/index/TNtts
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Figure 4: Ablation study of prompting ChatGPT based
PSP. We compared different numbers of few-shot demonstra-
tions, selection of few-shot demonstrations, and variants of
with (w/) or without (w/o) linguistic knowledge.

“random” selection setting, we sample demonstra-
tions randomly three times and report the averaged
performance.

Implementation Details. For the prompting-
based method, we test the OpenAI’s
text-davinci-002 API (ChatGPT) and the
ChatGLM2-6B model. For the fine-tuning-based
method, we only unitize the ChatGLM2-6B model
due to the limitation of computational resources.
We apply P-tuning-v2 (Liu et al., 2022) for
parameter-efficient fine-tuning using the official
codebase 5. We used a single NVIDIA A100 GPU
for both training and testing.

3.4 Ablation Study

We first provide ablations for the prompting-based
approach. Following previous works on PSP tasks,
we use F-Score as the evaluation metric. As it
can be seen from Figure 4, the number of few-shot
demonstrations makes a significant impact. Four in-
context examples lead to +22.7% improvements to
zero-shot setting (41.3%→64.0%), while incorpo-
rating linguistic knowledge brings another around
+8.7% improvements (→72.7%), and further, when
swapping random demonstrations to carefully se-
lected high-quality demonstrations, we receive an-
other +2.4% performance gain (→75.1%).

We further ablate different levels of linguistic
knowledge in Table 2. It shows that linguistic ex-
pert knowledge plays a crucial role in the prediction
of Prosodic Phrase (#2) and Intonational Phrase
(#3). We hypothesize it is caused by different diffi-
culties of #1 to #3 predictions – #1 usually appears
at word boundaries, while identifying #2 and #3 is

5https://github.com/THUDM/ChatGLM2-6B/tree/
main/ptuning
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Table 1: Benchmarking of PSP Models. We compared the F-Score of the traditional BERT-based method SpanPSP and our
newly proposed LLM-based methods (prompting or fine-tuning) using two LLMs with different scales (ChatGPT and ChatGLM).

Model (#Parameters) Variation PW #1 PPH #2 IPH #3 Average

SpanPSP (0.1B)
Databaker Pretrained 96.35 69.34 65.64 77.11

PeopleDaily Pretrained 89.20 71.08 79.12 79.80

ChatGPT (175B)
Knowledge Only 61.87 27.27 34.78 41.31

16 Random Examples 88.51 69.40 77.91 78.61
Knowledge + 16 Selected Examples 90.12 69.40 80.85 80.12

ChatGLM2-6B
Knowledge + 16 Selected Examples N/A N/A N/A N/A

Fine-tuned 93.86 73.28 80.00 82.38

Table 2: Ablations of removing each level of linguistic
knowledge. Expert knowledge is especially useful for higher
levels of prosodic structure prediction (i.e., PPH and IPH).

Knowledge
Ablation

PW #1
F-Score

PPH #2
F-Score

IPH #3
F-Score

Average
F-Score

w/o #1 88.54 64.66 78.30 77.17
w/o #2 87.57 61.63 79.09 76.10
w/o #3 87.72 64.69 78.14 76.85

Default (all) 88.14 65.03 79.52 77.56

not that straightforward.

3.5 Benchmarking LLM-based PSP

Baseline. SpanPSP (Chen et al., 2022) is a classical
character-level BERT-based model for the PSP task,
which is based on a relatively small language model
bert-base-chinese6 with only 0.1B parameters.
We use their official checkpoints and codebase7 for
evaluation.

We provide benchmarking results in Table 1. It
reveals that carefully crafted linguistic knowledge
and selected examples (i.e., “Knowledge + 16 Se-
lected Examples” variation) enable ChatGPT to out-
perform the traditional method SpanPSP (80.12%
vs. 79.80%), but such a prompting-based learn-
ing strategy failed (N/A) at smaller open-source
LLM (ChatGLM) due to its limited instruction-
following ability. However, it shows that fine-
tuning smaller LLM can outperform prompting
larger LLM (82.38% vs. 80.12%), as it can ac-
cess more training samples (8k training set vs. the
maximum of 16 in-context examples).

4 Joint Prediction of Dialogue Response
and Linguistic Features

In the last section, we have shown some positive
results proving LLMs are competitive at a typical
front-end task in Chinese TTS. Here in this section,
we want to go beyond just a single task in TTS, and

6https://huggingface.co/bert-base-chinese
7https://github.com/thuhcsi/SpanPSP

validate the possibility of building a LLM-based
system that can handle versatile tasks in Chinese
TTS front-end (Figure 2), and also maintain its dia-
logue capability of generating coherent responses
to user queries simultaneously. By implementing
such a model that jointly predicts dialogue response
(i.e., “think how to respond”) and linguistic fea-
tures (i.e., “think how to speak”) at the same time,
we could have an AI system that communicates
with humans in a way that is more similar to the
human speech production process (Levelt, 1993),
where the “grammatical encoding” and “phonolog-
ical encoding” are done in parallel.

4.1 Methodology
Dialogue Context Generation. Our objective is
to investigate the feasibility of constructing a uni-
fied model capable of simultaneously generating
coherent responses to user queries in dialogues and
diverse fine-grained linguistic features for TTS. Un-
fortunately, the DataBaker dataset only comprises
isolated sentence recordings, and there are not any
other datasets having dialogue context and parallel
speech recordings or annotations. Drawing inspi-
ration from the LongForm approach (Köksal et al.,
2023), we prompt ChatGPT to anticipate the di-
alogue context and transform it into a dataset of
single-turn dialogues:

Prompt for Dialogue Context Generation

### System Message:
Please generate the most likely sentence spoken by A
based on B’s response.
### User:
A:
B: “When I went to work this morning, the Samoyed
lay there resentfully, but the Husky disappeared.”

### ChatGPT:
A: “What’s going on? Where did the Husky go?”

Linguistic Feature Extraction. As shown in
Figure 5 left, we automatically extract the follow-
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萨 摩 耶 忧 闷很 趴的 在 那，

#2 #1 #3

0.17 0.18 0.21 0.24 0.17 0.19 . 0.24 0.16 0.27 Duration (s)

Pinyin

Character

6.11 D6.78 D

7.23 D
7.87 D

Highest & Lowest Pitch (D-Value) 
of each Syllable/Character

Prosody 
Hierarchy

结果今天早上一上班，萨摩耶很幽怨的趴
在那，哈士奇却不见了。

{
"character": "结", 
"pinyin": "jie2", 
"highest pitch": 7.76, 
"lowest pitch": 7.31, 
"duration": 0.22, 
"prosody hierarchy": "null" 

},{
"character": "果", 
"pinyin": "guo3", 
"highest pitch": 7.58, 
"lowest pitch": 5.4, 
"duration": 0.25, 
"prosody hierarchy": "#2" 

},...

怎么回事？哈士奇去哪了？

Input
ChatGPT-generated dialogue 

context

Output
Dialogue response + Json-

style linguistic feature

ChatGLM2-6B 
Fine-tuning (full-parameter)

Figure 5: Left: an overview of linguistic feature extraction. We automatically extract a wide array of linguistic features,
including character, duration, pinyin, prosody hierarchy, highest pitch and lowest pitch (D-Value). Right: the illustration of data
formatting. We encode extracted linguistic features into JSON-formatted strings, such that they can be fed to LLM directly as
learning targets.

ing four categories of linguistic attributes: char-
acters, their corresponding duration, pinyin (pho-
netic transcription representing character pronun-
ciation), prosodic hierarchy, and the highest and
lowest pitch values (D-Value). The use of D-value
is inspired by Shen Jiong’s theory (Shen, 1985):
the D-value is a logarithmic scale used to describe
pitch and quantifies the relationship between a pitch
(F ) in Hertz (Hz) and a reference frequency (F0).
It provides a measure of pitch variation, which
is especially useful for observing pitch contours
in speech. The formal definition of (D-Value) is:
D = 5× log2(F/F0).

Data Formatting. As shown in the right side
of Figure 5, we format extracted linguistic features
into a string of JSON-style dictionaries, and con-
catenate it with the response text generated by Chat-
GPT, together serving as the learning target. Such
implementation realizes joint learning in a seam-
less way and enjoys simplicity over the traditional
method, where different types of outputs (response,
various linguistic features) are usually produced
by different models, or one model with different
task-specific heads (Bai and Hu, 2021). Our ap-
proach also shares some similarities with recent
advances in LLM research, such as RT-2 (Brohan
et al., 2023) from Google DeepMind, where the
LLM are trained to produce not only natural lan-
guage output but also some continuous values.

4.2 Experiment Setup

Training. Empirically, we found that P-tuning (as
used in fine-tuning-based PSP in Section 3.2) failed

Table 3: Evaluation result of LLM produced linguistic
features. Most of the output JSON-style is incorrect grammar
and parsable, and the majority of these parsable characters
can be matched with ground truth. However, we can observe
a notable train-test performance gap, meaning that the model
suffers from overfitting.

Parsable
Samples

Matched
Characters

Matched
Pinyin

Matched
Prosody

Training Split 95.90% 86.88% 98.79% 97.75%
Testing Split 89.70% 69.26% 86.29% 77.70%

to learn how to generate dialogue response and
JSON-style linguistic features. Therefore, for this
section, we turn to use full-parameter fine-tuning
to enable more learning capacity. We use 4-bit
quantization to boost memory efficiency, as JSON-
style encoding takes much longer context than that
in the PSP task (maximum 1.6k tokens vs. 128
tokens).

Testing. Based on our data formatting (Figure 5),
given a user utterance as input, the model will first
give its dialogue response, then the JSON-style
linguistic feature of each word in the response sen-
tence subsequently. However, this poses a chal-
lenge for the evaluation of the linguistic feature,
since for unseen testing quires, the LLM-outputted
response would be different from the ground truth
response, thus making them not comparable. To
solve this issue, we use the ground truth response
as a generation prefix, and then try to parse the gen-
erated dictionary and compare them with ground
truth linguistic features.
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Training
Split

Testing
Split

Prosody Structure Lowest Pitch Highest Pitch Duration

Figure 6: Evaluations results of fine-tuning ChatGLM2-6B on joint dialogue response and linguistic features. Visualiza-
tions show that the model fits the training data quite well, showing the feasibility of our proposed joint learning approach. But
possibly due to insufficient dataset scale, the generalization ability of the model is somewhat weak.

4.3 Experiment Results

In Table 3, we provide the evaluation result of 1k
testing samples and randomly sampled 1k training
samples. As can be seen, the model performed
quite well on the training set, achieving 95.90%
parsable samples, 86.88% matched characters, and
98.79% matched Pinyin, showing that it success-
fully fit the JSON-format data. When tested on
unseen samples, the model successfully generated
Json-style linguistic features with an 89.70% suc-
cess rate. However, due to the limited capacity of
the small LLM, missing characters were frequently
observed, resulting in only 69.26% of characters
from the ground truth being found in the gener-
ated results. Within those matched characters, the
model achieved an 86.29% success rate in produc-
ing matched Pinyin, and a 77.70% success rate of
matched prosody structure annotation.

In Figure 6, we visualize the model predic-
tions versus the ground truth of continuous values.
Again, we observed that the model effectively fit
the training set and demonstrated a certain level of
generalization ability when applied to new data.

5 Discussion

In this study, we presented two groups of exper-
iments to validate the possibility of building an
LLM-based spoken dialog system that “thinks how
to respond” and “thinks how to speak” at the same
time. In the first group of experiments, we proved
that LLM is a competitive prosodic structure predic-

tor, which means that its rich world knowledge and
semantic understanding ability acquired from text-
only pretraining can transferred to benefit speech-
related tasks. Based on this observation, we fur-
ther involve many other linguistic features in our
second group of experiments and further proved
that it is possible for LLM to learn to generate di-
alogue response and speech features at the same
time. However, there are still several noticeable
limitations of this study, which are summarized
from the following four perspectives:

Model Perspective. The training cost of LLM
is high. Additionally, the auto-regressive decod-
ing of Json-style linguistic features is quite time-
consuming – processing a single sentence and its
linguistic features takes at least 15 seconds (for
long sentences, it could be 40+ seconds).

Data Perspective. The current training dataset
consists of only 8k samples, which is insuffi-
cient and has led to a substantial over-fitting phe-
nomenon. Speech style in the dataset is limited, as
it was sourced from a single speaker, primarily con-
taining formal read recordings, lacking the nuances
inherent in natural conversations.

Expressivity Perspective. According to interac-
tional linguistics studies (Couper-Kuhlen and Selt-
ing, 2017), finer-grained annotation system by com-
prehensively and meticulously annotating the col-
lected speech dataset with interactional resources
like voice quality, phonation type, breath patterns,
repair, interjection, pause, prolongation, etc, will
further increase the expressivity.
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System Perspective. It is important to note that
so far this study does not include subsequent acous-
tic models and vocoders and is not able to generate
audio waveform, we only use speech linguistic fea-
tures to represent speech information.
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Abstract

This paper reports on a pilot study to use Whis-
per’s large language model (LLM) as a tool for
potential representation of segmental (phone)
pronunciation errors. We compared the perfor-
mance of the transcription outputs for the vari-
ous models developed by the automatic speech
recognition (ASR) system Whisper (Radford
et al., 2022) ranging from 39 to 1,550 million
parameters. We investigated 38 recordings of
two paragraphs from Conrad’s Typhoon. The
whisper transcriptions were compared to the
original text that was read by these second-year
French undergraduates. We used WER (Word
Error Rate) and Levenshtein distance to assess
the various graphic representations of Conrad’s
reference text. We show how the differences
can be transformed into operationalised feed-
back for learners. We used expert phonetic
knowledge to check the plausibility of the pho-
netic interpretation with the signal (in particular
the recall of H dropping produced by French
learners). Our findings suggest that the tran-
scriptions produced by the mediummodel con-
verge with what a native speaker understands
and that the tiny model produces alternate
transcriptions that are plausible candidates for
learner errors.

1 Introduction

Whisper is an audio multilingual large language
model (mLLM) which can be used for two types
of tasks, transcription (speech to text) and transla-
tion (only to English). Using thousands of hours
of training data, mostly from Librispeech (Panay-
otov et al., 2015), a dataset of read speech of pub-
lic domain books, Whisper has been trained with
both multilingual data and English only data. Sev-
eral models have been created with an increasing
number of parameters, as listed in Table 1 (Rad-
ford et al., 2022). Probably because of Named
Entity Recognition (NER) issues as acknowledged
in (Radford et al., 2022), proper nouns (but other

tokens as well) can undergo what we call a retran-
scription, i.e., that differs from the original text but
that is phonetically consistent with the speech input,
e.g., Macquaire instead of the expected McWhirr.

In this paper, we follow the standard phonolog-
ical convention that indicates graphemes (letters)
with angled brackets(<>), realisations in square
brackets and phonemes (or targets) with slanted
bars (//). Our research questions are as follows:
do ASR retranscriptions differ from one Whisper
model to the next, and how realistic are they as
(re)interpretation of learner phonetic realisations?

Previous research has suggested that the Whis-
per retranscriptions vary across Whisper models (?)
while trying to be faithful to the phonetic input of
a foreign pronunciation. This paper essentially as-
sesses two Whisper models (tiny and medium)
in their ability to capture relevant L2 pronunciation
errors in classroom or computer-assisted learning
environments. We want to test the hypothesis that
the tiny model is more likely to retranscribe pro-
nunciation errors than the medium model. Our hy-
pothesis is somehow counter-intuitive as the lowest
model with the least number of parameters is cho-
sen to be the most efficient to represent / to emulate
learner representation or the learner data as per-
ceived by native speakers. We are working on the
discrepancy between the transcriptions integrated
condition with the reference target hypothesis.

We first provide a quantitative analysis of these
discrepancies before analysing the fine phonetic
renditions of the different files. Two profession-
als trained in phonetics analysed the phonetic data
and tried to extract one of the most striking fea-
tures from a phonetic point of view in order to be
used as feedback for learners : H-dropping, namely,
the lack of aspiration. Since /h/ is not part of the
phonemic inventory of French, most learners either
omit the sound or substitute it with a glottalisation
(Exare, 2022). The two operations were carried out
independently. We then analyse the extent in which
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Whisper’s graphic renditions match the phonetic
interpretation of the learners’ mispronunciations.

The rest of the paper is structured as follows:
Section 2 presents the previous research carried
out on automatic speech recognition with learner
data. Section 3 presents the data we tested and the
metrics we used. Section 4 presents our results and
Section 5 discusses them.

2 Previous Research

The use of ASR in pronunciation training dates
back to the 1990s. A preliminary study pioneered
the use of ASR in L2 pronunciation (Rogers et al.,
1994), showing that ASR helped improve intelli-
gibility in the learner’s L2 and that the improved
targeted phonetic contrasts (/i:/ vs. /I/, /T/ vs. /s/)
were also found in untrained words. Watson et al.
(1989) compared human and ASR evaluations of
speech quality. Some explored ways to integrate
ASR in pronunciation training programs (Dalby
and Kewley-Port, 1999), while others focused on
the creation of feedback derived from the ASR tran-
scriptions. More recent studies (Inceoglu and Lim,
2023) used Google’s ASR to measure the intelligi-
bility of L2 speech (Taiwanese L1, English L2) and
concluded that the rating-agreement between the
ASR and native speakers mostly depended on both
the individual speakers and the speech style (i.e.,
word lists, read text or more natural speech). Simi-
lar systems have been developed with Open Source
release, such as KALDI (Povey et al., 2011), Vosk
1, wav2vec 2.0 (Baevski et al., 2020), and others
for ASR models.

ASR models have also been applied to the anal-
ysis of L2 speech. Previous studies focused on
the discrepancies between the ASR output of L2
speech and the expected target (Chanethom and
Henderson, 2022; Inceoglu et al., 2020). In this
respect, an important contribution is an analysis
based on Weinberger’s Speech Accent Archive
(Weinberger, 2015), which considers native and
non-native varieties of English alike, to analyse
how the ASR system Otter.ai performs in investi-
gating the effect of syllable structures on the real-
isations of clusters and of vowel substitutions in
relation to vowel spaces (?).

To the best of our knowledge, our paper is the
first paper that uses Whisper to investigate learner
speech and, more generally, that compares the per-
formance of several models within the same ASR

1https://alphacephei.com/vosk/

Size Parameters
tiny 39 M
base 74 M
small 244 M
medium 769 M
large 1550 M
large-v2 1550 M

Table 1: Whisper’s main models for speech recognition,
after (Radford et al., 2022)

system.

3 Materials and Method

3.1 Whisper Parameters and Outputs
Whisper uses the Encoder-Decoder Transformer
architecture and takes audio as input, chunked in
30s windows and converted to a log-Mel spectro-
gram. Whisper is trained to predict the correspond-
ing text (Radford et al., 2022) and its translation
into English. Transcription and translation are the
two main tasks, but Whisper can also provide lan-
guage identification. We tested the learner speech
with Whisper’s different models. Table 1 lists the
corresponding parameters of these models. After
a transcription, each Whisper model outputs files
in the Hugging Face implementation with with or
without time stamps. A .json file includes the meta-
data of the prediction outputs for each segment (the
average log probability, the compression ratio and
the probability of the absence of speech).

3.2 Selected Reference Target for Learner
Data

38 graduate-level learners of English at a French
University were asked to read the first two para-
graphs of chapter 2 from Joseph Conrad’s Typhoon
(1902).2. The text counted 408 words with 17 sen-
tences. It was deemed suitable for L2 speakers with
a C1 level by CEFR standards by the CATHOVEN
text analyser 3 due to the richness of the vocabulary
and complexity of the sentences. The high cog-
nitive load required to read the text was expected
to highlight pronunciation difficulties that are not
fully mastered by the L2 learners (Christodoulides,
2016). These two paragraphs contain a wide array
of potential pronunciation difficulties for French

2The students were warned that the term Chinaman was
considered offensive and that it should not be used today when
referring to a person.

3https://hub.cathoven.com/?scene=
analyser
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L2 learners (voicing of intervocalic <s> in pre-
cisely, H-dropping of initial and medial /h/ or H-
intrusion (hair for air), unstable vowel length con-
trast ((h)it instead of heat), lack of initial aspira-
tion for voiceless plosives (pigtail is understood as
big tail, vowel reduction, misplacement of lexical
stress...).

3.3 Metrics

To analyse the retranscriptions produced by Whis-
per, we used word error rate (WER) a standard met-
ric for Automatic Speech Recognition systems and
Levenshtein distance (Levenshtein et al., 1966), as
produced by the R package {phonics}(Howard II,
2020), since it offers insights into the discrepancy
between the target hypothesis and the learner re-
alisation, and a graphic rendition of the learner
realisation produced by the different models.

4 Results

4.1 Selecting the Optimal Model for Leaner
Data Transcription

In this section, we report our findings on the Whis-
per .txt outputs by ASR model. Figure 1 displays
the boxplots corresponding to the WER of the dif-
ferent Whisper models. No significant difference in
performance (WER) was found between the mod-
els specifically trained with English data (whether
tiny.en or medium.en) and the multilingual
models. A t-test revealed no significant difference
between the multilingual tiny model and English-
only tiny.en model (t = 2.1947, df = 37, p-
value = 0.03454). While the WER between the
multilingual tiny model and the medium model
was deemed significant (t-test : t = 7.3121, df =
37, p-value < 0.001 ), that between the medium
and the medium.en was not significant. Nev-
ertheless, a more detailed comparison revealed
that the tiny model produces a higher WER than
the tiny.en model, wheareas the medium.en
model had higher error rates than the medium
model. This seems to suggest that the tiny model
is the most efficient model in capturing non-native
pronunciation oddities, while the equivalent model
based on English only seems to normalise such
oddities.

4.2 Number of Retranscriptions and Model
Size

String distance was also examined between the
models, and more specifically, the number of ad-

ditions and the number of tokens that were out-
putted by each model but were not in the reference
text. We found that the number of added tokens
decreased almost linearly with the log of the num-
ber of parameters for each model from tiny to
medium (Figure 2).

The different models produce different types of
respelling (and in varying quantities). This is true
for the tiny vs. tiny.en models but also for
the medium vs. tiny models. We tried to test the
separability of the tokens that were retranscribed
by these models and used a Venn’s diagram to cat-
egorise the different model reinterpretations of the
same acoustic signal (Figure 4). The retranscrip-
tions of the different models are not mutually exclu-
sive, as the medium and the tiny models share
16.1 % of their retranscriptions, but they must not
be understood as a simple numerical decrease of
alternative respellings across models. In fact, they
include different tokens that are not in the refer-
ence text. Further research is needed to investigate
why the different Whisper models produce differ-
ent graphemic representations, since the models
are based on the same (sub)token dictionary after
the Byte-pair encoding.

4.3 Plausibility of the Whisper Respelling
This subsection tentatively reports on the precision
of the retranscription, by detailing the phonetic
interpretation of respellings. The 38 tiny mod-
els produced 832 tokens differing from the orig-
inal reference text, including one recording tran-
scribed exclusively into French. Some hapaxes
corresponded to mispronunciations such as <alph-
nicate> for half-naked,which are consistent with
common features amongst non-native speakers: h-
dropping (Exare, 2017), monophthonguisation of
<a> in <naked> with harmonisation with the sec-
ond vowel ([nikit]instead of /neIkId/) the devoicing
of final consonants (here, /t/ for /d/, cf. (Hutin et al.,
2020)).

4.4 Precision and Recall
Assessing precision and recall of the phonetic error
detection means answering the following questions
: how many of the Whisper retranscriptions point to
an actual pronunciation error (precision) and how
many of the learners’ pronunciation errors were
captured in the Whisper transcriptions (recall)? In
this paper, we do not address the precision and
recall of the phonetic errors by the system, as it
would require intensive manual phonetic annota-
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Figure 1: Dispersion of the WER across speakers for each Whisper model, trained on English data only (.en) or on
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Figure 2: Relation between the numbers of parameters
(log scale) of the tiny, base, small and medium
models and the detection of Pronunciation Errors Can-
didates signalled by spelling variants or token additions
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Figure 3: Venn’s diagram of the common retranscrip-
tions between the medium and the tiny models

tion of all the files, but we offer a critical diagnosis
of some of the most frequent retranscriptions we
observed, especially discussing those which po-
tentially emulated some misunderstanding with a
native. For precision, we analysed the 13 frequent
added tokens and noticed false alarms for less fre-
quent items as well. The presence of a reduced
vowel for the realisation of seaman led to the tran-
scription of the token as semen and as seamen (it
should be noted that the Levenshtein distance is
higher but that the two candidates for the learner re-
alisation are homophonous). As can be seen in our
inventory of most frequent retransciptions (Figure
4), some false positives can be observed: grey/gray
for spelling divergences, plowing/ploughing, sul-
phur/sulfur and they account for half of the types of
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Figure 4: Top 13 aggregated retranscriptions of the tiny models

the 13 most frequent respelt tokens. Nevertheless,
some frequent retranscriptions actually point to po-
tential misunderstandings by native speakers of the
realisations, as they correspond to fully-fledged
minimal pairs revealing misrealisations such as suit
for soot.

4.5 Recall of Non-native Phonetic Realisations
by Whisper Retranscriptions : The Case
of Aspiration

For our analysis of precision of recall, we focused
on a very limited number of items in order to eval-
uate the plausibility of the Whisper retranscrip-
tions, such as languor for language, and the retran-
scriptions of the aspiration of heat in the sequence
clammy heat. As to the retranscription of languor
as language, it is mostly due to the realisation as
[gw] instead of [g] but the realisation of the final
consonant arguably would not trigger misunder-
standing for a native speaker. Two experts trained
in English phonetics annotated the sound files for
limited sequences in relation to our expectations
about H-dropping (Exare, 2017). The two experts
agreed with the Whisper transcriptions. For our
analysis of recall, all the dropped /h/s in clammy
heat were actually transcribed without an <h>. We
auditorily investigated the unaspirated initial /p/ in
pigtail, which were transcribed as big: they were
pronounced without initial aspiration. More de-
tailed acoustic analysis of Voice Onset Time (VOT)
should be carried out to check the ability of the
system to transcribe initial plosives in relation to
expected values of Voice Onset Time in English

(Abramson and Whalen, 2017; Lisker and Abram-
son, 1967) and French (Caramazza et al., 1973),
in order to investigate whether threshold effects of
VOT could be observed in relation to much lower
VOT reference values for French (18ms for French
/p/ against 59 ms for English).

5 Discussion

At this point, we are not quite able to characterise
the different types of “sensitivity" of the Whis-
per models: tokens do not systematically trigger a
spelling variation across all the models.

5.1 Reliability of the detection of error
candidates

Some false positives were observed, based on
spelling variants (half-naked is hyphenated by the
Whisper outputs, not in the original). Extra hallu-
cinated ASR errors were observed in the transcrip-
tions in the context of false starts, repairs or repe-
titions, so that some tokens were repeated several
times and occasional cases of coda hallucinations
were noticed with Thank you or hit the bell button
being transcribed instead of final silences. Our hy-
pothesis for these cases of coda brittleness of the
audio LLM is that part of the training data was ini-
tially online and if an end-of-signal cue is captured
by the ASR, then this may me transcribed as what
might have been left out in the training data.
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5.2 Semantically Plausible or Phonetically
plausible?

Sequences such as clammy it for clammy heat raise
the question of the semantic plausibility in relation
to surprisal (Mansfield, 2021), namely the probabil-
ity of having a given token rather than another one.
It seems that the speech inputs, i.e., the phonetic
acoustic cues, have more importance in the next-
token prediction than just the conditional probabil-
ity, which would reflect on the semantic plausibility
and this apparent dominance of phonetic plausibil-
ity seems to prevail over semantic plausibility. Fur-
ther systematic research analysing surprisal needs
to be undertaken, but for an initial estimate of how
Whisper outputs may violate semantic plausibility
for phonetic plausibility, we computed surprisal
using the large language model BERT. We used
this to check some of the outputs that were phoneti-
cally consistent with the input but semantically less
likely: "He was, however, conscious of being made
uncomfortable by the clammy heat. He was, how-
ever, conscious of being made uncomfortable by the
clammy it." Even though its surprisal value is much
higher with it (2.251) compared with the surprisal
value for heat (0.003), faithfulness to the acoustic
signal (absence of aspiration) was observed. This
initial foray suggests Whisper outputs are poten-
tially more consistent with phonetic input than with
semantic input. In other words, we need to explore
the affordance (Krunic et al., 2009) of the large
language model to accommodate to the acoustic
realisations of the learners. How much of the pho-
netic variability can actually be accommodated by
the textual production?

5.3 Alternative Measures of Pronunciation
Distance

We did not resort to more elaborated metrics and
probably more cognitively grounded measures of
pronunciation distance based on the Naive discrim-
inant learning analysis suggested by (Wieling et al.,
2014). We are sensitive to the arguments they put
forward against Levensthein distance, especially
the misalignments produced by the possibility of
having reduced vowels. They explain that they
have what they call “sensitive sound distances" for
tokens like Wednesday, which can be realised in a
certain number of ways, as two or three syllables.
They exemplify the schwa reduction to show that
the Levenshtein distance exaggerates the scores in
relation to this type of phenomenon. We used the

more classical Word Error Rate (WER), which was
computed with R (Team, 2023) but we did not ap-
ply the normalisation procedure 4 which was used
when reporting Whisper performances for WER in
(Radford et al., 2022).

5.4 Retranscriptions or Plausible Scenarios
for Misunderstanding?

As our examples show, some of the substitutions
or respelling proposed by word substitutions and
phone substitutions do not necessarily correspond
to actual native misunderstandings. In this respect,
there is an imbalance between monosyllabic words
more likely to convey misunderstanding because
of the number of potential minimal pairs (what
is known as phonological neighbourhood density)
than polysyllabic words, as our languor / language
example seems to suggest. The system is probably
biased towards detecting monosyllabic misrealisa-
tions more easily, but this also reflects a skewed
distribution which can be observed in the language
lab exercises, where monosyllabic minimal pairs
are much more frequent than polysyllabic exam-
ples. Pre-trained generative models are trained to
produce tokens, which explains why a word like
funnel when pronounced initially by a learner as
[fju:] becomes transcribed as funeral, as this is the
closest approximation in spite of the extra syllable.

5.5 Further Validation Procedures

This section discusses potential validation proce-
dures, other than perception tests on native speak-
ers and more detailed acoustic analyses for the
transcription of heat as hit. A list of anticipated
phonetic/phonological transfers could potentially
be used to serve as the rationale for a confusion
matrix analysing the Whisper output and the ability
of a graphemic representation to capture phonetic
errors.

The ISLE corpus (Menzel et al., 2000; Atwell
et al., 2003) has reference transcriptions and vali-
dation procedures, but for much shorter segments
in carrier sentences such as "I said wait, not bait".
This corpus of non-native speech also has a read
passage by German and Italian speakers, but it has
not been annotated by experts. Our preliminary
tests with Whisper suggest that heavily-accented
speakers are detected as speaking in another lan-
guage than English and transcribed accordingly.

4https://pypi.org/project/
whisper-normalizer/
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More generally, Whisper has to be tested for other
first language speakers, and maybe with other sec-
ond languages, with the proviso that some lan-
guages have a much smaller training size.

5.6 XAI and the Knowledge of the LLM of
Different Sizes

Our experiments with Whisper with other record-
ings suggest that the large-v2 works better, i.e., pro-
duces a transcription output which might be more
accurate for more sophisticated words. What is the
underlying “knowledge" captured in these represen-
tations? Is it probably because more data was taken
into account in the training phase that "stigmatal
and supra-stigmatal features" (medium transcrip-
tion) get (accurately) transcribed as “segmental and
supra-segmental features" in the large-v2 tran-
scriptions. How “linear" is the understanding of
the largest models? Is the progression linear be-
tween the different transcriptions or can thresholds
be observed?

6 Limitations and Further Research

The ASR transcriptions of mispronunciations seem
more relevant for segmental features than for supra-
segmental features, even though a certain form of
chunking is actually captured by a mix of punctua-
tion symbols such as comma and full stops. This
means that the word , however, in isolation can ac-
tually be analysed in terms of successful chunking.
Part of the phrasing can be captured by the sys-
tem through punctuation and, moreover, probably
in an even more complex manner, as the end-of-
the-line character also of a Whisper transcription
corresponds to a form of prosodic chunking differ-
ent from what is transcribed by a comma or a full
stop. In any case, in terms of prosody, only tonality
(the ability to properly chunk the prosodic units)
can be analysed using Whisper. An important as-
pect of non-native realisations is the elusive ability
to assign stress on the relevant syllables and, in that
respect, only reanalyses can be used to track down
stress misplacement, as is the case with her Qulian
for Hercu"lean, which is favoured by the stress
misplacement. This ASR transcription reveals a
weak vowel on her, making it more likely to be
interpreted as the possessive pronoun. (Kamiyama
and Amand, 2023) showed that a frequent incor-
rect lexical-stress placement amongst French L1
advanced learners of English is the placement of
primary stress on the first syllable of words having

a similar structure, such as simulation, organisa-
tion. However, unlike the students in Kamiyama &
Amand (2023), the students of this study were en-
rolled in a pronunciation course with a strong focus
on stress-imposing endings. The learner whose pro-
nunciation led to the transcription of the form her
Qulian may have treated the ending -e.an like the
strong ending -i.an, which attracts lexical stress one
syllable before the ending, i.e., Bra"zi.li.an (King-
don, 1958).

6.1 Effect of the Training Data on the
(Implicit) Rhotic Pronunciation Model

The Librispeech samples available on Hugging
face5 suggest a rather slow reading which is fully
rhotic but possibly East coast of the United States
(slight variation in the use of yod for assumed, new
or duke). There may be a training bias and con-
sequently an implicit rhotic pronunciation model
with the data trained on Librispeech (Panayotov
et al., 2015). As a baseline for native realisations,
we tested the recording of the Librivox version read
by Peter Dann, which exhibits a rhotic realisation 6.
The L2 learners of English in this study generally
use both rhotic and non rhotic forms while reading
the excerpt from Typhoon.

6.2 Gender Bias effects

Even though the system revealed that the perfor-
mances were significantly different for male and
female speakers, it is notable that the Levenshtein
distances outputted by the large model and the
medium model highlight diverging performances
for male and female voices: the large model is
slightly better than the medium for male speak-
ers, but the medium model is noticeably better for
female speakers.

6.3 Next Steps for ITSs

This subsection discusses how our findings could
be implemented in Intelligent Tutoring Systems
(ITS). Using an NVIDIA A100 GPU with 40 giga
of RAMS, the transcription only took 5 minutes for
all the models of two ISLE files, so that the Whis-
per system could be used to provide almost im-
mediate feedback to learners (or post-hoc analysis
when used in a virtual environment). Whisper tran-

5https://huggingface.co/datasets/
librispeech_asr

6ttps://ia802507.us.archive.org/21/
items/typhoonandotherstories_2206_
librivox/
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Figure 5: Confidence estimation of the predicted tokens as potential visual feedback from Whisper.cpp (Gerganov,
2003). Green: confident prediction, i.e., intelligible; red: least confident prediction, i.e., more phonetic training
needed to be intelligible. Original text in appendix.

scriptions of non-native speech need to be tested
on other tasks than read speech, even though the
baseline can be established with the text that was
read. With unscripted, i.e., spontaneous speech, we
may use the medium transcription as baseline for
the computation of the output of the tiny model.
In that respect, the existence of several models is
an important structural difference from other ASR
systems such as Otter.ai whose current interface
cannot produce a reference text to be compared
with Otter’s ASR output. For multi-speaker set-
tings such as virtual environments or classroom
interactions, speaker diarisation will have to be
processed first, i.e., the creation of distinct tran-
scribed segments when the speaker changes. Both
Otter.ai and the experimental C++ implementation
of Whisper provide speaker diarisation.

6.4 Scenarios for Potential Visual Feedback

Though experimental, the C++ implementation of
Whisper called Whisper.cpp (Gerganov, 2003) al-
lows fast processing of some of the Whisper pa-
rameters and a visualisation of the confidence es-
timation for the predicted tokens that is easily un-
derstood by teachers and students (Figure 5). The
confidence scores are consistent with the phonetic
realisations. Stress (mis)placement accounts for
some of the scores, as uncomfortable was stressed
on the penultimate syllable in this example. Run-
ning a recording of 151 seconds with its coloured
transcription as output only took 4923.62ms on an
M1 Pro processor. Feedback can be visually dis-
played shortly after the end of the recording. For
further analyses, a more refined implementation
could also output the corresponding confidence
scores produced for each subtoken of the transcrip-
tion (the coloured sequences correspond to the out-
put of byte pair encoding and are not “words").

7 Conclusion

In this paper, we have shown that Whisper’s LLM
produces different outputs for the transcription task
according to the different learner pronunciation
models of a reference input. We showed that the
number of parameters of the LLM models varied
in relation to the detection of tokens varying from
the reference text. A phonetic screening of part of
the audio files showed the phonetic realism of the
retranscriptions varying from the reference file (see
appendix). For the analysis of L2 speech, the mod-
els trained with fewer parameters paradoxically do
a better job at pinpointing L2 pronunciation misre-
alisations, as they seem more sensitive to phonetic
variability than the large model. More research
is needed to probe the different Whisper models -
beyond the model cards (cf. (Mitchell et al., 2019))
that are proposed on the Whisper github 7 - but the
analysis of the tiny models transcriptions of L2
speech clearly has a future for ICALL systems.
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Appendix

Observing the steady fall of the barometer, Captain
MacWhirr thought, "There’s some dirty weather
knocking about." This is precisely what he thought.
He had had an experience of moderately dirty
weather—the term dirty as applied to the weather
implying only moderate discomfort to the seaman.
Had he been informed by an indisputable author-
ity that the end of the world was to be finally ac-
complished by a catastrophic disturbance of the
atmosphere, he would have assimilated the informa-
tion under the simple idea of dirty weather, and no
other, because he had no experience of cataclysms,
and belief does not necessarily imply comprehen-
sion. The wisdom of his county had pronounced
by means of an Act of Parliament that before he
could be considered as fit to take charge of a ship
he should be able to answer certain simple ques-
tions on the subject of circular storms such as hur-
ricanes, cyclones, typhoons; and apparently he had
answered them, since he was now in command of
the Nan-Shan in the China seas during the season
of typhoons. But if he had answered he remem-
bered nothing of it. He was, however, conscious
of being made uncomfortable by the clammy heat.
He came out on the bridge, and found no relief to
this oppression. The air seemed thick. He gasped
like a fish, and began to believe himself greatly out
of sorts.

The Nan-Shan was ploughing a vanishing fur-
row upon the circle of the sea that had the surface
and the shimmer of an undulating piece of gray
silk. The sun, pale and without rays, poured down
leaden heat in a strangely indecisive light, and the
Chinamen were lying prostrate about the decks.
Their bloodless, pinched, yellow faces were like
the faces of bilious invalids. Captain MacWhirr
noticed two of them especially, stretched out on
their backs below the bridge. As soon as they had
closed their eyes they seemed dead. Three oth-
ers, however, were quarrelling barbarously away
forward; and one big fellow, half naked, with her-
culean shoulders, was hanging limply over a winch;
another, sitting on the deck, his knees up and his
head drooping sideways in a girlish attitude, was
plaiting his pigtail with infinite languor depicted in
his whole person and in the very movement of his
fingers. The smoke struggled with difficulty out of
the funnel, and instead of streaming away spread
itself out like an infernal sort of cloud, smelling of
sulphur and raining soot all over the decks.
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Abstract

In this paper, we propose a novel approach to
enhance query-by-example spoken term detec-
tion using Acoustic Word Embeddings (AWEs).
Our AWEs model combines CNN and LSTM
layers to capture sequential information and
generate fixed-dimensional word-level embed-
dings. To address the challenge of distin-
guishing between words, we introduce a deep
word discrimination loss that enhances em-
bedding discrimination. Additionally, we em-
ploy an embedding-matching scheme based
on cosine similarity computation and slid-
ing window smoothing. Our experimental re-
sults demonstrate the effectiveness of our ap-
proach in word discrimination tasks, achieving
high mean Average Precision scores and out-
performing baseline models. Moreover, our
embedding-matching scheme shows promising
performance in query-by-example spoken term
detection, opening up possibilities for advance-
ments in audio indexing and search techniques.

Index Terms: spoken term detection, query-by-
example, acoustic word embedding, word discrimi-
nation, audio retrieval

1 Introduction

The field of Spoken Term Detection (STD) (Man-
dal et al., 2014)—identifying specific terms within
audio streams or files—has gained importance due
to the widespread availability of internet media
and the proliferation of smart devices. This has
led to an increasing demand for proficient audio
search tools and efficient voice control mechanisms.
Query by Example (QbE) represents a specialized
application of STD, offering advantages over tra-
ditional text-based searches by directly matching
audio samples. This is especially valuable for han-
dling unknown or out-of-vocabulary search terms.

Query by Example Spoken Term Detection
(QbE-STD) has historically employed Dynamic

Time Warping (DTW) in conjunction with frame-
level features for keyword matching (Rodriguez-
Fuentes et al., 2014; Mantena et al., 2014). Both
supervised (Zhang et al., 2019) and unsupervised
approaches (Chen et al., 2016; Holzenberger et al.,
2018) have been examined, each with distinct ad-
vantages. While unsupervised methods primarily
utilize traditional acoustic features (Vasudev et al.,
2016; Wang et al., 2018), supervised techniques fre-
quently employ neural network-derived phonetic
features. The field has witnessed a paradigm shift
with the introduction of Acoustic Word Embed-
dings (AWEs) (Ma et al., 2021; Kamper et al., 2019;
Settle et al., 2017; Kamper et al., 2016; Yuan et al.,
2018), which transform variable-length speech seg-
ments into fixed-dimensional vectors (Levin et al.,
2013). This approach overcomes the computational
limitations of traditional DTW-based methods, fa-
cilitating more efficient searching, clustering, and
similarity comparisons. Neural networks, particu-
larly Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM) networks, are
now widely utilized for extracting these AWEs
(Ram et al., 2018; Svec et al., 2022; Chen et al.,
2015; Settle and Livescu, 2016; Chung and Glass,
2018; Naik et al., 2020; Ram et al., 2020; Lopez-
Otero et al., 2019; Madhavi and Patil, 2017). Con-
sequently, the current focus in QbE-STD research
has largely shifted towards search and indexing
tasks, with these deep learning frameworks playing
a pivotal role in feature extraction.

The main challenge resides in mapping sequen-
tial speech information into vector space without
losing sequential integrity. Our proposed method
addresses this challenge through deep neural net-
works and introduces an additional loss function
designed for enhanced word discrimination. This
paper presents an architecture combining CNN lay-
ers for local feature extraction, Long Short-Term
Memory (LSTM) layers for capturing temporal
dependencies, and Fully Connected Layers (FC
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Layers) for dimensionality reduction. An addi-
tional loss function is incorporated to improve word
discrimination and optimize generalization across
keywords spoken by various speakers by aligning
embeddings with acoustic word centroids while
maximizing inter-class and minimizing intra-class
variation. Moreover, our method utilizes a co-
sine similarity-based query centroid matching tech-
nique, supplemented by moving average smooth-
ing, for efficient word search in spoken utterances.
Our contributions to this work are as follows:

1. Introduction of an Acoustic-to-Embedding
network (A2E-Net) for generating word-level
acoustic word representations.

2. Development of a Deep Word Discrimina-
tion (DWD) loss function aimed at enhanc-
ing the discrimination capabilities of acoustic
word embeddings by minimizing intra-word
distance and maximizing inter-word distance
within each acoustic word embedding.

3. Establishment of Query Centroid Similarity
Matching (QC-matching), a technique for
acoustic word embedding matching that em-
ploys query centroids to facilitate QbE-based
audio indexing.

The remainder of this paper is organized as fol-
lows: Section 2 details the proposed system, Sec-
tion 3 discusses implementation aspects, Section
4 presents the results, and Section 6 outlines the
conclusions.

2 Proposed framework

In this section, we present the components of our
proposed method for enhancing QbE-STD. They
are as follows:

2.1 Acoustic-to-Embedding network
(A2E-Net)

Our proposed AWEs model architecture aims to
effectively capture and represent acoustic features
at both the frame and word levels. The input com-
prises raw audio signals, which are divided into
frames using a windowing size of 25 ms and a step
size of 10 ms. To extract local acoustic features,
we employ two CNN layers with 3x3 kernels and
64 filters each, followed by a max-pooling layer
that reduces dimensions and extracts essential fea-
tures. Two additional CNN layers with 3x3 kernels
and 128 filters each extract higher-level features,

followed by another max-pooling layer for further
dimension reduction.

To capture temporal dependencies and sequence
information, we utilize two sets of LSTM layers.
The first set consists of two LSTM layers with 1024
units, followed by another set of two LSTM lay-
ers with 512 units each. These LSTM layers are
crucial for modeling the sequential nature of acous-
tic features. Subsequently, two FC layers map the
LSTM outputs to lower-dimensional spaces, reduc-
ing dimensionality and facilitating subsequent em-
beddings. The resulting frame-level AWEs, with
a size of 256x1, are obtained from the output of
the FC layer. The statistical pooling layer then
aggregates the variable-length frame-level AWEs
into a fixed-length representation by computing the
mean and standard deviation, concatenating these,
and finally mapping them to a 4096-dimensional
space through a linear transformation. This fixed-
length representation encapsulates both the mean
and variance of the frame-level features, making
it a rich and comprehensive descriptor for each
word. Another FC layer maps a 4096x1 repre-
sentation to a 2048-dimensional space, generating
word-level AWEs. During training, the model pa-
rameters are optimized using both cross-entropy
loss, a common classification loss, and an auxil-
iary word-discrimination loss designed to enhance
embedding discrimination.

In summary, our AWEs model architecture com-
bines CNN layers for local feature extraction,
LSTM layers for capturing temporal dependencies,
and FC layers for dimensionality reduction and
mapping to lower-dimensional embeddings. By
representing acoustic features at both the frame
and word levels, our model enables the effective
calculation of word-level embeddings and facili-
tates meaningful similarity comparisons.

2.2 Deep word discrimination Loss (DWD)

The DWD loss is introduced to address the chal-
lenge of accurate word discrimination. In such
tasks, where the search content and query keyword
are typically spoken by different speakers, it is
crucial to ensure that the AWEs of the same spo-
ken keyword by different speakers are identical.
However, traditional embedding approaches often
encode speaker-related information, which hinders
precise word discrimination. To overcome this lim-
itation, we incorporate a variability-invariant loss
in the training phase.
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Figure 1: A2E-net with QC-matching framework for Query-by-Example Spoken term detection system

To address the inter-class and intra-class co-
variance in QbE-STD tasks, our additional loss
function aims to maximize variation across dif-
ferent word classes while minimizing variation
within the same class. We construct batches of
size Nword ×M , where M denotes the number of
acoustic signals for each word, spoken by differ-
ent speakers. This is designed to capture the di-
versity in pronunciation, accent, and other speech
characteristics unique to each speaker. Such di-
versity is crucial in a QbE-STD task, where the
goal is to accurately identify a keyword regard-
less of the speaker. By incorporating acoustic sig-
nals from multiple speakers for each word, the
model is trained to recognize words independently
of speaker-specific characteristics. Nword repre-
sents the number of distinct words and indicates the
size of the vocabulary in the training set. This set
is generated from the alignment of acoustic signals
and their transcriptions using the Montreal Forced
Aligner (McAuliffe et al., 2017). After alignment,
feature vectors xji are extracted from the ith acous-
tic signal of the jth word. These vectors are input
into the AWEs model, comprising convolutional
layers with ReLU activation and batch normaliza-
tion, followed by max-pooling layers. The model
also includes four LSTM layers and two dense lay-
ers with ReLU activation, culminating in the out-
put layer that represents frame-level AWEs. Each

word-level AWE embji is normalized to enable
accurate comparisons.

The main objective during training is to optimize
the embedding representation of each acoustic sig-
nal. This involves aligning the embedding closely
with the centroid of embeddings from the same
word while ensuring a significant separation from
centroids of other words. The word embedding
centroid is computed by averaging the word-level
embeddings, excluding the ith acoustic word em-
bedding, denoted as [embj1, ..., embjM ] with the
M acoustic signals per word, resulting in cj .

cj =

∑M
m=1,m ̸=i embjm

M − 1
(1)

To measure the similarity between the word-
level embeddings and the centroid, we employ co-
sine similarity. The similarity matrix (Sji,k) repre-
sents the scaled cosine similarities between each
embedding vector embji and all centroids ck.

Sji,k = cos (embji, ck) (2)

To enhance conventional contrastive loss in QbE-
STD tasks, a softmax operation is applied to simi-
larity scores, enabling a probabilistic interpretation
of the similarity between embedding vectors. The
loss on each embedding vector (embji) is defined
as follows:
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Lsm = −Sji,j + log
Nword∑

k=1

expSji,k (3)

where Lsm represents the softmax loss.
Finally, we introduce the contrastive centroid

Loss (Lcc) to encourage embeddings of positive
examples (words in the query) to be close to their
respective class centers while simultaneously push-
ing them away from the class centers of negative ex-
amples (other words). By considering both the cen-
trality and contrastive aspects, this loss promotes
effective discrimination in QbE audio indexing.

Lcc =
Nword∑

j=1

M∑

i=1

(1− Sji,j) + max
1<k<Nword,j ̸=k

Sji,k

(4)
The (1− Sji,j) targets positive pairs, measuring

and minimizing their dissimilarity from the class
center to enhance intra-class compactness. The
second term addresses the most dissimilar negative
pairs. It identifies the maximum similarity between
embji and centroids of all other classes (k ̸= j)
The aim is to decrease the similarity of an embed-
ding vector to centroids of different words, thus
increasing inter-class variability.

The Deep Word Discrimination loss (Ldwd) is a
combination of the softmax loss and the contrastive
centroid Loss, as follows:

Ldwd = Lsm + Lcc (5)

By incorporating the Deep Word Discrimination
loss into the training process, our goal is to en-
hance the discriminative power of the embeddings,
thereby facilitating accurate word discrimination
in QbE search tasks.

2.3 Query centroid similarity matching
(QC-matching)

Our proposed word-searching system employs an
embedding-matching scheme based on cosine sim-
ilarity computation with a sliding window. To initi-
ate the process, the search content is divided into
segments using a fixed-size sliding window along
the time axis, forming a sequence of segments.
These segments are then passed through a trained
A2E-Net, resulting in a sequence of acoustic word
embeddings derived from the FC layer.

To ensure consistency in segment lengths, the
keyword audio is either padded or clipped to match

the size of the sliding window. Subsequently, each
input segment (x) is transformed into its corre-
sponding embedding (embx) using deep CNN. In
order to capture the representation of acoustic sig-
nals of a spoken query term, the basis embedding of
the word is computed by averaging the word-level
embeddings in the following manner:

cb =

∑B
x=1 embx
B

(6)

where B is the number of multiple acoustic sig-
nals of a spoken query term. The basis embedding,
denoted as cb, captures the representative acoustic
features of the spoken query.

By calculating the cosine similarity between the
segment sequence of the search content y and the
basis embedding of the spoken query (embx), we
generate a time-dependent score sequence. To mit-
igate the impact of random score fluctuations, we
apply a simple moving average (SMA) operation
(Koul and Awasthi, 2019) to smooth the sequence.
This smoothing process involves summing recent
scores and dividing the sum by the number of
frames involved at each point.

The resulting smoothed score sequence provides
a measure of similarity between the search content
and the spoken query, enabling the identification of
relevant word occurrences within the search con-
tent. This embedding-matching approach, employ-
ing cosine similarity computation with a sliding
window and subsequent SMA smoothing, offers an
effective means of searching for specific words in
spoken utterances.

3 Experimental Details

In this section, we provide the experimental de-
tails of our study, covering evaluation metrics, the
dataset, baselines, data preparation, and model con-
figuration.

3.1 Evaluation

Our evaluation of the method employs two key
metrics: mean Average Precision (mAP) and Pre-
cision at 5 (P@5), same as (Ma et al., 2021). The
mAP metric assesses the average precision for each
word in word discrimination and search content. It
is calculated by averaging precision values for all
queries, providing a holistic measure of retrieval
performance. Precision at k documents (P@k) eval-
uates the precision of the retrieval system by con-
sidering the relevance of the top k retrieved word
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occurrences. By using mAP and P@5, we gain in-
sights into the retrieval performance and precision
of our word-searching system, accurately retrieving
desired words from spoken utterances.

3.2 Dataset
This study explores word discrimination across
Buckeye (Pitt et al., 2005) (6 hours for develop-
ment and testing), Librispeech (Panayotov et al.,
2015) (5.4 hours for development and clean test-
ing), TIMIT (Garofolo et al., 1983) (4620 audio
files for training, 1690 for testing), and English
Command Voice corpus 12.0 (Ardila et al., 2020)
(986,897 utterances for training, 16,365 for devel-
opment and testing).

To evaluate word discrimination, we train an
AWEs model using the English Common Voice
dataset and assess discrimination using Librispeech
and Buckeye. We investigate the QbE technique
for spoken term detection and compare the perfor-
mance of our embedding-matching method with
other approaches. For embedding-matching, we
use spoken queries from Librispeech and test utter-
ances from TIMIT. We examine the effectiveness
of fixed-dimensional acoustic embedding by ob-
taining unseen spoken queries from Librispeech
and test utterances from TIMIT. Through these ex-
periments, our aim is to gain insights into word
discrimination and evaluate the effectiveness of our
proposed method in unseen word search scenarios.

3.3 Baseline
Network: Due to the high performance of super-
vised acoustic word embedding models, as cited in
(Ram and Aldarmaki, 2022) and (Sanabria et al.,
2023), we evaluate our proposed AWE model in
comparison with baseline models such as Wav2Vec
2.0 (W2V2) (Baevski et al., 2020), HuBERT (Hsu
et al., 2021), and XLSR-53 (Conneau et al., 2021)
for word discrimination tasks. These baseline
models leverage pre-trained supervised representa-
tions for constructing acoustic word embeddings
(AWEs). Notably, HuBERT with mean-pooling
outperforms other AWE systems employing sim-
pler pooling strategies, as evidenced in (Sanabria
et al., 2023), thus showcasing its robust perfor-
mance across various AWEs. Additionally, XLSR-
53 demonstrates promising performance, as re-
ported in (Ram and Aldarmaki, 2022).

Loss function: We compare the performance
of our DWD loss with other methods, including
Triplet loss (Ge et al., 2018) and Multi-Similarity

Loss (MS loss) (Wang et al., 2019), demonstrating
the strong and consistent performance of our DWD
loss across various AWEs.

Word matching : Furthermore, we compare
our proposed embedding-matching approach for
QbE-STD with the baseline Cosine Distance Pat-
tern Matching (CDP matching) method (Ma et al.,
2021). This baseline method employs cosine dis-
tance computation in conjunction with a sliding
window to match spoken query segments to the
search content. A simple moving average is then
applied to smooth the score sequence, thereby re-
ducing random fluctuations. Additionally, a multi-
template strategy is used to average values across
templates, resulting in a fused embedding. We
also compare our proposed approach with the best-
performing model, One Softmax AWE with V-I
Loss (s-AWE), as outlined in the work of (Ma et al.,
2021).

3.4 Experimental setup

To evaluate the performance of A2E-Net in word
discrimination tasks, reference is made to the exper-
iment detailed in Section 4.2. We utilize six differ-
ent systems for this evaluation: the proposed A2E-
Net with DWD loss, softmax loss, and MS loss, as
well as pre-trained W2V2, Hubert, and XLSR-53
models. The objective is to examine the efficacy of
A2E-Net across different loss functions, including
DWD, softmax, and MS loss. Performance compar-
isons are made against high-performing pre-trained
models. The metric for evaluation is mAP, and
word categorization employs a cosine similarity
threshold of 0.5.

To assess the proposed Query-by-Example
(QbE) approach for Spoken Term Detection (STD),
experiments outlined in Section 4.2 are referenced.
The systems examined specifically include A2E-
Net with QC matching, A2E-Net with CDP match-
ing, and s-AWE with CDP matching (Ma et al.,
2021). The performance of A2E-Net is scrutinized
by employing various word-matching methods and
is compared against the benchmark technique of
CDP matching.

To evaluate the efficacy of the proposed method
in word discrimination tasks, an experiment was
conducted to compare frame-level and word-level
acoustic embeddings. Two variations of the A2E-
Net model were employed: one with DWD loss
and another with softmax loss. Detailed results and
analyses can be found in Section 4.3.
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To investigate the effectiveness of the proposed
method in retrieving unseen words for real-world
applications, an experiment was conducted as out-
lined in Section 4.4. The word-level A2E-Net with
DWD loss was used, and the experiment focused
on two categories of words: all-selected and un-
seen. The objective is to evaluate the ability of the
system to retrieve and rank unseen words compared
to a pre-selected set of words.

3.5 Data Preparation
Speech signals in all experiments were processed
at a sampling rate of 16 kHz with 16-bit resolution.

To train the word discrimination model and con-
duct evaluations, precise word timestamps were
necessary. Forced alignment techniques were em-
ployed for datasets without manual timestamps,
using the MFA (McAuliffe et al., 2017) for all
datasets. The evaluation focused on words with
a minimum duration of 0.5 seconds.

During word discrimination training and infer-
ence, acoustic word segments were divided into 25
ms frames with a step size of 10 ms. These frames
were transformed into 25-dimensional feature vec-
tors for the acoustic word embedding model. The
model generated embeddings, and cosine similar-
ity with a threshold was used for comparison and
classification.

For embedding-matching in QbE-STD, a query
word with multiple acoustic words was indexed
within a recording file. The word basis embedding
and average duration of the query word were cal-
culated. The recording file was segmented into
segments of the average duration with a step size of
50 ms. Acoustic word embeddings were compared
to the word basis embedding using cosine similar-
ity, enabling identification and indexing based on a
similarity threshold.

3.6 Model Configuration
To compare with the baseline, we conducted ex-
periments using frame-level and word-level repre-
sentations from various models. For frame-level
representations, we evaluated word discrimination
models with different loss functions. For word-
level representations, we examined word discrimi-
nation models with the DWD loss.

For each reported model, we employed spe-
cific hyperparameter configurations, including a
learning rate of 0.001, a batch size of 32, and the
Adam optimizer. The output layer of the word dis-
crimination model generated a 2048-dimensional

Table 1: The performance evaluation of A2E-Net in
word discrimination task

Methods mAP(%)
Model Loss Librispeech Buckeye

A2E-Net

DWD loss 63.9 72.9
softmax loss 59.1 65.2
Triplet loss 60.2 68.3

MS loss 62.5 69.1
W2V2 (Baseline) 47.4 53.1
Hubert (Baseline) 58.2 64.8

XLSR-53 (Baseline) 54.7 60.1

word embedding with Nword nodes, representing
the number of words in the training set. We im-
plemented early stopping, and halting training if
the validation loss did not improve for more than
10 epochs or started to increase for more than 3
epochs. The maximum number of epochs was set
to 100. These hyperparameter settings and training
strategies played a crucial role in achieving optimal
model performance.

4 Experimental result and discussion

In this section, we present the experimental results
and discussion of our study, focusing on perfor-
mance evaluation and comparisons across various
aspects.

4.1 The performance evaluation of A2E-Net
in word discrimination task

This study investigates the performance of various
model architectures in word discrimination tasks
using our proposed method. In Table 1, we com-
pare the effectiveness of the A2E-Net model across
different loss functions (DWD, softmax, Triplet,
and MS) against two baseline models (W2V2 and
HuBERT), employing the mAP metric for eval-
uation. These results contribute to the advance-
ment of word embedding models. Specifically, the
A2E-Net model with DWD loss demonstrates ex-
ceptional performance, achieving the highest mAP
scores of 63.9% for Librispeech and 72.9% for
Buckeye, thus outperforming both baseline mod-
els. Furthermore, the A2E-Net model employing
the softmax loss function also shows competitive
performance, with mAP scores of 59.1% for Lib-
rispeech and 65.2% for Buckeye. However, there
remains room for further optimization. In con-
trast, W2V2 exhibits moderate performance, and
although HuBERT outperforms W2V2, it still falls
short of the mAP scores achieved by the A2E-Net
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Table 2: The performance evaluation of a proposed QbE
Approach for QbE-STD

Methods mAP (%) P@5 (%)
Model Word matching

A2E-Net QC-matching 70.22 80.62
A2E-Net CDP matching 59.1 65.2

Baseline
s-AWE CDP matching 59.1 65.2

models. The XLSR-53 model also demonstrates
promise but requires additional tuning to match
the performance of our proposed models. Overall,
the A2E-Net model with the DWD loss function
emerges as the most effective architecture for word
discrimination tasks, highlighting the efficacy of
its design and chosen loss function in achieving
superior performance. This research offers valu-
able insights into various model architectures for
word discrimination, thereby guiding future inves-
tigations in this field.

4.2 The performance evaluation of a proposed
QbE Approach for QbE-STD

We conducted a comprehensive investigation to as-
sess the effectiveness of our QbE technique for
QbE-STD in Table 2, comparing it with exist-
ing approaches. We implemented two variations
of our model: word embedding-based matching
with a proposed loss function and pattern matching
based on cosine distance with the same loss func-
tion. The evaluation was performed using the mAP
metric, and the results were compared to baseline
approaches. The word embedding-based model
achieved high mAP scores of 70.22%, effectively
detecting spoken terms. On the other hand, the
pattern matching-based model showed strengths
in capturing patterns but exhibited slightly lower
performance. In contrast, the baseline models
had lower mAP scores, indicating limitations in
STD. Ultimately, the word embedding-based model
emerged as the most effective, outperforming the
baseline models. Our findings highlight the poten-
tial of QbE techniques and pave the way for future
improvements in STD methods.

4.3 The performance evaluation of
frame-level and word-level Acoustic Word
Embeddings for word discrimination task

This experiment evaluates various architectures for
word discrimination tasks using frame-level and
word-level acoustic word embeddings. Our pro-

63.9 68.5 72.9 74.8

59.1 61.2 65.2 67.9

Frame-level Word-lovel Frame-level Word-lovel

mAP (%)
Librispeech                                    Buckeye

A2EC-Net with DWD loss A2EC-Net with softmax loss

Figure 2: The performance evaluation of frame-level
and word-level Acoustic Word Embedding for word
discrimination task

Table 3: Performance Evaluation of AWEs for Unseen
Word Retrieval

Retrieval mAP (%) P@5 (%)
All selected words 70.22 80.62

Unseen words 54.95 62.59

posed model, which employs a specialized loss
function, is compared with its softmax loss variant
using the mean Average Precision (mAP) metric.
Results in Figure 2 show that the specialized loss
function yields high mAP scores for both frame-
level and word-level embeddings, highlighting its
efficacy in word discrimination. Moreover, word-
level representation outperforms its frame-level
counterpart, capturing discrimination patterns more
effectively. The proposed model also surpasses the
softmax model, validating the effectiveness of our
architecture and loss function. In conclusion, we
recommend using the word-level approach with our
specialized loss function to improve word discrimi-
nation models, contributing to advances in speech
analysis.

4.4 The performance evaluation of AWEs for
Unseen Word Retrieval

This experiment evaluates the effectiveness of
AWEs in retrieving unseen words through QC-
matching, utilizing A2E-Net and the DWD loss.
We measure the system’s performance in identify-
ing and retrieving unseen words compared to ran-
domly selected words, using the mAP metric. The
results presented in Table 3 advance search tech-
niques for speech data, offering valuable insights
into the effectiveness of AWEs in Unseen Word
Search Retrieval. By analyzing the strengths and
weaknesses of each architecture in word discrimina-
tion tasks, the proposed model with AWEs demon-
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strates impressive performance in distinguishing
both seen and unseen words across languages. It
achieves high mAP and P@5 scores, although there
is still room for improvement in discriminating un-
seen words. These findings highlight the effective-
ness of AWEs for word discrimination and empha-
size the benefits of leveraging multilingual mod-
els. Overall, they contribute to the advancement
of search techniques for STD, providing valuable
insights for future research in this domain.

5 Discussion

5.1 Performance Insights

Acoustic Word Embeddings (AWEs) have played
a pivotal role in advancing the field by offering a
computationally efficient approach to spoken term
detection. Our A2E-Net model with DWD loss
function outperformed baseline models like W2V2
and HuBERT, achieving mAP scores of 63.9% on
Librispeech and 72.9% on Buckeye. These scores
underline the architectural efficiency and the effi-
cacy of the DWD loss function. On both frame-
level and word-level tasks, our specialized loss
function improves word discrimination, thereby
enhancing the versatility of the model across dif-
ferent granularities. AWEs were also effective in
retrieving unseen words, thereby advancing search
techniques for speech data. Our QbE technique sur-
passed existing baseline models with a high mAP
score of 70.22%, underscoring the efficacy of word
embedding-based models in spoken term detection.

5.2 Computation Time

One notable advantage of A2E-Net is its computa-
tional efficiency. Traditional methods (e.g. DTW)
suffer from high computational complexity, espe-
cially with long sequences. A2E-Net generates
AWEs that represent variable-length segments as
fixed-dimensional vectors, significantly reducing
computation time for search and similarity com-
parisons. While the training phase is resource-
intensive due to the depth of the model, real-time
deployment remains efficient. The specialized loss
function adds minimal computational overhead,
making model scalable for real-time applications.

5.3 Theoretical and Practical Implications

The research findings have important theoretical
ramifications for the academic community in ma-
chine learning, acoustic modeling, and natural lan-
guage processing. On the practical side, the re-

duced computational complexity and time efficien-
cies hold promise for applications in information
retrieval, speech indexing, and automated customer
service.

5.4 Limitations and Future Work

Despite encouraging results, limitations exist. The
proposed loss functions, though superior to tradi-
tional ones, require broader linguistic testing. Addi-
tional evaluation against a more diverse set of base-
line models could enrich our findings. The current
A2E-Net model excels in distinguishing seen words
but falls short in discriminating unseen words. Fu-
ture work could focus on developing adaptive meth-
ods to enhance this specific performance aspect.
The generalizability of the model across various
languages, dialects, or noisy environments, as well
as its practical effectiveness in real-world, real-time
applications, remains to be tested. Moreover, sub-
sequent studies could expand the A2E-Net model
to include more languages, particularly those with
limited resources, to increase its applicability in lin-
guistically diverse contexts. Therefore, upcoming
research could focus on overcoming these limita-
tions and further refining the performance of the
model across multiple domains.

6 Conclusion

The presented research substantially advances
the understanding and development of Query-by-
Example Spoken Term Detection (QbE-STD) tech-
niques, acoustic word embeddings (AWEs), and
their integration with deep learning architectures.
Our study introduces an innovative approach to en-
hance QbE-STD through the use of AWEs. The
A2E model overcomes the limitations of traditional
methods by converting variable-length speech seg-
ments into fixed-dimensional vectors, thereby facil-
itating quicker and more efficient search operations.
Experimental results confirm the model’s effective-
ness in word discrimination tasks, underscoring
its potential for innovations in audio indexing and
search techniques. The incorporation of the DWD
loss function further augments the discriminative
power of the embeddings. Our contributions not
only advance the field of QbE-STD but also set the
stage for improved audio search tools and voice-
controlled applications. Particularly, the A2E-Net
model with DWD loss function exhibits superior
performance, offering promising avenues for future
research in speech technology.
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Abstract

In this paper, we present the first application
of Native Language Identification (NLI) for
the Turkish language. NLI involves predict-
ing the author’s native language by analysing
their writing in other languages. While most
NLI research has focused on English, our study
extends its scope to Turkish. We used the re-
cently constructed Turkish Learner Corpus and
employed a combination of three syntactic fea-
tures (CFG production rules, part-of-speech n-
grams and function words) with L2 texts to
demonstrate their effectiveness in this task.

1 Introduction

Native Language Identification (NLI) is the task
of automatically identifying the native language
(L1) of an individual based on their linguistic pro-
ductions in another language (L2). The underlying
hypothesis is that the L1 influences learners’ sec-
ond language writing as a result of the language
transfer effect (Yu and Odlin, 2016). It is used for a
variety of purposes including forensics applications
in cybercrime (Perkins, 2018) and secondary lan-
guage acquisition (Swanson and Charniak, 2014).

Research in NLI is mainly conducted with
learner corpora, which comprise collections of writ-
ings by individuals learning a new language. These
writings are annotated with metadata such as the
author’s native language (L1) or their fluency level.
Recent NLI studies on languages other than English
include Portuguese (del Río Gayo et al., 2018),
Arabic (Malmasi and Dras, 2014a), and Chinese
(Malmasi and Dras, 2014b). The learner corpus is
the backbone of NLI research, which means that
extending research to a novel language depends
on acquiring the appropriate learner corpora for
that language. In the past, studies have focused
on L2 English because of the prominence of this
language in language research and the relatively
large amount of data available. To the best of our
knowledge, this study presents the first detailed

NLI experiments on L2 Turkish. We employ the re-
cently constructed Turkish Learner Corpus (TLC)
(Anna, 2022) and investigate widely used linguistic
features for NLI. The remainder of the paper is
organised as follows: Section 2 discusses related
work in NLI, Section 3 and 4 describes the method-
ology and dataset used in our experiments, and
Section 5 presents the experimental results. Finally,
Section 6 presents a brief discussion and concludes
this paper with directions for further research.

2 Related Work

NLI is typically modeled as a supervised multi-
class classification task. In this experimental de-
sign, the individual writings of learners are used
to train a model while the author’s L1 informa-
tion serves as class labels. A variety of feature
types at the syntactic and lexical levels were stud-
ied to capture distinct characteristics of the lan-
guage interference phenomenon: spelling errors,
word and lemma n-grams, dependency parsing, and
morphosyntax. A more detailed review of fea-
ture extraction-based methods can be found in two
shared task reports on the NLI task organised in
2013 and 2017 (Tetreault et al., 2013; Malmasi
et al., 2017).

In recent years, there has been increased experi-
mentation with deep learning methods, including
pre-trained transformers (Steinbakken and Gam-
bäck, 2020) and generative models (?). While
these models slightly outperformed the state-of-the-
art performance achieved by feature-based stacked
classifiers, questions about their interpretability, in-
herent biases, and practical shortcomings in indus-
trial applications remain unexplored. Traditional
methods based on hand-crafted features continue
to be preferred in many implementations due to
their simplicity in training and resource efficiency.
Within this context, Uluslu and Schneider (2022)
approached the NLI scalability problem in the con-
text of cybercrime through the use of adapter fine-
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tuning.

3 Data

In this study, we use data from the TLC (Anna,
2022). TLC is a learner corpus composed of the
writings of learners of Turkish. These texts are
essays written as part of a test of Turkish as a sec-
ondary language. Each text includes additional
metadata such as the nationality of the author and
the genre of the text. The corpus also includes error
codes and corrections, although we do not make
use of this information.

We used a subset of the dataset containing
texts for five L1 groups: Arabic (ARA), Albanian
(AL), Azeri Turkish (AZ), Farsi (IR), and Afghani
(Pashto) (AFG). We chose these five languages
mainly because of the immigration trend observed
in Turkey, which will result in a need for additional
capabilities for cybercrime forensics and language
learning applications for educational institutions.
We limit our study to the genre of essays. The other
genres (letters of different forms) in the corpus are
unbalanced and scarce which may introduce lin-
guistic biases across different registers. We also do
not attempt to adjust the dataset based on the writ-
ing prompts because they were unbalanced across
languages. We randomly selected sentences from
the same L1 and combined them to produce doc-
uments of approximately the same length. This
methodology ensures that the texts for each L1 are
a mix of different authoring styles, topics, and lan-
guage proficiency. The composition of our data is
shown in Table 1.

L1 Docs Tokens TTR Avg Words
AFG 55 12546 0.47 278.8
AL 58 15001 0.52 250.6

ARA 65 16969 0.49 252.9
AZ 54 15850 0.47 273.5
IR 52 12870 0.51 246.4

Table 1: Distribution of the five L1s in terms of texts,
tokens, type/token ratio (TTR) and average words.

4 Methodology

4.1 Classifier

In our study, we use the standard supervised multi-
class classification approach for NLI. A linear Sup-
port Vector Machine (SVM) is used for classifica-
tion and feature vectors are created using a TF-IDF

weighting scheme, in line with previous research
(Gebre et al., 2013). We initially experimented with
relative frequencies but obtained better preliminary
results with TF-IDF. We performed a grid search in
parameter space for the regularisation parameter C
in the range 10e-6 to 10e-1 and set max_iteration =
5k to ensure model convergence. We find that the
generalisation of the model reaches its limit at C =
1, we, therefore, choose this value.

4.2 Evaluation
Following the previous NLI studies, we present
our findings using classification accuracy through
10-fold cross-validation (10FCV), which has be-
come the standard for NLI result reporting in recent
years. Our cross-validation approach is randomised
and stratified, aiming to maintain consistent class
proportions across partitions. Since our dataset is
slightly unbalanced, we provide detailed metrics in
addition to accuracy, including precision per class,
recall, and F1 values. We also compare these re-
sults to a random baseline.

4.3 Linguistic Features
We focus only on content-independent features, in
particular syntactic features, following the exam-
ple of studies on NLI in other languages (Malmasi
et al., 2015). Due to the imbalance in the topic
distribution in the TLC corpus, we decided not
to include lexical features such as word n-grams
and embeddings in our study. Topic bias can arise
when certain subjects or topics are not equally rep-
resented across different classes (Brooke and Hirst,
2013). For example, only students with Azeri and
Farsi L1 were asked to respond to prompts specifi-
cally about happiness and time. This can result in
the classifier to associate these topics with the lan-
guages, rather than discerning the linguistic char-
acteristics inherent to Azeri and Farsi, thereby in-
troducing a confounding variable to the task. Even
if we attempted to balance the topics across lan-
guages, similar to the TOEFL11 dataset (Blan-
chard et al., 2013), we found that particular rhetoric
strongly influences certain backgrounds. For exam-
ple, writings of the students from Afghanistan were
predominantly religious, regardless of the topic. By
focussing on syntactic features, we aim to capture
the underlying syntactic influence of the L1 on its
L2 writing independently of the content. We ex-
perimented using a combination of three syntactic
features: context-free grammar (CFG) production
rules, part-of-speech n-grams, and function words.
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Function words are content-independent words,
including prepositions, articles, and auxiliary verbs,
that play a crucial role in conveying grammatical
relationships between words. It is often challeng-
ing for L2 speakers to use the appropriate function
words and production errors may be due to the in-
fluence of their L1 (Schneider and Gilquin, 2016).
These function words are recognised as valuable
features for the NLI task. We extracted frequencies
of 75 Turkish words from different grammatical
categories. However, it’s worth noting that many
grammatical aspects, which are morphologically
expressed in Turkish, may not be as strongly cap-
tured as they would be in English.

Part-of-Speech tags are linguistic categories or
word classes that signify the syntactic role of each
word in a sentence. They include basic categories
such as verbs, nouns, and adjectives. Assigning
POS tags to words in a text introduces a level of
linguistic abstraction, meaning that we can work
with the underlying structure rather than the con-
tent. We use the Turkish POS module from Stanza
(Qi et al., 2020) to extract universal POS tags, from
which we create n-grams of sizes 1 to 3. These
n-grams serve to capture preferences for specific
word classes and their localised ordering patterns.
Our experiments indicated that sequences of order
4 or higher lead to lower accuracy due to the lim-
ited size of our corpus. Therefore, we excluded
such higher-order n-grams from our analysis.

Hızlı kahverengi tilki ve
ADJ ADJ NOUN CONJ

tembel köpeğin üzerinden atlar.
ADJ NOUN POSTP VERB

3-gram Example: (NOUN, POSTP, VERB)
Functional n-gram Example: (ve, üzerinden)

CFG Rule example: (NP → ADJ NOUN)

Figure 1: An example of a Turkish sentence and feature
extractions for POS n-grams, function word n-grams
and CFG-Rule extractions.

CFG production rules are used to generate
constituent parts of sentences, such as noun and
verb phrases. We use the Turkish parsing mod-
ule of Stanza (Qi et al., 2020) to extract the con-
stituency tree for the documents. The production
rules are then extracted and each rule is used as a
standalone feature. We exclude lexicalizations to
focus on more abstract and general syntactic pat-
terns. These production rules can encode highly

idiosyncratic constructions that are specific to par-
ticular L1 groups. They have been widely utilized
in various ensemble methods for NLI and have
been shown to complement other features effec-
tively (Malmasi and Dras, 2018).

5 Results

In this section, we present the results in terms of ac-
curacy achieved by individual feature types. Subse-
quently, we report the performance obtained using
the combination of all features. Finally, we exam-
ine the performance obtained by the best system
for each L1 class.

Feature Type Accuracy (%)
Random Baseline 20.0

POS 1-grams 33.4
POS 2-grams 38.9
POS 3-grams 38.6

Function Words 37.2
CFG Production Rules 41.4

Full Combination 44.2

Table 2: 10-FCV Accuracy Classification Results

Table 2 displays the results of the systems trained
with different feature types in terms of accuracy.
We found that all feature types individually outper-
form the baseline. The CFG rules are the features
that individually perform the best, achieving an
accuracy of 41.4%. This demonstrates the impor-
tance of the syntactic differences between the L1
groups. The full combination, using all feature
types, obtains performance higher than CFG fea-
tures achieving 44.2% accuracy. These trends are
very similar to previous research using the same
features (del Río Gayo et al., 2018; Malmasi and
Dras, 2014a) with comparable corpora.

L1 Precision Recall F1-score
AFG 0.50 0.29 0.37
AL 0.45 0.54 0.49

ARA 0.43 0.65 0.52
AZ 0.47 0.41 0.44
IR 0.37 0.15 0.21

Average 0.44 0.41 0.40

Table 3: Full combination per-class results: precision,
recall and the F1-score.
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Table 3 shows the results obtained for each L1
in terms of precision, recall, and F1 score, as well
as the average results for the five classes. Across
all classes, we obtain a micro-averaged F1 score of
0.40 and a macro-averaged F1 score of 0.44.

To provide a visual representation of these find-
ings and to highlight any error patterns, we present
a heatmap confusion matrix of the classification
errors in Figure 2.

Figure 2: Confusion Matrix of Classification Errors

In most NLI studies, the expected difficulty is to
distinguish closely related L1s that may belong to
the same language family. Based on the analysis
of the confusion matrix, the most notable confu-
sion occurs between Persian and Arabic, both of
which have strong lexical connections to the Turk-
ish language. However, since we are working with
content-independent features, we attribute this con-
fusion to corpus representation and do not seek
any linguistic explanations. We observed no con-
fusion between Afghani and Persian, even though
both languages belong to the same language fam-
ily and have strong similarities. A previous study
in comparable settings also failed to offer strong
interpretations based on sociolinguistic insights in
the error analysis (Malmasi and Dras, 2014a).

Our analysis brings attention to two potential
limitations that might prevent drawing connections
between model errors. Firstly, although the size of
our corpora is relatively limited when compared to
other NLI studies—being five times smaller than
the Portuguese corpus reported by del Río Gayo
et al. (2018) and ten times smaller than the Norwe-
gian corpus described in Malmasi et al. (2015)—it
is comparable to the corpus size used for Ara-
bic (Malmasi and Dras, 2014a), which achieved
a similar performance compared to our study. The
difference in data size and quality might explain
the model’s generalisation capabilities. Secondly,
we acknowledge that our parser might not be en-
tirely suitable for learner language, which could

introduce additional noise into the feature space
(Van Rooy and Schäfer, 2009).

6 Conclusion & Discussion

In this study, we presented the first experiments
with Turkish NLI and achieved a level of perfor-
mance comparable to previous results for other
languages. Our main focus was to investigate the
effectiveness of syntactic features for Turkish, a
language that differs from English in certain as-
pects, particularly in morphological complexity.
Another significant contribution of our work is the
introduction of a new dataset for NLI, specifically
designed to address L1-based language transfer ef-
fects. This corpus can serve as a valuable resource
for researchers to validate and refine their method-
ologies across various datasets and languages.

We identify several promising directions for fu-
ture research. Firstly, we plan to expand the cor-
pus by incorporating more learner writings and
extending the analysis to encompass other L1 lan-
guages. Additionally, we believe that assessing the
proficiency level of learners can shed further light
on the observed challenges. Finally, we plan to
explore more linguistically sophisticated features
in our investigation. For instance, leveraging L1
mistakes from a morphological perspective as a
content-independent feature could yield valuable
insights. To this end, our follow-up study will in-
corporate a broader range of features to enhance the
robustness and comprehensiveness of our analysis.
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Abstract
This paper presents a new Kurdish Multilabel
Emotional Dataset (KMD) for the Kurdish So-
rani dialect, which contains emotional labels
for four different categories: Fear, Sadness,
Joy, and Surprise. The dataset was collected
using Twitter API, pre-processed, and manu-
ally labelled by three independent annotators.
We also conducted experiments using classical
machine learning classifiers, including Naive
Bayes and Support Vector Machine (SVM), and
deep learning models, BLSTM and BERT, to
evaluate the efficiency of the dataset. Our re-
sults show that the multilingual BERT model
outperforms the traditional machine learning
classifiers in emotional labelling accuracy. The
KMD dataset can be used for various natural
language processing tasks, including sentiment
analysis, emotion detection, and opinion min-
ing, for the Kurdish Sorani dialect.

1 Introduction

Emotions play a significant role in human commu-
nication. The presence and significance of emo-
tions can be found in every area of our existence.
Our emotions impact the choices we make, how we
interact with others, and our daily conduct (Erol
et al., 2019). They even persist beyond our mem-
ories. As the quantity of text-based content that
conveys emotions grows rapidly (e.g., microblog
posts, blogs, and forums), there is a pressing de-
mand and potential to create automated tools that
can recognize and evaluate emotions expressed in
written language. In many situations, machines
must engage with or observe humans, and emotion
recognition has numerous practical uses in such
settings. For example, in an online learning plat-
form, an automated tutor could give more effective
feedback to a student by taking into account her
level of motivation or frustration. Similarly, a car
that has the capability to assist a driver could take
action or sound an alert if it detects that the driver
is fatigued or anxious (Kosti et al., 2019).

Therefore, recognizing emotions is an essential
task for machines to understand human behaviour.
Natural Language Processing (NLP) is a rapidly
growing field that aims to enable machines to un-
derstand human language (Khurana et al., 2023).
One of the essential components of NLP is the
availability of labelled datasets that can be used
for the training and evaluation of machine learning
models. However, there is a lack of such labelled
datasets for some languages, including the Kurdish
Sorani dialect.

In this paper, We endeavour to construct an emo-
tion detection system for the Kurdish language,
utilizing the Sorani dialect. Our efforts involved
creating the initial emotion-annotated dataset for
the Kurdish language entirely annotated by human
annotators. Additionally, we utilized both machine
learning classifiers and deep learning models to
train our dataset and documented the findings of
our experiment. We also conducted an experi-
ment on the KMD dataset using classical machine
learning classifiers and deep learning BLSTM and
BERT to evaluate the efficiency of the dataset. For
the machine learning classifiers, Naive Bayes and
Support Vector Machine (SVM) classifiers were
implemented. These models were selected because
of their wide usage in machine-learning workflows.
The availability of the KMD dataset will enable
researchers to develop and evaluate emotion recog-
nition models for the Kurdish Sorani dialect. The
dataset will also be useful for various NLP appli-
cations, such as sentiment analysis and opinion
mining. In summary, this paper presents a signifi-
cant contribution to the field of NLP and emotional
analysis by introducing a new dataset for the Kur-
dish Sorani dialect.

The following sections comprise the remainder
of this paper: Section 2 provides the related works,
while Section 3 introduces the data collection meth-
ods. In Section 4, we detail our robust baselines
and experiments. Sections 5 and 6 discuss the find-
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ings. Lastly, we conclude the paper in Section 7.

2 Related Works

The Kurdish language belongs to the Indo-Iranian
branch of the larger Indo-European language fam-
ily and consists of 33 letters. It is relatively simi-
lar to Persian and is spoken by approximately 30-
40 million people in Iran, Turkey, Iraq, and Syria
(Badawi, 2023b). In Iraq, the Kurdish language
is recognized as one of the official languages (Ah-
madi et al., 2019). There are two main dialects of
Kurdish: Central Kurdish (Sorani) and Northern
Kurdish (Badawi, 2023c). However, several minor
dialects, such as Gorani (Hawrami), are used by
small communities in Iraq and Iran, and Zazaki
spoken in Turkey (Buran, 2011).

There have been several efforts to create emo-
tional datasets for different languages, such as En-
glish (Plaza del Arco et al., 2020), Chinese (Feng
et al., 2022), Arabic (Al-Khatib and El-Beltagy,
2017), and Hindi (Singh et al., 2022). However,
the efforts on the Kurdish language increasingly
focused on building sentiment analysis datasets.
Sentiment analysis is a subfield of NLP that aims
to identify and extract opinions and emotions ex-
pressed in text. Several studies have focused on
sentiment analysis for Kurdish Sorani. Awla and
Veisi (Awlla and Veisi, 2022) built a sentiment anal-
ysis dataset from gathering Facebook comments.
A total of 18,450 comments were extracted from
13 popular pages. After collecting the data, the
authors performed preprocessing on the comments
by removing noisy comments and those that were
not written in the Central Kurdish language. Three
annotators were assigned to annotate each com-
ment: Positive, Negative, or Neutral. The work
of Hameed, Ahmedi and Rezai (Hameed et al.,
2023)is another example of dataset construction
in the field of sentiment analysis. Using Twitter
API, the authors were able to collect and annotate
1769 tweets. The labels include positive, negative,
mixed, neutral, and none. Furthermore, several
studies worked on building Kurdish datasets in the
field of text classification. Currently, we are aware
of only two annotated corpora. The first one is
the medical corpus, which contains 6756 samples
obtained from Facebook comments and is divided
into medical and non-medical (Saeed et al., 2022).
The second one is KDC-4007, comprising 4,007
text files categorized into eight groups: Sports,
Religions, Arts, Economics, Education, Socials,

Styles, and Health (Rashid et al., 2018). Notably,
no datasets for detecting emotions in the Kurdish
language are currently available. Finally, KNDH
(Kurdish News Dataset Headlines) is a dataset
which includes a collection of 50,000 news head-
lines, equally distributed among Health, Science,
Social, Economic and Sports categories (Badawi
et al., 2023).

There is a concerning scarcity of annotated
datasets for emotion detection in the Kurdish lan-
guage. Previous studies that have focused on
dataset creation for the Kurdish language have pri-
marily focused on sentiment analysis, which in-
volves categorizing texts into positive, negative,
or neutral categories based on the expressed senti-
ment. However, emotions are more complex than
simply positive or negative sentiments. Our work
aims to fill this gap by building a new emotional
dataset for the Kurdish Sorani dialect that includes
a wider range of emotions, such as fear, sadness,
joy, and surprise. By including a broader range of
emotions, we can gain a deeper understanding of
the nuances of language and how emotions are ex-
pressed in different contexts. This will enable us to
build more accurate and effective natural language
processing models that can be used for a variety of
applications, including sentiment analysis, emotion
detection, and text classification.

3 Dataset Benchmark

3.1 Data collection
To gather data, either a software program or special-
ized libraries must be employed through coding. In
this study, we utilized the latter method and lever-
aged the Twitter developer API to extract tweets
while removing user identities to comply with Twit-
ter’s policies and ensure security. The dataset re-
sulting from this process is freely available on the
Mendeley repository, accessible via the*URL ,1.
Figure 1 outlines the steps taken to construct this
dataset.

Undoubtedly, raw data can be contaminated with
noise. Online Kurdish data, for instance, often con-
tains words from other languages, special charac-
ters, elongated letters, symbols, and irrelevant num-
bers. During the preprocessing phase, we removed
all non-Kurdish characters from HTML links. In
the second phase, special characters were exam-
ined. If a specific character is used to convey senti-

1https://data.mendeley.com/datasets/
dntxt73dm6/1
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Figure 1: Data collection process

Annotated R1 + R2 R1 + R3 R2 + R3
kappa 0.88 0.79 0.86

Table 1: KAPPA score among raters, R1,R2,R3 refer to
Rater 1, Rater 2 and Rater 3 respectively

ment, it is left unchanged. Characters that have no
meaning were removed from the text. Sometimes,
numbers can express feelings or sentiments for the
user, and therefore, they are included in the text.

3.2 Annotation Process

A group of three individuals who are knowledge-
able in the Kurdish language were selected to an-
notate the corpus. These annotators have an edu-
cational background in the Kurdish language. To
assist them in the annotation process, the annotators
were provided with instructions, which included
the following:

1. The annotators were required to determine the
label of each texts.

2. The corpus was updated with the most note-
worthy annotations for each piece of text,
based on the number of votes it received.

The entire dataset was given to the annotators. The
degree of agreement between the annotators was
measured using Kappa coefficients (Cao et al.,
2016). The Kappa coefficients demonstrated a
strong level of agreement during the sentiment an-
notation process, ranging from 0.79 to 0.88, as
presented in Table 1. These numbers are within an
acceptable range according to previous studies.

Figure 2: Class distribution in the dataset

3.3 Dataset Statistics
The whole dataset consists of 77270 texts dis-
tributed among fear, sadness, joy and surprise la-
bels as depicted in Figure 3.

Figure 2 shows that fear was the most commonly
existing emotion in the dataset, as it had the high-
est frequency count of 34085. The second most
common emotion was sadness, with a frequency
count of 16099. Joy was reported less frequently
than both fear and sadness, with a frequency count
of 15857. On the other hand, surprise was the least
frequently reported emotion with a frequency count
of 11204.

4 Experiment

In this paper, we aim to conduct an experiment
on the KMD dataset using both classical machine
classifiers and deep learning BLSTM and BERT
to evaluate the efficiency of the dataset. For the
machine learning classifiers, Naive Bayes and Sup-
port Vector Machine (SVM) classifiers were imple-
mented. These models were selected because of
their wide usage in machine-learning workflows.

The Naive Bayes algorithm is a probabilistic
algorithm that is commonly used for text classifi-
cation tasks (Abbas et al., 2019). Specifically, the
Multinomial Naive Bayes variant of the algorithm
is often used in natural language processing appli-
cations. To implement the Naive Bayes classifier in
the paper, the authors used the Scikit-Learn library
in Python. The library provides an implementation
of the Multinomial Naive Bayes algorithm that is
easy to use and has good performance. We first pre-
processed the data by filtering out noisy comments
and non-Central Kurdish letters. Then, the data
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was split into training and testing sets with a ratio
of 80:20. The training set was used to train the clas-
sifier, while the testing set was used to evaluate its
performance. The next step was to convert the text
data into numerical feature vectors that can be used
as input to the classifier. We used a technique called
CountVectorizer to represent the text data as fea-
ture vectors. CountVectorizer is a commonly used
technique in text classification that converts text
into a matrix of token counts. Once the data was
preprocessed and converted into feature vectors us-
ing CountVectorizer, We trained the Naive Bayes
classifier on the training set. The trained classifier
was then evaluated on the test set to measure its
accuracy in predicting the emotional sentiment of
the tweets.

SVM (Support Vector Machine) is a popular
machine-learning algorithm used for classification
tasks. It finds the best hyperplane that separates
the data into different classes by maximizing the
margin between the hyperplane and the nearest
data points (Cervantes et al., 2020). In this pa-
per, We used the SVM algorithm as one of the
machine learning classifiers to evaluate the effi-
ciency of the KMD dataset. The Scikit-learn library
in Python was used to implement the SVM algo-
rithm.Overall, the SVM classifier was implemented
using the Scikit-learn library in Python.

Throughout the experimentation phase, we se-
lected BLSTM and BERT as our preferred options.
BLSTM, a neural network type, excels in handling
sequential data, encompassing both time series and
text data. It comprises of two LSTM layers that
process the input sequence in both forward and
backward directions, merging their outputs at every
time step. This comprehensive approach enables
a deeper comprehension of the input sequence’s
past and future context, enhancing performance
for tasks such as sentiment analysis, named en-
tity recognition, and machine translation (Badawi,
2023a)

The BERT model is a deep learning technique
that has been widely used for natural language pro-
cessing tasks (Koroteev, 2021). In this paper, the
BERT model is employed for the classification of
emotions in the KMD dataset. To implement the
BERT model, the training data is tokenized and
fine-tuned using the Hugging Face Transformer li-
brary. The BERT tokenizer is used to split the text
into tokens and add special tokens such as [CLS]
and [SEP] as shown in Fig 3. A maximum length

Figure 3: Representation of BERT Iokanization

of 128 is utilized for the BERT tokenizer. The
BERT model is known for its ability to capture
the context and meaning of words in a sentence.
It achieves this through its attention mechanism,
which enables it to focus on important parts of the
input text. The fine-tuned BERT model is capable
of accurately predicting the emotional sentiment of
a given text. It is worth noting that, similar to the
machine learning classifiers, the text data used for
the BERT model is also represented as feature vec-
tors using CountVectorizer, a text. preprocessing
technique that converts the text data into numerical
features.

5 Results And Discussions

To establish a basic benchmark for determining
the sentiments present in our dataset, we utilized
different machine-learning algorithms. The method
used for splitting the data can significantly affect
the accuracy of the model. Since our dataset is
relatively big, we chose to use the holdout method
for splitting the data. In the first phase, we used
the 80% train 20% test technique. Furthermore,
we split the train set using the holdout method to
create a validation set. Having a validation set
is vital, especially in the case of deep learning.
The outcomes obtained from each classifier are
presented in Table 2.

The results of the experiments show that all
four classifiers (Naïve Bayes, SVM, BLSTM and
BERT) have achieved reasonably good perfor-
mance on the KMD dataset. In general, BERT per-
formed the best among the four classifiers, with an
overall F-score of 0.65, followed closely by BLSM
with an overall F-score 0.64, SVM with an F-score
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Labels Naive Bayes SVM BLSTM BERT
Fear 0.74 0.75 0.76 0.77

Sadness 0.54 0.55 0.56 0.58
Joy 0.57 0.56 0.58 0.58

Surprise 0.32 0.38 0.42 0.49

Table 2: F1-score obtained by each classifiers

Labels Naive Bayes SVM BLSTM BERT
Fear 0.77 0.78 0.79 0.80

Sadness 0.55 0.58 0.59 0.63
Joy 0.59 0.57 0.56 0.60

Surprise 0.34 0.39 0.43 0.48

Table 3: Precision-score obtained by each classifiers

of 0.63, and Naïve Bayes with an F-score of 0.62.
The results also show that the classifiers performed
differently across the different emotion labels. For
the fear and sadness labels, Naïve Bayes and SVM
performed similarly with F-scores of around 0.7
and 0.5, respectively, while BLSM and BERT per-
formed slightly better with F-scores of 0.76, 0.56,
0.77 and 0.58, respectively. For the joy label, all
four classifiers performed similarly with F-scores
ranging from 0.56 to 0.58.

However, for the surprise label, BERT outper-
formed the other three classifiers with an F-score
score of 0.49, while Naïve Bayes and SVM per-
formed much worse with F-scores f 0.32 and 0.38,
respectively. However, BLSM performed slightly
better with a score of 0.42. This suggests that the
surprise label may be more difficult to classify ac-
curately than the other emotion labels in the KMD
dataset. The performances of all models are illus-
trated in Fig 4.

Table 3 displays the precision scores of four clas-
sifiers (Naive Bayes, SVM, BLSTM, and BERT)
for four different emotions: Fear, Sadness, Joy, and
Surprise. Precision is a crucial metric to measure
the accuracy of a classifier’s positive predictions.
The precision scores in the table offer valuable
insights into the performance of these classifiers

Labels Naive Bayes SVM BLSTM BERT
Fear 0.78 0.79 0.80 0.83

Sadness 0.56 0.59 0.61 0.64
Joy 0.58 0.56 0.57 0.61

Surprise 0.35 0.40 0.44 0.49

Table 4: Recall-score obtained by each classifiers

in emotion classification. BERT turns out to be
the top-performing classifier in all emotions. It
consistently outperforms other classifiers such as
BLSTM, SVM, and Naive Bayes. In the "Fear"
emotion category, BERT achieves the highest pre-
cision score of 0.80, followed closely by BLSTM
with a precision of 0.79, while SVM and Naive
Bayes lag slightly behind at 0.78 and 0.77, respec-
tively. This trend is observed consistently across
the various emotions. BLSTM shows competitive
performance, ranking second across all emotions.
It closely follows BERT’s precision scores, indi-
cating its effectiveness in emotion classification.
SVM ranks third in most cases, followed by Naive
Bayes, which consistently has the lowest precision
scores. This suggests that advanced models like
BERT and BLSTM tend to outperform traditional
classifiers like SVM and Naive Bayes for this emo-
tion classification task. Notably, the "Surprise"
emotion is the most challenging for all classifiers.
This is indicated by the especially lower precision
scores for "Surprise" compared to the other emo-
tions. The fact that all classifiers struggle to accu-
rately classify "Surprise" suggests that this emotion
may have unique characteristics that are difficult to
capture, possibly due to its nuanced expression in
the dataset or semantic complexities.

Table 4 provides a comprehensive overview of
recall scores for four different classifiers used for
emotion classification. Recall, also referred to as
sensitivity or the true positive rate, is a critical met-
ric that measures a classifier’s ability to correctly
identify all positive instances. Upon analyzing the
recall scores in the table, we can draw important
insights into the performance of these classifiers
in the context of emotion classification. A distinct
pattern emerges for each of the four emotions. For
the "Fear" emotion category, BERT has the highest
recall score of 0.83, followed closely by BLSTM at
0.80, SVM at 0.79, and Naive Bayes at 0.78. This
pattern continues across the other emotions, where
BERT consistently shows the highest recall scores,
affirming its position as the best-performing classi-
fier for emotion classification based on recall. The
BLSTM model ranks second for most emotions,
including "Fear," "Sadness," and "Joy," providing
recall scores that are very close to BERT’s. SVM
and Naive Bayes tend to perform lower in terms
of recall performance across all emotions. This
consistent trend highlights the superiority of ad-
vanced models such as BERT and the effectiveness
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Figure 4: PErformance of each methods

of BLSTM to deliver competitive results in emo-
tion classification tasks. Moreover, it also high-
lights that the "Surprise" emotion is a considerable
challenge for all classifiers, as indicated by their
notably lower recall scores for this emotion. This
suggests that "Surprise" may possess unique char-
acteristics that make it more difficult to accurately
classify. These challenges may stem from the sub-
tle and nuanced expressions associated with this
emotion in the dataset or the intricacies of semantic
interpretation.

Overall, these results indicate that the KMD
dataset can be used to effectively train emotion
classifiers for the Kurdish Sorani dialect using both
classical machine learning methods and deep learn-
ing techniques like BERT. Furthermore, the results
highlight the importance of evaluating classifiers
across multiple emotion labels to better understand
their performance and limitations.

6 Conclusion

The KMD dataset offers a new and valuable re-
source for researchers interested in the Kurdish So-
rani dialect and emotional analysis. The dataset’s
comprehensive structure, annotation guidelines,
and categories provide researchers with a robust
foundation for further analysis and experimenta-
tion. The proposed model, which utilizes classi-
cal machine learning algorithms and deep learning
BERT, demonstrates superior performance com-
pared to traditional machine learning algorithms,
such as Naive Bayes and Support Vector Machine
classifiers and deep learning BLSTM, on all classes.
The KMD dataset, along with the proposed model,
paves the way for further research on the Kurdish

Sorani dialect and provides a benchmark for future
studies in natural language processing and machine
learning (Badawi, 2023d).

Limitations

The study presents significant findings in the realm
of natural language processing and emotional anal-
ysis, yet several limitations deserve consideration.
Firstly, the study predominantly focuses on the
Kurdish Sorani dialect, which may restrict the gen-
eralizability of its results to other Kurdish dialects,
such as Kurmanji and Gorani. Additionally, due
to the extensive dataset used in the study, the train-
ing process demanded substantial GPU resources.
Furthermore, the Kurdish language shares similar-
ities with the Arabic and Persian alphabets, and
users may have employed characters from these
languages in their texts. Given the lack of special-
ized libraries or tools for automatic letter correction
or replacement in Kurdish, such texts had to be ex-
cluded from the dataset. This removal potentially
led to a loss of valuable data and linguistic diversity,
particularly considering the low-resource nature of
the Kurdish language.

Ethics Statement

This study on the development of a Kurdish Mul-
tilabel Emotional Dataset (KMD) for the Kurdish
Sorani dialect was conducted with a strong com-
mitment to ethical research practices. The research
team recognized the importance of ethical con-
siderations throughout the project, including data
collection, annotation, and analysis. This ethical
statement outlines the key principles and practices
adhered to during the study:

1. Data Collection and Usage: Data for the
KMD dataset was collected using the Twitter
API. We ensured that the data collection pro-
cess adhered to Twitter’s policies and guide-
lines. All data were obtained without com-
promising the privacy or consent of Twitter
users. No personally identifiable information
was collected or disclosed.

2. Informed Consent: As the dataset involved
publicly available social media content, we
did not seek explicit consent from individ-
ual Twitter users. However, we ensured that
the dataset was used solely for research pur-
poses and that no harm or undue exposure was
caused to individuals or communities.
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3. Data Anonymization: To protect the privacy
and anonymity of individuals, all identifying
information, including usernames and profile
pictures, were removed from the collected
data. The dataset was processed to ensure
that it contained no personally identifiable in-
formation.
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Abstract

Benchmark datasets are crucial for evaluat-
ing algorithms and models objectively. They
provide a standardized basis for comparisons,
promote reproducibility, and drive innovation
by establishing baselines and encouraging ad-
vancements in the field. Limited benchmark
datasets exist for various natural language pro-
cessing tasks in low-resource languages, in-
cluding most Philippine languages. As part
of iTANONG’s 10 billion token dataset initia-
tive, the authors release the first iteration of
iTANONG-DS1, a collection of unlabeled and
labeled datasets for different NLP tasks such
as sentiment analysis, part-of-speech tagging,
named entity recognition for Tagalog, and lan-
guage modeling for Cebuano.

1 Introduction

Recent years have seen an exponential expansion
in the field of natural language processing (NLP),
revolutionizing a number of applications includ-
ing information retrieval, sentiment analysis, and
machine translation. Despite these developments,
the lack of structured benchmark datasets, particu-
larly for low-resource languages, continues to be a
problem in NLP research (Cruz and Cheng, 2020).

While the Philippines present a plethora of lan-
guages across all of its islands, Tagalog and Ce-
buano come out as two of the most prominent and
widely-used languages in the countries. Both lan-
guages exhibit unique linguistic intricacies that re-
flect the culture of their respective native speak-
ers. Tagalog is a highly inflected language with

1Datasets are publicly available here:
https://huggingface.co/dost-asti

a complex system of noun cases, verb conjuga-
tions, and prepositions. It also has a rich mor-
phology, with many affixes that can be used to
modify nouns, verbs, and adjectives. On the other
hand, Cebuano is an agglutinative language, which
means that words are formed by adding affixes to
a root word. This can make the language seem
complex and difficult to learn for speakers of other
languages. Cebuano also has a rich system of noun
cases, which can be used to indicate the role of a
noun in a sentence.

Despite the fact that both languages are widely
used by a lot of people, they are still considered
to be low-resource languages in the research com-
munity. This is mainly because there are not any
extensive datasets for them that would be useful
for the creation and testing of NLP models and
algorithms.

While formal datasets like Wiki-text (Merity
et al., 2016) and OSCAR (Ortiz Suárez et al., 2019;
Abadji et al., 2022) offer a sizable amount of textual
data for Tagalog and Cebuano, they fall short of
capturing the subtle nuances of these languages as
they are utilized in everyday interactions and social
media posts. The ability to comprehend these lan-
guages in their natural environments necessitates
datasets that faithfully capture the dynamic essence
of the language, including its informal expressions,
geographical differences, and linguistic patterns
found in everyday usage. The current datasets fall
short of accurately portraying this heterogeneous
landscape, impeding the advancement of NLP re-
search for Philippine languages.

The authors of this work provide a thorough ac-
count of their efforts to develop task-built datasets
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for Tagalog and Cebuano, two widely used Philip-
pine languages, primarily for various NLP appli-
cations. Recognizing the necessity for targeted
and application-specific datasets, they have metic-
ulously collected resources for sentiment analysis,
part-of-speech tagging, named entity identification,
and language modeling.

This work intends to encourage and promote
NLP research for Philippine languages by offering
these task-specific datasets and comprehensive in-
sights into the data collection and processing meth-
ods. By enabling academics and practitioners to
explore and develop in the context of various lan-
guages, these datasets significantly close a gap in
the NLP research environment. The authors aspire
to facilitate the creation of reliable NLP models
and algorithms that can successfully manage the
distinct language characteristics and difficulties of
Tagalog and Cebuano by making high-quality and
contextually rich datasets available.

After presenting an introduction to the existing
datasets in Section 2, Section 3 proceeds to out-
line the dataset curation process employed in the
study. The initial two subsections of Section 3 de-
tail the data collection process, data sources, and
the preprocessing steps applied to the raw data be-
fore creating specialized subsets for various down-
stream NLP tasks. Subsequent subsections provide
a comprehensive explanation of the steps involved
in curating distinct labeled datasets. Additionally,
they offer a comparative analysis between these
newly proposed datasets and the currently avail-
able datasets for each individual downstream NLP
task, allowing for an evaluation of their quality and
suitability. Finally, Section 4 gives an insight to the
labeling process done on the data in this study.

2 Related Works

2.1 Monolingual Open-Source Data

Although monolingual data is readily available and
widely accessible, there are still limitations with
existing datasets such as WikiText-TL (Cruz and
Cheng, 2019), NewsPH-NLI (Cruz et al., 2021),
and the extensive parallel dataset MT560 (Gowda
et al., 2021). While the first two datasets are
valuable for creating language models as they are
sourced from formal entities, they may not ade-
quately capture the colloquial terms and complex
Tagalog expressions used in social media and every-
day contexts. On the other hand, the MT560 dataset
covers a wide range of Philippine languages but

predominantly consists of religious content, which
may not be suitable for certain NLP tasks. These
limitations underscore the need for more diverse
and comprehensive datasets that encompass the in-
tricacies of colloquial language usage and address
the specific requirements of various NLP tasks.

2.2 Labeled Task Specific Data

While there are existing task-specific datasets avail-
able for certain Philippine languages, such as
benchmark datasets for sentiment analysis like the
Fake News dataset (Cruz et al., 2020) and the Hate
Speech dataset (Neil Vicente Cabasag and Cheng,
2019), the availability of benchmark datasets for
other NLP tasks remains limited. In particular,
there is a scarcity of benchmark datasets for essen-
tial tasks like part-of-speech tagging and named
entity recognition (NER). While WikiAnn (Rahimi
et al., 2019) offers a considerable NER dataset, its
main emphasis is on monolingual Tagalog and may
not effectively capture the intricacies of informal
language usage where code-switching between lan-
guages is prevalent.

3 Methodology

3.1 Data Gathering

To create a comprehensive text corpus, a method-
ical data collection technique was used, which in-
cluded a wide range of sources such as government
and media websites, social media platforms, and
online forums. This multifaceted approach made
it possible to collect a wide range of textual infor-
mation, taking into account different genres, styles,
and linguistic nuances.

A variety of scripting tools were used to collect
the data effectively, utilizing their many features
and functionalities. Notably, the data collection
process was automated using tools such Selenium,
BeautifulSoup, and snscrape, among others. With
the help of these tools, it was possible to browse
through many websites, gather pertinent data, and
put together a sizable dataset.

Language Formal Informal
Tagalog 5,159,917 3,057,180
Cebuano 194,001 1,816,735

Table 1: Total Amount of Lines Gathered Per Language

Following the completion of the data gathering
phase, the obtained text data were meticulously

317



Token Regex Code Replacement

emojis
[\U00010000

XX_EMOJI
\U0010ffff]

line beaks, feeds, etc. ([\r\n\t\f\v]+( )*)+ ”.”

URLs that start with http/https
https?:\/\/([\w\- ]+\.)+

XX_URL
([\w \- ]+)+(\/[^\s]+)*

<word>@<word>.<word>
[\SÑñ]+@ ([\SÑñ]

XX_EMAIL
+\.)+[\SÑñ]+

URLs that end with com, net, org, co, us, ph
([\w\- ]+\.)+(com|

XX_URLnet| org | co | us | ph | io)
(\/[^]+)*

Starts with @ @[^\s.,!?]+ XX_USERNAME
Starts with # #[a-zA-ZÑñ0-9_]+ XX_HASHTAG

Table 2: Pre-processing done on the corpus, patterned from the work of Velasco et al. (2022)

divided into two major categories: formal and in-
formal texts. The source of the data and its innate
qualities served as the foundation for this catego-
rization.

Social media posts from prominent personalities
and the government were taken into account as
articles for formal writing. These posts retained a
formal tone appropriate for official communication
channels because they came from reliable sources.
Incorporating this subset of social media content
served the purpose of capturing the subtleties of
formal language usage in a digital setting.

On the other hand, information found through
keyword searches of social media data and online
forums was included in the category of informal
writing. Online communities are renowned for en-
abling casual dialogue and debate, frequently dis-
playing user-generated content and colloquial lan-
guage usage. With the help of these sources, it was
possible to accurately represent the informality and
variety of language idioms that characterize typical
online conversations.

By meticulously categorizing the data into for-
mal and informal subsets, it was ensured that the
dataset had a vast range of text types ranging from
official correspondence to casual internet interac-
tions. Table 1 shows the amount of lines of text
gathered per language.

3.2 Pre-processing

A preprocessing methodology inspired by the work
of Velasco et al. (2022) was used in this study. By
addressing particular components that frequently
appear in online textual information, this strategy
intended to improve the quality and consistency

of the text data. In the preparation phases, spe-
cial tokens were used to substitute emojis, emails,
URLs, and usernames. Sentences containing to-
kens that had less than three tokens were also re-
moved. These special tokens are highlighted in
Table 2.

Additionally, a filtering step was added to the
preprocessing pipeline to get rid of phrases that had
sentences with less than three tokens. The goal of
this phase was to remove very short sentences from
the dataset because they are likely to have little
semantic relevance and might possibly contribute
noise. This criterion was enforced to guarantee that
the final dataset had a greater level of coherence
and significance.

The goal was to improve the text data’s qual-
ity, consistency, and interpretability by using this
methodical and thorough preprocessing methodol-
ogy. This would then allow for more reliable and
accurate downstream NLP analyses and models.

3.3 Sentiment Analysis

The authors utilized Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) – a topic modeling tech-
nique – in constructing the sentiment analysis
dataset. LDA helped identify relevant topics within
the data, ensuring diversity. We randomly selected
9,000 sentences from three LDA-identified sub-
jects.

To enhance dataset quality and granularity, the
GPT 3.5 model was used to classify 500 phrases
as positive, negative, or neutral. Additionally, sen-
tence embeddings were obtained with the help of
sentence transformers in order to capture semantic
nuances.
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The extracted embeddings were used as a feature
in a label propagation method – leveraging Scikit-
learn and a radial basis function kernel – to prop-
agate labeled sentiments to unlabeled data. This
process generated a substantial collection of pre-
dicted sentiment labels which were then manually
validated.

The entire labeling process resulted in a dataset,
which contained two subsets: one with two unbal-
anced sentiment distributions and the other with
a balanced distribution. Details of the labeled
datasets are shown in Table 3.

Dataset Positive Negative Neutral
Balanced 3000 3000 3000

Unbalanced-A 1203 2827 4970
Unbalanced-B 1354 2825 4821

Table 3: Sentiment Analysis Dataset Size

We benchmarked the datasets for sequence clas-
sification using an uncased Tagalog RoBERTa
model fine-tuned over 45 epochs using the trans-
formers library provide by Huggingface. In Table
4, we present the validation and test scores, and we
also include results for a binary classification task
using the HateSpeech dataset (Cruz and Cheng,
2022) for comparison. Despite the differences be-
tween our new dataset and the hate speech dataset
in terms of content, number of labels, and the pres-
ence of code-switching, an interesting observation
emerges. Even when we extend the training epochs
for our dataset, it consistently yields lower scores
compared to training with the hate speech dataset,
which reaches early stopping at 15 epochs. This
discrepancy in training outcomes underscores the
unique challenges and nuances, particularly the
code-switching aspect, inherent in our benchmark
dataset.

Dataset Validation Acc. Test Acc.
Balanced 63.55% 65.33%

Unbalanced-A 75.44% 76.11%
Unbalanced-B 67.5% 68.78%
Hatespeech* 78.07% 99.03%

Table 4: Benchmark scores for sentiment classification
using a fine-tuned RoBERTa Model

3.4 Part-of-Speech Tagging
In crafting the POS(Part-of-Speech) tagger dataset,
the researchers selected initial data points from the

pool of scraped news articles. Sentence tokeniza-
tion follows this process which involves splitting
the articles to individual sentences.

To efficiently handle the annotation process with
limited time and minimal human effort, the re-
searchers adapted by using a model called SMT-
POST (Nocon and Borra, 2016) - a statistical ma-
chine translation approach for POS tagging on the
collection of sentences. This model was selected
as it achieved a higher score at 84.7% compared
to earlier POS token classifiers. In order to select
high-quality data points, the researchers applied a
few filtering mechanisms such as the removal of
five-word sequences or fewer. Overall, there were
3,919 tagged sequences with the MGNN tagset. Ta-
ble 5 shows the word statistics of the tagged chosen
data points.

Category Count
Number of Words 71,444
Vocabulary Size 15,636

Min words per sequence 6
Max words per sequence 26

Table 5: Word Statistics of Part-of-Speech Text Data

The researchers also observed the POS tags’
co-occurrence patterns to demonstrate diversity in
terms of syntactical structure. The dataset exhibited
a total count of 3,868 unique POS patterns, reveal-
ing a wide range of nuances in the collected sen-
tences. To get a clearer observation, they extracted
the trigrams in each sequence and calculated the
frequency distribution of the corresponding POS
tags.

Pattern Count
FW FW FW 2371

NNP NNP NNP 993
NNC CCB NNC 473
DTP NNP NNP 429
CCT NNC CCB 359

Table 6: Frequency Distribution of Top 5 POS Co-
occurrence Pattern

Table 6 shows the top 5 most common POS co-
occurrence indicating prevalent code-switching as
evidenced by the FW tag for foreign words.

The researchers fine-tuned a Tagalog RoBERTa
model as a token classifier using the curated POS
dataset for 30 epochs. Table 7 displays the valida-
tion and test accuracy that achieved a high score of
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Figure 1: Prompt used for Named-Entity Recognition Task

Dataset Validation Acc. Test Acc.
iTANONG-POS 93.10% 92.84%

Table 7: Benchmark scores for Part-of-Speech using a
fine-tuned RoBERTa Model

more than 90%. This findings indicate that the prior
automated labeling process by SMTPOST resulted
to tags with utmost syntactic consistency despite
the nuances caused by code-switching. Addition-
ally, iTanong used real-world Taglish texts from
media compared to existing researches like CRF-
POST(Olivo et al., 2020) that utilized manually
translated Wikipedia texts.

3.5 Named Entity Recognition

The researchers gathered 6,230 data points and
employed the GPT 3.5 model to label named entity
for each word. To ensure consistent tags, IOB2
tagging format was adopted. In this format, the
identified named entity tags are prefixed with B-
where it begins and I- for the subsequent words
that are part of the entity. A word that is not a
named entity is tagged O.

The researchers directed the model with the sys-
tem payload shown in Figure 1.

The model was instructed with two explicit key
points. Firstly, was making contextual inferences
to recognize that word entity type may vary depend-
ing on the context. For instance, the phrases Sinabi
ng Malacañáng and Ginanap sa Malacañáng uses
a common word Malacañáng differently as an or-
ganizational representative body in one case and as
a location of the Philippine President’s office in the
other.

However, formulating a prompt this way causes
GPT 3.5 to reason out after labeling which results
in the excessive generation of tokens. In order to

address this issue, another statement was added
instructing GPT 3.5 not to explain the labels. This
way of prompting helped the researchers circum-
vent their problem and ensured the desired result
from the model.

Classification Count
O 124,623

B-PER 4,350
I-PER 4,518
I-ORG 2,773
B-ORG 2,171
I-LOC 1,654

Table 8: Frequency Distribution of 7 Named Entity Tags
used in iTanong

The researchers ran the model at a low temper-
ature (0.1) to attain a realistic and predictable set
of labels. A total of 143,012 named entities were
identified by the model with 7 unique classifica-
tions. Table 8 shows the distribution of the most
frequent tags produced by GPT 3.5.

The Tagalog RoBERTa model was fine tuned for
30 epochs to investigate whether the iTANONG
NER outperforms WikiAnn in the named entity
classification task. It’s important to note that the
respective test sets for each model were employed,
with the iTANONG model being evaluated on the
iTANONG test set and the WikiAnn model being
assessed on the WikiAnn test set. As depicted in
Table 9, WikiAnn performed better at the task by a
significant amount.

3.6 Pre-Trained Word Embedding Models
Word embeddings have been a game-changing and
groundbreaking force in the field of natural lan-
guage processing (NLP) ever since they were first
used, revolutionizing a variety of tasks within the
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Dataset Validation Acc. Test Acc.
iTANONG-NER 92.63% 91.10%

WikiAnn* 97.25% 97.53%

Table 9: Benchmark scores for Part-of-Speech using a
fine-tuned RoBERTa Model

discipline (Si et al., 2019). These embeddings
function as effective numerical representations of
words, utilizing the power of neural networks to
precisely capture the semantic and grammatical
subtleties of words while encoding their contex-
tual essence into multi-dimensional vectors (Cheng,
2022). This outstanding capability has resulted in
their undeniable superiority in improving perfor-
mance across a wide range of downstream NLP
activities, establishing their position as a remark-
ably dependable method of word representation
(Ravindran and Murthy, 2021).

In this section, the proponents are pleased to
present a set of word embeddings that were de-
veloped using the Formal text dataset from the
renowned corpus which has been thoroughly de-
tailed in previous sections. These unique embed-
dings were created utilizing two well-known and
distinct techniques, namely Word2Vec (Mikolov
et al., 2013) and FastText (Bojanowski et al., 2016).
The proponents systematically constructed both the
continuous bag of words (CBOW) and skip-gram
variants for every technique. Furthermore, each
model is provided in a variety of vector dimen-
sions, ranging from the simple 20 to the intricate
300, allowing for a wide range of representation
options to choose from. Specifically, there are six
different vector sizes to choose from, namely 20,
30, 50, 100, 200, and 300.

The generated models have been saved in both
.bin and .txt formats to enable maximum ease
and accessibility while supporting a variety of ap-
plication scenarios. The combined result of these
efforts is an astonishing ensemble of 24 unique
models, each of which is available in two different
file formats.

3.7 Unlabeled Data & Pre-Trained Language
Models

The authors conducted the pretraining of multiple
BERT-based language models on the remaining un-
labeled data in both Tagalog and Cebuano. Recog-
nizing the necessity of training models from scratch
to effectively capture the linguistic subtleties and

intricacies inherent to these languages, the research
team embarked on this endeavor.

They implemented an 80-20 data split, allocat-
ing the available dataset between training and val-
idation sets, thereby enabling meticulous model
evaluation and ensuring a robust training process.
Despite the existence of Tagalog models, the au-
thors opted for a rigorous training approach on a
comprehensive dataset that encompassed both for-
mal and informal language usage. This deliberate
incorporation of informal language in the training
data was aimed at enhancing the model’s ability
to adeptly address the diverse linguistic variations
encountered in real-world contexts.

In a noteworthy development, the authors pre-
trained a BERT-Cebuano model, which was a
ground-breaking feat. This innovative initiative is,
to the best of their knowledge, the first-ever attempt
to train a BERT-based language model exclusively
for Cebuano. The lack of NLP models designed
specifically for Cebuano, a language with few re-
sources and little research attention, is addressed
by this study’s concentration on Cebuano.

The goal of the work was to build reliable lan-
guage models that could accurately capture the nu-
ances of Tagalog and Cebuano, hence facilitating
subsequent downstream NLP tasks. Results of the
model training can be seen on Table 10.

Model Language Validation Perplexity
BERT Tagalog 8.3493

Cebuano 52.3625
RoBERTa Tagalog 9.4295

Cebuano 52.3799

Table 10: Released Pre-Trained Language Models

4 Analysis of Labeling Process

In terms of data labeling, particularly in the context
of sentiment analysis where a substantial portion
of our labeling process was automated, it’s worth
noting a limitation. On average, approximately
86% of the entire dataset was correctly labeled
through automation – from ChatGPT labeling up
to the label propagation. However, there is room
for improvement in terms of accuracy, especially if
there are plans to expand the dataset with additional
labels in the future. Finding more accurate labeling
methods or refining the existing automation process
could enhance the overall quality of the dataset.

A few challenges were also observed in labelling
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named entities. Firstly, ChatGPT tend to gener-
ate explanations crafted like a user feedback even
though it was explicitly prompted to avoid addi-
tional details. This impediment resulted to some
parsing errors. Then, it produced a lot of redun-
dant tags like B-PER and B-PERSON. In our earlier
attempts, the model produced quite a number of
peculiar tags like B-profanity, B-COLOR, B-RNA
among others. Finally, the researchers decided to
limit the annotation for this iteration into 7 tags,
comprising of three broad entity classes person
(PER), location (LOC) and organization (ORG).
The researchers are dedicated to refine the dataset
in the next iterations of iTanong-DS from manu-
ally scrutinizing the labels to effectively utilizing
emerging tools for a semi-automated annotation
process.

5 Conclusion

In this paper, the authors present iTANONG-DS,
an extensive collection of unlabeled and labeled
datasets that have been carefully curated to cater
to a wide range of Natural Language Processing
(NLP) applications. Specifically, these datasets are
designed to facilitate tasks such as sentiment anal-
ysis, part-of-speech tagging, named entity recogni-
tion, and language modeling for Tagalog and Ce-
buano languages. Alongside the datasets, they have
developed pretrained embeddings and language
models specifically tailored to these languages,
thereby establishing a strong foundation for NLP
research and enabling advancements in Philippine
language processing.

In conclusion, iTANONG-DS, along with its
accompanying pretrained embeddings and lan-
guage models, serves as a valuable resource for
researchers and practitioners working in the field
of Philippine language processing. By providing
comprehensive datasets, robust machine learning
techniques, and specialized models, this work aims
to foster advancements in sentiment analysis, part-
of-speech tagging, named entity recognition, and
language modeling for Tagalog and Cebuano. It is
the hope that the availability of iTANONG-DS will
stimulate further research and innovation in NLP
for Philippine languages, contributing to the de-
velopment of sophisticated language technologies
and applications tailored to the unique linguistic
characteristics of these languages.

Limitations

In the dataset presented in this paper, the tags for
sentiment analysis are currently limited to three,
and for Named Entity Recognition (NER), there
are seven tags. However, there is room for ex-
pansion in terms of the number of possible labels.
For sentiment analysis, this would involve adding
more emotional categories beyond the current three,
while for NER, it entails introducing more specific
labels. Concurrently, the plan is to increase the
number of labeled sentences within this dataset to
enhance its comprehensiveness and applicability.

Additionally, it’s worth noting that although
there is a substantial amount of unlabeled Cebuano
dataset, curation of task specific datasets was im-
possible due to the lack of native Cebuano speakers
in the team. Also note that the pre-trained lan-
guage models may lack capability when dealing
with long sequences since the majority of the data
used to train the models were taken from social
media posts where sequence lengths are limited.

In this paper, the authors also released a collec-
tion of pre-trained word embeddings. However,
these are only in the word2vec and fasttext formats.
GloVE embeddings were not included in the col-
lection.
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Abstract

In this work, we present EASE, a simple but de-
pendable Data Augmentation (DA) technique
for Text Classification (TC) that has four easy
steps: Extract Units, Acquire Labels, Sift and
Employ. We extract meaningful units as aug-
mented samples from original data samples and
use powerful tools to acquire labels for them
before they are sifted and merged. Previous DA
techniques, like EDA-Easy DA (Wei and Zou,
2019) and AEDA-An Easier DA (Karimi et al.,
2021), excel with sequential, RNN-based mod-
els but struggle with BERT (Devlin et al., 2019)
and other transformer-based models that heav-
ily rely on token order. EASE, in contrast, per-
forms well with these models, demonstrating
stability, speed, and minimal adverse effects.
We tested our intuitive method on multiple chal-
lenging datasets sensitive to augmentation, and
experimental results have indicated the efficacy
of DA with EASE.

1 Introduction

DA is a fairly common technique in Machine Learn-
ing, especially in Computer Vision and Speech
Recognition, and there are many standard ways of
doing it. For example, simply flipping or rotating
an image and labeling it the same as the original
sample is quite logical. While these techniques
do involve elements of randomness, they can still
be regarded as logically labeled samples, distinct
from random noise. This distinction is essential
for enhancing the interpretability of complex deep
learning models, a challenge often encountered
in several notable NLP DA techniques, including
EDA (Wei and Zou, 2019) and AEDA (Karimi
et al., 2021), among others.

In EDA (Wei and Zou, 2019), four random op-
erations—Random Synonym Replacement, Ran-
dom Insertion, Random Swap, and Random Dele-
tion—are employed. These operations, when ap-
plied even moderately, can significantly alter the
original text’s meaning in text classification. A

Figure 1: Averaged accuracy accross all datasets and
models used in the low-resource experiments.

.

single token replacement, for instance, can reverse
the sentiment of a sentence. Similarly, In AEDA
(Karimi et al., 2021), random punctuation marks
like question marks and periods are inserted into
samples, radically altering sentence structure and
causing confusion in the training model. Despite
their proven effectiveness in ideal situations, these
techniques often hinder performance. Particularly
in the era of Transformers (Vaswani et al., 2017),
where positional encodings are crucial and depend
on token order, random rearrangement disrupts the
models’ contextual understanding. Hence, the de-
mand for a DA method that accounts for this critical
aspect became apparent.

The rise of large language models, such as BERT-
base (110M parameters), necessitates a DA (DA)
technique that avoids substantial expansion of the
training set and the associated increase in train-
ing time. Notably, EDA and AEDA suggest a
substantial 9-10 times dataset size augmentation,
significantly impacting fine-tuning duration. Fur-
thermore, transformer-based models have eclipsed
RNN-based models, rendering experiments with
EDA or AEDA on the latter obsolete. These mod-
els’ potent bidirectional contextual representations
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demand robust DA methods and more challenging
datasets. Given the substantial resources needed
for fine-tuning, a reliable DA approach that min-
imizes hyper-parameter search and ensures favor-
able outcomes is essential. Additionally, previous
complexities attributed to resource constraints, like
GPUs and user-friendly frameworks, are no longer
valid arguments, enabling the seamless application
of intricate processes to crucial tasks such as DA.

We developed a 4-step technique for text clas-
sification data augmentation that is time-efficient,
stable, intuitive and outperforms existing DA meth-
ods. Our experiments with five transformer-based
models and four datasets validate our approach,
showcasing its superior performance and reliability
(Figure 1 and 2).

2 Relevant Studies

In NLP, DA can be challenging due to the contex-
tual nature of the data. Preserving relative word
positions is crucial for contextual text embedding,
but many existing DA techniques disrupt coherence
by introducing random synonyms, punctuations, or
altering token order. Regarding ground truth, re-
search falls into two categories: one conserves the
original ground truth, while the other generates
ground truth based on the augmented sample, with
subsequent studies aligning with one of these ap-
proaches.

Fadaee et al. (2017) introduced Translation DA
for Neural Machine Translation (NMT) by re-
placing common words with unique words in
both source and target sentences. Sennrich et al.
(2016) used automatic translation of additional
monolingual data for NMT augmentation. Back-
translation techniques, as employed by Silfverberg
et al. (2017) and Yu et al. (2018), aimed to capture
paraphrases for various NLP settings. In addition
to EDA (Wei and Zou, 2019), other studies focused
on synonym replacements (e.g., Wang and Yang,
2015; Kolomiyets et al., 2011; Zhang et al., 2015).
Kobayashi (2018) replaced words with predicted
words from BERT, while Andreas (2020) replaced
sentence segments with similar contextual counter-
parts. Sun et al. (2020) used transformers to inter-
polate input sequences for generating new samples
and labels. Additionally, Karimi et al. (2021) com-
pared their work with Xie et al. (2017), viewing
it as a data-noising approach to enhance training
architectures in NLP.

Many of these approaches, such as AEDA

(Karimi et al., 2021) and the work by Xie et al.
(2017), often resemble data-noising methods rather
than true DA, lacking coherent sentence structures
in augmented samples. This falls short of achiev-
ing the clarity and human interpretability found in
computer vision’s approach. To address this, our
method extracts coherent, meaningful units from
samples, leading to logical samples that surpass ex-
isting techniques that disrupt token orders. While
most of our experiments focus on text classification
due to space constraints, our approach is adaptable
to various NLP tasks and holds the potential to
become an industry standard.

Figure 2: EASE has significantly fewer negative-
impacts on performance with different hyper-parameters
compared to EDA & AEDA

.

3 EASE

DA with EASE has 4 easy steps that are intuitive
and effective.

Extracting Units: In EASE, the most critical
step involves extracting meaningful units as aug-
mented samples. The choice of unit depends on the
sample structure. For paragraphs, we recommend
extracting sentences using the NLTK library (Bird
et al., 2009). When dealing with sentences, we sug-
gest extracting "Facts" as introduced by Yuan et al.
(2020). These Facts represent coherent sentence
units containing logical information. They also pre-
serve token sequences crucial for attention mecha-
nisms in Transformer-based models. For detailed
information on extracting facts from sentences, we
refer readers to Yuan et al. (2020).

Label Acquisition: In the subsequent EASE
step, labels are obtained using pretrained models.
The extracted meaningful token sequences make it
straightforward for pretrained models to generate
high-quality labels without the need for additional
training. For our experiments, we employed the
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Dataset Method Accuracy

Large Movie
Review
Dataset

Original 86.94%
EDA 86.72%

AEDA 86.5%
EASE 87.64%

Sentiment
140

Original 58.67%
EDA 57.93%

AEDA 58.23%
EASE 60.20%

Financial
Phrase Bank

Original 84.50%
EDA 85.20%

AEDA 84.72%
EASE 85.10%

Customer
Review

Original 88.55%
EDA 88.54%

AEDA 88.32%
EASE 89.10%

Table 1: Comparing EASE, EDA, AEDA for four dif-
ferent datasets in low-resource scenarios by varying the
number of augmented samples from small to full size.
For Customer Review, the numbers represent average
accuracy over three different training subsets with one
model, for the other datasets the average is taken over 5
different models and augmentation size variations (Com-
plete detail available in Appendix D). Bold suggests the
best performance across each column for each dataset.

Dataset Method Accuracy

Large Movie
Review
Dataset

Original 53.37%
EDA 56.02%

AEDA 53.08%
EASE 67.82%

Sentiment
140

Original 44.15%
EDA 44.91%

AEDA 45.69%
EASE 46.00%

Financial
Phrase Bank

Original 55.12%
EDA 55.35%

AEDA 55.89%
EASE 56.22%

Table 2: Comparison among EASE, EDA, AEDA for
three different datasets in extremely low-resource sce-
narios (only 10 training samples). The performances
represent the average over 5 different models (Complete
detail available in Appendix D). Bold suggests the best
performance across each column for each dataset, and
parentheses suggest a negative impact on performance)

default pretrained DistilBERT model (fine-tuned
on the SST-2 dataset (Socher et al., 2013)) from the
HuggingFace library (Wolf et al., 2020) for label
generation. In the results section, we present abla-
tion studies to highlight the significance of this step.
Nevertheless, it is worth noting that our method can
yield promising results even without the label ac-
quisition process.

Sift & Employ : In the "Sift" step, we recom-
mend filtering out smaller-length samples. In our
experiments, we retained 10%, 25%, 50%, or 100%
of the augmented samples, but it rarely adversely af-
fects performance. This optional step underscores
the stability of our method, which is not a random
noise injector but a DA technique that complements
original training samples. Subsequently, in the
"Employ" step, the augmented samples are seam-
lessly integrated with the original ones completing
the final training set.

4 Experimental Setup

We view EDA & AEDA to be the most relevant to
our study and showcase performance comparisons
for these two methods. Fine-tuning for transform-
ers is usually performed for 5-15 epochs, and from
all our experiments, we observe that max valida-
tion accuracy is reached before the 30th epoch for
these models, but we still performed all the fine-
tuning for up to 50 epochs for completeness (More
detail on performance saturation in Appendix B).
The compared methods differ in augmentation pro-
cesses: they generate a fixed number of augmented
samples per original sample (recommended from 1
to 16), while our approach adapts to sample struc-
ture. On average, Fact extraction increases the
training dataset by 2.3 times, and sentence extrac-
tion by 5.92 times.

4.1 Datasets and Models

For our experiments we used four different senti-
ment classification datasets. Large Movie Review
Dataset (IMDB50K or IMDB) (Maas et al., 2011),
Financial Phrasebank (Malo et al., 2014), Customer
Review (Hu and Liu, 2004), and Sentiment 140
(Go et al., 2009). We used five different models
for our experiments. These are, Bert-base-cased,
Bert-base-uncased (Devlin et al., 2019), Distilbert-
base-cased, Distilbert-base-uncased (Sanh et al.,
2019) and Albert-base-v1 (Lan et al., 2020). We
used Huggingface’s (Wolf et al., 2020) implementa-
tion of these models, a popular Transformer library.
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5 Results

5.1 Low-Resource Setting
The original datasets, comprising high number
of samples (e.g., 25,000 for IMDB50K, 1.6 Mil-
lion for Sentiment 140), is adequate for high-
performing models like Transformers. To simulate
a low-resource scenario, we use only a small sub-
set (e.g., 1000 for Sentiment 140) of the original
training sets for data augmentation and generate
significantly lower amount of augmented samples
compared to EDA & AEDA. (DA) (Details in Ap-
pendix D).

In the Sentiment 140 dataset, we have observed
that EASE derives benefits from generating aug-
mented samples for the Neutral class, a class that is
absent in the original training set but exists in the
test set. This stands in contrast to EDA and AEDA.
Additionally, EASE demonstrates superior stability
and performance.

We observe higher accuracy gain and fewer neg-
ative impacts with EASE on average across the
board (table 1 & figure 2). Even though, on av-
erage, the accuracy gain seems to be higher for
EDA, we see the highest accuracy gain of 3.2% in
bert-base-cased and fewer negative-impacts with
our method for Financial Phrase Bank (Complete
table in Appendix D).

Although this study focuses on low-resource sce-
narios, we still show that our method has promise
in high-resource scenarios. Tests on the CR dataset
using different portions of the original dataset (500,
2000, and Full) shows that even with the com-
plete dataset, our method outperforms the two other
methods, with approximately 10-16x fewer num-
ber of augmented samples required (table 1, see
Appendix fig. 5 for details).

On an average, we see the best accuracy improve-
ment in 3 out of the 4 datasets with EASE (figure
3). While the other two methods fail to achieve
performance boost on an average on 3 out of the
4 datasets, EASE steadily increases performance
across all the four different datasets, speaking to
the robust nature of our method.

5.2 Extremely Low-Resource Setting
We test the robustness of our method by simulating
extremely low-resource scenarios where only 10
training samples are available for fine-tuning and
therefore, augmentation. Table 2 demonstrates that
even in extremely low-resource setting our method
outperforms the other two methods.

Figure 3: Average accuracy increase over different
datasets. EASE showing greater number of and more
stable accuracy improvement compared to EDA &
AEDA

.

6 Ablation Study

EASE EASE-A
Avg. Acc. Gain 1.12% -0.50%

Neg. Impact 16% 60%
Pos. Impact 84% 40%

Table 3: Average Performance of EASE vs EASE with-
out Acquiring labels on IMDB50K & S140

As an ablation study, we try to measure how
important acquiring new labels for the augmented
samples is. We use IMDB50K & S140 dataset
and test our method by preserving labels. We use
the same augmented and original dataset partitions
used in typical experiments. The details are summa-
rized in table 3. See Appendix table 8 for details.

7 Conclusion

We introduced an efficient DA technique for TC
that improves accuracy without significantly ex-
tending training time. Our method outperforms
AEDA & EDA in performance, stability, and effi-
ciency. While currently tailored for TC, we envi-
sion its adaptation to various NLP tasks with mini-
mal modifications. For instance, equivalent units
can be derived from larger samples for Machine
Translation using the same technique as EASE to
feed the model augmented samples that provide a
more nuanced and granular understanding of the
training text. Future work will explore additional
extraction units and label acquisition methods.
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A Example Augmentations

Table 4 shows two different kinds of augmentated
samples with EASE.

Data Text Label
Fact Extraction

Orig. The monitor is simply amaz-
ing, however, it does not sup-
port HDMI input

pos

Aug. 1 The monitor is simply amaz-
ing, however,

pos

Aug. 2 it does not support HDMI in-
put

neg

Sentence Extraction
Orig. Actually I’m surprised there

were so many comments
about this movie. I saw it as
part of a Slavic film festival at
a major American University.
But nobody in USA has heard
of it, which is a real shame!

pos

Aug. 1 Actually I’m surprised there
were so many comments
about this movie.

pos

Aug. 2 I saw it as part of a Slavic film
festival at a major American
University.

pos

Aug. 3 But nobody in USA has heard
of it, which is a real shame!

neg

Table 4: Original sentence and the augmented samples
generated and labelled through EASE using Fact or
Sentence Extraction.

Figure 4: Performance Saturation after 30 epochs for
the unaugmented IMDB50K dataset with 500 samples
over different models

.

B Performance Saturation

Since the transformer models are already pretrained
on unlabelled data, very little amount of fine-tuning
is required to gain good task-oriented performance
from them. It also must be noted that because of
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Original EASE EDA AEDA
Train Test Small Med Full Small Med Full Small Med Full

CR 500 451 56 282 564 500 2500 4500 500 4000 8000
CR 2000 451 216 1083 2167 2000 10000 18000 2000 8000 32000
CR 4067 451 443 2217 4434 4067 20335 36603 4067 32536 65072
IMDB 500 25000 1000 - 5962 500 - 4500 500 - 4000
FinPB 1000 485 123 - 1235 1000 - 8000 1000 - 9000
S140 1000 497 111 559 1118 1000 5000 9000 1000 4000 8000

Table 5: Number of augmentations used in each experiments for each dataset and each method

the large size of the Transformer based models,
even fine-tuning for 50 epochs on multiple GPUs
using distributed strategies requires a long time.
We discuss more about this in the subsequent sec-
tion. In all our experiments, we have observed
that the validation accuracy in most scenarios sat-
urates after the 30th epoch. In figure 4 we show
how fine-tuning for more than 30 epochs is not
required. Nevertheless, we still performed all our
experiments for 50 epochs for completeness.

Figure 5: Performance comparison on CR dataset on
different training set size using bert-base-cased

.

C Discussion on Training Time

While GPUs are more accessible and distributed
training with tools like PyTorch Lightning (Fal-
con, 2019) has simplified, neural network mod-
els are growing larger to balance it out. Trans-
former models are notorious for taking a massive

amount of time for training. To put things into per-
spective, fine-tuning the Bert-base-cased model for
50 epochs with AEDA-full-augmented IMDB50K
dataset (4500 training samples & 25000 testing
samples) with 2 Nvidia Tesla P100 GPUs (Each
with 16GB Memory) required 12.6 Hours and
AEDA-full-augmented Customer Review dataset
(65,072 training samples and 451 testing samples)
required 26.3 hours. Naturally, searching hyper-
parameter (number of augmentation) to figure out
the optimal augmented dataset that boosts perfor-
mance is a non-trivial factor to consider while
choosing the data augmentation method. For the
Customer Review dataset, it took more than 2 days
of training to get the results for the different num-
ber of augmentation samples, while our method
took only 3.4 hours of training. After exploring
this vast search space, our method boosted perfor-
mance 8 out of 9 times, whereas AEDA boosted
performance 3 out of 9 times (average performance
gain is also in the negative for AEDA). In a low-
training-resource scenario, the amount of DA is
essential, so a dependable method is required. For
these reasons, although our method outperforms
EDA & AEDA, we also want to focus on the time-
efficient and stable nature of our method.

D Training Set Size and Performance
Details

To simulate low-resource settings, small subsets of
original training sets were used. Table 5 presents
these numbers for each dataset. Model-wise per-
formances are laid out in table 6 for low-resource
experiments, in table 7 for extremely-low resource
experiments, and in table 8 for the ablation study of
label preservation. Customer Review dataset were
partitioned into 3 different sets and the accuracy
comparisons are showcased in figure 5.
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bert-base-
cased

bert-base-
uncased

distilbert-
base-cased

distilbert-
base-uncased

albert-base-
v1

Large Movie Review Dataset
Original 86.92% 89.20% 85.36% 88.38% 84.86%
+EDA-small 87.04% (88.58%) (85.03%) (86.84%) 85.17%
+EDA-full 87.26% (88.22%) (85.26%) (87.63%) 86.59%
+AEDA-small 87.31% (88.98%) (84.62%) (87.37%) 85.59%
+AEDA-full (85.83%) (88.26%) (84.98%) (86.50%) 85.52%
+EASE-small 87.74% 89.40% 85.47% (87.72%) 86.46%
+EASE-full 88.01% 89.60% 86.80% (87.72%) 87.50%

Sentiment 140
Original 60.36% 60.56% 59.15% 57.75% 55.53%
+EDA-small 60.56% 61.77% 59.15% 57.95% 56.14%
+EDA-medium (58.35)% (58.95%) (57.34%) 58.15% (54.12%)
+EDA-full (57.75)% (58.55%) (57.95%) (57.55%) (54.73%)
+AEDA-small (58.95)% (60.36%) (58.55%) 58.55% 56.14%
+AEDA-medium (59.96)% (60.36%) (58.35%) (56.94%) 56.74%
+AEDA-full (58.15)% (59.96%) (56.34%) 57.75% 56.34%
+EASE-small (59.76)% 63.18% (58.75%) 58.55% 57.75%
+EASE-medium 60.97% 62.17% 59.96% 60.36% 57.95%
+EASE-full 62.98% 62.37% 59.96% 61.97% 56.34%

Financial Phrase Bank
Original 84.12% 87.01% 83.71% 84.33% 83.30%
+EDA-small 85.36% (86.80%) 84.33% 85.77% 84.12%
+EDA-full 84.95% 87.01% 85.98% 85.77% (81.86%)
+AEDA-small 86.80% (84.95%) (83.30%) 84.33% (83.09%)
+AEDA-full (84.74%) 87.84% (83.09%) 85.36% 83.71%
+EASE-small 87.22% (84.74%) 83.92% 84.54% 83.92%
+EASE-full 86.19% 87.63% 84.54% 84.95% 83.30%

Table 6: Comparing EASE, EDA, AEDA for the IMDB50K, S140 & FinPB datasets in low-resource scenarios by
varying the number of augmented samples from small to full size. Bold suggests best performance across each
column for each dataset, and parentheses suggest negative-impact on performance
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bert-base-cased bert-base-
uncased

distilbert-base-
cased

distilbert-base-
uncased

albert-base-v1

Large Movie Review Dataset
Original 51.85% 54.19% 52.36% 55.97% 52.49%
EDA 54.75% 58.67% 54.41% 61.92% 50.36%
AEDA (51.52%) (53.18%) 52.72% 56.11% (51.91%)
EASE 64.18% 74.85% 69.27% 72.16% 58.66%

Sentiment 140
Original 40.24% 60.00% 40.44% 40.04% 40.04%
EDA (37.22%) 60.00% 45.67% (37.83%) 43.86%
AEDA (37.63%) 60.62% 45.88% (39.64%) 44.67%
EASE 40.44% (59.79%) 46.88% 41.05% 41.85%

Financial Phrase Bank
Original 59.38% 36.61% 59.38% 60.83% 59.38%
EDA 59.38% 38.83% 59.38% 61.03% (58.14)%
AEDA 59.38% 39.64% 59.38% 61.65% (59.18)%
EASE 59.38% 38.63% 61.86% 61.86% 59.38%

Table 7: Comparing EASE, EDA, AEDA for the IMDB50K, S140 & FinPB datasets in extremely low-resource
scenarios (10 Samples) over 5 different models. Bold suggests best performance across each column for each
dataset, and parentheses suggest negative-impact on performance

bert-base-
cased

bert-base-
uncased

distilbert-
base-cased

distilbert-
base-uncased

albert-base-
v1

Large Movie Review Dataset
Original 86.92% 89.20% 85.36% 88.38% 84.86%
+EASE-small 87.74% 89.40% 85.47% (87.72%) 86.46%
-A (86.48%) (88.93%) (84.30%) (87.16%) 86.02%
+EASE-full 88.01% 89.60% 86.80% (87.72%) 87.50%
-A 87.13% 89.21% 85.41% (87.36%) 86.01%

Sentiment 140
Original 60.36% 60.56% 59.15% 57.75% 55.53%
+EASE-small (59.76)% 63.18% (58.75%) 58.55% 57.75%
-A (58.75%) 60.56% 59.36% 59.36% (54.53%)
+EASE-medium 60.97% 62.17% 59.96% 60.36% 57.95%
-A (58.35)% 60.76% (58.15%) 58.15% (53.52%)
+EASE-full 62.98% 62.37% 59.96% 61.97% 56.34%
-A (58.95)% (59.15%) (55.73%) (56.94%) (54.93%)

Table 8: EASE’s performance after preserving labels (EASE vs EASE-A). Bold suggests the best performance
across each column of each dataset, and parentheses suggest a negative impact on performance.
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Abstract 

This article aims to enhance Arabic 
WordNet (AWN) by exploiting the current 
version of the Princeton WordNet (PWN) 
and Deep Learning (DL) techniques, 
known for their effectiveness in machine 
translation. We aim to improve the 
coverage and quality of AWN by adding 
new Synsets, integrating definitions and 
examples, and validating semantic 
relationships. The contribution can be 
summarized in three aspects: (1) utilizing 
multiple translation systems to translate 
PWN resources and web-extracted data 
into Arabic; (2) employing Transformers, 
a highly effective deep learning technique, 
to refine the outcomes from the first step; 
and (3) developing a web portal that 
enables users to visualize proposed 
updates and facilitates validation by 
human experts. The results from the 
evaluation of a random sample of 1,000 
Synsets taken from the candidate pool for 
enrichment are highly promising, with a 
manual validation accuracy of 75.4%. 
With such a validation accuracy, the 
potential would be to get almost 68,000 
Synsets correct out of the 90,127 
candidates produced by our approach. 

1 Introduction 

In most of Natural Language Processing 
applications, the effective handling of semantics 
relies heavily on the presence of lexical-semantic 
resources. Among these, WordNets stand out as 
crucial ones. They can be used in tasks like text 
classification, information retrieval, and semantic 
analysis (Morato et al., 2004). WordNets are 
lexical databases that organize language words 
based on their meanings. These databases are built 
on a foundational structure known as the WordNet 

backbone, which encompasses a hierarchical 
arrangement of conceptual categories referred to 
as a taxonomy. Each of these concepts is 
represented by a set of lemmas (words) that share 
identical meanings, forming what is known as a 
Synset. This framework essentially forms a 
semantic network where words are connected to 
their corresponding concepts. 

The challenge lies in constructing these 
valuable databases. Although the initial WordNet, 
known as the Princeton WordNet (Fellbaum,  
1998), was meticulously constructed for the 
English language by linguistics experts and 
established itself as a standard reference, many 
other languages lack the resources required to 
create comparably comprehensive WordNets for 
various applications. The manual construction and 
expansion of these WordNets are laborious and 
resource-intensive tasks. Thus, researchers are 
striving to devise methods to automate these 
processes and minimize human involvement. 

Our work is primarily based on leveraging 
PWN, because of its substantial size and extensive 
coverage, in the enrichment of the AWN. Initially, 
our approach involves gathering all the grouping 
lemmas (names) of Synsets along with their 
existing definitions from PWN. Subsequently, we 
translated them from English to Arabic using 
multiple translation engines. To further enrich 
AWN, recognizing that a majority of PWN 
Synsets lack examples, we have devised a method 
to extract a set of relevant examples for each 
Synset from the web, based on its context. By so 
doing, we have constructed potential Arabic 
Synsets, maintaining the same relationships 
present in PWN. We have obviously taken care of 
preserving the same hierarchical structure as well 
as the mapping from PWN. Once these candidate 
Synsets are generated, a validation process 
becomes crucial. This step involves manual 
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validation by human experts through a web-based 
validation portal. Finally, we have extracted the 
outcomes of the validation step and compiled the 
newly enriched AWN by incorporating the 
validated candidate Synsets. 

2 Related work 

AWN is in a constant state of evolution and 
expansion, with numerous research efforts aimed 
at enriching and improving it since its inception in 
2006 (Black, et al., 2006).  

The initial attempt to enhance AWN was 
conducted by Alkhalifa and Rodríguez (2018). 
This work involved utilizing the Wikipedia 
encyclopedia for the automatic extraction of 
Arabic named entities that had English 
equivalents in PWN. Boudabous et al (2013) 
proposed a linguistic method based on two 
phases. The first one defines morpho-lexical 
patterns using a corpus developed from Arabic 
Wikipedia. The second phase uses patterns to 
extract new semantic relations from AWN 
entities. Abouenour et al. (2016) presented an 
enrichment of AWN targeting three types of 
content required by Arabic Q-A systems: (1) 
enrichment of instances or named entities; (2) 
enrichment of verbs and nouns by extending the 
list of verb senses and refining the hyponymy 
relationship between AWN noun Synsets; and (3) 
enrichment of broken (i.e. irregular) plurals, a 
class of plural forms that is widely used and 
precisely defined in Arabic. Hadj Ameur et al. 
(2017) proposed an automated approach to enrich 
WordNets sharing the same structural framework 
as PWN and whose existing Synsets (concepts) 
are mapped onto the PWN concepts. The authors 
employed resource-based methods, including 
dictionaries and ontologies, along with corpus-
based methods to extract unambiguous Arabic 
lemmas and lexical relations. Subsequently, they 
translated the lemmas into English and paired 
them with their corresponding PWN lemmas, 
generating a set of candidate Synsets. Each 
candidate was assigned a score using a set of 
features, and these feature parameters were 
optimized using a suitable metaheuristic. Finally, 
vocalization and usage examples were provided 
for each candidate and added to AWN. Batita and 
Zrigui (2018) focused on enriching antonymy 
relationships in AWN. Lam et al. (2014) proposed 
approaches for generating WordNet Synsets for 
both resource-rich and resource-poor languages, 

using publicly available WordNets, an automatic 
translator and/or a single bilingual dictionary. Al 
Tarouti and Kalita (2016) introduced a novel 
enrichment approach to enhance the conventional 
translation approach by utilizing word 
vectorization (Word Embeddings). This approach 
involves constructing an initial WordNet in the 
target language T and enriching it using the 
approach presented in (Lam et al. 2014). 
Subsequently, using the Word2vec algorithm, the 
authors generated word vectors from an existing 
corpus. These vectors were then used to filter 
words that belong to each generated Synset, 
retaining only word pairs with the highest cosine 
similarity. Utilizing the same similarity measure 
and existing WordNets such as PWN, a similarity 
threshold was computed between pairs of 
synonymous words and semantically related 
words. This threshold was then used to validate 
candidate Synsets. Batita and Zrigui (2019) 
provide a case study on the updates of AWN and 
the development of its contents, focusing on the 
relations that have been added to the extended 
version.  

3 Design 

In this section, we will explore the intricacies of 
the approach we have designed to enhance AWN. 
The process involves several key stages, 
beginning with the alignment of English and 
Arabic WordNets and progressing through the 
extraction of essential elements, including 
definitions, examples and the translation of words. 
Ultimately, we will elucidate the final step in this 
process: the integration of these enriched elements 
into AWN. 

3.1 Alignment with PWN 

In order to enrich AWN, we will adopt an 
alignment-based approach with the Princeton 
WordNet, which contains the most extensive set 
of Synsets among all WordNets, with a total of 
117,659 Synsets, compared to the 11,269 Synsets 
of AWN. We establish selection criteria for words 
extracted from PWN. An English word will be 
considered a candidate for enrichment if it lacks a 
corresponding translation in Arabic within AWN, 
as illustrated in Figure 1. In this way we will have 
obtained a new, reduced subset of PWN which 
contains only the Synsets that will be considered 
in the AWN enrichment operation.  
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 Figure 1: PWN-AWN alignment schema  

3.2 Extraction of definitions 

Definitions contextualize the word by placing it 
within its semantic context. We leveraged 
definitions in our enrichment approach to more 
accurately determine the meaning of translated 
words and eliminate any possible ambiguity. This 
step in our approach involves gathering 
definitions of words from each Synset that will be 

integrated into AWN. To accomplish this, we 
needed a lexical resource that would allow us to 
collect data automatically. However, we did not 
find such a resource for the Arabic language. To 
address this challenge, we decided to use the 
definitions already present in PWN and directly 
translate them into Arabic. We followed the steps 
illustrated in Figure 2 and described below it. 

 

Figure 2:  Extraction of definitions 

1) We proceeded by retrieving, for each 
Synset in PWN, its English definition. Then we 
translated this into Arabic using various 
translation systems, including Google Translator, 
Reverso, and our custom translation model 
developed using the Transformer MT5. 

2) Additionally, we extracted other 
definitions from Wikidata. However, after 
manually analyzing some of these definitions, we 
observed that the majority of them lacked 

precision in terms of the original context of the 
Synset. Nevertheless, we opted to retain them as 
candidate definitions, with the intention of getting 
them through automated evaluation at a later 
stage. 

3) Following the compilation of lists of 
candidate definitions, we employed the Back-
And-Forth Translation logic to compare the 
translated definitions with the original definitions 
and evaluate their similarities to determine the 
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most effective translation system among the 
aforementioned three.  

4) To assess the similarity while considering 
the context of the definitions, we utilized the 
BERT language model to extract Word 
Embeddings and calculate cosine similarity 
between the translations of the definitions and 
their originals.  

5) By comparing the original definitions 
with the translated candidate definitions, we 
selected the translation that maximized the 
similarity. This way we made sure that the 
translated definitions are as close as possible to 

the original definitions, while preserving context 
and meaning.  

6) Finally, we generated a list of candidate 
definitions that provides a range of translated 
definitions tailored to context, accurately 
representing the meanings of the Synsets. 

3.3 Word Translation 

To generate the list of Arabic words translated 
from the names of English Synsets, we followed 
the same steps as those applied for the extraction 
of definitions (see Figure 3): 

 

Figure 3:  Schema representing the process followed to translate and select words 

The steps followed for the translation of words 
are described as follows: 

1) First, we extracted words from the names 
of the Synsets available in PWN. 

2) Similar to the approach used for 
definitions, we found it preferable to utilize a 
variety of translation tools such as Google 
Translate and Reverso Translate to obtain multiple 
candidate translations for each Synset. This was 
necessary because these translators do not 
consider the context of the word during 
translation.  

3) After obtaining the translations of each 
word from the PWN Synsets, we evaluated their 
similarities with the translated Arabic definitions 
using the AraBERT model and the cosine 
similarity measure. This step enabled us to retain 
only the candidate word translations that exhibited 
maximum contextual similarity. 

4) Finally, we generated a list of translated 
words by selecting the best candidates that 
correspond to the different meanings and contexts 
of the Synsets.   

3.4 Extraction of Examples 

Examples are highly valuable in WordNets as they 
provide concrete illustrations of word usages, 
associated senses, and the context in which a 
word would appear. To maximize the number of 
examples for each Synset, we followed the steps 
outlined below, as illustrated in Figure 5. 

We utilized Web Scraping techniques to extract 
relevant data from the Reverso website, which 
provides examples covering various contexts and 
uses for most words in the Arabic language. The 
extracted data were saved in a text file to be used 
in the following steps. However, we found that 
not all the extracted examples were correct, i.e. 
some of them contained Latin characters or were 
simply in English. Therefore, a preprocessing was 
performed to eliminate these incorrect examples 
using a model we trained by fine-tuning the 
AraBERT model.  

After generating the final list of examples for 
each Synset, we evaluated the similarity of each 
example with the previously chosen Arabic 
definition in the first step using the AraBERT 
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model. Hence, by selecting examples that 
exhibited maximum similarity with the Arabic 
definition, we ensured that we chose an example 
closely aligned with the specific meaning and 
context of the Synset. 

3.5 Validation Module 

After generating a final list of candidates for each 
Synset (its translation, definition, and a list of 
contextual examples), this list was submitted to a 
web validation platform. This platform enables 
human experts to manually review each Synset. 
Experts could confirm the accuracy of the models 
used, identify potential errors or inconsistencies in 
the proposed Synsets, and make corrections. 

3.6 Insertion into AWN 

The final phase of our approach will focus in the 
future on generating the XML file containing the 
newly validated Synsets for integration into the 
current version of AWN, which is available on the 
GlobalWordNet portal. 

We are optimistic about the acceptance of the 
vast majority of the generated Synsets since the 
validation platform will allow human experts to 
correct any potential errors that may be detected 
in terms of translation or inappropriate examples 
or definitions for a given Synset word. We expect 
that the number of retained words after filtering 
may be reduced in cases where the translation of 
the word and/or definition is rejected. If the 
semantic relations of a translated Synset are 
validated, we will include them in the XML file 
while maintaining the same hierarchical structure 
as that of PWN. However, if any semantic relation 
is not valid, we will add it as an independent 
Synset, meaning that it will not be linked to other 
Synsets in the hierarchy of the newly enriched 
AWN. 

4 Experiment 

This section covers the technical aspects related to 
the development of our approach, including the 
tools used. It also provides illustrations of each 
step of our approach. Finally, it will present a 
summary of the results obtained, along with an 
analysis and discussion. 

4.1 Results of word extraction 

To accomplish this task, we have made use of the 
WordNet library from the nltk.corpus package. 

We employed the wordnet.all_synsets () function, 
which returns a list containing all 117,659 Synsets 
from PWN 3.0. Subsequently, for each Synset, we 
retrieved its identifier using the synset.name () 
function. Each identifier has the format illustrated 
in Figure 4: 

 

Figure 4: Synset ID Format 

Finally, using Python programming we retrieve 
the word as the first part of the Synset ID. 

We followed the same procedure for AWN, 
which contains 60,157 Synsets in its second 
version, "arb2-lmf," available for download from 
GlobalWordNet 1 website. This version of AWN 
is provided in XML format. We extracted words 
from the "writtenForm" attribute of the <Lemma> 
tag, as follows: 

 

Therefore, after retrieving the two lists of 
words, we retained only the words from PWN that 
do not have translations in AWN. Table 1 
represents the number of extracted words: 

WordNet Number of extracted words 

PWN 117,659 
AWN 19,978 
Reduced PWN 90,127 

Table 1:  Number of extracted words. 

4.2 Choosing the best translation system 

As previously mentioned, we used the Back-And-
Forth Translation logic to select the translation 
system that provides the best Arabic translations. 
To achieve this, we opted for employing the 
original definitions from PWN as a reference for 
this task. Initially, we translated each definition 
from English to Arabic using three translation 
systems: Google Translate, Reverso, and our MT5 
model. 

Next, we back-translated the produced 
(Arabic) results into the English language. 
Subsequently, we employed cosine similarity to 
compare these back-translated definitions with the 
original English definitions. The translation 

                                                           
1 http://globalwordnet.org/ 
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system that yielded translations most closely 
aligned with the meaning and context of the 
original English definitions was chosen as the 
optimal system for translation. This approach 
ensures that the selected translation system 
produces as accurate and contextually relevant 
translations as possible for the enrichment of AWN. 

In the following, we present two graphs that 
highlight the similarities between different 
translated definitions and the original definitions. 
The first graph in Figure 5 illustrates the 
similarities of a sample of 100 definitions 
translated with Google Translate and the MT5 
model. The second graph in Figure 6 shows the 
similarities of the same sample of definitions 
translated with Google Translate and Reverso.  

 

Figure 5: Comparison of translation similarities 
between Google Translate and MT5 

 

Figure 6: Comparison of translation similarities 
between Google Translate and Reverso 

Analyzing the first graph, we concluded that 
Google Translate produces a much better 
translation quality compared to the MT5 model. 
Similarities are generally higher with Google 

Translate. On the other hand, the second graph 
indicates that Google Translate and Reverso 
provide translation quality that is almost similar, 
with only a few exceptions. This is why we have 
chosen to use Google Translate as the primary 
translator for the step of translating PWN 
definitions. 

4.3 Definition filtering 

The purpose of this step is to choose the best 
source of definitions between Wikidata and PWN. 
We used Google Translate to translate the 
definitions extracted from Wikidata into English. 
Then, we used BERT to calculate their similarities 
with the original definitions from PWN. The 
following graph highlights the similarities 
between the definitions from Wikidata, the 
translated definitions from PWN, and the original 
definitions from PWN. 

The results show that the definitions extracted 
from Wikidata are not precise enough to capture 
the original context of the Synset. In fact, the 
similarities of the Wikidata definitions were at 
most 65%, whereas the translated definitions had 
similarities ranging from 65% to 100%, for the 
vast majority of these definitions. We thus chose 
to use the translated definitions for integration 
into the enriched AWN. 

 

Figure 7: Similarity comparison between PWN and 
Wikidata 

4.4 Example filtering 

This step comprises two essential parts: (1) 
preprocessing the extracted data, and (2) selecting 
the examples to integrate into AWN. 
 
Preprocessing data: As mentioned in the 
previous chapter, we used Reverso to extract the 
list of examples in Arabic (around 20 examples 
for each Synset translated from PWN). However, 
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after manually analyzing some instances, we 
noticed the presence of several poorly formed and 
incorrect examples. To address this issue, we 
utilized the fine-tuned AraBERT model that we 
trained to classify sentences as either correct or 
incorrect. The results obtained were extremely 
satisfactory, demonstrating an outstanding 
performance of the classification model. 
However, despite achieving a high accuracy of 
98% during model training, we observed that the 
lack of data led to a few misclassifications. 
Nevertheless, these errors did not pose a major 
obstacle to the next step. With the extraction of 
multiple examples for each translated word, we 
managed to compensate for any potential 
confusion. This approach allowed us to improve 
the quality of the examples and significantly 
reduce the size of the selected candidate 
examples, thus paving the way for more accurate 
and reliable results. 
 

Selecting examples: After performing an initial 
filtering of the examples, we proceeded to the 
second step, which involves selecting the best 
examples, those that maximize contextual 
similarity with the senses of the Synsets translated 
into Arabic. For this purpose, we leveraged the 
AraBert model, which enabled us to calculate the 
similarity between the filtered examples and the 
definitions from PWN translated into Arabic 
using Google Translate. Once this step was 
completed, we selected, for each Synset, the most 
relevant example among all candidates. Table 2 
represents some examples and their similarities 
with the definitions: 

Synset 

ID 

Definition 

in Arabic 

Examples in 

Arabic 
Similarity 

able.a.
01 
 

یتبعھا عادةً )
"إلى") امتلاك 

الوسائل أو 
المھارة أو 
الدرایة أو 

السلطة اللازمة 
 للقیام بشيء ما

یعتقد البعض أن البنوك 
المركزیة ھي وحدھا 

 القادرة على ذلك
0.79 

من الناحیة المثالیة، 
سیكون لدیك شریك 
قادر للمساعدة في 

 التخطیط والتنفیذ

0.82 

unable
.a.01 

یتبعھا عادةً )
"إلى") لا تمتلك 

الوسائل أو 
المھارة أو 

 المعرفة اللازمة

إسلام  وقال إن حكومة
أباد تبدو وكأنھا عاجزة 

أو رافضة للسیطرة 
 على أراضیھا

0.75 

وعندما تركت الكرسي 
المتحرك لاحظت أنھا 

لا تستطیع استخدام 
الجانب الأیسر من 

 جسدھا

0.76 

Table 2: Examples and their similarities with the 
definition 

4.5 Word filtering 

Similar to the selection of examples, we followed 
the same steps to choose the most appropriate 
translations for the sense of each Synset. Table 3 
represents some words and their similarities with 
the definitions. 

Synset 

ID 

Definition in 

Arabic 

Words  

in 

Arabic 

Similarity 

able.a.
01 
 

یتبعھا عادةً "إلى") )
امتلاك الوسائل أو 
المھارة أو الدرایة أو 
السلطة اللازمة للقیام 
 بشيء ما

 إمكانیة
 

0.47 

 0.16 قادر

 0.15 جدیر

unable.
a.01 

یتبعھا عادةً "إلى") لا )
تمتلك الوسائل أو 
المھارة أو المعرفة 
 اللازمة

 0.56 غیر قادر

 0.52 لا تستطیع

abaxial
.a.01 

تواجھ بعیداً عن محور 
 العضو أو الكائن الحي

 0.22 محور

Table 3: Some words and their similarities with the 
definition 

4.6 Construction of a Candidate Synset 

Once we generated the lists containing the 
candidate translations (words, examples, 
definitions), we proceeded to create the XML file 
that would group the 90,127 candidate Synsets 
ready to be integrated into our validation platform 
database. Table 4 illustrates the obtained results:  

Number of candidate Synsets 90,127 

Number of candidate words added  231,165 
Number of candidate examples 

added. 
297,190 

Number of candidate definitions 

added. 
90,127 

Number of Synsets with examples. 78,498 
Number of words considered on 

average for each Synset 
3 

Average number of examples 

considered for each Synset. 
3 

Number of definitions considered 

for each Synset. 
1 

Table 4: Statistics of candidate Synsets. 

4.7 Evaluation of the Results 

In this section, we will delve into the results of the 
validation process conducted on a subset of 1,000 
Synsets. Obviously, the validation is intended to 
be carried out by linguistics experts (and it will be 
done in the near future). However, in order to 
have a first assessment of the potential quality of 
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our approach, we took on the responsibility of the 
manual evaluation of the sample. We consulted 
both the Collins English dictionary and the 
Elmaany Arabic dictionary to cross-reference the 
original English Synsets with their translated 
counterparts. Our validation process was 
facilitated through a dedicated platform. For word 
validation, we meticulously checked the English 
words, their contexts, and compared them with 
the translated Arabic versions. When it came to 
definitions, the majority were straightforward, 
allowing for a direct comparison between the 
English and Arabic definitions. In the case of 
examples, we meticulously selected the Arabic 
examples corresponding to the context of each 
word and proceeded with their validation. 

Out of the randomly selected sample of 1000 
Synsets, we obtained the following results: 

 Validated 

number 

Rejected 

number 

Precision 

Words 789 211 78.9 % 

Definitions 952 48 95.2 % 

Examples 813 187 81.3 % 

Table 5: Precision of validation 

5 Conclusion  

In this work, we have presented a substantial 
enrichment of AWN along with a validation 
mechanism. Our contribution involved extending 
the currently available version of AWN on Global 
WordNet with automatically constructed Synsets 
based on PWN. We retrieved PWN Synsets, 
filtered out existing AWN equivalents, and 
translated them into Arabic, creating a list of 
candidate Synsets. Additionally, we extracted 
context-based examples for each Synset to enrich 
AWN. Deep learning techniques, particularly 
Transformers, were employed to evaluate and 
filter the Arabic Synset candidates. The results 
from the evaluation of a random sample of 1,000 
Synsets taken from the candidate pool for 
enrichment are highly promising, with a manual 
validation accuracy of 75.4%. This work can 
further be enriched using other sources than just 
PWN, like Arabic text corpora. One could also 
consider using WordNets from other languages 
and look for ways of improving the quality of the 
translation. 
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Abstract

This work deals with the compilation of a
machine-readable corpus of technical docu-
ments ready to be processed for the develop-
ment of data-driven dialogue system applica-
tions in the industrial sector. To this end, we
propose a pipeline to convert technical PDF
documents into a set of JSON files that allow
machine processing of their information. This
procedure is able to extract and organise a vari-
ety of content types such as text, images, and
tables in order to obtain a corpus of structured
information, which additionally allows easy
conversion into other formats for further vi-
sualization or processing purposes. A quali-
tative analysis of the proposed procedure by
expert technical operators has resulted in a pos-
itive validation of the proposal. The compiled
sample includes Question Answering annota-
tions and instances of the dialogue ontology
related to industrial procedures that shall allow
the development of voice user interfaces to as-
sist technical operators dealing with industrial
tasks.

1 Introduction

The emergence of virtual assistants, mainly in the
leisure and domestic scopes, proves that interact-
ing through natural language with different devices
and applications is a reality that keeps improving.
In this context, the demand for such capacities in
industry is increasing, since natural communica-
tion with industrial systems leads to productivity
and security improvements which reduce opera-
tion time and costs (González-Docasal et al., 2021),
providing operators 4.0 with powerful and intuitive
interaction mechanisms to perform their tasks suc-
cessfully (Romero et al., 2020).

In fact, the concept of human-centric manufac-
turing where a collaborative intelligence assists op-
erators in their needs (Lu et al., 2022) has recently
been introduced, replacing more traditional system-
centric factories. In order to reduce the cost of

developing such systems, machine learning based
methods are increasingly being considered (Tor-
res, 2013; Zamora et al., 2017), as they are easier
to develop and maintain. However, these systems
require considerable amounts of data for develop-
ment (Wang et al., 2018), and one of the main
caveats in industrial settings is the lack of corpora
for model training (Serras et al., 2020; Vázquez
et al., 2023; Justo et al., 2010). A common prac-
tice to obtain data for under-resourced scenarios is
to exploit available documentary records from the
domain at hand (Tiedemann, 2014). In industrial
scenarios, common relevant sources are technical
documents such as user manuals and manufactur-
ing and assembly dossiers, which are usually avail-
able in PDF format.

Automatic information extraction and structur-
ing from PDF documents is a difficult unsolved
task (Bast and Korzen, 2017), with scarce previous
work, especially in the industrial domain. Docu-
mented approaches (Dong et al., 2021) exploit PDF
technical reports with relatively simple structures
and only consider text extraction, leaving aside the
preservation of images and tables, which are espe-
cially frequent and relevant in industrial technical
documents.

This work proposes a pipeline to convert in-
dustrial technical documents in PDF format into
a machine-readable JSON structure, that can be
used to develop data-driven dialogue system ap-
plications. In particular, annotations for Question
Answering (QA) and procedure-related instances
for the development of ontology-based Dialogue
Systems (DS) have been compiled. QA systems
allow obtaining information from a collection of
unstructured documents (Wang et al., 2021; Xing-
guang et al., 2022), and are evolving towards con-
versational interfaces (Reddy et al., 2019), whereas
ontology-based DS allow to define domains in de-
tail and reduce ambiguity between agents (An-
tonelli and Bruno, 2017), leading to structured
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Manufacturer Machines Tasks
ABB IRB120 Maintenance
Stäubli Robotic arm Maintenance
Fanuc F11 and F12 CNC
Fagor 8055, 8060 CNC
Fagor 8065, 8070 CNC
Siemens PG 1106 CNC
Heidenhain TNC 426 CNC
Heidenhain TNC 430 CNC
Ikor RACK 81.51 Assembly

Table 1: Source technical manuals.

knowledge representations required in procedu-
ral assistance applications. The combination of
these technologies shall enable the development of
voice-based assistants aimed at guiding operators
throughout maintenance tasks, providing answers
to technical questions and/or assisting operators
in procedures extracted from industrial technical
documents.

The rest of the paper is structured as follows.
Section 2 introduces the main characteristics of
industrial technical documents and a machine-
readable corpus structure for them. Section 3 de-
scribes the proposed pipeline to convert technical
documents into the that format, while the annota-
tion procedure for relevant question-answer pairs
is presented in Section 4. Next, Section 5 provides
details regarding the corpus compiled using the pro-
posed pipeline, as well as some evaluation metrics.
Finally, conclusions are drawn in Section 6.

2 Industrial Technical Documents

Industrial documents of technical nature cover a
wide range of topics. In this work, we have se-
lected a set of 9 documents, focusing on three rel-
evant industrial tasks in which operators used to
frequently consult technical documents when inter-
acting with industrial production machines and pro-
cesses, and where the development of QA systems
as well as procedural assistants, along with spoken
interfaces, can have considerable productivity im-
pact: (a) maintenance, (b) machine programming,
and (c) manufacturing and assembly tasks.

Table 1 details the selected documents from dif-
ferent manufacturers, spanning from robot main-
tenance manuals, or computer numerical control
(CNC) programming manuals to manufacturing
and assembly dossiers, all in PDF format.

Despite the structures of the manuals fluctuate

Figure 1: Fragment of a manual showing an image with
a pointer to a relevant position for a maintenance task.
The image has been intentionally blurred to comply with
copyright restrictions.

across manufacturers, all documents include head-
ers and footers, chapter and sub-chapter based lev-
els, as well as a considerable amount of tables and
images embedded in the text. In addition, tables
and images usually include key information that
cannot be overlooked for QA and DS applications
for industrial procedure assistance, e.g. they often
describe processes or show parts of the machine
where actions are required. For instance, Figure 1
shows a PDF fragment including an image indicat-
ing the concrete positioning of a particular element,
to be considered during mechanical failure repara-
tions or maintenance activities.

So, relevant information for QA and dialogue for
assistance can correspond to components of various
sizes from an entire section or subsection, to a short
span of text, or even be a table or a part of it, or an
image. Thus, it is of key importance that converted
documents are structured in a way that preserves
all this information in a machine-readable format.

In order to enable dialogue applications to ex-
ploit the structural information of the source in-
dustrial technical documents in PDF format, the
following machine-readable corpus structure has
been defined:

• Manual. Each manual gives rise to a dialogue
use case, so there is a folder for each manual.

• Chapters. The contents of the manuals are
divided into chapters, so there is a folder for
each chapter.

• Sections. Chapters are often divided into sec-
tions, so a JSON file is created for each sec-
tion, comprising its contents in a structured
way. If the chapter has no sections, a single
file is created for the chapter’s contents. Each
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Figure 2: Main steps of the corpus compilation pipeline.

chapter folder also contains an images folder
where the images extracted are stored.

• Subsections. Sections can be further divided
into subsections, when they appear as part of
the numbered structure (e.g., 4.1.1 is a subsec-
tion of section 4.1 in chapter 4), or what we
called titles, which are distinguished parts of
the contents with their own name but which
do not follow the numbered schema. We also
consider as title the level below subsection
when it exists, numbered or not.

• Contents in the deepest level. When the deep-
est level of a manual’s structure is reached for
each element of the nested listings (e.g., a sub-
section with no title elements as children), its
contents are incorporated as a dictionary struc-
ture including: the raw text; the processed
(clean) text; the images found for the excerpt,
as a list of the names with which they have
been stored; the list of tables that appear in
the excerpt; and the final text after manual
revision and corrections.

3 PDF Document Conversion Pipeline

The pipeline proposed to automatically transform
the source industrial technical PDF documents into
the machine-readable corpus structure introduced
in Section 2 and depicted in Figure 2, consists of
four main steps:

1. Outline generation. This outline is a struc-
tured representation in JSON format of the
different levels of contents conforming the
document.

2. Content extraction. This step consists of ex-
tracting the contents in the original manuals,
using the outlines produced in step one to cor-
rectly locate fragments, and saving them in a

structured form. This step includes the extrac-
tion of three types of contents of interest: text,
images, and tables.

3. Text processing. The raw text extracted from
the manuals is processed to produce a clean
version containing only the text in the main
body, free of undesired segments such as page
headers and footers, text fragments that be-
long inside tables, or contents belonging to
other fragments that have not been correctly
delimited in the extraction step.

4. Content Revision. An optional revision can
be carried out manually to ensure that the final
contents of the documents are correct.

Detailed information about the tools that were
tested and those that were finally integrated into
the pipeline as well as on the implementation of
the different steps of the pipeline are presented in
the next subsections.

3.1 Outline Generation
PDF documents with a valid navigation-enabling
outline, preserve information about their internal
structure (i.e., chapters, sections, subsections, etc.
and their starting pages) in their metadata. Exploit-
ing this information enables to generate the base
JSON structure of the outline in an automatic way.

The pdftohtml (Glyph & Cog, 2021b) PDF con-
version utility of the xpdf (Glyph & Cog, 2021d)
toolkit was used to extract the PDF’s metadata rel-
ative to the contents outline in a structured HTML
format that preserves the elements’ hierarchy, titles
and start pages. The result can be parsed to extract
the relevant information and format it into the tar-
geted JSON structure. The library used to parse
the HTML information was AdvancedHTMLParser
(Savannah, 2021). The fragments’ end page num-
bers, which are not present in the PDF files outlines,
are established by some heuristics and assumptions.

3.2 Content Extraction
There exists a variety of tools aimed at automati-
cally extracting content from PDF files. However,
after trying several, none of them seemed to be
optimal for extracting all three targeted types of
contents, text, images, and tables. For this reason,
different methods were tested and selected for the
extraction of each content type.

The methodology used for testing and selecting
the optimal tools for content extraction involved
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the following steps: 1) Applying each tool on a
selected manual; 2) Analysing the produced result;
3) If the result was unsatisfactory the tool would be
discarded; 4) The tools that performed best would
be applied to other manuals to check whether the
results were consistent on other documents from
different manufacturers, and so deem them as ac-
ceptable.

3.2.1 Text Extraction
The following tools available which are oriented to
the extraction of text from PDF documents were
tested for our pipeline:

• pdfplumber (Singer-Vine, 2021). Although
this library is more oriented to the extraction
of tables from PDF files, its text extraction
functionality was also tested. Results were
bad, given that text spacing was not inter-
preted correctly by the extractor and words
appeared joined together.

• tika-python (Mattmann, 2021) is a library
that makes use of the Apache Tika toolkit1

for extracting text from PDF. Results of apply-
ing this library across manuals were generally
good, although there were some cases where
page numbers appeared joined together with
the main text, without spacing.

• pdftotext (Glyph & Cog, 2021c) is xpdf’s
command line utility to extract text from PDF
files. As no errors were detected when ap-
plying it across the manuals, this tool was
selected and incorporated in the pipeline for
text extraction.

3.2.2 Images Extraction
We found only a few tools capable of extracting
images from PDF files. Some included little to no
documentation on how to use this functionality. For
example, pdfplumber extracts some image repre-
sentation objects from the PDF’s metadata, but it
does not provide information on how to obtain the
original images from those representations. The
image extractors that produced valid results when
applied to our manuals are:

• pdfimages (Glyph & Cog, 2021a) is a xpdf’s
command line utility to extract images from
PDF files. Images across manuals were cor-
rectly extracted and saved into a target folder.
Errors were found with some images’ formats.

1http://tika.apache.org/

• PyMuPDF (Jorj X. McKie and Liu, 2021) along
with Pillow (Clark, 2021). The combination
of both Python libraries allows extracting and
saving images from PDF files. Results were
comparable to the previous tool, some errors
being still encountered with certain images.
This method was selected and incorporated to
the pipeline for image extraction.

3.2.3 Tables Extraction
As for table extraction, we only found a couple of
tools aimed at extracting tables from PDF files.
General content extractors such as the already-
mentioned pdftohtml would not recognise tables.
The tools specialised in table extraction that we
tested are:

• pdfplumber (Singer-Vine, 2021): Despite
this library is specifically oriented to extract
tables from PDF files, the results of its ap-
plication were bad. For some tables, only the
header row was recognised as a table, and their
text contents included spacing errors. Many
other tables were simply not recognised as
such.

• camelot (Mehta, 2021) is also a Python li-
brary specifically aimed at extracting tables
from PDF documents, and it allows saving
the extracted tables as JSON, among other
formats. Results of applying this tool across
manuals were mostly good, with a few cases
of tables not automatically recognised as such.
This was the tool selected and incorporated
into the pipeline for table extraction.

Given that table extractors work at page level, a
common consequence is that tables that span over
several pages are always considered as individual,
separate tables. Since in the manuals it is usual for
tables to repeat the header row when continuing in
a new page, a processing function was created to
automatically join split tables when necessary.

3.3 Text Processing
This step of the pipeline aims to delete undesired
information. Within text fragments this mainly
includes headers and footers, page numbers, text
fragments that belong inside tables, and content
that has not been correctly delimited and does not
belong to the current fragment. In some cases, it
also includes expressions that do not provide mean-
ingful information and hinder readability of the
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Figure 3: Above, text as extracted in step 2. Below, same text after applying the text processing step. Contents have
been intentionally blurred to comply with copyright restrictions.

corresponding fragment (e.g. “Continued on next
page" or alphanumeric codes used by the manufac-
turer, such as “M000..." in Figure 3).

Regular expressions are used to delete headers,
footers, page numbers, and undesired information
in general. They are fed from a configuration file
adapted to each manual format, as it changes across
industrial documents. Although some of the em-
ployed regular expressions are simple and straight-
forward, others get more complex to avoid deleting
meaningful information inside the text. Figure 3
shows an example of a text fragment in which the
footer, page number, and an alphanumeric code
that deteriorates readability have been erased.

The process used to automatically delete content
not belonging to a particular text fragment consists
of the following steps: 1) The level of the current
element is identified (section 6.7 in Figure 3); 2)
Any text appearing before the title of the current
element is deleted (in the example, text belonging
to section 6.6 is deleted); 3) The title of the next
element is identified and all text from that point on,
if included, is erased from the current fragment.

3.4 Quality Revision

The final step of the pipeline involves an optional
manual revision process in order to ensure the qual-
ity of the final corpus.

In order to make this process easier for human
reviewers, each fragment to be reviewed is dumped
into a text file following this format: (i) A header
including the fragment’s starting and ending page
in the PDF, plus the fragment’s title and a separator;
(ii) The processed text as obtained from the previ-

ous step of the pipeline, and a separator; and (iii)
A preview of the tables found for the current frag-
ment, formatted as text using the tabulate (As-
tanin, 2021) library on the JSON table data. The
first and third parts are provided as helping refer-
ences, while the part appearing between separators
is the one to be reviewed and possibly modified.
This part is then loaded and included in the final
JSON after revision.

3.5 Pipeline in use

The presented PDF document conversion pipeline
has been applied and qualitatively validated extract-
ing the information contained in the technical man-
uals listed in Table 1. Generally speaking, struc-
turing and automatic content extraction have been
quite satisfactory. This impression was confirmed
at the content revision step, where three technical
reviewers agreed that the information extracted was
correct to a great extent. In addition, four expert
technical operators have also provided a very posi-
tive opinion of the pipeline output, validating it for
annotation and information presentation purposes
within the project.

The outline generation module was capable of
extracting an accurate content structure from the
PDF files’ metadata. The selected content extrac-
tion tools were capable of extracting raw text, im-
ages, and tables without major problems across
the varied set of analysed industrial technical docu-
ments. And the implemented text processing mod-
ule allowed to adequately filter out undesired (e.g.,
headers and footers), irrelevant (e.g. “Continued
on next page"), and duplicated information auto-

345



Figure 4: A sample fragment of a manual in its original PDF format (top left), the structured JSON produced by
our pipeline (bottom), and recomposed for visualisation on an annotation tool (top right). Contents have been
intentionally blurred to comply with copyright restrictions.

matically.
In a few occasions, some content extraction

anomalies were detected, such as missing text con-
tent, which was mostly caused by the missing text
being wrongly considered part of a table, and addi-
tional text content, the origin of which was mostly
related with some subsections and their parent sec-
tions’ names being equal, causing content delim-
iters to fail. Furthermore, additional content was
also generated when tables were incorrectly ex-
tracted as text or text from images was considered
as part of the main body of text.

Tables, although generally well-extracted, pre-
sented more problems than text content. The most
common issues were related to content (empty,
missing, or incomplete tables and multiple tables
that were incorrectly joined) and format (misplaced
cell content or moved content when cells had
itemised or numbered lists).

All in all, the conversion pipeline is able to pro-
duce a comprehensive version of the original con-
tents in PDF to a machine-exploitable structured
JSON format.

4 Annotation Procedure

Once converted, the industrial technical documents
were annotated by four skilled operators, in order
to identify relevant question-answer pairs and pro-

cedures to develop both question-answering and
dialogue systems for procedure assistance, respec-
tively. The employed annotation tool (Justo et al.,
2016) requires the input to be formatted as Mark-
down text, which allows inline HTML code. Know-
ing this, processed text was easily converted from
the original JSON files and displayed by the tool
with minimal changes (e.g. adapting line breaks).
Nevertheless, references to images and tables still
had to be converted from JSON to their HTML
equivalents to be visualized.

Figure 4 depicts a fragment from a PDF manual,
including text, an image, and a table, at three differ-
ent stages: On the top left, the fragment is shown
in its original PDF format; The bottom image illus-
trates the results of applying the PDF conversion
pipeline, where contents are presented as a struc-
tured JSON; Finally, the image on the top right
shows how the same contents are displayed by the
annotation tool.

Two types of question-answer pairs were identi-
fied by annotators: Generic and Specific. Generic
questions usually describe a procedure (e.g., dis-
assembling part of a robot) and corresponded to
whole subsections or, depending on the manual,
sub-subsections. On the other hand, answers to
specific questions were extracted from either sub-
sections or sub-subsections and generally referred
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Manual # Chapters # Running Words Vocabulary size Norm. Lev. distance
IRB120 3 3167 807 0.66
Controller 2 8368 1883 0.78
Robotic Arm 2 2329 780 0.93
F11 8 23302 3650 0.93
F12 5 37974 4862 0.70
CNC 8060/8065 15 61730 4975 0.91
PG 1106 11 46430 6794 0.81
TNC 426/TNC 430 12 65410 6270 0.86
RACK AA.81.51.2001 9 5019 1525 0.91

Table 2: Basic information about the number of chapters and words per manual as well as the normalized Levenshtein
between the manually corrected text and the automatically corrected text.

to particular queries (e.g., what tools should I use
to disassemble the part). In total and during six
months, the four operators annotated 1416 generic
and 751 specific question-answer pairs.

5 Corpus Description and Evaluation

Table 2 provides a general description of the ob-
tained corpus in terms of number of chapters, num-
ber of running words and vocabulary size. In order
to gain a better insight into the performance of the
conversion pipeline we compare the manually cor-
rected text with the text extracted by the system. To
this end we considered the Levenshtein distance,
which calculates the minimum number of changes,
i.e. adding, deleting, or replacing a single charac-
ter, that are needed to transform one string into the
other.

In this way, we can evaluate how well the auto-
matic text extractor and text processor based on reg-
ular expressions work. However, it heavily depends
on the length of both strings to be compared and
does not provide any meaningful information in
our case, where the length varies significantly from
one manual to the other. To solve this problem,
we have adapted it to the normalized Levenshtein
distance, defined in Equation 1

Levnorm = 1− Lev(s1, s2)

max(lens1, lens2)
(1)

where Lev(s1, s2) is the Levenshtein distance
between the strings s1 and s2 and lens1 and lens1
are the length of the strings. Thus, the distance
does not longer depends on the length of both
strings. The value of the normalized Levenshtein
varies between 1.0, where both strings are equal,
and 0.0, where they are completely dissimilar. Ta-
ble 2 incldues the normalised Levenshtein distance

between the correct text with the one extracted
through the proposed PDF conversion pipeline.
This table shows a very good performance of the
extraction and processing tool for most of the man-
uals, being higher than 0.78 for almost all of them.
However, the improper operation of the extraction
and processing tools lead to worse performance for
both the IRB120 and F12 manuals. These manu-
als have numerous images, then the extraction tool
retrieved information embedded in the images.

On the other hand, Table 3 shows the main char-
acteristics of the QA corpus obtained after the an-
notation procedure described in Section 4. This
table provides the number of generic (GQ) and spe-
cific (SQ) questions along with the average lengths
of each manual, in terms of the number of words.
This table shows a high variability in the length
of the answers within the same manual, and from
one manual to another. This fact, along with that
some answers include images, shows the complex-
ity of developing question-answering systems for
the industrial environment. This complexity, for
example, does not exist in other more popular ex-
tractive question-answer datasets such as SQuAD
v1.1 (Rajpurkar et al., 2016) and v2.0 (Rajpurkar
et al., 2018), where images are not included and
the length of the answers is less variable. However,
this dataset has been successfully used for a QA
system, which has been tested in the framework of
the same research project (Ruiz et al., 2023).

Finally, Table 4 provides information about the
corpus for ontology-based DS, detailing instances
derived from the 6 selected procedures in the cor-
pus, represented according to the ontology de-
scribed in (Aceta et al., 2022). From the total of
268 instances, 6 correspond to procedures, 8 to
methods, 20 to tasks and 69 to steps. In a nut-
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Manual # Generic Avg. # words % answers # Specific Avg. # words
questions (GQ) in GQ with images question (SQ) in SQ

IRB120 419 1342.2 0 159 101.1
Controller 133 2528.3 0 53 112.3
Robotic Arm 55 1285.7 0 36 88.1
F11 192 2452.9 26 62 120.7
F12 186 2030.9 35 144 182.5
CNC 8060/8065 124 2342.8 21 60 209.7
PG 1106 91 5667.9 27 47 194.1
TNC 426/430 164 2071.4 43 63 210.2
RACK AA.81.51.2001 52 1075.8 48 127 94.7

Table 3: Annotated QA dataset, which includes informations of General (GQ) and Specific Questions (SQ)

Class Instances Avg. instances per
procedure

Avg. instances per
upper-class

Additional info Descriptions
Avg. SD Avg. SD

Procedure 6 - - 3.66 2.71 1 0
Method 8 1.33 1.33 (procedure) 0.75 1.39 1.63 4.6
Task 20 3.33 2.5 (method) 0.5 1.15 0.35 0.49
Step 69 11.5 3.45 (task) 0.52 0.61 0.49 0.68

Table 4: Ontology instantiation overview

shell, each procedure has an average of 1 method,
each method an average of 3 tasks and each task an
average of 4 steps.

The rest of the instances in the dialogue system
ontology instantiation include other details such as
the necessary materials to perform the procedure
given a specific method or the descriptions and ad-
ditional information for each procedure division
class. As for the latter, Table 4 also shows the av-
erage numbers of instances covering each type of
information per each class and the Standard Devi-
ation (SD) to provide more objective insights on
this data. As it can be seen in the table, the number
of instances may differ significantly depending on
the procedure or method.

6 Conclusions and Future Work

This work has been developed in the framework
of a research project whose objective is to facili-
tate industrial maintenance, programming, manu-
facturing, and assembly tasks through the use of
voice-based interfaces. Unlike classic dialogue sys-
tems in which the information to be supplied to
the user is naturally structured in a database (e.g.,
restaurants, types of food, addresses, etc.), human-
machine interaction assisting industrial operators’
tasks needs to handle information that is usually
found in PDF documents.

In this scenario, we have proposed a pipeline
aimed at extracting content from technical PDF
documents and converting them into a machine-
readable format required for the automatic process-
ing of their information. This procedure is able to
extract and organise a variety of content types such
as text, images, and tables in order to get a corpus
of structured information organised in JSON files.

A qualitative analysis of the results of the pro-
posed procedure has been carried out by expert
technical operators, who have provided a very pos-
itive opinion validating the proposal. Moreover,
normalised Levenshtein distance between the man-
ually corrected text and the text generated by the
pipeline is quite high showing a very good perfor-
mance of the pipeline. This way, we are contribut-
ing to the scarce literature addressing multimodal
content extraction from documents in PDF format,
which is still mainly limited to text extraction.

In addition, one of the advantages of the pro-
posed procedure to structure contents into JSON
files is that it can be easily converted into other
formats, such as HTML, for further visualisation
or processing purposes. We have taken advantage
of this feature to facilitate an annotation process
carried out by expert technical operators. These an-
notations as well as the derived ontology instances
have allowed the compilation of a useful corpus
for the development of question answering and
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assistance-oriented dialogue system applications in
the industrial sector.
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       All times are according to (GMT) 

Saturday, Dec. 16, 2023    08:00 – 18:10  (GMT) 

08:00-08:30 
Opening session                                                                                                                                      
Dr. Mourad Abbas 

 

08:30 – 09:10 
Keynote 1: Transcending Communication Barriers:  From Machine Translation to Language Transparence 

Prof. Alex Waibel, CMU, USA 

 

09:30 – 11:50 
Oral Session 1: Classification and clustering 

Chair: Dr. Abed Alhakim Freihat, University of Trento, Italy 

09:30 – 09:45 Classification of Human- and AI-Generated Texts for English, French, German, and Spanish 
Kristina Schaaff; Tim Schlippe; Lorenz Mindner (IU International University of Applied Sciences) 

09:50 – 10:05 Handling Realistic Label Noise in BERT Text Classification 

Maha Agro, Hanan Aldarmaki (Mohamed Bin Zayed University of Artificial Intelligence) 

 

10:10 – 10:25 
Discourse Relations Classification and Cross-Framework Discourse Relation Classification Through the Lens of Cognitive 

Dimensions: An Empirical Investigation      Yingxue Fu (University of St Andrews) 

10:30 – 10:45 Representation Learning for Hierarchical Classification of Entity Titles    Elena Chistova (FRC CSC RAS) 

10:50 – 11:05 DAP-LeR-DAug: Techniques for enhanced Online Sexism Detection       Jayant Panwar; Radhika Mamidi (IIIT Hyderabad) 

11:10 – 11:25 CommunityFish: A Poisson-based Document Scaling With Hierarchical Clustering   Sami Diaf (Universität Hamburg) 

11:30 – 11:45 ADCluster: Adaptive Deep Clustering for Unsupervised Learning from Unlabeled Documents 

Arezoo Hatefi; Xuan-Son Vu; Monowar Bhuyan; Frank Drewes (Umeå University) 

11:50 - 13:00 Break 
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13:00 – 16:00 
Oral Session 2: Deep learning and transformers 

Chair: Dr. Mohammed Mediani, United Arab Emirates University, UAE 

13:00 – 13:15 
Efficient Black-Box Adversarial Attacks on Neural Text Detectors 

Vitalii Fishchuk (University of Twente); Daniel Braun (University of Twente) 

13:20 – 13:35 

Transformer-Based Analysis of Sentiment Towards German Political Parties on Twitter During the 2021 Election Year 

Nils Constantin Hellwig (Media Informatics Group, University of Regensburg); Markus Bink (Media Informatics Group, 

University of Regensburg); Thomas Schmidt (Media Informatics Group, University of Regensburg); Jakob Fehle (Media 

Informatics Group, University of Regensburg); Christian Wolff (Regensburg University) 

13:40 – 13:55 
"Japan's Answer to Mozart": Automatic Detection of Generalized Patterns of Vossian Antonomasia 

Michel Schwab (Humboldt-Universität zu Berlin); Robert Jäschke (Humboldt-Universität zu Berlin); Frank Fischer (Freie 

Universität Berlin) 

14:00 – 14:15 
GAVI: A Category-Aware Generative Approach for Brand Value Identification 

kassem sabeh (Free University of Bozen Bolzano); Mouna Kacimi (Wonder Technology Srl); Johann Gamper (Free University of 

Bozen-Bolzano) 

 

14:20 – 14:35 
Simple, Simpler and Beyond: A Fine-Tuning BERT-Based Approach to Enhance Sentence Complexity Assessment for Text 

Simplification 

Lucía Ormaechea (University of Geneva); Nikos Tsourakis (University of Geneva); Didier Schwab (University of Grenoble-

Alpes); Pierrette  Bouillon  (University of Geneva ); Benjamin Lecouteux (University Grenoble Alpes (UGA)) 

 

14:40 – 14:55 
Deep Learning-Based Claim Matching with Multiple Negatives Training 

Anna Neumann (Ruhr-University Bochum); Dorothea Kolossa (Ruhr-Universität Bochum ); Robert M Nickel (Bucknell 

University) 

15:00– 15:15 
Exploring BERT Models for Part-of-Speech Tagging in the Algerian Dialect: A Comprehensive Study 

Mohamed Amine CHERAGUI (Ahmed Draia University); Abdelhalim Hafedh DAHOU (GESIS - Leibniz Institute for the Social 

Sciences ); Amin ABDEDAIEM (Ahmed Draia University) 

15:20 – 15:35 A Neural Network Approach to Ellipsis Detection in Ancient Greek  Giuseppe G. A. Celano (Leipzig University) 

15:40 – 15:55 
AraBERT and mBert: Insights from Psycholinguistic Diagnostics 

BASMA SAYAH (Amar Telidji); Attia Nehar (Ziane Achour University); Hadda Cherroun (Université Amar Telidji ); Slimane  

Bellaouar (University of Ghardaia) 

16:00 - 16:10 Break 

  

16:10 – 18:10 
Oral Session 3:  Analysis, summarization, and numerical representation                                                                                                                                                     

Chair: Prof. Maria Inés Torres, University of the Basque Country, Spain  

16:10 – 16:25 
An NLP Analysis of ChatGPT's Personality Simulation Capabilities and Implications for Human-centric Explainable AI 

Interfaces 

Thorsten Zylowski (University of Hohenheim); Matthias Wölfel (Karlsruhe University of Applied Sciences) 

16:30 – 16:45 Topically diversified summarization of customer reviews Florian Carichon; Gilles Caporossi (HEC Montreal) 

16:50 – 17:05 
Extracting higher-order logic formulas from English sentences  

Alexandre Rademaker; Guilherme Lima; Renato Cerqueira (IBM) 
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17:10 – 17:25 
A Quantitative Approach to Understand Self-Supervised Models as Cross-lingual Feature Extracters 

Shuyue Stella Li (Johns Hopkins University); Beining Xu (Beihang University); Xiangyu Zhang (University of New South Wales); 

Hexin Liu (Nanyang Technological University); Wenhan Chao (Beihang University); Paola Garcia (Johns Hopkins University) 

17:30 – 17:45 
Def2Vec: Extensible Word Embeddings from Dictionary Definitions  

Irene Morazzoni (DEIB, Politecnico di Milano); Vincenzo Scotti (DEIB, Politecnico di Milano); Roberto Tedesco (DEIB, 

Politecnico di Milano) 

17:50 – 18:05 Exploring Hybrid Linguistic Features for Turkish Text Readability      Ahmet Yavuz Uluslu (University of Zurich) 

  

Sunday, Dec. 17, 2023    08:30 – 16:00  (GMT) 

 

08:30 – 09:10 
Keynote 2: Biosignal-based Digital Biomarkers for Aging 

Prof. Najim Dehak, Johns Hopkins University, USA 

 

09:30– 13:40 
Oral Session 4: Speech and phonetics     

Chair: Prof. Tim Schlippe, IU International University of Applied Sciences, Germany 

09:30 – 09:45 Comparison of Wav2vec 2.0 Transformer Models for Speaker Change Detection 

Zbyněk Zajíc ( University of West Bohemia); Marie Kunešová (University of West Bohemia) 

 

09:50 – 10:05 
Typological classification of European Portuguese fricatives: a cross-language forced alignment and pronunciation variants 

study 

Anisia Popescu (Université Paris Saclay - LISN); Lori Lamel (CNRS LISN); Ioana Vasilescu (LIMSI) 

10:10 – 10:25 Methods for Phonetic Scraping of Youtube Videos 

Adrien Meli (Université Paris Cité); Steven Coats (University of Oulu); Nicolas Ballier (Université Paris Cité) 

 

10:30 – 10:45 
Direct Speech to Text Translation: Bridging the Modality Gap Using SimSiam 

Balaram Sarkar (Indian Institute of Technology Indore); Chandresh K Maurya (IBM Research);  Anshuman Agrahri (IIT, Indore) 

 

10:50 – 11:05 
Improving Dhivehi Automatic Speech Recognition (ASR) with Sub-word Modelling, Language Model Decoding and 

Automatic Spelling Correction Arushad Ahmed (University of St. Andrews) 

 

11:10 – 11:25 
Comparing Modular and End-To-End Approaches in ASR for Well-Resourced and Low-Resourced Languages 

Aditya Parikh (Radboud University); Louis ten Bosch (radboud unversity); Henk van den Heuvel (Radboud University); Cristian 

Tejedor-Garcia (Radboud University Nijmegen) 

11:30 – 11:45 
Towards Joint Modeling of Dialogue Response and Speech Synthesis based on Large Language Model 

Xinyu Zhou (Communication University of China); Delong Chen (HKUST); Yudong Chen (Communication University of China) 

11:45 - 13:00 Break 

 

13:00 – 13:15 
Using Whisper LLM for Automatic Phonetic Diagnosis of L2 Speech, a Case Study with French Learners of English 

Nicolas Ballier (Université Paris Cité); Adrien Meli (Université Paris Cité); Maelle Amand (Université de Limoges); Jean-Baptiste 

Yunès (Université Paris Cité) 

13:20 – 13:35 
Enhancing Word Discrimination and Matching in Query-by-Example Spoken term detection with Acoustic Word 

Embeddings 

353



Pantid Chantangphol (Kasikorn Business Technology Group (KBTG); Theerat Sakdejayont ( Kasikorn Business Technology 

Group (KBTG)); Tawunrat Chalothorn (Kasikorn Business Technology Group (KBTG) ) 

13:40 – 15:40 
Oral Session 5: Dataset 

Chair: Dr. Daniel Braun, University of Twente, Netherlands 

13:40 – 13:55 Turkish Native Language Identification      Ahmet Yavuz Uluslu (University of Zurich) 

14:00 – 14:15 
KMD: A New Kurdish Multilabel Emotional Dataset For the Kurdish Sorani Dialect 

Soran SM Badawi (Language Center Charmo University)  

 

 

14:20 – 14:35 

iTANONG-DS : A Collection of Benchmark Datasets for Downstream Natural Language Processing Tasks on Select Philippine 
Languages 
Moses L. Visperas; Christalline Joie Borjal; Aunhel John M Adoptante (DOST-ASTI); Danielle Shine R. Abacial (Mindanao State 
University - Iligan Institute of Technology); Ma. Miciella Decano (Far Eastern University); Elmer C Peramo (DOST-Advanced 
Science and Technology Institute) 

 

14:40– 14:55 
Data Augmentation for Text Classification with EASE 

A M Muntasir Rahman (New Jersey Institute of Technology); Wenpeng Yin (Penn State University); Guiling  Wang (New Jersey 

Institute of Technology) 

15:00 – 15:15 

Enrichment of Arabic WordNet Using Machine Translation and Transformers 

Mohamed Dia Eddine  Souci, Younes Cherifi, Lamia Berkani (University of Science and Technology Houari Boumediene,  Algeria); 

Mohamed Seghir Hadj Ameur, Ahmed Guessoum (The National Higher School of Artificial Intelligence, Algeria) 

15:20– 15:35 

Compiling a Corpus of Technical Documents for Dialogue System Development in the Industrial Sector 
Laura García-Sardiña (Vicomtech); Eneko Ruiz (Universidad del País VAsco UPV/EHU); Cristina Aceta (Tekniker); Izaskun 

Fernández (Tekniker); Maria Inés Torres (Universidad del País Vasco UPV/EHU); Arantza del Pozo (Vicomtech) 

15:40 Closing session                                                                                   

        N.B:  TIME IN GMT 
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Keynote speakers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                       Prof. Dr. Alexander Waibel 
                       Carnegie Mellon University, USA 
                       Karlsruhe Institute of Technology, Germany 
                       Zoom Research Fellow 

Alex Waibel 

Alexander Waibel is Professor of Computer Science at Carnegie Mellon University (USA) 
and at Karlsruhe Institute of Technology (Germany). He is director of the International 
Center for Advanced Communication Technologies.  Waibel is known for work in AI, 
Machine Learning, Multimodal Interfaces and Speech Translation Systems.  He 
introduced consecutive and simultaneous speech translation in 1991 and 2005.  Waibel 
proposed early Neural Network learning methods, including the TDNN, the first shift-
invariant (“convolutional”) Neural Net (1987) and many multimodal interaction systems.  
Waibel founded/co-founded more than 10 startups, including Jibbigo, first speech 
translator on a phone (acquired by Facebook 2013), and Kites, simultaneous translation 
services (acquired by Zoom 2021).  Waibel is a member of the National Academy of 
Sciences of Germany, Fellow of the IEEE and of ISCA, and Research Fellow at Zoom.  
He holds BS/MS/PhD degrees from MIT and CMU. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                      Prof. Najim Dehak,  
                     Johns Hopkins University, USA  

Najim Dehak 

An expert in machine learning and speech processing/speaker identification, Najim 
Dehak is internationally known as the lead developer of I-vector, a factor analysis-based 
speaker recognition technique. His research focuses on speech processing and 
modeling, audio segmentation, speaker, language, and emotion recognition. One of his 
interests has been building robust emotion detection systems that can be useful in 
several areas, including call centers, mental health, and social applications. He is also 
currently interested in working on topics related to human aging. In this topic, Dr. Dehak 
and his team are developing non-invasive, artificial intelligence-based tools to detect, 
assess, and monitor the functional and cognitive decline of elderly adults. 
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