
KITLM: Domain-Specific Knowledge InTegration into Language Models
for Question Answering

Ankush Agarwal1∗, Sakharam Gawade1∗,
Amar Prakash Azad2, Pushpak Bhattacharyya1

1IIT Bombay,
2IBM Research India

{ankushagrawal, sakharamg, pb}@cse.iitb.ac.in,
amarazad@gmail.com

Abstract

Large language models (LLMs) have demon-
strated remarkable performance in a wide range
of natural language tasks. However, as these
models continue to grow in size, they face sig-
nificant challenges in terms of computational
costs. Additionally, LLMs often lack efficient
domain-specific understanding, which is par-
ticularly crucial in specialized fields such as
aviation and healthcare. To boost the domain-
specific understanding, we propose, KITLM1,
a novel knowledge base integration approach
into language model through relevant informa-
tion infusion. By integrating pertinent knowl-
edge, not only the performance of the lan-
guage model is greatly enhanced, but the model
size requirement is also significantly reduced
while achieving comparable performance. Our
proposed knowledge-infused model surpasses
the performance of both GPT-3.5-turbo and
the state-of-the-art knowledge infusion method,
SKILL, achieving over 1.5 times improvement
in exact match scores on the MetaQA. KITLM
showed a similar performance boost in the avi-
ation domain with AeroQA. The drastic perfor-
mance improvement of KITLM over the exist-
ing methods can be attributed to the infusion
of relevant knowledge while mitigating noise.
In addition, we release two curated datasets
to accelerate knowledge infusion research in
specialized fields: a) AeroQA, a new bench-
mark dataset designed for multi-hop question-
answering within the aviation domain, and b)
Aviation Corpus, a dataset constructed from
unstructured text extracted from the National
Transportation Safety Board reports. Our re-
search contributes to advancing the field of
domain-specific language understanding and
showcases the potential of knowledge infusion
techniques in improving the performance of
language models on question-answering.

*Equal contribution
1The URL for our dataset and source codes is: https:

//github.com/sakharamg/KITLM

1 Introduction

Large pre-trained language models (PLMs) (Raffel
et al., 2020b) have succeeded remarkably in vari-
ous NLP downstream tasks. Their achievements
can be attributed to two key factors: extensive pre-
training on diverse text sources and the ability to
fine-tune domain-specific data. PLMs undergo ex-
tensive pre-training on vast amounts of text data
from various sources such as books, articles, and
websites. This process allows them to develop a
profound understanding of language and capture
a comprehensive range of linguistic patterns and
contextual information. Furthermore, PLMs can
be fine-tuned on domain-specific datasets, enabling
them to specialize and adapt to a particular domain.
This fine-tuning process refines the models’ knowl-
edge and performance, allowing them to excel in
tasks specific to those domains. However, recent
research has highlighted the efficacy of incorporat-
ing knowledge graphs into language models using
diverse techniques (Saxena et al., 2022; Moiseev
et al., 2022; Zhang et al., 2022b; Yasunaga et al.,
2021a). Our paper shows that incorporating rele-
vant structured knowledge from knowledge graphs
can further enhance language model performance
and domain-specific understanding.

Various studies have explored different methods
for infusing knowledge into language models. One
popular approach involves verbalizing triples in the
knowledge base and continually pretrain the LLM
using a training criteria such as masked language
modeling. However, this approach can be computa-
tionally demanding. Other methods like QA-GNN
(Yasunaga et al., 2021a) and GreaseLM (Zhang
et al., 2022b) rely on knowledge graph embeddings
(Dai et al., 2020) to obtain the domain knowledge
which requires additional training. The two criti-
cal factors in a knowledge infusion method are: i)
the quality of infused knowledge, which allows for
achieving strong empirical performance, and ii) the

https://github.com/sakharamg/KITLM
https://github.com/sakharamg/KITLM

simplicity of the architecture. These underscore
the need for a knowledge infusion technique that is
computationally efficient while maintaining high
quality and simplicity.

Our paper presents an innovative framework for
integrating knowledge into language models like
T5 (Raffel et al., 2020a) through fine-tuning. The
experimental results demonstrate that the check-
points trained using the proposed approach on Avi-
ationKG (Agarwal et al., 2022b) and WikiMovies
(Miller et al., 2016) outperforms the T5 baselines,
state-of-the-art SKILL (Moiseev et al., 2022) and
GPT-3.5-turbo on MetaQA (Zhang et al., 2018) and
our curated multihop QA dataset, AeroQA. Instead
of introducing additional parameters to pre-trained
language models (PLMs) or modifying their archi-
tectures, the proposed framework employs a novel
knowledge integration objective. This objective
entails verbalizing the KG triples, extracting per-
tinent triples for each question-answer pair using
ColBERTv2 (Santhanam et al., 2022), and incor-
porating them during both the training and testing
phases of the language model.

We conducted a comprehensive study to enhance
our proposed framework, KITLM, by exploring
the impact of different formats of external knowl-
edge on a language model. We incorporated un-
structured general corpora, domain-specific cor-
pora, and structured knowledge (triples) into the
T5 model for question-answering. To evaluate the
effectiveness of these settings, we employed the
SKILL approach (Moiseev et al., 2022) and com-
pared T5, T5 + unstructured text, T5 + KG triples,
and T5 + unstructured text + KG triples on the
AeroQA and MetaQA datasets. Our proposed ap-
proach, KITLM, outperformed all other settings,
underscoring the importance of integrating relevant
knowledge alongside LLMs while mitigating noise
for enhancing question-answering capabilities.

Our contributions are:

1. Introduce two datasets to accelerate knowl-
edge infusion research in specialized
fields: (a) AeroQA, a closed-book question-
answering dataset with multi-hop reasoning.
It contains 34k QA pairs, with 21k 1-hop
pairs and the rest being 2-hop pairs. (b)
Aviation Corpus, comprising 665,000 lines
of clean English text from 4,000 NTSB 2

reports. It is specifically curated for continual
2https://www.ntsb.gov/Pages/

AviationQuery.aspx

pre-training to facilitate knowledge infusion
tasks in language models.

2. KITLM, a novel framework introduces a
seamless integration of relevant verbalized
triples from a knowledge base into the lan-
guage model without modifying its architec-
ture. Leveraging ColBERTv2, KITLM ex-
tracts the most pertinent triples associated
with each instance in the question-answering
dataset. Our approach surpasses the state-of-
the-art knowledge infusion method, SKILL,
by more than 20% on both AeroQA and
MetaQA datasets.

3. KITLM > GPT-3.5-turbo; Our knowledge-
infused model surpasses GPT-3.5-turbo by
over 1.5 times in AeroQA and MetaQA, high-
lighting the significant reduction in the re-
quirement of language model size through
relevant knowledge infusion.

2 Motivation

Aviation-related datasets are scarce and highly
sought after, posing challenges for building
question-answering (QA) systems capable of rea-
soning over knowledge graphs like AviationKG
(Agarwal et al., 2022b). To address this, we
have developed a valuable multi-hop reasoning QA
dataset derived from the National Transportation
Safety Board reports in the aviation domain. This
dataset is valuable for the aviation industry and re-
searchers, facilitating information retrieval and QA
tasks. Its creation aims to provide deeper insights
into aircraft accidents and contribute to developing
preventive measures to enhance aviation safety.

Large Language Models (Brown et al., 2020;
Scao et al., 2022) have demonstrated efficient
performance across various downstream NLP tasks.
However, the high computational requirements
associated with LLMs have raised concerns. Fur-
thermore, LLMs are typically trained on generic
datasets, so their suitability for domain-specific
tasks is limited. Our study provides evidence
that computational resources can be conserved by
employing smaller language models for specific
tasks. Additionally, we highlight the importance
of integrating relevant knowledge in the LM to
address the needs of domain-specific tasks.

The background and related work for our
paper "KITLM" can be found in the Appendix.

https://www.ntsb.gov/Pages/AviationQuery.aspx
https://www.ntsb.gov/Pages/AviationQuery.aspx

3 Background and Related Work

Prevalent state-of-the-art models like BERT
(Devlin et al., 2019a), GPT-3 (Brown et al., 2020),
and T5 (Raffel et al., 2020b) have emerged as
powerful tools for various tasks. These models
are typically pre-trained on unstructured text data,
allowing them to comprehend language within a
contextual framework. However, knowledge about
the real world is crucial to gain a comprehensive
understanding of a statement. This world knowl-
edge is frequently represented as triples within a
knowledge graph.

Knowledge Graph Question Answering.
A Knowledge Graph (KG) is a collection of
entities and their relationships, represented
as triples (subject, relation, object). KGs are
commonly stored in a triple format, ranging from
large-scale KGs like Wikidata (Vrandečić and
Krötzsch, 2014) to small-scale KGs such as those
in (Miller et al., 2016) and (Agarwal et al., 2022b).
KGs are particularly valuable when accurate
information can be extracted from them. Initially,
querying KGs in Natural Language (NL) involved
rule-based (Guo et al., 2020) and pattern-based
systems (Affolter et al., 2019). Semantic parsing
(Bast and Haussmann, 2015) was also utilized for
solving these queries by converting NL questions
into symbolic queries over the KG. However,
recent advancements have shifted towards the
adoption of sequence-to-sequence (seq2seq)
architectures (Zhong et al., 2017) and pre-trained
models, harnessing the power of neural networks.

Knowledge infusion. Extensive research
on querying knowledge graphs in natural lan-
guage has driven the development of diverse
methods for knowledge retrieval, addressing the
challenge of converting natural language into
graph query language. A particularly successful
approach involves combining knowledge graphs
with deep learning (DL), which has generated
considerable interest among researchers due to
the increasing significance of knowledge globally.
One commonly used approach for incorporating
structured knowledge into models is to convert
the knowledge into natural language text. ERNIE
3.0 (Sun et al., 2021) adopts this approach by
training a knowledge-enhanced model on a corpus
that combines triples and their corresponding
sentences. During training, random masking is

applied to either the relation in a triple or words
in a sentence. Methods like QA-GNN (Yasunaga
et al., 2021a) and GreaseLM (Zhang et al., 2022b)
employ knowledge infusion techniques that involve
propagating information through a graph to capture
the dependencies and relationships among entities.

The synergy of KG and DL can be categorized
into two groups: a) Utilizing KGs during inference,
as demonstrated in studies like PullNet (Sun et al.,
2019). b) Infusing knowledge into model weights
during pre-training, as explored in approaches such
as K-BERT (Liu et al., 2020), KGT5 (Saxena et al.,
2022) and SKILL (Moiseev et al., 2022). This
paper examines the SKILL technique for infusing
knowledge into language models (LMs) during pre-
training, and a novel framework called KITLM is
introduced for knowledge infusion during inference
in LMs. KITLM uniquely incorporates relevant
knowledge into language models while effectively
mitigating noise, a feature lacking in previous infu-
sion methods.

4 Methodology

This section details the following methodologies
for knowledge integration:

1. Our novel framework KITLM, designed for
multi-hop question answering, depicted in Fig-
ure 1.

2. The T5 pre-trained model and its continual
pre-training using structured knowledge, un-
structured corpora, including C4 and Aviation
Corpus, inspired by the state-of-the-art infu-
sion method, SKILL (Moiseev et al., 2022).

4.1 Knowledge Integration for Multi-hop QA

An overview of the KITLM framework is de-
picted in Figure 1. Knowledge infusion method,
especially question booster(explained later), in
KITLM is designed in a way to be more effec-
tive for multi-hop question answering. KITLM
can be incorporated with most of the language
models seamlessly independent of the LM architec-
ture. Designed specifically for multi-hop question-
answering, KITLM exhibits adaptability across var-
ious domains without requiring modifications to
the language model’s architecture, as long as a
knowledge graph is available. The architecture of
the language model does not need to be altered as
KITLM seamlessly incorporates knowledge during
the inference phase.

Figure 1: The proposed framework, KITLM (Section 4.1), is illustrated in the flow diagram. Initially, triples are
extracted from knowledge bases like the WikiMovies dataset (Miller et al., 2016) and transformed into verbalized
form. Subsequently, ColBERTv2 (Santhanam et al., 2022) is employed to retrieve the top-K relevant triples related
to the given question from the set of verbalized triples. The triples are distilled N times for the N-hop question-
answering. The distilled triples are then concatenated with the question and provided as input to the fine-tuned T5
to generate an answer.

4.1.1 Task Formulation
KITLM obtains the answer to the question using
two stages, namely retrieval and prediction stages.
Let A be the set of potential answers and a∗ be
the predicted answer where a∗ ∈ A, Q be the set
of questions and q be the input question, and θ
represents the weights of models used in KITLM.
Then the predicted answer

a∗ = argmaxa∈AP (a|q; θ). (1)

where P (a|q; θ) represents the probability of an-
swer given a question. P (a|q; θ) can be decom-
posed into the retrieval stage and prediction stage.

Retrieval stage: Given a question q, we retrieve
a set of triples t ∈ T using an iterative retrieval
mechanism, where T is the set of triples used as
context for the prediction stage. We can decompose
P (a|q; θ) as:

P (a|q) =
∑
t∈T

P (a|t, q; θp)P (t|q; θr). (2)

Here, P (a|t, q; θp) is the probability of the an-
swer a given question q and triples t to the predictor
and P (t|q; θr) is the probability of a triple t given a
question q to the retriever. Further, the set of triple
t can be rewritten as the set of relevant triples re-
trieved at each retrieval step helpful for answering
a K hop question. Let tk represent the set of triples
retrieved at the kth hop where tk ∈ T . It can be
written as:

P (t|q) = P (tK , tK−1, ..., tk, ..., t2, t1|q). (3)

For retrieving t at the kth step, we need tk−1 ...
t1 along with question q. Therefore using chain
rule, we can express P (t|q) as:

P (t|q) =
K∏
k=2

P (tk|tk−1, ..., t1, q)P (t1|q). (4)

P (t|q) can be interpreted using the score used by
the retriever for ranking the triples i.e. P (t|q) ∝
Sq,t. We use ColBERTv2 (Santhanam et al., 2022)
as the retriever to score the triples as Sq,t =∑N

i=1maxMj=1QiTj , where each query token’s rep-
resentation Qi is aligned with the most relevant
triple token representation Tj .

Prediction stage: To predict the answer a∗, we
input a question q and its relevant triples t to a T5
fine-tuned model for QA task. q < /s > t is the
input to the model and a∗ is the output obtained
through greedy decoding. Here, < /s > is the
separator token used by T5.

4.1.2 KITLM Algorithm
In this section, we describe the detailed method-
ology of the retrieval and prediction stages im-
plemented in KITLM which is shown in figure
1. KITLM recognizes the relevance of integrating
triples with input questions as contextual informa-
tion to improve question-answering accuracy. The
integration process begins with the verbalization of
extracted triples from a knowledge graph. To iden-
tify the most pertinent triples for a given question,
ColBERTv2 is employed to index the verbalized

triples. The highest-ranked triples are selected as
the context for the question during the fine-tuning
process.

Since the integration of knowledge relies heavily
on the retriever, we use ColBERTv2 because of
its high performance in both in-domain and out-
of-domain information retrieval. However, in case
of multi-hop questions, the retrieval is likely to
be highly noisy even with ColBERTv2. To allevi-
ate this problem, we propose an iterative approach
where after every retrieval iteration, we filter out
the noise using the triple distiller.

We repeat the distilling process N times for a N-
hop question. Additionally, after each iteration, the
distilled triples are appended to the question and
used as additional input for querying ColBERTv2
in the subsequent iteration. This augments the
query with additional knowledge after each itera-
tion. The method of question augmentation through
triple distiller is called Question Booster as shown
in figure 1. The iterative process is outlined in
Algorithm 1.

Algorithm 1 Retrieving context for N-hop Ques-
tion Answering with the KITLM approach. The
context in this case comprises the pertinent triples
extracted from the knowledge base.

Require:
1: Q0→ Input Question
2: T → Triples in a Knowledge Graph
3: N → Number of hops in N-hop Question
4: E → Set of Entities
5: ColBERT (Qi|T)→ ColBERTv2 indexed on

T
Ensure:

6: QN = Q0 +RelevantTriples
7: procedure N-HOPQA(Q0, T, E,N)
8: E′ ← entities in Q0

9: for i = 0 to N − 1 do
10: Ret← ColBERT (Qi|T) ▷ Retrieve

top triples, Ret ⊆ T
11: Fil ← Triples ∈

Ret having Entities ∈ E′ ▷ Clean the
retrieved triples

12: Qi+1 ← Qi + Fil ▷ Append the
filtered triples to Qi

13: E′ ← entitiesin F il \ E′ ▷ New
entities in the filtered triples

14: end for
15: return QN

16: end procedure

Following Algorithm 1, the multi-hop question-
answering system gradually gathers relevant triples
from the knowledge base, avoids repetition, and
maintains an updated entity set to guide the re-
trieval process. The iterative loop is repeated for
N iterations to achieve optimal N-hop question an-
swering (QA) results. The retrieval process en-
hances the model’s ability to generate accurate
answers by continuously refining available infor-
mation. As a result, the accuracy of multi-hop
question answering improves.

The integration of relevant triples with the ques-
tions in KITLM encompasses the entire QA dataset,
which includes the train, validation, and test sets.
During this process, the input question is denoted
as Q0, while the retrieved sequence of triples is rep-
resented as Fil. The input provided to the language
model is constructed as "question: Q0</s>context:
Fil" where </s> is a separator token. After the in-
tegration of triples, the language model undergoes
fine-tuning using the training data. Following the
fine-tuning process, the model is utilized on the test
set to generate question-answering results.

4.2 Structured Knowledge Infusion for
Language Models

In this section, we investigate incorporating knowl-
edge into language models using knowledge triples
and textual information. We delve into the details
of infusing knowledge into LMs by training the T5
model on unstructured corpora, and factual triples
extracted from knowledge graphs. We compare the
performance of different models, namely: a) T5-
large as the baseline model, b) T5-large + textual
information, c) T5-large + KG triples, and d) T5
+ textual information + KG triples. The results of
these models are presented in the Table 1.

The knowledge infusion method during pre-
training is inspired from SKILL. In this approach,
triples are extracted from the knowledge graph and
combined with the text to prevent any degradation
in the model’s performance on natural language un-
derstanding tasks. For the MetaQA dataset, the C4
text is utilized, while the curated Aviation corpus
(Section 5.2) is employed for the AeroQA dataset
(Section 5.1). A subset of the C4 corpus and Avia-
tion corpus equal to the number of triples in the KG
is used for continual pre-training of the language
model. After combining the triples and text, the
T5 model is continually pre-trained using a salient
masked language modeling technique.

T5, a text-to-text transfer transformer model,
was initially trained on the C4 corpus using a
masked-language modeling technique. In this ap-
proach, certain spans of tokens in a sequence are
randomly masked, and the model predicts the miss-
ing tokens. The approach described in (Roberts
et al., 2020) is followed where instead of mask-
ing random tokens, salient terms are masked to
improve performance on downstream tasks that re-
quire a deeper understanding of the sequence, such
as question answering (Guu et al., 2020a). The
salient terms are the entities found within the cor-
pora and knowledge graphs. The entities in C4
with the highest predicted probability is masked by
a BERT (Devlin et al., 2019a) model finetuned on
the CoNLL 2003 NER dataset 3 (Tjong Kim Sang
and De Meulder, 2003). For aviation corpus, we
additionally masked NERs and nouns detected by
Spacy 4 since entities in AviationKG and NTSB
reports can also be compound nouns. E.g. Vi-
sual Conditions is an entity in the AviationKG’s
triple: AccidentNumber_LAX05LA060 | hasCon-
ditionsAtAccidentSite | Visual Conditions. For Avi-
ationKG and Wikimovies, we randomly masked
either the head entity or tail entities.

By following the described continual-training
process, a T5 model is transformed into a
knowledge-infused model. Subsequently, the
trained model is fine-tuned for the specific task,
which in our case is question answering, leading
to the creation of the fine-tuned model. The fine-
tuned model is employed to generate answers for
the test-set.

5 Dataset

This section introduces AeroQA, a bench-
mark dataset specifically designed for question-
answering tasks in the aviation domain. Addition-
ally, an aviation-related text dataset called Aviation
Corpus, similar to C4, is created. The rest of the
datasets used for experimentation is explained in
Appendix.

5.1 AeroQA: A Benchmark Dataset for
Aviation Domain

To address the limitations of the AviationQA (Agar-
wal et al., 2022b) dataset and evaluate the reason-
ing ability over the AviationKG knowledge graph,

3https://huggingface.co/dslim/
bert-base-NER

4https://spacy.io/

we have created AeroQA, a multi-hop question-
answering dataset in the aviation domain. While
AviationQA is a large dataset in the aviation do-
main, it is limited in two key aspects. Firstly, all
the questions in AviationQA are single-hop, which
does not allow for evaluating the model’s ability
to reason over knowledge graphs like AviationKG.
Secondly, only a fraction of AviationQA pairs con-
tain questions that can be answered using the triples
from AviationKG, limiting the utilization of the full
reasoning potential of the QA pairs. AeroQA is
specifically curated to overcome these limitations
and provide a dataset that facilitates reasoning over
KGs in the aviation domain.

AeroQA is a multi-hop closedbook QA dataset
for the aeronautics domain. This dataset comple-
ments the pre-processed AviationKG knowledge
graph and enables reasoning tasks. The Avia-
tionKG is constructed from the National Trans-
portation Safety Board (NTSB) reports which con-
tain information about aircraft accidents and their
investigation. AeroQA consists of a comprehensive
collection of 34k questions specifically designed
to assess both single-hop and multi-hop reasoning
abilities. Out of these QA pairs, 21k are 1-hop QA
pairs, while the remaining are for 2-hop reasoning.
The dataset is divided into three parts: training,
validation, and testing, with an 80:10:10 split ratio.
The AeroQA dataset contains multiple answers for
each question, which are separated by the ‘|’ sym-
bol. The entities mentioned in the questions are
enclosed within square brackets ‘[]’. These enti-
ties are present in the AviationKG knowledge base.
The dataset consists of 87 relations for the 1-hop
question-answer pairs and 35 relations for the 2-
hop question-answer pairs. These relations serve
as templates for constructing the question-answer
pairs. The template generation process involved
using the prompt-based approach with ChatGPT
(OpenAI, 2023), where different relations along
with their head and tail entities were used as prompt
text. The model was then prompted to generate the
template for the question-answer pairs. The gen-
erated output was subsequently filtered and man-
ually checked to form the final question-answer
templates.

5.2 Aviation Corpus: A dataset consisting of
Aviation text

The MetaQA dataset requires C4 (Raffel et al.,
2020b) corpus for the MLM training with the

https://huggingface.co/dslim/bert-base-NER
https://huggingface.co/dslim/bert-base-NER
https://spacy.io/

Models AeroQA
1-hop

AeroQA
2-hop

MetaQA
1-hop

MetaQA
2-hop

MetaQA
3-hop

T5-large (Baseline) 52.88 41.57 24.5 32.65 42.31
T5-large + C4 51.38 40.65 23.53 32.78 39.66

T5-large + Aviation_Corpus 52.04 41.73 - - -
T5-large + KG 52.64 41.19 23.89 15.82 31.30

T5-large + C4 + KG (SKILL (Moiseev
et al., 2022))

54.66 41.34 71.47 33.57 43.41

T5-large + Aviation_Corpus + KG 56.78 42.11 - - -
GPT-3 (Fine-tuned) 24.30 20.99 18.73 16.71 54.77

GPT-3.5-turbo (one-shot) 0.37 2.22 53.90 21.07 23.06
KITLM (Our method: T5-large +

relevant KG− Triples)
86.06 43.52 91.26 71.19 71.62

Table 1: The table displays the exact match scores obtained on the test set for three models, T5-large, GPT-3,
and GPT-3.5, utilized for the QA tasks. In our proposed KITLM approach (Section 4.1), the term relevant
KG − Triples represents distilled triples sourced from the knowledge base, which were utilized to provide
contextual information for the questions. The table includes models labeled as T5-large + Z, which underwent
continual pre-training with additional inputs (Z) such as text, KG triples, or a combination of text and triples. These
pre-trained models were further fine-tuned for the QA task to generate exact match scores. The performance of the
KITLM approach is also compared with the state-of-the-art language models, namely GPT-3 and GPT-3.5-turbo.
GPT-3 was fine-tuned on the corresponding dataset for the QA task. The "-" symbol refers to non-applicability as
the aviation corpus is a distinct domain and cannot be applied to the MetaQA dataset. In contrast, the C4 dataset,
being a generic domain dataset, applies to both MetaQA and AeroQA.

SKILL (Moiseev et al., 2022) approach. To con-
duct experiments using our AeroQA dataset, we
compiled the Aviation corpus, comprising 665k
lines of English text related to the aviation domain.
This corpus was obtained by scraping 4,000 Na-
tional Transportation Safety Board reports from
the NTSB website, covering the period between
1981 and 2018. The reports, initially in PDF for-
mat, were converted to JSON format for easier
processing. The paragraphs that contain clean text
were extracted from selected sections of the reports
which are Analysis, Probable Cause and Findings,
and Factual Information. The selected paragraphs
were then curated and included in the Aviation cor-
pus, which served as a valuable resource for our
research and experimentation.

6 Results and Analysis

In table 1, we depict the results for the question-
answering task and compare the performance of
our proposed framework, KITLM, and different
knowledge integration settings using the T5-large
model. The evaluation is conducted on the Avia-
tionQA and MetaQA datasets. Additionally, the
table includes the performance of GPT-3 and GPT-
3.5-turbo (ChatGPT). The experimental setup is
explained in the Appendix.

The T5-large model is used as the baseline, while
the state-of-the-art knowledge infusion method, de-
scribed in (Moiseev et al., 2022), is referred to
as the SKILL pre-trained combined model. This
model combines T5 with additional input, which
is unstructured corpora denoted as X, and also in-
corporates triples as part of the knowledge infusion
process. The T5 + X + KG demonstrates improved
performance compared to T5, T5 + X, and T5 +
KG for both MetaQA and AeroQA datasets. In
MetaQA, the performance is adversely affected
when using only non-verbalized KG-Triples, lead-
ing to a decrease in scores compared to the C4 text
experiment. Although the T5 + KG-Triples model
exhibits a slight improvement in the AeroQA, it
fails to surpass the T5 baseline due to catastrophic
interference, despite its inherent domain-specific
benefits. The T5 + KG-Triples result underscores
the importance of incorporating unstructured cor-
pora for language models, as relying solely on
triples can result in catastrophic forgetting. But
this doesn’t mean that the integration of triples is
irrelevant, and infusing only text into the language
model will help. We observed a decline in the per-
formance for the tasks after utilization of only C4
text compared to the baseline. The rationale be-
hind the ongoing use of text-only pre-training is

Dataset Question Gold Answer ChatGPT (using prompt) KITLM
AeroQA
1-hop

What environmental issue
caused [AccidentNum-
ber_IAD05LA071]?

Tailwheel N/A (The given Accident
Number does not provide any

information related to an
environmental issue)

tailwheel

AeroQA
2-hop

What is the aircraft category of
the registered aircraft involved in

[AccidentNum-
ber_LAX04LA084]?

Airplane turbo-jet-turbofan-turboprop-
turboshaft

airplane

MetaQA
1-hop

What movies were [Jessica
Simpson] an actor in?

Employee of the
Month|Blonde

Ambition

Employee of the Month| Blonde
Ambition|Private Valentine:

Blonde & Dangerous|The Love
Guru

employee
of the
month

MetaQA
2-hop

What are the primary languages
in the movies directed by [David

Mandel]?

German N/A german

MetaQA
3-hop

The movies that share actors
with the movie [Waxworks]
were in which languages?

Swedish|German|
French|English

N/A german

Table 2: The table compares examples from the AeroQA and MetaQA datasets, showcasing the differences between
ChatGPT and our proposed framework, KITLM.

explained in (Raffel et al., 2020b). It is proposed
that repeatedly training on C4 text could poten-
tially lead to a decrease in performance for a T5
model. Although incorporating the aviation cor-
pus in the AeroQA task significantly improves the
score compared to the C4 text, this improvement
can be primarily attributed to the domain similarity
between the corpus and the task itself. To conclude,
considering the individual inclusion of unstructured
text and triples, the outcomes vary, with some cases
showing a decline in performance while others ex-
hibit slight improvements. However, when both
text and triples are combined using the SKILL, the
results demonstrate enhancements. It is important
to acknowledge that explaining the performance of
these approaches can be complex, and their effec-
tiveness relies on the particular corpora employed,
such as C4 or the Aviation Corpus. Furthermore,
the continual pre-training demands higher compu-
tational resources.

To address the aforementioned limitations, we
developed the KITLM approach, demonstrating
the best performance across all tasks. The reason
why KITLM performs better is as it selects the
most relevant triples from the knowledge base after
mitigating noise. The triples serve as the context
for answering the question. KITLM is a selective
approach that helps to remove confusing elements
compared to existing methods, such as SKILL.
This resulted in KITLM to achieve a significant

improvement of 30% and 20% in the exact match
score for the AeroQA 1-hop and MetaQA 1-hop
tasks, respectively. Attributing to similar reasons,
KITLM demonstrates better performance for
the 2-hop and 3-hop QA. The reason KITLM
surpasses other methods is due to its adeptness
in handling multi-hop question-answering tasks,
which demand advanced reasoning abilities for
accurate answers. Unlike previous infusion
methods that relied on continual pre-training,
which can result in catastrophic forgetting, KITLM
addresses this challenge effectively by removing
the pre-training procedure to infuse knowledge.
Another advantage of KITLM is its ability to
mitigate the computational power requirements
associated with knowledge infusion methods,
which typically arise from pre-training. KITLM
addresses this issue by selecting triples N times
for N-hop QA, eliminating the need to train
the model repeatedly. This approach not only
reduces computational costs but also improves
performance. The significance of the KITLM
is amplified by its capability to adapt to diverse
domains and tasks, eliminating the necessity
for domain-specific corpora in the process of
knowledge infusion.

Performance on GPT-3 and ChatGPT. In
our experiments on MetaQA and AeroQA datasets,
we observed that ChatGPT, despite being a

powerful model, encountered challenges in
producing accurate results. In table 2, we depict
some examples from both datasets. ChatGPT is
able to provide some answers for 1-hop MetaQA
questions. This can be attributed to the fact that
ChatGPT has movie domain knowledge. However,
ChatGPT faces challenges in 2-hop and 3-hop
questions. In the case of AeroQA, ChatGPT faces
challenges even in the 1-hop question. This can
be because chatGPT might lack knowledge of a
specialized domain, aviation. On the other hand,
KITLM is able to answer all the questions in table
2. These observations highlight the limitations of
ChatGPT in domain-specific question-answering
tasks and the effectiveness of the KITLM in
achieving higher accuracy with relevant knowledge
infusion. It becomes evident that smaller language
models, when combined with knowledge infusion
techniques, can achieve better accuracy than LLMs
for the QA task.

Following the evaluation of ChatGPT’s perfor-
mance with one-shot learning, we fine-tune the
GPT-3 model for the QA tasks. However, the re-
sults obtained for AeroQA 1-hop and MetaQA 1-
hop were relatively poor, with EM scores of 24.3%
and 18.73% respectively. Also, the 2-hop and 3-
hop tasks performed worse than KITLM.

Our results using GPT-3 and ChatGPT highlight
the significant advantage of knowledge infusion for
smaller models compared to large language models
such as the GPT series. Through the incorporation
of knowledge infusion techniques, we achieved su-
perior performance across various tasks, demon-
strating the effectiveness of leveraging domain-
specific knowledge to enhance the capabilities of
smaller models.

7 Conclusion and Future Work

Our framework, KITLM, addresses the challenge
of providing context for multi-hop question an-
swering by leveraging a knowledge base to filter
and select relevant information. Our study under-
scores the ongoing importance of incorporating
domain-specific knowledge and context, even with
the availability of large language models like GPT-
3 and ChatGPT, to enhance their performance in
specialized domains. We have also introduced the
AeroQA dataset, designed specifically for multi-
hop question-answering in the aviation domain,
and the Aviation corpus, which serves as a valuable
resource for knowledge infusion tasks in language

models.
Our future work aims to enhance NLP tasks like

sentiment analysis and summarization by leverag-
ing knowledge bases’ reasoning capabilities. We’ll
address existing knowledge source limitations and
explore ways to integrate domain-specific knowl-
edge directly into language models, potentially re-
placing traditional knowledge bases.

References
Katrin Affolter, Kurt Stockinger, and Abraham Bern-

stein. 2019. A comparative survey of recent natural
language interfaces for databases. The VLDB Jour-
nal, 28(5):793–819.

Ankush Agarwal, Sakharam Gawade, Sachin
Channabasavarajendra, and Pushpak Bhat-
tacharya. 2022a. There is no big brother or
small brother:knowledge infusion in language
models for link prediction and question answering.
In Proceedings of the 19th International Confer-
ence on Natural Language Processing (ICON),
pages 204–211, New Delhi, India. Association for
Computational Linguistics.

Ankush Agarwal, Raj Gite, Shreya Laddha, Pushpak
Bhattacharyya, Satyanarayan Kar, Asif Ekbal, Prab-
hjit Thind, Rajesh Zele, and Ravi Shankar. 2022b.
Knowledge graph - deep learning: A case study in
question answering in aviation safety domain. In Pro-
ceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 6260–6270, Marseille,
France. European Language Resources Association.

Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami
Al-Rfou. 2021. Knowledge graph based synthetic
corpus generation for knowledge-enhanced language
model pre-training. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 3554–3565, Online. As-
sociation for Computational Linguistics.

Hannah Bast and Elmar Haussmann. 2015. More ac-
curate question answering on freebase. In Proceed-
ings of the 24th ACM international on conference
on information and knowledge management, pages
1431–1440.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yuanfei Dai, Shiping Wang, Neal N. Xiong, and Wen-
zhong Guo. 2020. A survey on knowledge graph em-
bedding: Approaches, applications and benchmarks.
Electronics, 9(5).

https://aclanthology.org/2022.icon-main.26
https://aclanthology.org/2022.icon-main.26
https://aclanthology.org/2022.icon-main.26
https://aclanthology.org/2022.lrec-1.673
https://aclanthology.org/2022.lrec-1.673
https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.3390/electronics9050750
https://doi.org/10.3390/electronics9050750

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019a. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019b. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

J. Guo, Z. Wang, Y. He, J. Su, and Y. Yu. 2020. A survey
on rule-based reasoning for knowledge graphs. ACM
Transactions on Knowledge Discovery from Data
(TKDD), 14(4):1–32.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Mingwei Chang. 2020a. Retrieval augmented
language model pre-training. In Proceedings of the
37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning
Research, pages 3929–3938. PMLR.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Mingwei Chang. 2020b. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929–3938. PMLR.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-bert: En-
abling language representation with knowledge graph.
In AAAI.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-value memory networks for directly read-
ing documents. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1400–1409, Austin, Texas. Associ-
ation for Computational Linguistics.

Fedor Moiseev, Zhe Dong, Enrique Alfonseca, and Mar-
tin Jaggi. 2022. SKILL: Structured knowledge infu-
sion for large language models. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1581–1588,
Seattle, United States. Association for Computational
Linguistics.

OpenAI. 2023. Chatgpt. Accessed on May 31, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020a. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1–67.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020b. Exploring the
limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5418–5426,
Online. Association for Computational Linguistics.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. 2022. Col-
BERTv2: Effective and efficient retrieval via
lightweight late interaction. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3715–3734, Seat-
tle, United States. Association for Computational
Linguistics.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.
2022. Sequence-to-sequence knowledge graph com-
pletion and question answering. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2814–2828, Dublin, Ireland. Association for
Computational Linguistics.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Noam M. Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
ArXiv, abs/1804.04235.

Haitian Sun, Tania Bedrax-Weiss, and William Cohen.
2019. PullNet: Open domain question answering
with iterative retrieval on knowledge bases and text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2380–
2390, Hong Kong, China. Association for Computa-
tional Linguistics.

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding,
Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi Chen,
Yanbin Zhao, Yuxiang Lu, et al. 2021. Ernie 3.0:
Large-scale knowledge enhanced pre-training for lan-
guage understanding and generation. arXiv preprint
arXiv:2107.02137.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3383124
https://doi.org/10.1145/3383124
https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html
https://doi.org/10.18653/v1/D16-1147
https://doi.org/10.18653/v1/D16-1147
https://doi.org/10.18653/v1/2022.naacl-main.113
https://doi.org/10.18653/v1/2022.naacl-main.113
https://chat.openai.com/
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.acl-long.201
https://doi.org/10.18653/v1/2022.acl-long.201
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/D19-1242
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419

Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021a. QA-GNN:
Reasoning with language models and knowledge
graphs for question answering. In Proceedings of
the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 535–546, Online.
Association for Computational Linguistics.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021b. Qa-gnn:
Reasoning with language models and knowledge
graphs for question answering. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 535–546.

X Zhang, A Bosselut, M Yasunaga, H Ren, P Liang,
C Manning, and J Leskovec. 2022a. Greaselm:
Graph reasoning enhanced language models for ques-
tion answering. In International Conference on Rep-
resentation Learning (ICLR).

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,
Hongyu Ren, Percy Liang, Christopher D. Manning,
and Jure Leskovec. 2022b. Greaselm: Graph reason-
ing enhanced language models for question answer-
ing.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der J Smola, and Le Song. 2018. Variational reason-
ing for question answering with knowledge graph. In
Thirty-second AAAI conference on artificial intelli-
gence.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

Appendix

A Experiment Data

Our research utilizes the following datasets: a) Avi-
ation Knowledge Graph (AviationKG) (Agarwal
et al., 2022b) and AeroQA (Section 5.1): Avi-
ationKG is a knowledge graph designed explic-
itly for the aviation domain, while AeroQA is a
question-answering dataset curated for multi-hop
reasoning over AviationKG, b) MetaQA (Zhang
et al., 2018): MetaQA consists of a knowledge base
constructed from the WikiMovies dataset (Miller
et al., 2016) and a set of question-answer pairs. It
serves as a benchmark dataset for multi-hop rea-
soning. WikiMovies represents the movie domain.
The statistics of these datasets are presented in Ta-
ble 3 and 4.

The QA datasets chosen for the experiments un-
dergo preprocessing to make them suitable for the
experimental procedures. During the preprocess-
ing stage, if a single question has multiple answers
separated by the ‘|’ symbol, each answer is treated
as a distinct instance of a question-answer pair.
Rather than considering them as a single combined
instance, they are split into individual question-
answer pairs, with each answer associated with the
same question. This separation facilitates improved
handling and analysis of the data throughout the
experiments.

We chose these datasets deliberately because
they cover diverse domains and exhibit variations
in terms of size and characteristics, allowing us
to evaluate the performance and generalizability
of our proposed method across different contexts.
This choice allows us to demonstrate the versatility
of our approach across diverse datasets.

Additionally, Table 4 provides the statistics for
the AviationQA dataset, which was utilized in the
experimentation conducted by Agarwal et al. 2022a.
However, we did not employ this dataset in our ex-
periments due to its limitation in lacking multi-hop
reasoning capabilities for QA tasks, as discussed
in detail in Section 5.1.

Dataset # of triples
AviationKG 193,372
WikiMovies 269,482

Table 3: The statistics of triples (subject, relation, ob-
ject) for two knowledge bases: AviationKG (Agarwal
et al., 2022b) and WikiMovies (Zhang et al., 2018).

https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
http://arxiv.org/abs/2201.08860
http://arxiv.org/abs/2201.08860
http://arxiv.org/abs/2201.08860

Dataset Train Validation Test
MetaQA

1-hop
96,106 9,992 9,947

MetaQA
2-hop

118,980 14,872 14,872

MetaQA
3-hop

114,196 14,274 14,274

AeroQA
1-hop

17,038 2,130 2,131

AeroQA
2-hop

10,433 1,305 1,305

AviationQA 367,304 10,000 10,000

Table 4: The statistics of question-answer pairs from
the aviation and movie domains. The dataset MetaQA
(Zhang et al., 2018) includes 1-hop, 2-hop, and 3-hop
questions from the movies domain. AviationQA (Agar-
wal et al., 2022a) specifically contains 1-hop questions
from aviation domain. Our curated dataset, AeroQA,
comprises both 1-hop and 2-hop questions. These statis-
tics provide an overview of the question-answer distri-
bution across different datasets used in our research.

To provide an overview of the dataset, Table
4 presents the distribution of 1-hop and 2-hop
questions. Below, we present a selection of
examples from the AeroQA dataset to provide a
glimpse into its content.

Examples of One-hop Questions in AeroQA:

• Q: What certificate does [Pi-
lot_ATL03LA101] have?
A: Private

• Q: What is the engine manufacturer associated
with [Registration_N127RB]?
A: Lycoming

• Q: What caused [AccidentNum-
ber_FTW93LA202]?
A: Pre-Flight Planning | Fluid Fuel | Terrain
Condition

Examples of Two-hop Questions in AeroQA:

• Q: What is the aircraft category of the reg-
istered aircraft involved in [AccidentNum-
ber_CHI03LA242]?
A: Airplane | Gyroplane

• What could have contributed to the
cause of the accident [AccidentNum-
ber_SEA96TA046]?
A: Pilot in Command | Pilot of other Aircraft |
Check Pilot

The structure of the templates in the AeroQA
dataset is exemplified in Table 5 for 1-hop
questions and Table 6 for 2-hop questions.

B Experimental Setup

We applied the SKILL (Moiseev et al., 2022)
approach and our proposed KITLM approach
on the T5-large model, which has 770M param-
eters. Additionally, we included the GPT-3 and
GPT-3.5-turbo models for comparison with the
knowledge-infused T5.

SKILL. The approach consists of two parts:
continual pre-training and fine-tuning. In the
process of continual pre-training, a balanced
distribution is maintained by integrating both
text and triples, ensuring an equal ratio of 50:50
between the two. For T5-large, we conducted
SKILL training for 20 epochs with a batch size
of 32, followed by fine-tuning for 20 epochs
with a batch size of 128. We used seeds 0 and
42 for continual pre-training and fine-tuning,
respectively. During the training process, we
utilized AdaFactor (Shazeer and Stern, 2018) as
the optimizer with specific settings: a learning rate
of 1e-3, scale_parameter as False, relative_step as
False, and warmup_init as False 5. The maximum
sequence length for both training and fine-tuning
was set to 128, and a doc stride of 128 was applied
during fine-tuning.

Baseline. For baseline comparisons, we uti-
lize pre-trained T5 checkpoints of the same
size. In order to isolate the effect of knowledge
infusion from the influence of additional text
sources such as C4 and Aviation corpus used
for pre-training, we follow a similar approach
as the SKILL (Moiseev et al., 2022). However,
since the code repository for the SKILL is not
available, we implemented our own code for the
method. To differentiate the effects of knowledge
infusion, we create a second baseline by training
the T5 checkpoints on the text for half of the
previously mentioned steps. This adjustment
ensures that the amount of text pre-training aligns
with the SKILL model, allowing us to attribute any
observed improvements to knowledge infusion.

5https://discuss.huggingface.co/t/
t5-finetuning-tips/684/3

https://discuss.huggingface.co/t/t5-finetuning-tips/684/3
https://discuss.huggingface.co/t/t5-finetuning-tips/684/3

Relation Template
hasAircraftManufacturer What is the aircraft manufacturer associated with [HEAD]

hasFederalAviationRegulation What is the Federal Aviation Regulation associated with [HEAD]
OccurredAtCountry In which country did [HEAD] occur

Table 5: The table displays the templates employed in constructing the AeroQA 1-hop dataset. These templates
utilize the placeholder [HEAD], which corresponds to the head entity of the KG triples, i.e., accident number, and
registration number present in the NTSB report.

Relation1 Relation2 Template
hasRegistrationNumber hasAirworthinessCertificate What is the airworthiness certificate of the

registered aircraft involved in [HEAD]
IsCausedBy IsCausedDueTo What could have contributed to the cause of

the accident [HEAD]
hasPilot hasInstructorRating What was the instructor rating of the pilot in

the aircraft involved in [HEAD]

Table 6: The table showcases the templates used for constructing the AeroQA 2-hop dataset. In these templates, the
placeholder [HEAD] represents the head entity of the KG triples, i.e., accident number, and registration number of
the NTSB report, which is utilized to generate the 2-hop AeroQA pairs.

Furthermore, to assess the significance of text in
conjunction with structured data, we create an
additional T5 baseline that only utilizes triples. All
other settings remain consistent with the SKILL.

KITLM. The approach comprises two main
modules: (a) the retrieval module, which extracts
triples from the knowledge base to provide
contextual information, and (b) the fine-tuning
module, which involves fine-tuning the T5-large
model using the question+context combination.
For single-hop QA, we retrieved the top 5 triples.
In the first iteration of multi-hop QA, the top-k
triples are retrieved with a value of k=3. In the
subsequent iteration, k2 triples are retrieved due to
the reduction in triples after filtration (explained in
Section 4.1). This iteration process continues for
N-hop QA, with N*k triples retrieved in the final
iteration. For the fine-tuning of the model, a batch
size of 128 is used, while the other settings are the
same as the experimental setup of SKILL.

GPTs. The GPT-3 and GPT-3.5-turbo mod-
els were accessed via the OpenAI API, and
specifically, the GPT-3 model was fine-tuned on
the QA tasks for AeroQA and MetaQA. During the
fine-tuning of the GPT-3 model, we employed a
batch size of 32 for AeroQA and 128 for MetaQA.
To control the randomness of the model in training,
a temperature of 0 was employed, and the model
was trained for two epochs. This decision was

made based on the observation that the loss started
converging by the second epoch for the Curie
model. To accommodate the multi-word factual
answers present in the dataset, we have set the
maximum token size to 50 for both GPT-3 and
GPT-3.5-turbo. For GPT-3.5-turbo, we utilized
a prompt-based approach along with one-shot
learning. The prompt instructed the model to
predict the answer to a given question and to output
"N/A" if the answer was not available. To construct
the prompt, we included a random example
from the development set of the corresponding
datasets. However, specifically for GPT-3.5-turbo,
we pre-processed the dataset by removing the
square brackets from both the test set and the
example included in the prompt. This adjustment
was implemented because it was observed that
removing the brackets slightly improved the
performance compared to when the brackets were
not removed. These training and fine-tuning
parameters were utilized to ensure consistency
and enable meaningful comparisons between the
models in our experiments.

Evaluation. During the evaluation, as part
of pre-processing, both the correct answers and
predicted answers of the test set for all models are
converted to lowercase. The exact match score is
utilized as the evaluation metric on the test set for
all experiments In the case of a QA dataset where
a question can have multiple correct answers,

the scoring is determined based on the following
criteria: If the predicted answer matches any of
the correct answers associated with a question, a
score of 1 is assigned. Conversely, if the predicted
answer does not match any of the correct answers,
a score of 0 is assigned. Unlike the T5 model,
which predicts only one answer and matches it
with the gold answers, GPTs are generative models
that generate answers. We determine if any of the
gold answers are present in the generated answer
and assign a value of 1 if there is a match and 0
otherwise.

{

 "cells": [

 {

 "cell_type": "code",

 "execution_count": 4,

 "metadata": {},

 "outputs": [

 {

 "name": "stdout",

 "output_type": "stream",

 "text": [

 "Requirement already satisfied: sentencepiece in /opt/conda/lib/python3.8/site-packages

(0.1.94)\n",

 "Collecting datasets\n",

 " Downloading datasets-2.12.0-py3-none-any.whl (474 kB)\n",

 "\u001b[K |████████████████████████████████| 474 kB 17.7 MB/s eta

0:00:01\n",

 "\u001b[?25hCollecting pyarrow>=8.0.0\n",

 " Downloading pyarrow-11.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

(35.0 MB)\n",

 "\u001b[K |████████████████████████████████| 35.0 MB 54.7 MB/s eta

0:00:01\n",

 "\u001b[?25hCollecting responses<0.19\n",

 " Downloading responses-0.18.0-py3-none-any.whl (38 kB)\n",

 "Requirement already satisfied: numpy>=1.17 in /opt/conda/lib/python3.8/site-packages (from

datasets) (1.19.2)\n",

 "Collecting xxhash\n",

 " Downloading xxhash-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

(213 kB)\n",

 "\u001b[K |████████████████████████████████| 213 kB 86.0 MB/s eta

0:00:01\n",

 "\u001b[?25hRequirement already satisfied: pandas in /opt/conda/lib/python3.8/site-packages (from

datasets) (1.1.4)\n",

 "Collecting tqdm>=4.62.1\n",

 " Downloading tqdm-4.65.0-py3-none-any.whl (77 kB)\n",

 "\u001b[K |████████████████████████████████| 77 kB 26.1 MB/s eta

0:00:01\n",

 "\u001b[?25hCollecting fsspec[http]>=2021.11.1\n",

 " Downloading fsspec-2023.4.0-py3-none-any.whl (153 kB)\n",

 "\u001b[K |████████████████████████████████| 153 kB 94.6 MB/s eta

0:00:01\n",

 "\u001b[?25hCollecting multiprocess\n",

 " Downloading multiprocess-0.70.14-py38-none-any.whl (132 kB)\n",

 "\u001b[K |████████████████████████████████| 132 kB 99.9 MB/s eta

0:00:01\n",

 "\u001b[?25hRequirement already satisfied: requests>=2.19.0 in /opt/conda/lib/python3.8/site-

packages (from datasets) (2.24.0)\n",

 "Collecting dill<0.3.7,>=0.3.0\n",

 " Downloading dill-0.3.6-py3-none-any.whl (110 kB)\n",

 "\u001b[K |████████████████████████████████| 110 kB 103.1 MB/s eta

0:00:01\n",

 "\u001b[?25hRequirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.8/site-

packages (from datasets) (5.3.1)\n",

 "Requirement already satisfied: huggingface-hub<1.0.0,>=0.11.0 in /opt/conda/lib/python3.8/site-

packages (from datasets) (0.13.4)\n",

 "Collecting aiohttp\n",

 " Downloading aiohttp-3.8.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

(1.0 MB)\n",

 "\u001b[K |████████████████████████████████| 1.0 MB 71.0 MB/s eta

0:00:01\n",

 "\u001b[?25hRequirement already satisfied: packaging in /opt/conda/lib/python3.8/site-packages

(from datasets) (20.4)\n",

 "Requirement already satisfied: urllib3>=1.25.10 in /opt/conda/lib/python3.8/site-packages (from

responses<0.19->datasets) (1.25.11)\n",

 "Requirement already satisfied: pytz>=2017.2 in /opt/conda/lib/python3.8/site-packages (from

pandas->datasets) (2020.1)\n",

 "Requirement already satisfied: python-dateutil>=2.7.3 in /opt/conda/lib/python3.8/site-packages

(from pandas->datasets) (2.8.1)\n",

 "Requirement already satisfied: chardet<4,>=3.0.2 in /opt/conda/lib/python3.8/site-packages (from

requests>=2.19.0->datasets) (3.0.4)\n",

 "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.8/site-packages (from

requests>=2.19.0->datasets) (2020.11.8)\n",

 "Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.8/site-packages (from

requests>=2.19.0->datasets) (2.10)\n",

 "Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/lib/python3.8/site-

packages (from huggingface-hub<1.0.0,>=0.11.0->datasets) (3.7.4.3)\n",

 "Requirement already satisfied: filelock in /opt/conda/lib/python3.8/site-packages (from

huggingface-hub<1.0.0,>=0.11.0->datasets) (3.0.12)\n",

 "Collecting async-timeout<5.0,>=4.0.0a3\n",

 " Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n",

 "Collecting charset-normalizer<4.0,>=2.0\n",

 " Downloading charset_normalizer-3.1.0-cp38-cp38-

manylinux_2_17_x86_64.manylinux2014_x86_64.whl (195 kB)\n",

 "\u001b[K |████████████████████████████████| 195 kB 84.8 MB/s eta

0:00:01\n",

 "\u001b[?25hCollecting aiosignal>=1.1.2\n",

 " Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB)\n",

 "Collecting frozenlist>=1.1.1\n",

 " Downloading frozenlist-1.3.3-cp38-cp38-

manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl

(161 kB)\n",

 "\u001b[K |████████████████████████████████| 161 kB 78.3 MB/s eta

0:00:01\n",

 "\u001b[?25hCollecting yarl<2.0,>=1.0\n",

 " Downloading yarl-1.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (266

kB)\n",

 "\u001b[K |████████████████████████████████| 266 kB 85.6 MB/s eta

0:00:01\n",

 "\u001b[?25hRequirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.8/site-

packages (from aiohttp->datasets) (20.3.0)\n",

 "Collecting multidict<7.0,>=4.5\n",

 " Downloading multidict-6.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

(121 kB)\n",

 "\u001b[K |████████████████████████████████| 121 kB 91.9 MB/s eta

0:00:01\n",

 "\u001b[?25hRequirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.8/site-

packages (from packaging->datasets) (2.4.7)\n",

 "Requirement already satisfied: six in /opt/conda/lib/python3.8/site-packages (from

packaging->datasets) (1.15.0)\n",

 "Installing collected packages: pyarrow, responses, xxhash, tqdm, async-timeout, charset-

normalizer, frozenlist, aiosignal, multidict, yarl, aiohttp, fsspec, dill, multiprocess, datasets\n",

 " Attempting uninstall: tqdm\n",

 " Found existing installation: tqdm 4.53.0\n",

 " Uninstalling tqdm-4.53.0:\n",

 " Successfully uninstalled tqdm-4.53.0\n",

 "\u001b[31mERROR: After October 2020 you may experience errors when installing or updating

packages. This is because pip will change the way that it resolves dependency conflicts.\n",

 "\n",

 "We recommend you use --use-feature=2020-resolver to test your packages with the new resolver

before it becomes the default.\n",

 "\n",

 "huggingface-hub 0.13.4 requires packaging>=20.9, but you'll have packaging 20.4 which is

incompatible.\u001b[0m\n",

 "Successfully installed aiohttp-3.8.4 aiosignal-1.3.1 async-timeout-4.0.2 charset-normalizer-3.1.0

datasets-2.12.0 dill-0.3.6 frozenlist-1.3.3 fsspec-2023.4.0 multidict-6.0.4 multiprocess-0.70.14

pyarrow-11.0.0 responses-0.18.0 tqdm-4.65.0 xxhash-3.2.0 yarl-1.9.2\n"

]

 }

],

 "source": [

 "!pip install sentencepiece datasets"

]

 },

 {

 "cell_type": "code",

 "execution_count": 60,

 "metadata": {},

 "outputs": [

 {

 "ename": "NameError",

 "evalue": "name 'transformers' is not defined",

 "output_type": "error",

 "traceback": [

 "\u001b[0;31m---\u001b[0m",

 "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",

 "\u001b[0;32m<ipython-input-60-de6040bb8a15>\u001b[0m in

\u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m

\u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtransformers\u001b[0m\u001b[0;34m.\

u001b[0m\u001b[0m__version__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[

0;34m\u001b[0m\u001b[0m\n\u001b[0m",

 "\u001b[0;31mNameError\u001b[0m: name 'transformers' is not defined"

]

 }

],

 "source": []

 },

 {

 "cell_type": "code",

 "execution_count": 5,

 "metadata": {},

 "outputs": [

 {

 "name": "stdout",

 "output_type": "stream",

 "text": [

 "Requirement already satisfied: seaborn in /opt/conda/lib/python3.8/site-packages (0.12.2)\n",

 "Requirement already satisfied: matplotlib!=3.6.1,>=3.1 in /opt/conda/lib/python3.8/site-packages

(from seaborn) (3.3.3)\n",

 "Requirement already satisfied: numpy!=1.24.0,>=1.17 in /opt/conda/lib/python3.8/site-packages

(from seaborn) (1.19.2)\n",

 "Requirement already satisfied: pandas>=0.25 in /opt/conda/lib/python3.8/site-packages (from

seaborn) (1.1.4)\n",

 "Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.8/site-packages (from

matplotlib!=3.6.1,>=3.1->seaborn) (0.10.0)\n",

 "Requirement already satisfied: pillow>=6.2.0 in /opt/conda/lib/python3.8/site-packages (from

matplotlib!=3.6.1,>=3.1->seaborn) (9.5.0)\n",

 "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in

/opt/conda/lib/python3.8/site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (2.4.7)\n",

 "Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.8/site-packages (from

matplotlib!=3.6.1,>=3.1->seaborn) (1.3.1)\n",

 "Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.8/site-packages

(from matplotlib!=3.6.1,>=3.1->seaborn) (2.8.1)\n",

 "Requirement already satisfied: pytz>=2017.2 in /opt/conda/lib/python3.8/site-packages (from

pandas>=0.25->seaborn) (2020.1)\n",

 "Requirement already satisfied: six in /opt/conda/lib/python3.8/site-packages (from

cycler>=0.10->matplotlib!=3.6.1,>=3.1->seaborn) (1.15.0)\n"

]

 }

],

 "source": [

 "!pip install seaborn"

]

 },

 {

 "cell_type": "code",

 "execution_count": 62,

 "metadata": {},

 "outputs": [],

 "source": [

 "import pandas as pd\n",

 "import random\n",

 "import csv\n",

 "import numpy as np\n",

 "from datasets import load_dataset\n",

 "from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config\n",

 "from transformers import DataCollatorWithPadding\n",

 "from transformers import get_scheduler\n",

 "from torch.utils.data import DataLoader\n",

 "from tqdm.auto import tqdm\n",

 "from transformers import Adafactor\n",

 "import torch"

]

 },

 {

 "cell_type": "code",

 "execution_count": 63,

 "metadata": {},

 "outputs": [

 {

 "name": "stdout",

 "output_type": "stream",

 "text": [

 "4.28.1\n"

]

 }

],

 "source": [

 "import transformers\n",

 "print(transformers.__version__)"

]

 },

 {

 "cell_type": "code",

 "execution_count": 37,

 "metadata": {},

 "outputs": [],

 "source": [

 "triples = []\n",

 "total = 0\n",

 "files = [\"test.txt\", \"train.txt\", \"valid.txt\"]\n",

 "for f in files:\n",

 " with open(f'aviationKG/AviationKG_{f}', newline='') as file:\n",

 " lines = file.readlines()\n",

 " total += len(lines)\n",

 " for line in lines:\n",

 " tokens = line.split(\"\\t\")\n",

 " if len(tokens) != 3:\n",

 " print(tokens)\n",

 " continue\n",

 " \n",

 " tokens = [token.strip() for token in tokens]\n",

 " tokens[0] = tokens[0][13:].strip()\n",

 " triples.append(tokens)\n",

 " \n",

 " "

]

 },

 {

 "cell_type": "code",

 "execution_count": 38,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/plain": [

 "96686"

]

 },

 "execution_count": 38,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "len(triples)"

]

 },

 {

 "cell_type": "code",

 "execution_count": 39,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/plain": [

 "['r_LAX00LA285', 'type', 'NamedIndividual']"

]

 },

 "execution_count": 39,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "triples[1]"

]

 },

 {

 "cell_type": "code",

 "execution_count": 40,

 "metadata": {},

 "outputs": [],

 "source": [

 "random.seed(0)\n",

 "random.shuffle(triples)"

]

 },

 {

 "cell_type": "code",

 "execution_count": 41,

 "metadata": {},

 "outputs": [],

 "source": [

 "df = pd.DataFrame(triples, columns =['subject', 'relation', 'object'])\n"

]

 },

 {

 "cell_type": "code",

 "execution_count": 42,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/plain": [

 "96686"

]

 },

 "execution_count": 42,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "len(df)"

]

 },

 {

 "cell_type": "code",

 "execution_count": 43,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/html": [

 "<div>\n",

 "<style scoped>\n",

 " .dataframe tbody tr th:only-of-type {\n",

 " vertical-align: middle;\n",

 " }\n",

 "\n",

 " .dataframe tbody tr th {\n",

 " vertical-align: top;\n",

 " }\n",

 "\n",

 " .dataframe thead th {\n",

 " text-align: right;\n",

 " }\n",

 "</style>\n",

 "<table border=\"1\" class=\"dataframe\">\n",

 " <thead>\n",

 " <tr style=\"text-align: right;\">\n",

 " <th></th>\n",

 " <th>subject</th>\n",

 " <th>relation</th>\n",

 " <th>object</th>\n",

 " </tr>\n",

 " </thead>\n",

 " <tbody>\n",

 " <tr>\n",

 " <th>0</th>\n",

 " <td>r_FTW03LA001</td>\n",

 " <td>type</td>\n",

 " <td>Accident_Number</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>1</th>\n",

 " <td>N366KR</td>\n",

 " <td>hasEmergencyLocatorTransmitterInstalled</td>\n",

 " <td>false</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>2</th>\n",

 " <td>r_CHI04LA052</td>\n",

 " <td>unitOfTemperature</td>\n",

 " <td>degreeCelsius</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>3</th>\n",

 " <td>r_LAX02LA036</td>\n",

 " <td>hasWindSpeed</td>\n",

 " <td>4</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>4</th>\n",

 " <td>r_LAX02LA074</td>\n",

 " <td>unitOfDewPoint</td>\n",

 " <td>degreeCelsius</td>\n",

 " </tr>\n",

 " </tbody>\n",

 "</table>\n",

 "</div>"

],

 "text/plain": [

 " subject relation object\n",

 "0 r_FTW03LA001 type Accident_Number\n",

 "1 N366KR hasEmergencyLocatorTransmitterInstalled false\n",

 "2 r_CHI04LA052 unitOfTemperature degreeCelsius\n",

 "3 r_LAX02LA036 hasWindSpeed 4\n",

 "4 r_LAX02LA074 unitOfDewPoint degreeCelsius"

]

 },

 "execution_count": 43,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "df.head()"

]

 },

 {

 "cell_type": "code",

 "execution_count": 44,

 "metadata": {},

 "outputs": [],

 "source": [

 "def masked_subject(row):\n",

 " return \"<extra_id_0> {} {}\".format(row[\"relation\"], row[\"object\"])\n",

 "def masked_object(row):\n",

 " return \"{} {} <extra_id_0>\".format(row[\"subject\"], row[\"relation\"])"

]

 },

 {

 "cell_type": "code",

 "execution_count": 45,

 "metadata": {},

 "outputs": [],

 "source": [

 "def form_label(row):\n",

 " return \"<extra_id_0> {}.\".format(row)\n",

 " "

]

 },

 {

 "cell_type": "code",

 "execution_count": 46,

 "metadata": {},

 "outputs": [],

 "source": [

 "df[\"label\"] = np.where(df.index % 2, df[\"subject\"].map(form_label),

df[\"object\"].map(form_label))\n"

]

 },

 {

 "cell_type": "code",

 "execution_count": 47,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/html": [

 "<div>\n",

 "<style scoped>\n",

 " .dataframe tbody tr th:only-of-type {\n",

 " vertical-align: middle;\n",

 " }\n",

 "\n",

 " .dataframe tbody tr th {\n",

 " vertical-align: top;\n",

 " }\n",

 "\n",

 " .dataframe thead th {\n",

 " text-align: right;\n",

 " }\n",

 "</style>\n",

 "<table border=\"1\" class=\"dataframe\">\n",

 " <thead>\n",

 " <tr style=\"text-align: right;\">\n",

 " <th></th>\n",

 " <th>subject</th>\n",

 " <th>relation</th>\n",

 " <th>object</th>\n",

 " <th>label</th>\n",

 " </tr>\n",

 " </thead>\n",

 " <tbody>\n",

 " <tr>\n",

 " <th>0</th>\n",

 " <td>r_FTW03LA001</td>\n",

 " <td>type</td>\n",

 " <td>Accident_Number</td>\n",

 " <td><extra_id_0> Accident_Number.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>1</th>\n",

 " <td>N366KR</td>\n",

 " <td>hasEmergencyLocatorTransmitterInstalled</td>\n",

 " <td>false</td>\n",

 " <td><extra_id_0> N366KR.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>2</th>\n",

 " <td>r_CHI04LA052</td>\n",

 " <td>unitOfTemperature</td>\n",

 " <td>degreeCelsius</td>\n",

 " <td><extra_id_0> degreeCelsius.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>3</th>\n",

 " <td>r_LAX02LA036</td>\n",

 " <td>hasWindSpeed</td>\n",

 " <td>4</td>\n",

 " <td><extra_id_0> r_LAX02LA036.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>4</th>\n",

 " <td>r_LAX02LA074</td>\n",

 " <td>unitOfDewPoint</td>\n",

 " <td>degreeCelsius</td>\n",

 " <td><extra_id_0> degreeCelsius.</td>\n",

 " </tr>\n",

 " </tbody>\n",

 "</table>\n",

 "</div>"

],

 "text/plain": [

 " subject relation object \\\n",

 "0 r_FTW03LA001 type Accident_Number \n",

 "1 N366KR hasEmergencyLocatorTransmitterInstalled false \n",

 "2 r_CHI04LA052 unitOfTemperature degreeCelsius \n",

 "3 r_LAX02LA036 hasWindSpeed 4 \n",

 "4 r_LAX02LA074 unitOfDewPoint degreeCelsius \n",

 "\n",

 " label \n",

 "0 <extra_id_0> Accident_Number. \n",

 "1 <extra_id_0> N366KR. \n",

 "2 <extra_id_0> degreeCelsius. \n",

 "3 <extra_id_0> r_LAX02LA036. \n",

 "4 <extra_id_0> degreeCelsius. "

]

 },

 "execution_count": 47,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "df.head()"

]

 },

 {

 "cell_type": "code",

 "execution_count": 48,

 "metadata": {},

 "outputs": [],

 "source": [

 "df[\"input\"] = np.where(df.index % 2, df.apply(masked_subject, axis = 1),df.apply(masked_object,

axis = 1))\n"

]

 },

 {

 "cell_type": "code",

 "execution_count": 49,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/html": [

 "<div>\n",

 "<style scoped>\n",

 " .dataframe tbody tr th:only-of-type {\n",

 " vertical-align: middle;\n",

 " }\n",

 "\n",

 " .dataframe tbody tr th {\n",

 " vertical-align: top;\n",

 " }\n",

 "\n",

 " .dataframe thead th {\n",

 " text-align: right;\n",

 " }\n",

 "</style>\n",

 "<table border=\"1\" class=\"dataframe\">\n",

 " <thead>\n",

 " <tr style=\"text-align: right;\">\n",

 " <th></th>\n",

 " <th>subject</th>\n",

 " <th>relation</th>\n",

 " <th>object</th>\n",

 " <th>label</th>\n",

 " <th>input</th>\n",

 " </tr>\n",

 " </thead>\n",

 " <tbody>\n",

 " <tr>\n",

 " <th>0</th>\n",

 " <td>r_FTW03LA001</td>\n",

 " <td>type</td>\n",

 " <td>Accident_Number</td>\n",

 " <td><extra_id_0> Accident_Number.</td>\n",

 " <td>r_FTW03LA001 type <extra_id_0></td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>1</th>\n",

 " <td>N366KR</td>\n",

 " <td>hasEmergencyLocatorTransmitterInstalled</td>\n",

 " <td>false</td>\n",

 " <td><extra_id_0> N366KR.</td>\n",

 " <td><extra_id_0> hasEmergencyLocatorTransmitterIns...</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>2</th>\n",

 " <td>r_CHI04LA052</td>\n",

 " <td>unitOfTemperature</td>\n",

 " <td>degreeCelsius</td>\n",

 " <td><extra_id_0> degreeCelsius.</td>\n",

 " <td>r_CHI04LA052 unitOfTemperature <extra_id_0></td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>3</th>\n",

 " <td>r_LAX02LA036</td>\n",

 " <td>hasWindSpeed</td>\n",

 " <td>4</td>\n",

 " <td><extra_id_0> r_LAX02LA036.</td>\n",

 " <td><extra_id_0> hasWindSpeed 4</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>4</th>\n",

 " <td>r_LAX02LA074</td>\n",

 " <td>unitOfDewPoint</td>\n",

 " <td>degreeCelsius</td>\n",

 " <td><extra_id_0> degreeCelsius.</td>\n",

 " <td>r_LAX02LA074 unitOfDewPoint <extra_id_0></td>\n",

 " </tr>\n",

 " </tbody>\n",

 "</table>\n",

 "</div>"

],

 "text/plain": [

 " subject relation object \\\n",

 "0 r_FTW03LA001 type Accident_Number \n",

 "1 N366KR hasEmergencyLocatorTransmitterInstalled false \n",

 "2 r_CHI04LA052 unitOfTemperature degreeCelsius \n",

 "3 r_LAX02LA036 hasWindSpeed 4 \n",

 "4 r_LAX02LA074 unitOfDewPoint degreeCelsius \n",

 "\n",

 " label \\\n",

 "0 <extra_id_0> Accident_Number. \n",

 "1 <extra_id_0> N366KR. \n",

 "2 <extra_id_0> degreeCelsius. \n",

 "3 <extra_id_0> r_LAX02LA036. \n",

 "4 <extra_id_0> degreeCelsius. \n",

 "\n",

 " input \n",

 "0 r_FTW03LA001 type <extra_id_0> \n",

 "1 <extra_id_0> hasEmergencyLocatorTransmitterIns... \n",

 "2 r_CHI04LA052 unitOfTemperature <extra_id_0> \n",

 "3 <extra_id_0> hasWindSpeed 4 \n",

 "4 r_LAX02LA074 unitOfDewPoint <extra_id_0> "

]

 },

 "execution_count": 49,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "df.head()"

]

 },

 {

 "cell_type": "code",

 "execution_count": 50,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/plain": [

 "array(['type', 'hasEmergencyLocatorTransmitterInstalled',\n",

 " 'unitOfTemperature', 'hasWindSpeed', 'unitOfDewPoint',\n",

 " 'IsCausedBy', 'isCausedByEnvironmentIssue', 'hasPrecipitation',\n",

 " 'hasObservationFacility', 'hasRatedPower', 'unitOfVisibility',\n",

 " 'hasConditionsAtAccidentSite', 'hasOperator', 'hasPilot',\n",

 " 'unitOfDirectionFromAccidentSite', 'unitOfRatedPower',\n",

 " 'hasSecondPilotPresent', 'hasAircraftFire', 'unitOfElevation',\n",

 " 'hasAirworthinessCertificate', 'IsCausedBecause',\n",

 " 'hasAircraftExplosion', 'hasSerialNumber', 'hasTemperature',\n",

 " 'wasToxicologyPerformed', 'unitOfGusts', 'occurredAtCountry',\n",

 " 'hasSecondEvent', 'hasMedicalCertification', 'hasRegisteredOwner',\n",

 " 'hasLowestCloudCondition', 'unitOfDistanceFromAccidentSite',\n",

 " 'isCausedByPersonnelIssue', 'isCauseddueto-PersonnelIssue',\n",

 " 'hasTurbulenceSeverityForecast', 'hasFederalAviationRegulation',\n",

 " 'hasCausalAgent_FlightCrew', 'hasLowestCeiling', 'isAmateurBuilt',\n",

 " 'hasRunwayLength', 'subPropertyOf', 'hasFirstEvent',\n",

 " 'hasAircraftManufacturer', 'hasYearOfManufacture',\n",

 " 'hadLastFAAMedicalExam', 'hasEngine', 'hasDewPoint',\n",

 " 'unitOfCertifiedMaxGrossWeight', 'hasSeats', 'hasAirport',\n",

 " 'hasRunwayUsed', 'hasCrewInjury', 'hasAirspace',\n",

 " 'hasTurbulenceSeverityActual', 'IsCausedDueTo',\n",

 " 'unitOfWindDirection', 'hasRunwaySurfaceCondition',\n",

 " 'hasSeatOccupied', 'hasAirframeTotalTime', 'occurredAtCity',\n",

 " 'hasEmergencyLocatorTransmitter', 'occurredAtLongitude',\n",

 " 'unitOfRunwayWidth', 'hasAltimeterSetting', 'hasThirdEvent',\n",

 " 'hasTurbulenceActual', 'hasObscuration', 'hasRunwaySurfaceType',\n",

 " 'hasTurbulenceForecast', 'hasAirportName', 'hasRestraintUsed',\n",

 " 'unitOfRunwayLength', 'hasPassangerInjury', 'hasAge',\n",

 " 'hasOccupationalPilot', 'hasCertifiedMaxGrossWeight',\n",

 " 'hasAircraftDamage', 'hasRunwayWidth', 'hadLastFlightReview',\n",

 " 'hasDepartureTime', 'isCausedByAircraftIssue',\n",

 " 'hasAircraftCategory', 'hasDistanceFromAccidentSite',\n",

 " 'hasAirplaneRating', 'hasDirectionFromAccidentSite',\n",

 " 'hasTotalInjury', 'hasClearance', 'hasOtherAircraftRating',\n",

 " 'hasInstructorRating', 'hasLastInspection', 'hasLandingGear',\n",

 " 'hasVisibility', 'hasTimeSinceLastInspection',\n",

 " 'occurredAtLatitude', 'hasInstrumentRating', 'subClassOf',\n",

 " 'hasDefiningEvent', 'label', 'unitOfAirportElevation',\n",

 " 'hasCertificate', 'isCauseddueto-AircraftIssue',\n",

 " 'hasAircraftModel', 'unitOfAltimeterSetting',\n",

 " 'http://purl.org/dc/elements/1.1/description', 'unitOfWindSpeed',\n",

 " 'unitOfAge', 'hasVisibilityRVR', 'hasDateOfLastInspection',\n",

 " 'hasObservationTime', 'unitOfLongitude', 'hasEngineModel',\n",

 " 'hasElevation', 'hasAirportElevation', 'hasFlightPlanFiled',\n",

 " 'hasEmergencyLocatorTransmitterActivated', 'hasEngineManufacturer',\n",

 " 'hasInstrumentFlightRulesApproach', 'hasVisualFlightRulesApproach',\n",

 " 'unitOfLatitude', 'hasFourthEvent', 'hasDateTime',\n",

 " 'hasRegistrationNumber', 'comment', 'hasWindDirection',\n",

 " 'hasConditionOfLight', 'unitOfTimeSinceLastInspection',\n",

 " 'hasCausalAgent_GroundPersonnel', 'hasOperatingCertificatesHeld',\n",

 " 'domain', 'hasGusts', 'hasCausalAgent_OtherPersonsOnBoard',\n",

 " 'range', 'hasCausalAgent_Maintenance/Repair',\n",

 " 'hasCausalAgent_Manufacturer', 'isCauseddueto-EnvironmentalIssue',\n",

 " 'hasFifthEvent', 'http://purl.org/dc/elements/1.1/source',\n",

 " 'hasCausalAgent_AerodromePersonnel', 'hasCausalAgent_Other',\n",

 " 'first', 'hasCausalAgent_ATSPersonnel', 'defintion',\n",

 " 'hasSixthEvent', 'rest', 'hasCausalAgent_Operator',\n",

 " 'hasCausalAgent_Government_-_FAA', 'hasCausalAgent_Unknown',\n",

 " 'members', 'imports', 'seeAlso', 'disjointWith'], dtype=object)"

]

 },

 "execution_count": 50,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "df.relation.unique()"

]

 },

 {

 "cell_type": "code",

 "execution_count": 51,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/plain": [

 "0 type\n",

 "1 hasEmergencyLocatorTransmitterInstalled\n",

 "2 unitOfTemperature\n",

 "3 hasWindSpeed\n",

 "4 unitOfDewPoint\n",

 " ... \n",

 "96681 hasRestraintUsed\n",

 "96682 type\n",

 "96683 type\n",

 "96684 hasLowestCloudCondition\n",

 "96685 type\n",

 "Name: relation, Length: 96686, dtype: object"

]

 },

 "execution_count": 51,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "df[\"relation\"]"

]

 },

 {

 "cell_type": "code",

 "execution_count": 52,

 "metadata": {},

 "outputs": [],

 "source": [

 "to_rem = ['http://purl.org/dc/elements/1.1/source', 'http://purl.org/dc/elements/1.1/description',

'imports']\n",

 "df = df[~df.relation.isin(to_rem)]\n"

]

 },

 {

 "cell_type": "code",

 "execution_count": 53,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/plain": [

 "(96625,\n",

 " subject relation object \\\n",

 " 0 r_FTW03LA001 type Accident_Number \n",

 " 1 N366KR hasEmergencyLocatorTransmitterInstalled false \n",

 " 2 r_CHI04LA052 unitOfTemperature degreeCelsius \n",

 " 3 r_LAX02LA036 hasWindSpeed 4 \n",

 " 4 r_LAX02LA074 unitOfDewPoint degreeCelsius \n",

 " \n",

 " label \\\n",

 " 0 <extra_id_0> Accident_Number. \n",

 " 1 <extra_id_0> N366KR. \n",

 " 2 <extra_id_0> degreeCelsius. \n",

 " 3 <extra_id_0> r_LAX02LA036. \n",

 " 4 <extra_id_0> degreeCelsius. \n",

 " \n",

 " input \n",

 " 0 r_FTW03LA001 type <extra_id_0> \n",

 " 1 <extra_id_0> hasEmergencyLocatorTransmitterIns... \n",

 " 2 r_CHI04LA052 unitOfTemperature <extra_id_0> \n",

 " 3 <extra_id_0> hasWindSpeed 4 \n",

 " 4 r_LAX02LA074 unitOfDewPoint <extra_id_0> ,\n",

 " index subject relation \\\n",

 " 0 0 r_FTW03LA001 type \n",

 " 1 1 N366KR hasEmergencyLocatorTransmitterInstalled \n",

 " 2 2 r_CHI04LA052 unitOfTemperature \n",

 " 3 3 r_LAX02LA036 hasWindSpeed \n",

 " 4 4 r_LAX02LA074 unitOfDewPoint \n",

 " \n",

 " 96620 96681 002 hasRestraintUsed \n",

 " 96621 96682 154 type \n",

 " 96622 96683 type \n",

 " 96623 96684 r_DEN02LA067 hasLowestCloudCondition \n",

 " 96624 96685 L) type \n",

 " \n",

 " object label \\\n",

 " 0 Accident_Number <extra_id_0> Accident_Number. \n",

 " 1 false <extra_id_0> N366KR. \n",

 " 2 degreeCelsius <extra_id_0> degreeCelsius. \n",

 " 3 4 <extra_id_0> r_LAX02LA036. \n",

 " 4 degreeCelsius <extra_id_0> degreeCelsius. \n",

 " \n",

 " 96620 Seatbelt <extra_id_0> 002. \n",

 " 96621 NamedIndividual <extra_id_0> NamedIndividual. \n",

 " 96622 NamedIndividual <extra_id_0> . \n",

 " 96623 Clear <extra_id_0> Clear. \n",

 " 96624 NamedIndividual <extra_id_0> L). \n",

 " \n",

 " input \n",

 " 0 r_FTW03LA001 type <extra_id_0> \n",

 " 1 <extra_id_0> hasEmergencyLocatorTransmitterIns... \n",

 " 2 r_CHI04LA052 unitOfTemperature <extra_id_0> \n",

 " 3 <extra_id_0> hasWindSpeed 4 \n",

 " 4 r_LAX02LA074 unitOfDewPoint <extra_id_0> \n",

 " \n",

 " 96620 <extra_id_0> hasRestraintUsed Seatbelt \n",

 " 96621 154 type <extra_id_0> \n",

 " 96622 <extra_id_0> type NamedIndividual \n",

 " 96623 r_DEN02LA067 hasLowestCloudCondition <extra_id_0> \n",

 " 96624 <extra_id_0> type NamedIndividual \n",

 " \n",

 " [96625 rows x 6 columns])"

]

 },

 "execution_count": 53,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "len(df), df.head(), df.reset_index()\n"

]

 },

 {

 "cell_type": "code",

 "execution_count": 54,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/html": [

 "<div>\n",

 "<style scoped>\n",

 " .dataframe tbody tr th:only-of-type {\n",

 " vertical-align: middle;\n",

 " }\n",

 "\n",

 " .dataframe tbody tr th {\n",

 " vertical-align: top;\n",

 " }\n",

 "\n",

 " .dataframe thead th {\n",

 " text-align: right;\n",

 " }\n",

 "</style>\n",

 "<table border=\"1\" class=\"dataframe\">\n",

 " <thead>\n",

 " <tr style=\"text-align: right;\">\n",

 " <th></th>\n",

 " <th>subject</th>\n",

 " <th>relation</th>\n",

 " <th>object</th>\n",

 " <th>label</th>\n",

 " <th>input</th>\n",

 " </tr>\n",

 " </thead>\n",

 " <tbody>\n",

 " <tr>\n",

 " <th>0</th>\n",

 " <td>r_FTW03LA001</td>\n",

 " <td>type</td>\n",

 " <td>Accident_Number</td>\n",

 " <td><extra_id_0> Accident_Number.</td>\n",

 " <td>r_FTW03LA001 type <extra_id_0></td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>1</th>\n",

 " <td>N366KR</td>\n",

 " <td>hasEmergencyLocatorTransmitterInstalled</td>\n",

 " <td>false</td>\n",

 " <td><extra_id_0> N366KR.</td>\n",

 " <td><extra_id_0> hasEmergencyLocatorTransmitterIns...</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>2</th>\n",

 " <td>r_CHI04LA052</td>\n",

 " <td>unitOfTemperature</td>\n",

 " <td>degreeCelsius</td>\n",

 " <td><extra_id_0> degreeCelsius.</td>\n",

 " <td>r_CHI04LA052 unitOfTemperature <extra_id_0></td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>3</th>\n",

 " <td>r_LAX02LA036</td>\n",

 " <td>hasWindSpeed</td>\n",

 " <td>4</td>\n",

 " <td><extra_id_0> r_LAX02LA036.</td>\n",

 " <td><extra_id_0> hasWindSpeed 4</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>4</th>\n",

 " <td>r_LAX02LA074</td>\n",

 " <td>unitOfDewPoint</td>\n",

 " <td>degreeCelsius</td>\n",

 " <td><extra_id_0> degreeCelsius.</td>\n",

 " <td>r_LAX02LA074 unitOfDewPoint <extra_id_0></td>\n",

 " </tr>\n",

 " </tbody>\n",

 "</table>\n",

 "</div>"

],

 "text/plain": [

 " subject relation object \\\n",

 "0 r_FTW03LA001 type Accident_Number \n",

 "1 N366KR hasEmergencyLocatorTransmitterInstalled false \n",

 "2 r_CHI04LA052 unitOfTemperature degreeCelsius \n",

 "3 r_LAX02LA036 hasWindSpeed 4 \n",

 "4 r_LAX02LA074 unitOfDewPoint degreeCelsius \n",

 "\n",

 " label \\\n",

 "0 <extra_id_0> Accident_Number. \n",

 "1 <extra_id_0> N366KR. \n",

 "2 <extra_id_0> degreeCelsius. \n",

 "3 <extra_id_0> r_LAX02LA036. \n",

 "4 <extra_id_0> degreeCelsius. \n",

 "\n",

 " input \n",

 "0 r_FTW03LA001 type <extra_id_0> \n",

 "1 <extra_id_0> hasEmergencyLocatorTransmitterIns... \n",

 "2 r_CHI04LA052 unitOfTemperature <extra_id_0> \n",

 "3 <extra_id_0> hasWindSpeed 4 \n",

 "4 r_LAX02LA074 unitOfDewPoint <extra_id_0> "

]

 },

 "execution_count": 54,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "df.head()"

]

 },

 {

 "cell_type": "code",

 "execution_count": 55,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/plain": [

 "96625"

]

 },

 "execution_count": 55,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "len(df)"

]

 },

 {

 "cell_type": "code",

 "execution_count": 56,

 "metadata": {},

 "outputs": [],

 "source": [

 "df = df.sort_values(by=['subject', 'object'], ascending=True).reset_index(drop = True)\n"

]

 },

 {

 "cell_type": "code",

 "execution_count": 59,

 "metadata": {},

 "outputs": [

 {

 "ename": "AttributeError",

 "evalue": "Can't get attribute '_unpickle_block' on <module 'pandas._libs.internals' from

'/opt/conda/lib/python3.8/site-packages/pandas/_libs/internals.cpython-38-x86_64-linux-gnu.so'>",

 "output_type": "error",

 "traceback": [

 "\u001b[0;31m---\u001b[0m",

 "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",

 "\u001b[0;32m<ipython-input-59-65d6248550cd>\u001b[0m in

\u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m

\u001b[0;32mimport\u001b[0m

\u001b[0mpickle\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32

m 2\u001b[0m \u001b[0mfile\u001b[0m \u001b[0;34m=\u001b[0m

\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"c4_masked.pickle\"\u001b[0m\u00

1b[0;34m,\u001b[0m\u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u0

01b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mc4df\u001b[0m

\u001b[0;34m=\u001b[0m

\u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[

0m\u001b[0mfile\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0

m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m

\u001b[0mfile\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0

m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",

 "\u001b[0;31mAttributeError\u001b[0m: Can't get attribute '_unpickle_block' on <module

'pandas._libs.internals' from '/opt/conda/lib/python3.8/site-packages/pandas/_libs/internals.cpython-38-

x86_64-linux-gnu.so'>"

]

 }

],

 "source": [

 "import pickle\n",

 "file = open(\"c4_masked.pickle\",'rb')\n",

 "c4df = pickle.load(file)\n",

 "file.close()\n"

]

 },

 {

 "cell_type": "code",

 "execution_count": 29,

 "metadata": {},

 "outputs": [

 {

 "ename": "NameError",

 "evalue": "name 'c4df' is not defined",

 "output_type": "error",

 "traceback": [

 "\u001b[0;31m---\u001b[0m",

 "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",

 "\u001b[0;32m<ipython-input-29-eee9442f7f00>\u001b[0m in

\u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m

\u001b[0md1\u001b[0m \u001b[0;34m=\u001b[0m

\u001b[0mc4df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'input'\u00

1b[0m\u001b[0;34m,\u001b[0m

\u001b[0;34m'label'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001

b[0m\u001b[0msample\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfrac\u001b[0m\u001b[0;34m=\u

001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreset

_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdrop\u001b[0m \u001b[0;34m=\u001b[0m

\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0miloc\u001b

[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[

0m\u001b[0mdf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0

m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[

0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m

\u001b[0md2\u001b[0m \u001b[0;34m=\u001b[0m

\u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'input'\u001b

[0m\u001b[0;34m,\u001b[0m

\u001b[0;34m'label'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001

b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u00

1b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",

 "\u001b[0;31mNameError\u001b[0m: name 'c4df' is not defined"

]

 }

],

 "source": [

 "d1 = c4df[['input', 'label']].sample(frac=1).reset_index(drop = True).iloc[:len(df)].copy()\n",

 "d2 = df[['input', 'label']].copy()\n"

]

 },

 {

 "cell_type": "code",

 "execution_count": 30,

 "metadata": {},

 "outputs": [

 {

 "ename": "NameError",

 "evalue": "name 'd1' is not defined",

 "output_type": "error",

 "traceback": [

 "\u001b[0;31m---\u001b[0m",

 "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",

 "\u001b[0;32m<ipython-input-30-2742e05f697c>\u001b[0m in

\u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m

\u001b[0md3\u001b[0m \u001b[0;34m=\u001b[0m

\u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcat\u001b[0m\u001b[0;34m(\u001b[0

m\u001b[0;34m[\u001b[0m\u001b[0md1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0md2\u001b[0m\

u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u

001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0md3\u001b[0m

\u001b[0;34m=\u001b[0m

\u001b[0md3\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msample\u001b[0m\u001b[0;34m(\u001b[0

m\u001b[0mfrac\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[

0m\u001b[0;34m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdro

p\u001b[0m \u001b[0;34m=\u001b[0m

\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[

0m\u001b[0m\n",

 "\u001b[0;31mNameError\u001b[0m: name 'd1' is not defined"

]

 }

],

 "source": [

 "d3 = pd.concat([d1,d2])\n",

 "d3 = d3.sample(frac=1).reset_index(drop = True)\n"

]

 },

 {

 "cell_type": "code",

 "execution_count": 27,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/plain": [

 "(96625, 96625, 193250)"

]

 },

 "execution_count": 27,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "len(d1), len(d2), len(d3)"

]

 },

 {

 "cell_type": "code",

 "execution_count": 28,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/html": [

 "<div>\n",

 "<style scoped>\n",

 " .dataframe tbody tr th:only-of-type {\n",

 " vertical-align: middle;\n",

 " }\n",

 "\n",

 " .dataframe tbody tr th {\n",

 " vertical-align: top;\n",

 " }\n",

 "\n",

 " .dataframe thead th {\n",

 " text-align: right;\n",

 " }\n",

 "</style>\n",

 "<table border=\"1\" class=\"dataframe\">\n",

 " <thead>\n",

 " <tr style=\"text-align: right;\">\n",

 " <th></th>\n",

 " <th>input</th>\n",

 " <th>label</th>\n",

 " </tr>\n",

 " </thead>\n",

 " <tbody>\n",

 " <tr>\n",

 " <th>0</th>\n",

 " <td>Back by popular demand, see \"The Closest thing...</td>\n",

 " <td><extra_id_0> Milton Theatre.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>1</th>\n",

 " <td>More information on hiking in and around <extr...</td>\n",

 " <td><extra_id_0> Vienna.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>2</th>\n",

 " <td>In the past, <extra_id_0> tourism focused on t...</td>\n",

 " <td><extra_id_0> Beijing.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>3</th>\n",

 " <td>This site is for managing the <extra_id_0> Res...</td>\n",

 " <td><extra_id_0> “.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>4</th>\n",

 " <td>The district court declined to grant a motion ...</td>\n",

 " <td><extra_id_0> Oppenheimer.</td>\n",

 " </tr>\n",

 " </tbody>\n",

 "</table>\n",

 "</div>"

],

 "text/plain": [

 " input \\\n",

 "0 Back by popular demand, see \"The Closest thing... \n",

 "1 More information on hiking in and around <extr... \n",

 "2 In the past, <extra_id_0> tourism focused on t... \n",

 "3 This site is for managing the <extra_id_0> Res... \n",

 "4 The district court declined to grant a motion ... \n",

 "\n",

 " label \n",

 "0 <extra_id_0> Milton Theatre. \n",

 "1 <extra_id_0> Vienna. \n",

 "2 <extra_id_0> Beijing. \n",

 "3 <extra_id_0> “. \n",

 "4 <extra_id_0> Oppenheimer. "

]

 },

 "execution_count": 28,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "d1.head()"

]

 },

 {

 "cell_type": "code",

 "execution_count": 29,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/html": [

 "<div>\n",

 "<style scoped>\n",

 " .dataframe tbody tr th:only-of-type {\n",

 " vertical-align: middle;\n",

 " }\n",

 "\n",

 " .dataframe tbody tr th {\n",

 " vertical-align: top;\n",

 " }\n",

 "\n",

 " .dataframe thead th {\n",

 " text-align: right;\n",

 " }\n",

 "</style>\n",

 "<table border=\"1\" class=\"dataframe\">\n",

 " <thead>\n",

 " <tr style=\"text-align: right;\">\n",

 " <th></th>\n",

 " <th>input</th>\n",

 " <th>label</th>\n",

 " </tr>\n",

 " </thead>\n",

 " <tbody>\n",

 " <tr>\n",

 " <th>0</th>\n",

 " <td><extra_id_0> comment</td>\n",

 " <td><extra_id_0> .</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>1</th>\n",

 " <td><extra_id_0> defintion A gust or wind gust is ...</td>\n",

 " <td><extra_id_0> .</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>2</th>\n",

 " <td><extra_id_0> IsCausedBecause ABRUPT</td>\n",

 " <td><extra_id_0> .</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>3</th>\n",

 " <td>IsCausedBecause <extra_id_0></td>\n",

 " <td><extra_id_0> ABRUPT.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>4</th>\n",

 " <td><extra_id_0> IsCausedBecause ABRUPT</td>\n",

 " <td><extra_id_0> .</td>\n",

 " </tr>\n",

 " </tbody>\n",

 "</table>\n",

 "</div>"

],

 "text/plain": [

 " input label\n",

 "0 <extra_id_0> comment <extra_id_0> .\n",

 "1 <extra_id_0> defintion A gust or wind gust is ... <extra_id_0> .\n",

 "2 <extra_id_0> IsCausedBecause ABRUPT <extra_id_0> .\n",

 "3 IsCausedBecause <extra_id_0> <extra_id_0> ABRUPT.\n",

 "4 <extra_id_0> IsCausedBecause ABRUPT <extra_id_0> ."

]

 },

 "execution_count": 29,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "d2.head()"

]

 },

 {

 "cell_type": "code",

 "execution_count": 30,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/html": [

 "<div>\n",

 "<style scoped>\n",

 " .dataframe tbody tr th:only-of-type {\n",

 " vertical-align: middle;\n",

 " }\n",

 "\n",

 " .dataframe tbody tr th {\n",

 " vertical-align: top;\n",

 " }\n",

 "\n",

 " .dataframe thead th {\n",

 " text-align: right;\n",

 " }\n",

 "</style>\n",

 "<table border=\"1\" class=\"dataframe\">\n",

 " <thead>\n",

 " <tr style=\"text-align: right;\">\n",

 " <th></th>\n",

 " <th>input</th>\n",

 " <th>label</th>\n",

 " </tr>\n",

 " </thead>\n",

 " <tbody>\n",

 " <tr>\n",

 " <th>0</th>\n",

 " <td>N515KH hasEmergencyLocatorTransmitterInstalled...</td>\n",

 " <td><extra_id_0> false.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>1</th>\n",

 " <td>r_MIA05LA036 occurredAtLatitude <extra_id_0></td>\n",

 " <td><extra_id_0> 30.6375.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>2</th>\n",

 " <td>Last minute prep for <extra_id_0>.</td>\n",

 " <td><extra_id_0> Winter Storm Jonas.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>3</th>\n",

 " <td><extra_id_0> was born August 7, 1958, to paren...</td>\n",

 " <td><extra_id_0> Danny Scott Easterling.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>4</th>\n",

 " <td>r_DEN06MA119 IsCausedBy <extra_id_0></td>\n",

 " <td><extra_id_0> WINGSPAR.</td>\n",

 " </tr>\n",

 " </tbody>\n",

 "</table>\n",

 "</div>"

],

 "text/plain": [

 " input \\\n",

 "0 N515KH hasEmergencyLocatorTransmitterInstalled... \n",

 "1 r_MIA05LA036 occurredAtLatitude <extra_id_0> \n",

 "2 Last minute prep for <extra_id_0>. \n",

 "3 <extra_id_0> was born August 7, 1958, to paren... \n",

 "4 r_DEN06MA119 IsCausedBy <extra_id_0> \n",

 "\n",

 " label \n",

 "0 <extra_id_0> false. \n",

 "1 <extra_id_0> 30.6375. \n",

 "2 <extra_id_0> Winter Storm Jonas. \n",

 "3 <extra_id_0> Danny Scott Easterling. \n",

 "4 <extra_id_0> WINGSPAR. "

]

 },

 "execution_count": 30,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "d3.head()"

]

 },

 {

 "cell_type": "code",

 "execution_count": 31,

 "metadata": {},

 "outputs": [],

 "source": [

 "train_data = d3.copy()"

]

 },

 {

 "cell_type": "code",

 "execution_count": 32,

 "metadata": {},

 "outputs": [

 {

 "name": "stderr",

 "output_type": "stream",

 "text": [

 "/opt/conda/lib/python3.8/site-packages/transformers/models/t5/tokenization_t5.py:164:

FutureWarning: This tokenizer was incorrectly instantiated with a model max length of 512 which will

be corrected in Transformers v5.\n",

 "For now, this behavior is kept to avoid breaking backwards compatibility when padding/encoding

with `truncation is True`.\n",

 "- Be aware that you SHOULD NOT rely on t5-large automatically truncating your input to 512

when padding/encoding.\n",

 "- If you want to encode/pad to sequences longer than 512 you can either instantiate this tokenizer

with `model_max_length` or pass `max_length` when encoding/padding.\n",

 "- To avoid this warning, please instantiate this tokenizer with `model_max_length` set to your

preferred value.\n",

 " warnings.warn(\n"

]

 }

],

 "source": [

 "tokenizer = T5Tokenizer.from_pretrained(\"t5-large\")\n",

 "model = T5ForConditionalGeneration.from_pretrained(\"t5-large\")\n",

 "# model = T5ForConditionalGeneration.from_pretrained(\"/workspace/tanu/BTP-2/exp/knowledge

infusion/trained models/KGinfusedLM/6\")\n",

 "# config = T5Config(dropout_rate = 0.1) # default value only, do we need to set it explicitly\n",

 "# model = T5ForConditionalGeneration.config(config).from_pretrained(\"t5-large\")\n",

 "\n"

]

 },

 {

 "cell_type": "code",

 "execution_count": 33,

 "metadata": {},

 "outputs": [],

 "source": [

 "def tokenize(text):\n",

 " return tokenizer(text, return_tensors=\"pt\", padding='longest', truncation=True)\n",

 "def tokenize_target(text):\n",

 " return tokenizer(text, return_tensors=\"pt\", padding=\"longest\", truncation=True).input_ids"

]

 },

 {

 "cell_type": "code",

 "execution_count": 34,

 "metadata": {},

 "outputs": [],

 "source": [

 "optimizer = Adafactor(model.parameters(), lr=1e-3, relative_step = False)\n",

 "# parameters as specified in the paper\n",

 "# num_epochs = 380\n",

 "# batch_size = 1024\n",

 "num_epochs = 25\n",

 "batch_size = 16\n",

 "num_training_steps = num_epochs * (train_data.shape[0] // batch_size)\n"

]

 },

 {

 "cell_type": "code",

 "execution_count": 35,

 "metadata": {},

 "outputs": [],

 "source": [

 "import os\n",

 "os.environ[\"CUDA_DEVICE_ORDER\"]=\"PCI_BUS_ID\"\n",

 "os.environ[\"CUDA_VISIBLE_DEVICES\"]=\"1\"\n"

]

 },

 {

 "cell_type": "code",

 "execution_count": 36,

 "metadata": {},

 "outputs": [],

 "source": [

 "# model = torch.nn.DataParallel(model, device_ids=[0, 1])\n",

 "# device = torch.device(\"cuda:1\") if torch.cuda.is_available() else torch.device(\"cpu\")\n",

 "# device"

]

 },

 {

 "cell_type": "code",

 "execution_count": 37,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/plain": [

 "device(type='cuda')"

]

 },

 "execution_count": 37,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "device = torch.device(\"cuda\") if torch.cuda.is_available() else torch.device(\"cpu\")\n",

 "model.to(device)\n",

 "device"

]

 },

 {

 "cell_type": "code",

 "execution_count": 38,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/html": [

 "<div>\n",

 "<style scoped>\n",

 " .dataframe tbody tr th:only-of-type {\n",

 " vertical-align: middle;\n",

 " }\n",

 "\n",

 " .dataframe tbody tr th {\n",

 " vertical-align: top;\n",

 " }\n",

 "\n",

 " .dataframe thead th {\n",

 " text-align: right;\n",

 " }\n",

 "</style>\n",

 "<table border=\"1\" class=\"dataframe\">\n",

 " <thead>\n",

 " <tr style=\"text-align: right;\">\n",

 " <th></th>\n",

 " <th>input</th>\n",

 " <th>label</th>\n",

 " </tr>\n",

 " </thead>\n",

 " <tbody>\n",

 " <tr>\n",

 " <th>0</th>\n",

 " <td>N515KH hasEmergencyLocatorTransmitterInstalled...</td>\n",

 " <td><extra_id_0> false.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>1</th>\n",

 " <td>r_MIA05LA036 occurredAtLatitude <extra_id_0></td>\n",

 " <td><extra_id_0> 30.6375.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>2</th>\n",

 " <td>Last minute prep for <extra_id_0>.</td>\n",

 " <td><extra_id_0> Winter Storm Jonas.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>3</th>\n",

 " <td><extra_id_0> was born August 7, 1958, to paren...</td>\n",

 " <td><extra_id_0> Danny Scott Easterling.</td>\n",

 " </tr>\n",

 " <tr>\n",

 " <th>4</th>\n",

 " <td>r_DEN06MA119 IsCausedBy <extra_id_0></td>\n",

 " <td><extra_id_0> WINGSPAR.</td>\n",

 " </tr>\n",

 " </tbody>\n",

 "</table>\n",

 "</div>"

],

 "text/plain": [

 " input \\\n",

 "0 N515KH hasEmergencyLocatorTransmitterInstalled... \n",

 "1 r_MIA05LA036 occurredAtLatitude <extra_id_0> \n",

 "2 Last minute prep for <extra_id_0>. \n",

 "3 <extra_id_0> was born August 7, 1958, to paren... \n",

 "4 r_DEN06MA119 IsCausedBy <extra_id_0> \n",

 "\n",

 " label \n",

 "0 <extra_id_0> false. \n",

 "1 <extra_id_0> 30.6375. \n",

 "2 <extra_id_0> Winter Storm Jonas. \n",

 "3 <extra_id_0> Danny Scott Easterling. \n",

 "4 <extra_id_0> WINGSPAR. "

]

 },

 "execution_count": 38,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "train_data.head()"

]

 },

 {

 "cell_type": "code",

 "execution_count": 39,

 "metadata": {},

 "outputs": [

 {

 "data": {

 "text/plain": [

 "193250"

]

 },

 "execution_count": 39,

 "metadata": {},

 "output_type": "execute_result"

 }

],

 "source": [

 "len(train_data)"

]

 },

 {

 "cell_type": "code",

 "execution_count": 40,

 "metadata": {},

 "outputs": [],

 "source": [

 "def run_data(model, data, batch_size, optimizer, tokenizer, device, eval_mode):\n",

 " iters = int(np.ceil(data.shape[0] / batch_size))\n",

 " avg_loss = 0\n",

 " step = 0\n",

 " p_bar = tqdm(total=iters, position=0, leave=True, desc='Running through data')\n",

 " for row_idx in range(0, data.shape[0], batch_size):\n",

 " upper_idx = min(row_idx + batch_size, data.shape[0]) -1\n",

 " \n",

 " labels = data.loc[row_idx : upper_idx]['label'].tolist()\n",

 " inputs = data.loc[row_idx : upper_idx]['input'].tolist()\n",

 " tokenized_labels = tokenize_target(labels)\n",

 " tokenized_input = tokenize(inputs)\n",

 "\n",

 " input_ids = tokenized_input[\"input_ids\"].to(device)\n",

 " attention_mask = tokenized_input[\"attention_mask\"].to(device)\n",

 " labels = tokenized_labels.to(device)\n",

 " labels[labels == tokenizer.pad_token_id] = -100\n",

 " loss = model(input_ids= input_ids, attention_mask= attention_mask,labels= labels).loss\n",

 " loss.backward()\n",

 " optimizer.step()\n",

 " optimizer.zero_grad()\n",

 " loss_item = loss.detach().clone().item()\n",

 " avg_loss = (avg_loss * step + loss_item) / (step + 1)\n",

 "\n",

 " p_bar.set_postfix(avg_loss=avg_loss)\n",

 " p_bar.update(1)\n",

 " step += 1\n",

 "\n",

 " p_bar.close()\n",

 " return model, optimizer, avg_loss"

]

 },

 {

 "cell_type": "code",

 "execution_count": 41,

 "metadata": {},

 "outputs": [],

 "source": [

 "torch.cuda.empty_cache()\n"

]

 },

 {

 "cell_type": "code",

 "execution_count": 42,

 "metadata": {},

 "outputs": [],

 "source": [

 "to_save_epochs = [1,2,5,10,15,20,25]\n",

 "# to_save_epochs = [0,1,4,9,14,19,24]"

]

 },

 {

 "cell_type": "code",

 "execution_count": null,

 "metadata": {},

 "outputs": [

 {

 "name": "stderr",

 "output_type": "stream",

 "text": [

 "Running through data: 26%|▎| 3082/12079 [14:35<43:44, 3.43it/s, avg_loss=1.45]"

]

 }

],

 "source": [

 "train_losses = [] \n",

 "for epoch in range(0,num_epochs):\n",

 " shuffled_train_data = train_data.sample(frac=1).reset_index() \n",

 " model.train()\n",

 " optimizer.zero_grad() \n",

 " model, optimizer, avg_train_loss = run_data(model, shuffled_train_data, batch_size, \\\n",

 " optimizer, tokenizer, device, eval_mode=False)\n",

 " train_losses.append(avg_train_loss)\n",

 " if epoch in to_save_epochs:\n",

 " model.save_pretrained(f\"aviation/trained models/KGinfusedLM/{epoch}\", from_pt=True)

\n",

 " print(f'Epoch {epoch}:\\tTrain loss: {avg_train_loss}')\n",

 "\n"

]

 },

 {

 "cell_type": "code",

 "execution_count": null,

 "metadata": {},

 "outputs": [],

 "source": [

 "train_losses"

]

 }

],

 "metadata": {

 "kernelspec": {

 "display_name": "Python 3",

 "language": "python",

 "name": "python3"

 },

 "language_info": {

 "codemirror_mode": {

 "name": "ipython",

 "version": 3

 },

 "file_extension": ".py",

 "mimetype": "text/x-python",

 "name": "python",

 "nbconvert_exporter": "python",

 "pygments_lexer": "ipython3",

 "version": "3.8.5"

 }

 },

 "nbformat": 4,

 "nbformat_minor": 5

}

import regex as re

from colbert.data import Queries

from colbert.infra import Run, RunConfig, ColBERTConfig

from colbert import Searcher

import pandas as pd

from tqdm import tqdm

import itertools

hops = ['2hop', '3hop']

splits = ["dev", "test", "train"]

HOP = 1

TOP_K = 3

all_entities = [word.lower() for word in pd.read_csv("../data/wikimovies/entities.txt",

 sep="\t", header=0, names=["id", "entity"])["entity"].to_list()]

with Run().context(RunConfig(experiment='metaqa')):

 searcher = Searcher(index='wikimovies.nbits=2')

def query_colbert_fancier(query, searcher=searcher, k=5, hops=1, limit=20):

 visited_entities = [[re.search('\[(.*)\]', query).group(1).lower()]]

 all_visited_entities = []

 all_visited_entities.append(visited_entities[0][0])

 visited_pids = []

 og_query = query

 # print(visited_entities)

 for hop in range(hops):

 curr_passages = []

 results = searcher.search(query, k=k)

 curr = []

 for id, (passage_id, passage_rank, passage_score) in enumerate(zip(*results)):

 if passage_id not in visited_pids:

 visited_pids.append(passage_id)

 curr_passage = " "+searcher.collection[passage_id][:-1]+" ."

 # print(hop+1, curr_passage)

 if any(" "+entity+" " in curr_passage for entity in visited_entities[-1]):

 # print("out",hop+1, curr_passage)

 curr_passages.append(curr_passage)

 # query+=curr_passage

 for entity in all_entities:

 if " "+entity+" " in curr_passage and entity not in visited_entities[-1] and not any(entity

in enTT for enTT in all_visited_entities):

 curr.append(entity)

 if len(curr) == 0:

 results = searcher.search(query, k=limit)

 for id, (passage_id, passage_rank, passage_score) in enumerate(zip(*results)):

 if passage_id not in visited_pids:

 visited_pids.append(passage_id)

 curr_passage = " " + \

 searcher.collection[passage_id][:-1]+" ."

 # print(hop+1, curr_passage)

 if any(" "+entity+" " in curr_passage for entity in visited_entities[-1]):

 # print("in",hop+1, curr_passage)

 curr_passages.append(curr_passage)

 for entity in all_entities:

 if " "+entity+" " in curr_passage and entity not in visited_entities[-1] and not

any(entity in enTT for enTT in all_visited_entities):

 curr.append(entity)

 k *= 2

 # print(visited_entities)

 # print(query)

 visited_entities.append(list(set(curr)))

 all_visited_entities.extend(curr)

 query += ''.join(curr_passages)

 return str.strip(query.replace(og_query, ""))

 # return [searcher.collection[passage_id] for passage_id in visited_pids]

for hop in hops:

 for split in splits:

 questions = []

 answers = []

 contexts = []

 # qas = open("../data/metaqa/"+hop+"/qa_"+split +

 # ".txt", 'r').read().splitlines()

 qas = pd.read_csv("../data/metaqa/"+hop+"/qa_"+split +

 ".txt", sep='\t', header=0, names=["query", 'answer'])

 # queries = qas["query"].to_list()

 # anss = qas["answer"].to_list()

 for ind in tqdm(qas.index, desc=hop+" and "+split):

 # for index, row in tqdm(qas.iterrows(), desc=hop+" and "+split):

 query, ans = qas['query'][ind], qas['answer'][ind]

 top_k_passages = query_colbert_fancier(

 query, hops=int(hop[0]), searcher=searcher, k=TOP_K)

 context = top_k_passages.replace("\t", " ")

 questions.append(query)

 answers.append(ans)

 contexts.append(context)

 # if ind == 20:

 # break

 details = {

 'qid': [a for a in range(len(questions))],

 'question': questions,

 'answer': answers,

 'context': contexts,

 }

 # creating a Dataframe object with skipping

 # one column i.e skipping age column.

 df = pd.DataFrame(details, columns=[

 'qid', 'question', 'answer', 'context'])

 df.to_csv("../data/metaqa/"+hop+"/qa_"+split+"_triples_multitop"+str(TOP_K)+".tsv",

 index=False, sep='\t', header=False)

continual_pretraining.ipynb: Code to continually pretrain using salient span masking

query_metaqamultiT2.py: Code for Question Booster

run_seq2seq_cbqa.py: To finetune on closed book QA i.e. without context

run_seq2seq_qa.py: To finetune with context

trainer_seq2seq_cbqa.py: Allows to change functions of trainer for run_seq2seq_cbqa

trainer_seq2seq_qa.py: Allows to change functions of trainer for run_seq2seq_cbqa

Fine tune code is from:

https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering and

instructions to run are available there.

Example Commands:

CUDA_VISIBLE_DEVICES=3,5 python run_seq2seq_cbqa.py --

model_name_or_path ../SKILL/aviation/trained_models/T5_large_with_MetaTriples/20 --train_file

data/metaqa/3hop/qa_train_triples.csv --validation_file data/metaqa/3hop/qa_dev_triples.csv --test_file

data/metaqa/3hop/qa_test_triples.csv --preprocessing_num_workers 10 --question_column question

--answer_column answer --do_train --per_device_train_batch_size 128 --

per_device_eval_batch_size 32 --num_train_epochs 20 --max_seq_length 128 --doc_stride 128 --

output_dir models/metaqa_3hop_kg_unverb_20/ --save_steps 1000 --seed 42 --overwrite_output_dir --

report_to wandb --logging_steps 100 --learning_rate 1e-3 --tokenizer_name t5-large

CUDA_VISIBLE_DEVICES=0 python run_seq2seq_qa.py --model_name_or_path t5-large --

train_file data/metaQA/2hop/qa_train_triples_multitop3.csv --validation_file

data/metaQA/2hop/qa_dev_triples_multitop3.csv --test_file

data/metaQA/2hop/qa_test_triples_multitop3.csv --overwrite_cache --preprocessing_num_workers 10

--question_column question --context_column context --answer_column answer --do_train --

per_device_train_batch_size 128 --per_device_eval_batch_size 32 --num_train_epochs 20 --

max_seq_length 128 --doc_stride 128 --output_dir models/metaqa_2hop_top3_COLBERT_multihop/

--save_steps 200 --seed 42 --overwrite_output_dir --report_to wandb --logging_steps 100 --

learning_rate 1e-3 --tokenizer_name t5-large

#!/usr/bin/env python

coding=utf-8

Copyright 2021 The HuggingFace Team All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

s

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

"""

Fine-tuning the library's seq2seq models for question answering using the ▎ Seq2SeqTrainer.

"""

You can also adapt this script on your own question answering task. Pointers for this are left as

comments.

import logging

import os

import sys

from dataclasses import dataclass, field

from typing import List, Optional, Tuple

from transformers.optimization import Adafactor # , AdafactorSchedule

import datasets

import evaluate

from datasets import load_dataset

from trainer_seq2seq_qa import QuestionAnsweringSeq2SeqTrainer

import transformers

from transformers import (

 AutoConfig,

 AutoModelForSeq2SeqLM,

 AutoTokenizer,

 DataCollatorForSeq2Seq,

 HfArgumentParser,

 Seq2SeqTrainingArguments,

 set_seed,

)

from transformers.trainer_utils import EvalLoopOutput, EvalPrediction, get_last_checkpoint

from transformers.utils import check_min_version, send_example_telemetry

from transformers.utils.versions import require_version

Will error if the minimal version of Transformers is not installed. Remove at your own risks.

check_min_version("4.28.0.dev0")

require_version("datasets>=1.8.0",

 "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

logger = logging.getLogger(__name__)

@dataclass

class ModelArguments:

 """

 Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.

 """

 model_name_or_path: str = field(

 metadata={

 "help": "Path to pretrained model or model identifier from huggingface.co/models"}

)

 config_name: Optional[str] = field(

 default=None, metadata={"help": "Pretrained config name or path if not the same as

model_name"}

)

 tokenizer_name: Optional[str] = field(

 default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as

model_name"}

)

 cache_dir: Optional[str] = field(

 default=None,

 metadata={

 "help": "Path to directory to store the pretrained models downloaded from huggingface.co"},

)

 use_fast_tokenizer: bool = field(

 default=True,

 metadata={

 "help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},

)

 model_revision: str = field(

 default="main",

 metadata={

 "help": "The specific model version to use (can be a branch name, tag name or commit id)."},

)

 use_auth_token: bool = field(

 default=False,

 metadata={

 "help": (

 "Will use the token generated when running `huggingface-cli login` (necessary to use this

script "

 "with private models)."

)

 },

)

@dataclass

class DataTrainingArguments:

 """

 Arguments pertaining to what data we are going to input our model for training and eval.

 """

 dataset_name: Optional[str] = field(

 default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}

)

 dataset_config_name: Optional[str] = field(

 default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets

library)."}

)

 question_column: Optional[str] = field(

 default="question",

 metadata={

 "help": "The name of the column in the datasets containing the questions (for question

answering)."},

)

 answer_column: Optional[str] = field(

 default="answers",

 metadata={

 "help": "The name of the column in the datasets containing the answers (for question

answering)."},

)

 train_file: Optional[str] = field(

 default=None, metadata={"help": "The input training data file (a text file)."})

 validation_file: Optional[str] = field(

 default=None,

 metadata={

 "help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},

)

 test_file: Optional[str] = field(

 default=None,

 metadata={

 "help": "An optional input test data file to evaluate the perplexity on (a text file)."},

)

 overwrite_cache: bool = field(

 default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}

)

 preprocessing_num_workers: Optional[int] = field(

 default=None,

 metadata={"help": "The number of processes to use for the preprocessing."},

)

 max_seq_length: int = field(

 default=384,

 metadata={

 "help": (

 "The maximum total input sequence length after tokenization. Sequences longer "

 "than this will be truncated, sequences shorter will be padded."

)

 },

)

 max_answer_length: int = field(

 default=30,

 metadata={

 "help": (

 "The maximum length of an answer that can be generated. This is needed because the start "

 "and end predictions are not conditioned on one another."

)

 },

)

 val_max_answer_length: Optional[int] = field(

 default=None,

 metadata={

 "help": (

 "The maximum total sequence length for validation target text after tokenization. Sequences

longer "

 "than this will be truncated, sequences shorter will be padded. Will default to

`max_answer_length`."

 "This argument is also used to override the ``max_length`` param of ``model.generate``,

which is used "

 "during ``evaluate`` and ``predict``."

)

 },

)

 pad_to_max_length: bool = field(

 default=True,

 metadata={

 "help": (

 "Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically

when"

 " batching to the maximum length in the batch (which can be faster on GPU but will be

slower on TPU)."

)

 },

)

 max_train_samples: Optional[int] = field(

 default=None,

 metadata={

 "help": (

 "For debugging purposes or quicker training, truncate the number of training examples to this

"

 "value if set."

)

 },

)

 max_eval_samples: Optional[int] = field(

 default=None,

 metadata={

 "help": (

 "For debugging purposes or quicker training, truncate the number of evaluation examples to

this "

 "value if set."

)

 },

)

 max_predict_samples: Optional[int] = field(

 default=None,

 metadata={

 "help": (

 "For debugging purposes or quicker training, truncate the number of prediction examples to

this "

 "value if set."

)

 },

)

 version_2_with_negative: bool = field(

 default=False, metadata={"help": "If true, some of the examples do not have an answer."}

)

 null_score_diff_threshold: float = field(

 default=0.0,

 metadata={

 "help": (

 "The threshold used to select the null answer: if the best answer has a score that is less than "

 "the score of the null answer minus this threshold, the null answer is selected for this

example. "

 "Only useful when `version_2_with_negative=True`."

)

 },

)

 doc_stride: int = field(

 default=128,

 metadata={

 "help": "When splitting up a long document into chunks, how much stride to take between

chunks."},

)

 n_best_size: int = field(

 default=20,

 metadata={

 "help": "The total number of n-best predictions to generate when looking for an answer."},

)

 num_beams: Optional[int] = field(

 default=None,

 metadata={

 "help": (

 "Number of beams to use for evaluation. This argument will be passed to ``model.generate``,

"

 "which is used during ``evaluate`` and ``predict``."

)

 },

)

 ignore_pad_token_for_loss: bool = field(

 default=True,

 metadata={

 "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or

not."

 },

)

 def __post_init__(self):

 if (

 self.dataset_name is None

 and self.train_file is None

 and self.validation_file is None

 and self.test_file is None

):

 raise ValueError(

 "Need either a dataset name or a training/validation file/test_file.")

 else:

 if self.train_file is not None:

 extension = self.train_file.split(".")[-1]

 assert extension in [

 "csv", "json"], "`train_file` should be a csv or a json file."

 if self.validation_file is not None:

 extension = self.validation_file.split(".")[-1]

 assert extension in [

 "csv", "json"], "`validation_file` should be a csv or a json file."

 if self.test_file is not None:

 extension = self.test_file.split(".")[-1]

 assert extension in [

 "csv", "json"], "`test_file` should be a csv or a json file."

 if self.val_max_answer_length is None:

 self.val_max_answer_length = self.max_answer_length

question_answering_column_name_mapping = {

 "squad_v2": ("question", "context", "answer"),

 "sakharamg/AviationQA": ("Question", "", "Answer"),

 "sakharamg/metaQA": ("question", "", "answer"),

 "sakharamg/AeroQA": ("question", "", "answer"),

}

def main():

 # See all possible arguments in src/transformers/training_args.py

 # or by passing the --help flag to this script.

 # We now keep distinct sets of args, for a cleaner separation of concerns.

 parser = HfArgumentParser(

 (ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))

 if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):

 # If we pass only one argument to the script and it's the path to a json file,

 # let's parse it to get our arguments.

 model_args, data_args, training_args = parser.parse_json_file(

 json_file=os.path.abspath(sys.argv[1]))

 else:

 model_args, data_args, training_args = parser.parse_args_into_dataclasses()

 # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them.

The

 # information sent is the one passed as arguments along with your Python/PyTorch versions.

 send_example_telemetry("run_seq2seq_qa", model_args, data_args)

 # Setup logging

 logging.basicConfig(

 format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",

 datefmt="%m/%d/%Y %H:%M:%S",

 handlers=[logging.StreamHandler(sys.stdout)],

)

 if training_args.should_log:

 # The default of training_args.log_level is passive, so we set log level at info here to have that

default.

 transformers.utils.logging.set_verbosity_info()

 log_level = training_args.get_process_log_level()

 logger.setLevel(log_level)

 datasets.utils.logging.set_verbosity(log_level)

 transformers.utils.logging.set_verbosity(log_level)

 transformers.utils.logging.enable_default_handler()

 transformers.utils.logging.enable_explicit_format()

 # Log on each process the small summary:

 logger.warning(

 f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu:

{training_args.n_gpu}"

 + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training:

{training_args.fp16}"

)

 logger.info(f"Training/evaluation parameters {training_args}")

 # Detecting last checkpoint.

 last_checkpoint = None

 if os.path.isdir(training_args.output_dir) and training_args.do_train and not

training_args.overwrite_output_dir:

 last_checkpoint = get_last_checkpoint(training_args.output_dir)

 if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:

 raise ValueError(

 f"Output directory ({training_args.output_dir}) already exists and is not empty. "

 "Use --overwrite_output_dir to overcome."

)

 elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:

 logger.info(

 f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior,

change "

 "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."

)

 # Set seed before initializing model.

 set_seed(training_args.seed)

 # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files

(see below)

 # or just provide the name of one of the public datasets available on the hub at

https://huggingface.co/datasets/

 # (the dataset will be downloaded automatically from the datasets Hub).

 #

 # For CSV/JSON files, this script will use the column called 'text' or the first column if no column

called

 # 'text' is found. You can easily tweak this behavior (see below).

 #

 # In distributed training, the load_dataset function guarantee that only one local process can

concurrently

 # download the dataset.

 if data_args.dataset_name is not None:

 # Downloading and loading a dataset from the hub.

 raw_datasets = load_dataset(

 data_args.dataset_name,

 data_args.dataset_config_name,

 cache_dir=model_args.cache_dir,

 use_auth_token=True if model_args.use_auth_token else None,

)

 else:

 data_files = {}

 if data_args.train_file is not None:

 data_files["train"] = data_args.train_file

 extension = data_args.train_file.split(".")[-1]

 if data_args.validation_file is not None:

 data_files["validation"] = data_args.validation_file

 extension = data_args.validation_file.split(".")[-1]

 if data_args.test_file is not None:

 data_files["test"] = data_args.test_file

 extension = data_args.test_file.split(".")[-1]

 raw_datasets = load_dataset(

 extension,

 data_files=data_files,

 cache_dir=model_args.cache_dir,

 use_auth_token=True if model_args.use_auth_token else None,

)

 # See more about loading any type of standard or custom dataset (from files, python dict, pandas

DataFrame, etc) at

 # https://huggingface.co/docs/datasets/loading_datasets.html.

 # Load pretrained model and tokenizer

 #

 # Distributed training:

 # The .from_pretrained methods guarantee that only one local process can concurrently

 # download model & vocab.

 config = AutoConfig.from_pretrained(

 model_args.config_name if model_args.config_name else model_args.model_name_or_path,

 cache_dir=model_args.cache_dir,

 revision=model_args.model_revision,

 use_auth_token=True if model_args.use_auth_token else None,

)

 tokenizer = AutoTokenizer.from_pretrained(

 model_args.tokenizer_name if model_args.tokenizer_name else

model_args.model_name_or_path,

 cache_dir=model_args.cache_dir,

 use_fast=model_args.use_fast_tokenizer,

 revision=model_args.model_revision,

 use_auth_token=True if model_args.use_auth_token else None,

)

 model = AutoModelForSeq2SeqLM.from_pretrained(

 model_args.model_name_or_path,

 from_tf=bool(".ckpt" in model_args.model_name_or_path),

 config=config,

 cache_dir=model_args.cache_dir,

 revision=model_args.model_revision,

 use_auth_token=True if model_args.use_auth_token else None,

)

 # We resize the embeddings only when necessary to avoid index errors. If you are creating a model

from scratch

 # on a small vocab and want a smaller embedding size, remove this test.

 embedding_size = model.get_input_embeddings().weight.shape[0]

 if len(tokenizer) > embedding_size:

 model.resize_token_embeddings(len(tokenizer))

 if model.config.decoder_start_token_id is None:

 raise ValueError(

 "Make sure that `config.decoder_start_token_id` is correctly defined")

 # Preprocessing the datasets.

 # We need to generate and tokenize inputs and targets.

 if training_args.do_train:

 column_names = raw_datasets["train"].column_names

 elif training_args.do_eval:

 column_names = raw_datasets["validation"].column_names

 elif training_args.do_predict:

 column_names = raw_datasets["test"].column_names

 else:

 logger.info(

 "There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")

 return

 # Get the column names for input/target.

 dataset_columns = question_answering_column_name_mapping.get(

 "sakharamg/AeroQA", None)

 if data_args.question_column is None:

 question_column = dataset_columns[0] if dataset_columns is not None else column_names[0]

 else:

 question_column = data_args.question_column

 if question_column not in column_names:

 raise ValueError(

 f"--question_column' value '{data_args.question_column}' needs to be one of: {',

'.join(column_names)}"

)

 if data_args.answer_column is None:

 answer_column = dataset_columns[2] if dataset_columns is not None else column_names[2]

 else:

 answer_column = data_args.answer_column

 if answer_column not in column_names:

 raise ValueError(

 f"--answer_column' value '{data_args.answer_column}' needs to be one of: {',

'.join(column_names)}"

)

 # Temporarily set max_answer_length for training.

 max_answer_length = data_args.max_answer_length

 padding = "max_length" if data_args.pad_to_max_length else False

 if training_args.label_smoothing_factor > 0 and not hasattr(model,

"prepare_decoder_input_ids_from_labels"):

 logger.warning(

 "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not

defined for"

 f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up

more memory"

)

 if data_args.max_seq_length > tokenizer.model_max_length:

 logger.warning(

 f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length

for the"

 f"model ({tokenizer.model_max_length}). Using

max_seq_length={tokenizer.model_max_length}."

)

 max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

 def preprocess_squad_batch(

 examples,

 question_column: str,

 answer_column: str,

) -> Tuple[List[str], List[str]]:

 questions = examples[question_column]

 answers = examples[answer_column]

 def generate_input(_question):

 return " ".join(["question:", _question.lstrip()])

 inputs = [generate_input(question) for question in questions]

 targets = [answer if answer != None else "None" for answer in answers]

 return inputs, targets

 def preprocess_function(examples):

 inputs, targets = preprocess_squad_batch(

 examples, question_column, answer_column)

 model_inputs = tokenizer(

 inputs, max_length=max_seq_length, padding=padding, truncation=True)

 # Tokenize targets with text_target=...

 labels = tokenizer(

 text_target=targets, max_length=max_answer_length, padding=padding, truncation=True)

 # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to

ignore

 # padding in the loss.

 if padding == "max_length" and data_args.ignore_pad_token_for_loss:

 labels["input_ids"] = [

 [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]

]

 model_inputs["labels"] = labels["input_ids"]

 return model_inputs

 # Validation preprocessing

 def preprocess_validation_function(examples):

 inputs, targets = preprocess_squad_batch(

 examples, question_column, answer_column)

 model_inputs = tokenizer(

 inputs,

 max_length=max_seq_length,

 padding=padding,

 truncation=True,

 return_overflowing_tokens=True,

 return_offsets_mapping=True,

)

 # Tokenize targets with the `text_target` keyword argument

 labels = tokenizer(

 text_target=targets, max_length=max_answer_length, padding=padding, truncation=True)

 # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to

ignore

 # padding in the loss.

 if padding == "max_length" and data_args.ignore_pad_token_for_loss:

 labels["input_ids"] = [

 [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]

]

 # Since one example might give us several features if it has a long context, we need a map from a

feature to

 # its corresponding example. This key gives us just that.

 sample_mapping = model_inputs.pop("overflow_to_sample_mapping")

 # For evaluation, we will need to convert our predictions to substrings of the context, so we keep

the

 # corresponding example_id and we will store the offset mappings.

 model_inputs["example_id"] = []

 # Augment the overflowing tokens to the labels

 labels_out = []

 for i in range(len(model_inputs["input_ids"])):

 # One example can give several spans, this is the index of the example containing this span of

text.

 sample_index = sample_mapping[i]

 model_inputs["example_id"].append(examples["id"][sample_index])

 labels_out.append(labels["input_ids"][sample_index])

 model_inputs["labels"] = labels_out

 return model_inputs

 if training_args.do_train:

 if "train" not in raw_datasets:

 raise ValueError("--do_train requires a train dataset")

 train_dataset = raw_datasets["train"]

 if data_args.max_train_samples is not None:

 # We will select sample from whole data if agument is specified

 max_train_samples = min(

 len(train_dataset), data_args.max_train_samples)

 train_dataset = train_dataset.select(range(max_train_samples))

 # Create train feature from dataset

 with training_args.main_process_first(desc="train dataset map pre-processing"):

 train_dataset = train_dataset.map(

 preprocess_function,

 batched=True,

 num_proc=data_args.preprocessing_num_workers,

 remove_columns=column_names,

 load_from_cache_file=not data_args.overwrite_cache,

 desc="Running tokenizer on train dataset",

)

 if data_args.max_train_samples is not None:

 # Number of samples might increase during Feature Creation, We select only specified max

samples

 max_train_samples = min(

 len(train_dataset), data_args.max_train_samples)

 train_dataset = train_dataset.select(range(max_train_samples))

 if training_args.do_eval:

 if "validation" not in raw_datasets:

 raise ValueError("--do_eval requires a validation dataset")

 eval_examples = raw_datasets["validation"]

 if data_args.max_eval_samples is not None:

 # We will select sample from whole data

 max_eval_samples = min(

 len(eval_examples), data_args.max_eval_samples)

 eval_examples = eval_examples.select(range(max_eval_samples))

 # Validation Feature Creation

 with training_args.main_process_first(desc="validation dataset map pre-processing"):

 eval_dataset = eval_examples.map(

 preprocess_validation_function,

 batched=True,

 num_proc=data_args.preprocessing_num_workers,

 remove_columns=column_names,

 load_from_cache_file=not data_args.overwrite_cache,

 desc="Running tokenizer on validation dataset",

)

 if data_args.max_eval_samples is not None:

 # During Feature creation dataset samples might increase, we will select required samples again

 max_eval_samples = min(

 len(eval_dataset), data_args.max_eval_samples)

 eval_dataset = eval_dataset.select(range(max_eval_samples))

 if training_args.do_predict:

 if "test" not in raw_datasets:

 raise ValueError("--do_predict requires a test dataset")

 predict_examples = raw_datasets["test"]

 if data_args.max_predict_samples is not None:

 # We will select sample from whole data

 predict_examples = predict_examples.select(

 range(data_args.max_predict_samples))

 # Predict Feature Creation

 with training_args.main_process_first(desc="prediction dataset map pre-processing"):

 predict_dataset = predict_examples.map(

 preprocess_validation_function,

 batched=True,

 num_proc=data_args.preprocessing_num_workers,

 remove_columns=column_names,

 load_from_cache_file=not data_args.overwrite_cache,

 desc="Running tokenizer on prediction dataset",

)

 if data_args.max_predict_samples is not None:

 # During Feature creation dataset samples might increase, we will select required samples again

 max_predict_samples = min(

 len(predict_dataset), data_args.max_predict_samples)

 predict_dataset = predict_dataset.select(

 range(max_predict_samples))

 # Data collator

 label_pad_token_id = - \

 100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id

 data_collator = DataCollatorForSeq2Seq(

 tokenizer,

 model=model,

 label_pad_token_id=label_pad_token_id,

 pad_to_multiple_of=8 if training_args.fp16 else None,

)

 metric = evaluate.load(

 "squad_v2" if data_args.version_2_with_negative else "exact_match")

 def compute_metrics(p: EvalPrediction):

 return metric.compute(predictions=p.predictions, references=p.label_ids)

 # Post-processing:

 def post_processing_function(

 examples: datasets.Dataset, features: datasets.Dataset, outputs: EvalLoopOutput, stage="eval"

):

 # Decode the predicted tokens.

 preds = outputs.predictions

 if isinstance(preds, tuple):

 preds = preds[0]

 decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)

 # Build a map example to its corresponding features.

 example_id_to_index = {k: i for i, k in enumerate(examples["id"])}

 feature_per_example = {

 example_id_to_index[feature["example_id"]]: i for i, feature in enumerate(features)}

 predictions = {}

 # Let's loop over all the examples!

 for example_index, example in enumerate(examples):

 # This is the index of the feature associated to the current example.

 feature_index = feature_per_example[example_index]

 predictions[example["id"]] = decoded_preds[feature_index]

 # Format the result to the format the metric expects.

 if data_args.version_2_with_negative:

 formatted_predictions = [

 {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()

]

 else:

 formatted_predictions = [

 {"id": k, "prediction_text": v} for k, v in predictions.items()]

 references = [{"id": ex["id"], "answers": ex[answer_column]}

 for ex in examples]

 return EvalPrediction(predictions=formatted_predictions, label_ids=references)

 # Initialize our Trainer

 # Initialize our Trainer

 optimizer = Adafactor(model.parameters(), scale_parameter=False,

 relative_step=False, warmup_init=False, lr=training_args.learning_rate)

 # lr_scheduler = AdafactorSchedule(optimizer)

 # training_args.optim_args={'scale_parameter':False, 'relative_step':False, 'warmup_init': False}

 trainer = QuestionAnsweringSeq2SeqTrainer(

 model=model,

 args=training_args,

 # optimizers=(optimizer,lr_scheduler),

 train_dataset=train_dataset if training_args.do_train else None,

 eval_dataset=eval_dataset if training_args.do_eval else None,

 eval_examples=eval_examples if training_args.do_eval else None,

 tokenizer=tokenizer,

 data_collator=data_collator,

 compute_metrics=compute_metrics if training_args.predict_with_generate else None,

 post_process_function=post_processing_function,

)

 trainer.optimizer = optimizer

 # Training

 if training_args.do_train:

 checkpoint = None

 if training_args.resume_from_checkpoint is not None:

 checkpoint = training_args.resume_from_checkpoint

 elif last_checkpoint is not None:

 checkpoint = last_checkpoint

 train_result = trainer.train(resume_from_checkpoint=checkpoint)

 trainer.save_model() # Saves the tokenizer too for easy upload

 metrics = train_result.metrics

 max_train_samples = (

 data_args.max_train_samples if data_args.max_train_samples is not None else len(

 train_dataset)

)

 metrics["train_samples"] = min(max_train_samples, len(train_dataset))

 trainer.log_metrics("train", metrics)

 trainer.save_metrics("train", metrics)

 trainer.save_state()

 # Evaluation

 results = {}

 max_length = (

 training_args.generation_max_length

 if training_args.generation_max_length is not None

 else data_args.val_max_answer_length

)

 num_beams = data_args.num_beams if data_args.num_beams is not None else

training_args.generation_num_beams

 if training_args.do_eval:

 logger.info("*** Evaluate ***")

 metrics = trainer.evaluate(

 max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")

 max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None

else len(

 eval_dataset)

 metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

 trainer.log_metrics("eval", metrics)

 trainer.save_metrics("eval", metrics)

 # Prediction

 if training_args.do_predict:

 logger.info("*** Predict ***")

 results = trainer.predict(predict_dataset, predict_examples)

 metrics = results.metrics

 max_predict_samples = (

 data_args.max_predict_samples if data_args.max_predict_samples is not None else len(

 predict_dataset)

)

 metrics["predict_samples"] = min(

 max_predict_samples, len(predict_dataset))

 trainer.log_metrics("predict", metrics)

 trainer.save_metrics("predict", metrics)

 if training_args.push_to_hub:

 kwargs = {"finetuned_from": model_args.model_name_or_path,

 "tasks": "question-answering"}

 if data_args.dataset_name is not None:

 kwargs["dataset_tags"] = data_args.dataset_name

 if data_args.dataset_config_name is not None:

 kwargs["dataset_args"] = data_args.dataset_config_name

 kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"

 else:

 kwargs["dataset"] = data_args.dataset_name

 trainer.push_to_hub(**kwargs)

def _mp_fn(index):

 # For xla_spawn (TPUs)

 main()

if __name__ == "__main__":

 main()

#!/usr/bin/env python

0oding=utf-8

Copyright 2021 The HuggingFace Team All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

"""

Fine-tuning the library's seq2seq models for question answering using the ▎ Seq2SeqTrainer.

"""

You can also adapt this script on your own question answering task. Pointers for this are left as

comments.

import logging

import os

import sys

from dataclasses import dataclass, field

from typing import List, Optional, Tuple

import datasets

import evaluate

from datasets import load_dataset

from trainer_seq2seq_qa import QuestionAnsweringSeq2SeqTrainer

import transformers

from transformers import (

 AutoConfig,

 AutoModelForSeq2SeqLM,

 AutoTokenizer,

 DataCollatorForSeq2Seq,

 HfArgumentParser,

 Seq2SeqTrainingArguments,

 set_seed,

)

from transformers.trainer_utils import EvalLoopOutput, EvalPrediction, get_last_checkpoint

from transformers.utils import check_min_version # , send_example_telemetry

from transformers.utils.versions import require_version

from transformers.optimization import Adafactor, AdafactorSchedule

Will error if the minimal version of Transformers is not installed. Remove at your own risks.

check_min_version("4.28.0.dev0")

require_version("datasets>=1.8.0",

 "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

logger = logging.getLogger(__name__)

@dataclass

class ModelArguments:

 """

 Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.

 """

 model_name_or_path: str = field(

 metadata={

 "help": "Path to pretrained model or model identifier from huggingface.co/models"}

)

 config_name: Optional[str] = field(

 default=None, metadata={"help": "Pretrained config name or path if not the same as

model_name"}

)

 tokenizer_name: Optional[str] = field(

 default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as

model_name"}

)

 cache_dir: Optional[str] = field(

 default=None,

 metadata={

 "help": "Path to directory to store the pretrained models downloaded from huggingface.co"},

)

 use_fast_tokenizer: bool = field(

 default=True,

 metadata={

 "help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},

)

 model_revision: str = field(

 default="main",

 metadata={

 "help": "The specific model version to use (can be a branch name, tag name or commit id)."},

)

 use_auth_token: bool = field(

 default=False,

 metadata={

 "help": (

 "Will use the token generated when running `huggingface-cli login` (necessary to use this

script "

 "with private models)."

)

 },

)

@dataclass

class DataTrainingArguments:

 """

 Arguments pertaining to what data we are going to input our model for training and eval.

 """

 dataset_name: Optional[str] = field(

 default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}

)

 dataset_config_name: Optional[str] = field(

 default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets

library)."}

)

 context_column: Optional[str] = field(

 default="context",

 metadata={

 "help": "The name of the column in the datasets containing the contexts (for question

answering)."},

)

 question_column: Optional[str] = field(

 default="question",

 metadata={

 "help": "The name of the column in the datasets containing the questions (for question

answering)."},

)

 answer_column: Optional[str] = field(

 default="answers",

 metadata={

 "help": "The name of the column in the datasets containing the answers (for question

answering)."},

)

 train_file: Optional[str] = field(

 default=None, metadata={"help": "The input training data file (a text file)."})

 validation_file: Optional[str] = field(

 default=None,

 metadata={

 "help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},

)

 test_file: Optional[str] = field(

 default=None,

 metadata={

 "help": "An optional input test data file to evaluate the perplexity on (a text file)."},

)

 overwrite_cache: bool = field(

 default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}

)

 preprocessing_num_workers: Optional[int] = field(

 default=None,

 metadata={"help": "The number of processes to use for the preprocessing."},

)

 max_seq_length: int = field(

 default=384,

 metadata={

 "help": (

 "The maximum total input sequence length after tokenization. Sequences longer "

 "than this will be truncated, sequences shorter will be padded."

)

 },

)

 max_answer_length: int = field(

 default=30,

 metadata={

 "help": (

 "The maximum length of an answer that can be generated. This is needed because the start "

 "and end predictions are not conditioned on one another."

)

 },

)

 val_max_answer_length: Optional[int] = field(

 default=None,

 metadata={

 "help": (

 "The maximum total sequence length for validation target text after tokenization. Sequences

longer "

 "than this will be truncated, sequences shorter will be padded. Will default to

`max_answer_length`."

 "This argument is also used to override the ``max_length`` param of ``model.generate``,

which is used "

 "during ``evaluate`` and ``predict``."

)

 },

)

 pad_to_max_length: bool = field(

 default=True,

 metadata={

 "help": (

 "Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically

when"

 " batching to the maximum length in the batch (which can be faster on GPU but will be

slower on TPU)."

)

 },

)

 max_train_samples: Optional[int] = field(

 default=None,

 metadata={

 "help": (

 "For debugging purposes or quicker training, truncate the number of training examples to this

"

 "value if set."

)

 },

)

 max_eval_samples: Optional[int] = field(

 default=None,

 metadata={

 "help": (

 "For debugging purposes or quicker training, truncate the number of evaluation examples to

this "

 "value if set."

)

 },

)

 max_predict_samples: Optional[int] = field(

 default=None,

 metadata={

 "help": (

 "For debugging purposes or quicker training, truncate the number of prediction examples to

this "

 "value if set."

)

 },

)

 version_2_with_negative: bool = field(

 default=False, metadata={"help": "If true, some of the examples do not have an answer."}

)

 null_score_diff_threshold: float = field(

 default=0.0,

 metadata={

 "help": (

 "The threshold used to select the null answer: if the best answer has a score that is less than "

 "the score of the null answer minus this threshold, the null answer is selected for this

example. "

 "Only useful when `version_2_with_negative=True`."

)

 },

)

 doc_stride: int = field(

 default=128,

 metadata={

 "help": "When splitting up a long document into chunks, how much stride to take between

chunks."},

)

 n_best_size: int = field(

 default=20,

 metadata={

 "help": "The total number of n-best predictions to generate when looking for an answer."},

)

 num_beams: Optional[int] = field(

 default=None,

 metadata={

 "help": (

 "Number of beams to use for evaluation. This argument will be passed to ``model.generate``,

"

 "which is used during ``evaluate`` and ``predict``."

)

 },

)

 ignore_pad_token_for_loss: bool = field(

 default=True,

 metadata={

 "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or

not."

 },

)

 def __post_init__(self):

 if (

 self.dataset_name is None

 and self.train_file is None

 and self.validation_file is None

 and self.test_file is None

):

 raise ValueError(

 "Need either a dataset name or a training/validation file/test_file.")

 else:

 if self.train_file is not None:

 extension = self.train_file.split(".")[-1]

 assert extension in [

 "csv", "json"], "`train_file` should be a csv or a json file."

 if self.validation_file is not None:

 extension = self.validation_file.split(".")[-1]

 assert extension in [

 "csv", "json"], "`validation_file` should be a csv or a json file."

 if self.test_file is not None:

 extension = self.test_file.split(".")[-1]

 assert extension in [

 "csv", "json"], "`test_file` should be a csv or a json file."

 if self.val_max_answer_length is None:

 self.val_max_answer_length = self.max_answer_length

question_answering_column_name_mapping = {

 "squad_v2": ("question", "context", "answer"),

}

def main():

 # See all possible arguments in src/transformers/training_args.py

 # or by passing the --help flag to this script.

 # We now keep distinct sets of args, for a cleaner separation of concerns.

 parser = HfArgumentParser(

 (ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))

 if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):

 # If we pass only one argument to the script and it's the path to a json file,

 # let's parse it to get our arguments.

 model_args, data_args, training_args = parser.parse_json_file(

 json_file=os.path.abspath(sys.argv[1]))

 else:

 model_args, data_args, training_args = parser.parse_args_into_dataclasses()

 # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them.

The

 # information sent is the one passed as arguments along with your Python/PyTorch versions.

 # send_example_telemetry("run_seq2seq_qa", model_args, data_args)

 # Setup logging

 logging.basicConfig(

 format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",

 datefmt="%m/%d/%Y %H:%M:%S",

 handlers=[logging.StreamHandler(sys.stdout)],

)

 if training_args.should_log:

 # The default of training_args.log_level is passive, so we set log level at info here to have that

default.

 transformers.utils.logging.set_verbosity_info()

 log_level = training_args.get_process_log_level()

 logger.setLevel(log_level)

 datasets.utils.logging.set_verbosity(log_level)

 transformers.utils.logging.set_verbosity(log_level)

 transformers.utils.logging.enable_default_handler()

 transformers.utils.logging.enable_explicit_format()

 # Log on each process the small summary:

 logger.warning(

 f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu:

{training_args.n_gpu}"

 + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training:

{training_args.fp16}"

)

 logger.info(f"Training/evaluation parameters {training_args}")

 # Detecting last checkpoint.

 last_checkpoint = None

 if os.path.isdir(training_args.output_dir) and training_args.do_train and not

training_args.overwrite_output_dir:

 last_checkpoint = get_last_checkpoint(training_args.output_dir)

 if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:

 raise ValueError(

 f"Output directory ({training_args.output_dir}) already exists and is not empty. "

 "Use --overwrite_output_dir to overcome."

)

 elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:

 logger.info(

 f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior,

change "

 "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."

)

 # Set seed before initializing model.

 set_seed(training_args.seed)

 # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files

(see below)

 # or just provide the name of one of the public datasets available on the hub at

https://huggingface.co/datasets/

 # (the dataset will be downloaded automatically from the datasets Hub).

 #

 # For CSV/JSON files, this script will use the column called 'text' or the first column if no column

called

 # 'text' is found. You can easily tweak this behavior (see below).

 #

 # In distributed training, the load_dataset function guarantee that only one local process can

concurrently

 # download the dataset.

 if data_args.dataset_name is not None:

 # Downloading and loading a dataset from the hub.

 raw_datasets = load_dataset(

 data_args.dataset_name,

 data_args.dataset_config_name,

 cache_dir=model_args.cache_dir,

 use_auth_token=True if model_args.use_auth_token else None,

)

 else:

 data_files = {}

 if data_args.train_file is not None:

 data_files["train"] = data_args.train_file

 extension = data_args.train_file.split(".")[-1]

 if data_args.validation_file is not None:

 data_files["validation"] = data_args.validation_file

 extension = data_args.validation_file.split(".")[-1]

 if data_args.test_file is not None:

 data_files["test"] = data_args.test_file

 extension = data_args.test_file.split(".")[-1]

 raw_datasets = load_dataset(

 extension,

 data_files=data_files,

 cache_dir=model_args.cache_dir,

 use_auth_token=True if model_args.use_auth_token else None,

)

 # See more about loading any type of standard or custom dataset (from files, python dict, pandas

DataFrame, etc) at

 # https://huggingface.co/docs/datasets/loading_datasets.html.

 # Load pretrained model and tokenizer

 #

 # Distributed training:

 # The .from_pretrained methods guarantee that only one local process can concurrently

 # download model & vocab.

 config = AutoConfig.from_pretrained(

 model_args.config_name if model_args.config_name else model_args.model_name_or_path,

 cache_dir=model_args.cache_dir,

 revision=model_args.model_revision,

 use_auth_token=True if model_args.use_auth_token else None,

)

 tokenizer = AutoTokenizer.from_pretrained(

 model_args.tokenizer_name if model_args.tokenizer_name else

model_args.model_name_or_path,

 cache_dir=model_args.cache_dir,

 use_fast=model_args.use_fast_tokenizer,

 revision=model_args.model_revision,

 use_auth_token=True if model_args.use_auth_token else None,

)

 model = AutoModelForSeq2SeqLM.from_pretrained(

 model_args.model_name_or_path,

 from_tf=bool(".ckpt" in model_args.model_name_or_path),

 config=config,

 cache_dir=model_args.cache_dir,

 revision=model_args.model_revision,

 use_auth_token=True if model_args.use_auth_token else None,

)

 # We resize the embeddings only when necessary to avoid index errors. If you are creating a model

from scratch

 # on a small vocab and want a smaller embedding size, remove this test.

 embedding_size = model.get_input_embeddings().weight.shape[0]

 if len(tokenizer) > embedding_size:

 model.resize_token_embeddings(len(tokenizer))

 if model.config.decoder_start_token_id is None:

 raise ValueError(

 "Make sure that `config.decoder_start_token_id` is correctly defined")

 # Preprocessing the datasets.

 # We need to generate and tokenize inputs and targets.

 if training_args.do_train:

 column_names = raw_datasets["train"].column_names

 elif training_args.do_eval:

 column_names = raw_datasets["validation"].column_names

 elif training_args.do_predict:

 column_names = raw_datasets["test"].column_names

 else:

 logger.info(

 "There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")

 return

 # Get the column names for input/target.

 dataset_columns = question_answering_column_name_mapping.get(

 'squad_v2', None)

 if data_args.question_column is None:

 question_column = dataset_columns[0] if dataset_columns is not None else column_names[0]

 else:

 question_column = data_args.question_column

 if question_column not in column_names:

 raise ValueError(

 f"--question_column' value '{data_args.question_column}' needs to be one of: {',

'.join(column_names)}"

)

 if data_args.context_column is None:

 context_column = dataset_columns[1] if dataset_columns is not None else column_names[1]

 else:

 context_column = data_args.context_column

 if context_column not in column_names:

 raise ValueError(

 f"--context_column' value '{data_args.context_column}' needs to be one of: {',

'.join(column_names)}"

)

 if data_args.answer_column is None:

 answer_column = dataset_columns[2] if dataset_columns is not None else column_names[2]

 else:

 answer_column = data_args.answer_column

 if answer_column not in column_names:

 raise ValueError(

 f"--answer_column' value '{data_args.answer_column}' needs to be one of: {',

'.join(column_names)}"

)

 # Temporarily set max_answer_length for training.

 max_answer_length = data_args.max_answer_length

 padding = "max_length" if data_args.pad_to_max_length else False

 if training_args.label_smoothing_factor > 0 and not hasattr(model,

"prepare_decoder_input_ids_from_labels"):

 logger.warning(

 "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not

defined for"

 f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up

more memory"

)

 if data_args.max_seq_length > tokenizer.model_max_length:

 logger.warning(

 f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length

for the"

 f"model ({tokenizer.model_max_length}). Using

max_seq_length={tokenizer.model_max_length}."

)

 max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

 def preprocess_squad_batch(

 examples,

 question_column: str,

 context_column: str,

 answer_column: str,

) -> Tuple[List[str], List[str]]:

 questions = examples[question_column]

 contexts = examples[context_column]

 answers = examples[answer_column]

 def generate_input(_question, _context):

 return " ".join(["question:", _question.lstrip() if _question != None else "", "context:",

_context.lstrip() if _context != None else ""])

 inputs = [generate_input(question, context)

 for question, context in zip(questions, contexts)]

 targets = [answer if answer != None else "None" for answer in answers]

 return inputs, targets

 def preprocess_function(examples):

 inputs, targets = preprocess_squad_batch(

 examples, question_column, context_column, answer_column)

 model_inputs = tokenizer(

 inputs, max_length=max_seq_length, padding=padding, truncation=True)

 # Tokenize targets with text_target=...

 labels = tokenizer(

 text_target=targets, max_length=max_answer_length, padding=padding, truncation=True)

 # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to

ignore

 # padding in the loss.

 if padding == "max_length" and data_args.ignore_pad_token_for_loss:

 labels["input_ids"] = [

 [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]

]

 model_inputs["labels"] = labels["input_ids"]

 return model_inputs

 # Validation preprocessing

 def preprocess_validation_function(examples):

 inputs, targets = preprocess_squad_batch(

 examples, question_column, context_column, answer_column)

 model_inputs = tokenizer(

 inputs,

 max_length=max_seq_length,

 padding=padding,

 truncation=True,

 return_overflowing_tokens=True,

 return_offsets_mapping=True,

)

 # Tokenize targets with the `text_target` keyword argument

 labels = tokenizer(

 text_target=targets, max_length=max_answer_length, padding=padding, truncation=True)

 # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to

ignore

 # padding in the loss.

 if padding == "max_length" and data_args.ignore_pad_token_for_loss:

 labels["input_ids"] = [

 [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]

]

 # Since one example might give us several features if it has a long context, we need a map from a

feature to

 # its corresponding example. This key gives us just that.

 sample_mapping = model_inputs.pop("overflow_to_sample_mapping")

 # For evaluation, we will need to convert our predictions to substrings of the context, so we keep

the

 # corresponding example_id and we will store the offset mappings.

 model_inputs["example_id"] = []

 # Augment the overflowing tokens to the labels

 labels_out = []

 for i in range(len(model_inputs["input_ids"])):

 # One example can give several spans, this is the index of the example containing this span of

text.

 sample_index = sample_mapping[i]

 model_inputs["example_id"].append(examples["id"][sample_index])

 labels_out.append(labels["input_ids"][sample_index])

 model_inputs["labels"] = labels_out

 return model_inputs

 if training_args.do_train:

 if "train" not in raw_datasets:

 raise ValueError("--do_train requires a train dataset")

 train_dataset = raw_datasets["train"]

 if data_args.max_train_samples is not None:

 # We will select sample from whole data if agument is specified

 max_train_samples = min(

 len(train_dataset), data_args.max_train_samples)

 train_dataset = train_dataset.select(range(max_train_samples))

 # Create train feature from dataset

 with training_args.main_process_first(desc="train dataset map pre-processing"):

 train_dataset = train_dataset.map(

 preprocess_function,

 batched=True,

 num_proc=data_args.preprocessing_num_workers,

 remove_columns=column_names,

 load_from_cache_file=not data_args.overwrite_cache,

 desc="Running tokenizer on train dataset",

)

 if data_args.max_train_samples is not None:

 # Number of samples might increase during Feature Creation, We select only specified max

samples

 max_train_samples = min(

 len(train_dataset), data_args.max_train_samples)

 train_dataset = train_dataset.select(range(max_train_samples))

 if training_args.do_eval:

 if "validation" not in raw_datasets:

 raise ValueError("--do_eval requires a validation dataset")

 eval_examples = raw_datasets["validation"]

 if data_args.max_eval_samples is not None:

 # We will select sample from whole data

 max_eval_samples = min(

 len(eval_examples), data_args.max_eval_samples)

 eval_examples = eval_examples.select(range(max_eval_samples))

 # Validation Feature Creation

 with training_args.main_process_first(desc="validation dataset map pre-processing"):

 eval_dataset = eval_examples.map(

 preprocess_validation_function,

 batched=True,

 num_proc=data_args.preprocessing_num_workers,

 remove_columns=column_names,

 load_from_cache_file=not data_args.overwrite_cache,

 desc="Running tokenizer on validation dataset",

)

 if data_args.max_eval_samples is not None:

 # During Feature creation dataset samples might increase, we will select required samples again

 max_eval_samples = min(

 len(eval_dataset), data_args.max_eval_samples)

 eval_dataset = eval_dataset.select(range(max_eval_samples))

 if training_args.do_predict:

 if "test" not in raw_datasets:

 raise ValueError("--do_predict requires a test dataset")

 predict_examples = raw_datasets["test"]

 if data_args.max_predict_samples is not None:

 # We will select sample from whole data

 predict_examples = predict_examples.select(

 range(data_args.max_predict_samples))

 # Predict Feature Creation

 with training_args.main_process_first(desc="prediction dataset map pre-processing"):

 predict_dataset = predict_examples.map(

 preprocess_validation_function,

 batched=True,

 num_proc=data_args.preprocessing_num_workers,

 remove_columns=column_names,

 load_from_cache_file=not data_args.overwrite_cache,

 desc="Running tokenizer on prediction dataset",

)

 if data_args.max_predict_samples is not None:

 # During Feature creation dataset samples might increase, we will select required samples again

 max_predict_samples = min(

 len(predict_dataset), data_args.max_predict_samples)

 predict_dataset = predict_dataset.select(

 range(max_predict_samples))

 # Data collator

 label_pad_token_id = - \

 100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id

 data_collator = DataCollatorForSeq2Seq(

 tokenizer,

 model=model,

 label_pad_token_id=label_pad_token_id,

 pad_to_multiple_of=8 if training_args.fp16 else None,

)

 metric = evaluate.load(

 "squad_v2" if data_args.version_2_with_negative else "squad")

 def compute_metrics(p: EvalPrediction):

 return metric.compute(predictions=p.predictions, references=p.label_ids)

 # Post-processing:

 def post_processing_function(

 examples: datasets.Dataset, features: datasets.Dataset, outputs: EvalLoopOutput, stage="eval"

):

 # Decode the predicted tokens.

 preds = outputs.predictions

 if isinstance(preds, tuple):

 preds = preds[0]

 decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)

 # Build a map example to its corresponding features.

 example_id_to_index = {k: i for i, k in enumerate(examples["id"])}

 feature_per_example = {

 example_id_to_index[feature["example_id"]]: i for i, feature in enumerate(features)}

 predictions = {}

 # Let's loop over all the examples!

 for example_index, example in enumerate(examples):

 # This is the index of the feature associated to the current example.

 feature_index = feature_per_example[example_index]

 predictions[example["id"]] = decoded_preds[feature_index]

 # Format the result to the format the metric expects.

 if data_args.version_2_with_negative:

 formatted_predictions = [

 {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()

]

 else:

 formatted_predictions = [

 {"id": k, "prediction_text": v} for k, v in predictions.items()]

 references = [{"id": ex["id"], "answers": ex[answer_column]}

 for ex in examples]

 return EvalPrediction(predictions=formatted_predictions, label_ids=references)

 # Initialize our Trainer

 optimizer = Adafactor(model.parameters(), scale_parameter=False,

 relative_step=False, warmup_init=False, lr=training_args.learning_rate)

 # lr_scheduler = AdafactorSchedule(optimizer)

 # training_args.optim_args={'scale_parameter':False, 'relative_step':False, 'warmup_init': False}

 trainer = QuestionAnsweringSeq2SeqTrainer(

 model=model,

 args=training_args,

 # optimizers=(optimizer,lr_scheduler),

 train_dataset=train_dataset if training_args.do_train else None,

 eval_dataset=eval_dataset if training_args.do_eval else None,

 eval_examples=eval_examples if training_args.do_eval else None,

 tokenizer=tokenizer,

 data_collator=data_collator,

 compute_metrics=compute_metrics if training_args.predict_with_generate else None,

 post_process_function=post_processing_function,

)

 trainer.optimizer = optimizer

 # Training

 if training_args.do_train:

 checkpoint = None

 if training_args.resume_from_checkpoint is not None:

 checkpoint = training_args.resume_from_checkpoint

 elif last_checkpoint is not None:

 checkpoint = last_checkpoint

 train_result = trainer.train(resume_from_checkpoint=checkpoint)

 trainer.save_model() # Saves the tokenizer too for easy upload

 metrics = train_result.metrics

 max_train_samples = (

 data_args.max_train_samples if data_args.max_train_samples is not None else len(

 train_dataset)

)

 metrics["train_samples"] = min(max_train_samples, len(train_dataset))

 trainer.log_metrics("train", metrics)

 trainer.save_metrics("train", metrics)

 trainer.save_state()

 # Evaluation

 results = {}

 max_length = (

 training_args.generation_max_length

 if training_args.generation_max_length is not None

 else data_args.val_max_answer_length

)

 num_beams = data_args.num_beams if data_args.num_beams is not None else

training_args.generation_num_beams

 if training_args.do_eval:

 logger.info("*** Evaluate ***")

 metrics = trainer.evaluate(

 max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")

 max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None

else len(

 eval_dataset)

 metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

 trainer.log_metrics("eval", metrics)

 trainer.save_metrics("eval", metrics)

 # Prediction

 if training_args.do_predict:

 logger.info("*** Predict ***")

 results = trainer.predict(predict_dataset, predict_examples)

 metrics = results.metrics

 max_predict_samples = (

 data_args.max_predict_samples if data_args.max_predict_samples is not None else len(

 predict_dataset)

)

 metrics["predict_samples"] = min(

 max_predict_samples, len(predict_dataset))

 trainer.log_metrics("predict", metrics)

 trainer.save_metrics("predict", metrics)

 if training_args.push_to_hub:

 kwargs = {"finetuned_from": model_args.model_name_or_path,

 "tasks": "question-answering"}

 if data_args.dataset_name is not None:

 kwargs["dataset_tags"] = data_args.dataset_name

 if data_args.dataset_config_name is not None:

 kwargs["dataset_args"] = data_args.dataset_config_name

 kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"

 else:

 kwargs["dataset"] = data_args.dataset_name

 trainer.push_to_hub(**kwargs)

def _mp_fn(index):

 # For xla_spawn (TPUs)

 main()

if __name__ == "__main__":

 main()

coding=utf-8

Copyright 2021 The HuggingFace Team All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

"""

A subclass of `Trainer` specific to Question-Answering tasks

"""

import math

import time

from typing import Dict, List, Optional

from torch.utils.data import Dataset

from transformers import Seq2SeqTrainer, is_torch_tpu_available

from transformers.trainer_utils import PredictionOutput, speed_metrics

if is_torch_tpu_available(check_device=False):

 import torch_xla.core.xla_model as xm

 import torch_xla.debug.metrics as met

class QuestionAnsweringSeq2SeqTrainer(Seq2SeqTrainer):

 def __init__(self, *args, eval_examples=None, post_process_function=None, **kwargs):

 super().__init__(*args, **kwargs)

 self.eval_examples = eval_examples

 self.post_process_function = post_process_function

 # def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None,

metric_key_prefix: str = "eval"):

 def evaluate(

 self,

 eval_dataset: Optional[Dataset] = None,

 eval_examples=None,

 ignore_keys: Optional[List[str]] = None,

 metric_key_prefix: str = "eval",

 **gen_kwargs,

) -> Dict[str, float]:

 gen_kwargs = gen_kwargs.copy()

 gen_kwargs["max_length"] = (

 gen_kwargs["max_length"] if gen_kwargs.get("max_length") is not None else

self.args.generation_max_length

)

 gen_kwargs["num_beams"] = (

 gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else

self.args.generation_num_beams

)

 self._gen_kwargs = gen_kwargs

 eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset

 eval_dataloader = self.get_eval_dataloader(eval_dataset)

 eval_examples = self.eval_examples if eval_examples is None else eval_examples

 # Temporarily disable metric computation, we will do it in the loop here.

 compute_metrics = self.compute_metrics

 self.compute_metrics = None

 start_time = time.time()

 eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop

 try:

 output = eval_loop(

 eval_dataloader,

 description="Evaluation",

 # No point gathering the predictions if there are no metrics, otherwise we defer to

 # self.args.prediction_loss_only

 prediction_loss_only=True if compute_metrics is None else None,

 ignore_keys=ignore_keys,

 metric_key_prefix=metric_key_prefix,

)

 finally:

 self.compute_metrics = compute_metrics

 total_batch_size = self.args.eval_batch_size * self.args.world_size

 if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:

 start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]

 output.metrics.update(

 speed_metrics(

 metric_key_prefix,

 start_time,

 num_samples=output.num_samples,

 num_steps=math.ceil(output.num_samples / total_batch_size),

)

)

 if self.post_process_function is not None and self.compute_metrics is not None and

self.args.should_save:

 # Only the main node write the results by default

 eval_preds = self.post_process_function(eval_examples, eval_dataset, output)

 metrics = self.compute_metrics(eval_preds)

 # Prefix all keys with metric_key_prefix + '_'

 for key in list(metrics.keys()):

 if not key.startswith(f"{metric_key_prefix}_"):

 metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)

 metrics.update(output.metrics)

 else:

 metrics = output.metrics

 if self.args.should_log:

 # Only the main node log the results by default

 self.log(metrics)

 if self.args.tpu_metrics_debug or self.args.debug:

 # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)

 xm.master_print(met.metrics_report())

 self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics)

 return metrics

 def predict(

 self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test",

**gen_kwargs

):

 self._gen_kwargs = gen_kwargs.copy()

 predict_dataloader = self.get_test_dataloader(predict_dataset)

 # Temporarily disable metric computation, we will do it in the loop here.

 compute_metrics = self.compute_metrics

 self.compute_metrics = None

 start_time = time.time()

 eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop

 try:

 output = eval_loop(

 predict_dataloader,

 description="Prediction",

 # No point gathering the predictions if there are no metrics, otherwise we defer to

 # self.args.prediction_loss_only

 prediction_loss_only=True if compute_metrics is None else None,

 ignore_keys=ignore_keys,

 metric_key_prefix=metric_key_prefix,

)

 finally:

 self.compute_metrics = compute_metrics

 total_batch_size = self.args.eval_batch_size * self.args.world_size

 if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:

 start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]

 output.metrics.update(

 speed_metrics(

 metric_key_prefix,

 start_time,

 num_samples=output.num_samples,

 num_steps=math.ceil(output.num_samples / total_batch_size),

)

)

 if self.post_process_function is None or self.compute_metrics is None:

 return output

 predictions = self.post_process_function(predict_examples, predict_dataset, output, "predict")

 metrics = self.compute_metrics(predictions)

 # Prefix all keys with metric_key_prefix + '_'

 for key in list(metrics.keys()):

 if not key.startswith(f"{metric_key_prefix}_"):

 metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)

 metrics.update(output.metrics)

 return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids,

metrics=metrics)

coding=utf-8

Copyright 2021 The HuggingFace Team All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

"""

A subclass of `Trainer` specific to Question-Answering tasks

"""

import math

import time

from typing import Dict, List, Optional

from torch.utils.data import Dataset

from transformers import Seq2SeqTrainer, is_torch_tpu_available

from transformers.trainer_utils import PredictionOutput, speed_metrics

if is_torch_tpu_available():

 import torch_xla.core.xla_model as xm

 import torch_xla.debug.metrics as met

class QuestionAnsweringSeq2SeqTrainer(Seq2SeqTrainer):

 def __init__(self, *args, eval_examples=None, post_process_function=None, **kwargs):

 super().__init__(*args, **kwargs)

 self.eval_examples = eval_examples

 self.post_process_function = post_process_function

 # def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None,

metric_key_prefix: str = "eval"):

 def evaluate(

 self,

 eval_dataset: Optional[Dataset] = None,

 eval_examples=None,

 ignore_keys: Optional[List[str]] = None,

 metric_key_prefix: str = "eval",

 **gen_kwargs,

) -> Dict[str, float]:

 gen_kwargs = gen_kwargs.copy()

 gen_kwargs["max_length"] = (

 gen_kwargs["max_length"] if gen_kwargs.get("max_length") is not None else

self.args.generation_max_length

)

 gen_kwargs["num_beams"] = (

 gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else

self.args.generation_num_beams

)

 self._gen_kwargs = gen_kwargs

 eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset

 eval_dataloader = self.get_eval_dataloader(eval_dataset)

 eval_examples = self.eval_examples if eval_examples is None else eval_examples

 # Temporarily disable metric computation, we will do it in the loop here.

 compute_metrics = self.compute_metrics

 self.compute_metrics = None

 start_time = time.time()

 eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop

 try:

 output = eval_loop(

 eval_dataloader,

 description="Evaluation",

 # No point gathering the predictions if there are no metrics, otherwise we defer to

 # self.args.prediction_loss_only

 prediction_loss_only=True if compute_metrics is None else None,

 ignore_keys=ignore_keys,

 metric_key_prefix=metric_key_prefix,

)

 finally:

 self.compute_metrics = compute_metrics

 total_batch_size = self.args.eval_batch_size * self.args.world_size

 if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:

 start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]

 output.metrics.update(

 speed_metrics(

 metric_key_prefix,

 start_time,

 num_samples=output.num_samples,

 num_steps=math.ceil(output.num_samples / total_batch_size),

)

)

 if self.post_process_function is not None and self.compute_metrics is not None and

self.args.should_save:

 # Only the main node write the results by default

 eval_preds = self.post_process_function(eval_examples, eval_dataset, output)

 metrics = self.compute_metrics(eval_preds)

 # Prefix all keys with metric_key_prefix + '_'

 for key in list(metrics.keys()):

 if not key.startswith(f"{metric_key_prefix}_"):

 metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)

 metrics.update(output.metrics)

 else:

 metrics = output.metrics

 if self.args.should_log:

 # Only the main node log the results by default

 self.log(metrics)

 if self.args.tpu_metrics_debug or self.args.debug:

 # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)

 xm.master_print(met.metrics_report())

 self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics)

 return metrics

 def predict(

 self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test",

**gen_kwargs

):

 self._gen_kwargs = gen_kwargs.copy()

 predict_dataloader = self.get_test_dataloader(predict_dataset)

 # Temporarily disable metric computation, we will do it in the loop here.

 compute_metrics = self.compute_metrics

 self.compute_metrics = None

 start_time = time.time()

 eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop

 try:

 output = eval_loop(

 predict_dataloader,

 description="Prediction",

 # No point gathering the predictions if there are no metrics, otherwise we defer to

 # self.args.prediction_loss_only

 prediction_loss_only=True if compute_metrics is None else None,

 ignore_keys=ignore_keys,

 metric_key_prefix=metric_key_prefix,

)

 finally:

 self.compute_metrics = compute_metrics

 total_batch_size = self.args.eval_batch_size * self.args.world_size

 if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:

 start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]

 output.metrics.update(

 speed_metrics(

 metric_key_prefix,

 start_time,

 num_samples=output.num_samples,

 num_steps=math.ceil(output.num_samples / total_batch_size),

)

)

 if self.post_process_function is None or self.compute_metrics is None:

 return output

 predictions = self.post_process_function(predict_examples, predict_dataset, output, "predict")

 metrics = self.compute_metrics(predictions)

 # Prefix all keys with metric_key_prefix + '_'

 for key in list(metrics.keys()):

 if not key.startswith(f"{metric_key_prefix}_"):

 metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)

 metrics.update(output.metrics)

 return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids,

metrics=metrics)

