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Abstract

Recent knowledge graph (KG) embedding
methods explore parameter-efficient represen-
tations for large-scale KGs. These techniques
learn entity representation using a fixed size
vocabulary. Such a vocabulary consists of all
the relations and a small subset of the full entity
set, referred to as anchors. An entity is hence
expressed as a function of reachable anchors
and immediate relations. The performance of
these methods is, therefore, largely dependent
on the entity tokenization strategy. Especially
in inductive settings, the representation capac-
ity of these embeddings is limited due to the
absence of anchor entities, as unseen entities
have no connection with training graph enti-
ties.
In this work, we propose a novel entity tok-
enization strategy that tokenizes an entity into
a set of anchors based on relation similarity
and relational paths. Our model MH-RARe
overcomes the challenge of unseen entities not
being directly connected to the anchors by se-
lecting informative anchors from the training
graph using relation similarity. Experiment re-
sults show that our model outperforms the base-
lines on multiple datasets for inductive knowl-
edge graph completion task, attaining upto 5%
improvement, while maintaining parameter ef-
ficiency.

1 Introduction

Knowledge Graphs (KGs) are powerful struc-
tures that consist of a vast collection of intercon-
nected facts, presented in the form of a graph.
Each fact is represented as a triplet in the form
⟨subject, relation, object⟩. To effectively uti-
lize KGs, representation learning plays a crucial
role. In this context, representation learning in-
volves learning a d-dimensional vector representa-
tion for every entity and relation in KG. Typically,
these representations are learned through a link
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prediction task, which aims to predict the missing
links in the KG.

Traditional KG embedding methods employ
shallow embedding techniques, wherein entities
and relations are mapped onto a lower-dimensional
vector space. These methods rely on an embedding
lookup function that ensures each entity and rela-
tion is uniquely associated with a d-dimensional
vector. However, these methods encounter chal-
lenges when dealing with large-scale knowledge
graphs, as the number of parameters required scales
linearly with the size of the entity set. Also, these
methods are applicable only to transductive set-
tings, where the set of entities remains fixed. Nev-
ertheless, real world KGs evolve as new entities
get added to the graph over time. Link prediction
on these graphs requires the ability to generalize to
these unseen entities. Inductive link prediction is
the task of inferring missing links in such graphs.

Recently, motivated by the compositional mod-
els to represent words such as WordPiece (Schuster
and Nakajima, 2012), NodePiece (Galkin et al.,
2022) proposes a framework to limit the vocab-
ulary size in KGs. This is done by limiting the
vocabulary to a fixed set of entities (called as an-
chors) and relations in the KG. An entity in the
KG is then tokenized into it’s nearest anchors and
immediate relations. While anchors are available
for seen entities, unseen entities are represented
just using immediate relations as the entities in the
anchor set are disconnected from these unseen enti-
ties. This limits the expressive ability of the unseen
entities.

In this work we address this limitation and pro-
pose a novel anchor selection strategy for unseen
entities in an inductive KG. As shown by previous
work GAKE (Feng et al., 2016), immediate rela-
tions of an entity in a KG, can reveal the nature of
an entity. We use this result to draw m relationally
similar anchor nodes to a given unseen entity from
the training graph. Our hypothesis is that, such re-



(a) Train Graph
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Figure 1: Inductive Inference Example. Figure shows
two disjoint train and test subgraphs for movies Aftersun
and El Clan. To predict ⟨El Clan, movie_language, ?⟩
the entity Aftersun can serve as a meaningful anchor
as both entities have similar subgraph structure.

lationally similar nodes may contain some valuable
information that will aid in better link prediction.
Furthermore, rather than looking at 1-hop imme-
diate relations, we tokenize an entity based on n
relation paths originating from that entity which
helps in building a richer relational context for an
entity. Our experiment results provide substantial
evidence to support our hypothesis, indicating such
a tokenization strategy can improve link prediction
performance in inductive link prediction tasks.

2 Related Work

Conventional embedding based methods: Tradi-
tional approaches to embedding methods for link
prediction in knowledge graphs have been widely
explored in the literature. These techniques aim
to capture the inherent semantic relationships and
structural patterns in the graph data to predict miss-
ing links between entities. Approaches like TransE
(Bordes et al., 2013), TransH (Wang et al., 2014,
2020) and TransR (Lin et al., 2015) assume that the
embeddings of entities and relations follow some
geometric rules in vector space. Other approaches
use bilinear forms or complex-valued operations to
model the interactions between entity and relation

embeddings. Ex. Distmult (Yang et al., 2015) uses
simple dot product between entities and relations
to calculate plausibility of the triple. ComplEx
(Trouillon et al., 2017) uses Hermitian dot product
to calculate plausibility of a true triple as it repre-
sents relations as complex-valued vectors. These
embedding methods provide effective means for
link prediction in transductive setting but they can
not generalize to unseen entities, so we cannot use
them in inductive setting.

Inductive embeddings based methods: Some
recent works have shown how to create embeddings
for nodes that are not seen before, but they have
some limitations. GraphSAGE (Hamilton et al.,
2017) and Graph2Gauss (Bojchevski and Günne-
mann, 2018) depend on having node features that
are often missing in many KGs. LAN (Wang et al.,
2019) and (Hamaguchi et al., 2017) produce em-
beddings for new nodes by combining the embed-
dings of nearby nodes using GNNs. However, both
of these methods require the new nodes to have
known nodes around them and cannot deal with
completely new graphs.

Rule-induction based methods: These meth-
ods are different from embedding-based methods
because they infer probabilistic logical-rules from
the knowledge graph by finding statistical patterns
and regularities in it, like (Meilicke et al., 2018a)
and (Galárraga et al., 2013). These methods can
naturally handle unseen nodes because the rules
do not depend on specific node identities, but they
have problems with scalability and expressiveness
due to their reliance on rules. Inspired by these
statistical rule-induction methods, the NeuralLP
model (Yang et al., 2017) uses TensorLog (Cohen,
2016) operators to learn logical rules from KGs
in a way that is fully differentiable. Sadeghian
et al. (2019) improved on NeuralLP and proposed
DRUM, which learns more precise rules. We com-
pare our methods with this group of methods in the
inductive setting.

GNN based link prediction: Some recent meth-
ods have proposed to use Graph Neural Network
based models for link prediction task. They first
take out a subgraph around each target link based
on the k-hop neighbourhood of the target entities,
encode the subgraphs using a Graph Neural Net-
work (GNN), then learn a function that maps sub-
graph structural patterns to link existence. For
instance, R-GCN (Schlichtkrull et al., 2017) em-
ployed relational graph convolutional layers to col-



lect information from neighboring nodes and edges.
CompGCN (Vashishth et al., 2020) utilized compo-
sition functions to merge entity and relation embed-
dings prior to aggregation. However, these methods
are applicable to only transductive settings.

Some recent methods such as GraIL (Teru et al.,
2020), TACT (Chen et al., 2021), CoMPILE(Mai
et al., 2020), ConGLR(Lin et al., 2022) utilize
GNNs for inductive link prediction. GraIL first
encodes the subgraph around a link using the dou-
ble radius node labelling scheme and then applies a
RGCN based GNN to predict the plausibility of the
link. TACT extends GraIL by adding topological
patterns while CoMPILE improves the message
passing between entities through a communicative
kernel. Along with the context graphs, ConGLR
uses logical reasoning to improve inductive link
prediction performance. Although these methods
have achieved good performance on inductive link
prediction, they do not fully consider the global
context of the KG, which could provide valuable
insights for link prediction.

Parameter efficient link prediction: Conven-
tional KG embedding methods store embeddings
for all entities and relations. However, NodePiece
(Galkin et al., 2022) introduced a unique approach
by leveraging word tokenization techniques and
applying them to knowledge graphs for node tok-
enization.

In our work, we build upon the foundations of
NodePiece and further enhance it for inductive link
prediction tasks. While NodePiece does not utilize
anchors in the inductive setting, we propose a novel
approach that incorporates anchors for unseen enti-
ties by considering the outgoing relations from the
entity.

3 Proposed Method

We denote a graph G as G = (E ,R, T ), where E
is the set of entities, R is the set of relations and
T is the set of observed triples T = {(h, r, t) |
(h, r, t) ∈ E × R × E}. Given a training graph
Gtrain = (Etrain,Rtrain, Ttrain), the task of induc-
tive inference is to infer missing links in test graph
Gtest = (Etest,Rtest, Ttest), where, the train and
test graphs are disjoint Etrain ∩ Etest = ϕ, and re-
lations in the test graph is a subset of relations in
the training graph Rtest ⊆ Rtrain. We augment
train and test graphs with inverse relations to ensure
connectivity from each node.

The idea of learning parameter efficient represen-

Algorithm 1: Anchor selection algorithm
Input :Training graph

Gtrain = (Etrain,Rtrain, Ttrain),
number of anchors m

Output :Anchor Set A
1 e2r = dict()
2 r2e = dict()
3 e2rcount = heapdict()
4 A = set()
5 for (h, r, t) ∈ Ttrain do
6 e2r[h].add(r)
7 r2e[r].add(h)

8 end for
9 while | A |< m do

10 e2rcount.clear()
11 for e ∈ e2r.keys() do
12 if e /∈ A then
13 e2rcount[e] = −len(e2r[e])
14 end if
15 end for
16 Rrem = Rtrain

17 rtotal =| Rtrain |
18 while rtotal > 0 and len(e2rcount) > 0

do
19 if | A |== m then
20 return A
21 end if
22 e, rcount = e2rcount.popitem()
23 if rtotal == 0 or rcount == 0 then
24 break
25 end if
26 A = A ∪ {e}
27 for r ∈ e2r[e] do
28 if r ∈ Rrem then
29 Rrem = Rrem\{r}
30 for e ∈ r2e[r] do
31 e2rcount[e] =

e2rcount[e] + 1
32 end for
33 end if
34 end for
35 rtotal = rtotal + rcount
36 end while
37 end while

tations in knowledge graphs is to represent entities
as a function of elements (entities and relations)
from a smaller vocabulary set. Typically in KGs
the number of entities far exceeds the number of
relations. Therefore we form our vocabulary with a



smaller subset of entities called as the anchor set A.
Our objective here is to learn an encoder function
f({ai}m, {pj}n) for any entity e ∈ Etrain ∪ Etest,
where {ai}m is the set of m anchors picked for e
and {pj}n is the set of n paths originating from e.
m and n are hyperparameters of our model their op-
timal values can be found in the Appendix. In the
subsequent sections we elaborate on this process
of encoding an entity.

3.1 Vocabulary Construction

We define the vocabulary of our model as V = A∪
Rtrain, where A is the anchor set constructed from
Etrain such that A ⊂ Etrain and |A| ≪ |Etrain|.
This anchor set construction is done by the anchor
selection algorithm which selects a set of relation-
ally diverse nodes such that maximum relations are
covered in the given anchor size budget. In each
iteration we greedily pick anchors with maximum
outgoing relation count. For each of those outgo-
ing relations we then remove that relation from the
set of outgoing relations for all other nodes that
contain that relation. This process is repeated until
m anchors are found. Please refer to Algorithm 1
to know the exact steps.

3.2 Anchor Selection per Entity

Given an entity, top m anchors are selected from
the anchor set A based on a relation similarity score.
We define two different metrics to capture the rela-
tion similarity between a given entity and anchor
entity.

Let Se be the set of all outgoing relations from
the given entity e, and Sa be the set of all outgoing
relations from a candidate anchor entity a.

The first metric is designed to capture the maxi-
mum relational overlap between the two sets. For
this we use the Jaccard similarity metric given by

rsimjaccard(e, a) =
|Se ∩ Sa|
|Se ∪ Sa|

(1)

This measure for relation similarity uniformly
weighs all the relations. Such a metric should be
useful in graphs with uniformly distributed rela-
tions where the characteristic of a node is not deter-
mined by any unique relation. However, in denser
relation rich graphs not all relations should receive
equal importance in similarity computation. Rarer
relations are more informative than the common
ones. Drawing inspiration from tf-idf based query
document retrieval in NLP, we define the second

measure for relation similarity that factors in the
frequency of relations

rsimirf (e, a) =

1

|Se ∪ Sa|
∑

r∈Se∩Sa

log

(
|Ttrain|
n(r)

)
(2)

where, Ttrain is the training triples set and n(r)
denotes frequency of relation r. The inverse re-
lation frequency based scoring function rsimirf

considers the relative frequency of relations in the
training graph. In computation of the relation simi-
larity score rarer relations are weighted higher than
the frequent ones.

Finally, to select anchors per entity, we select m
anchors {ai}m ⊆ A with the highest rsim scores.

3.3 Relational Paths per Entity
To create a distinct hash for an entity we repre-
sent an entity as a function of n relational paths
originating from that entity. We define a k length
relational path between two entities e and et, as a
sequence of k consecutive relations [r1, r2, ..., rk]
that are encountered in the shortest path connecting
e to et . The set of all such relational paths origi-
nating from e, denoted by P(e), is constructed by
doing a breadth first search (BFS) starting from e
to all entities present in a k hop radius. Finally, n
relational paths are selected {pj}n ⊆ P(e) follow-
ing a deterministic or random strategy. Under the
deterministic strategy we select n relational paths
ordered by their path lengths in non-decreasing
order.

3.4 Entity Encoder
Based on the aforementioned tokenization scheme
an entity e is tokenized as follows:

hash(e) = [{ai}m, {pj}n] (3)

The generated hash is further formatted by aug-
menting special tokens to make it suitable for input
to our encoder model.

x = [[cls], {ai}m, {[sep] pj}n] (4)

The input tensor x is then obtained from the
embedding lookup table for elements in the vocab,
V ∈ R|V|×d for each token in the input sequence
x.

x =
[
ecls, {eai}k, {esep tpj}n

]
(5)



(a) Anchor selection and relational paths for a test entity (b) Transformer Encoder

Figure 2: Entity tokenization and encoding process. For an unseen test node (in grey), 4 anchors (colored nodes)
are selected from the training graph based on maximum relational overlap, and 4 relational paths originating from
the test node are sampled to represent the entity. This sequence is then passed through the transformer encoder to
obtain the node feature.

Note that, each of the relational paths pj is a
sequence of relations of length k. For relational
paths having length less than k we pad them using
the pad token. The path embedding tpj for a path
pj is thus defined as:

tpj =
[
e(j)r1 , e

(j)
r2 , ...e

(j)
rk

]
(6)

We also add the relative positional encodings to
the relation embeddings to preserve the sequential
information in relational paths.

tpj (i) = e(j)ri + posi (7)

Finally, we pass the input through L layers of
transformer encoder and take the [cls] token em-
bedding as the entity’s embedding.

xl = Transformer(xl−1) (8)

4 Experiments

The objective of our experimental study is to an-
swer the following research questions:

• How effective is our anchor selection strategy
for inductive link prediction?

• Is path based tokenization better than immedi-
ate relation based tokenization?

• Does our entity encoder learn meaningful rep-
resentations?

4.1 Dataset
We evaluate our proposed approach using the
benchmark for inductive link prediction introduced
by Teru et al. (2020). It comprises of 3 different KG
datasets, FB15k-237, WN18RR and NELL-995.
Each dataset has 4 different versions that differ in
the number of entities, relations and total number

of triples. While FB15k-237 and NELL-995 are
denser and relationally rich graphs, WN18RR is
a sparser graph with fewer relations. For the ex-
act statistics of the dataset we refer the reader to
Galkin et al. (2022).

4.2 Setup

The datasets introduced in the inductive benchmark
have test graphs which are completely disconnected
from train graph. In such settings node connectivity
based anchor tokenization is not possible. We em-
ploy our proposed approach, where we tokenize an
entity into m relationally similar anchors and n re-
lational paths. Subsequently, we pass the tokenized
input through a transformer encoder followed by
a relationally message passing GNN: CompGCN
(Vashishth et al., 2020) to obtain the entity feature.
Since our objective is to study the effect of the pro-
posed entity encoding scheme, we use the same Ro-
tatE decoder (Sun et al., 2019) used in Nodepiece
(Galkin et al., 2022) as the triple scoring function.
To train the model we use self-adversarial negative
sampling loss (NSSAL). We implement our entity
tokenization approach and encoder model on top of
NodePiece code. All our models have been trained
on A100 GPUs with 40 GB RAM.

4.3 Hyperparameters

We adopt the hyperparameters of the best perform-
ing models on inductive benchmark from Node-
piece. On top of that we tune the hyperparameters
for our encoder model. For each dataset version
we limit the number of anchors |A| to upto 20% of
the total number of entities in the training set. The
number of anchors per node m is selected from
the following set {10, 15, 20, 25}. To select the
anchor set per node we consider two different simi-
larity measures rsimjaccard(.) and rsimirf (.). In



Method
FB15k-237 WN18RR NELL-995

V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4
Neural LP 0.529 0.589 0.529 .0559 0.744 0.689 0.462 0.671 0.408 0.787 0.827 0.806

DRUM 0.529 0.587 0.529 0.559 0.744 0.689 0.462 0.671 0.194 0.786 0.827 0.806
RuleN 0.498 0.778 0.877 0.856 0.809 0.782 0.534 0.716 0.535 0.818 0.773 0.614
GraIL 0.642 0.818 0.828 0.893 0.825 0.787 0.584 0.734 0.595 0.933 0.914 0.732

CoMPILE 0.676 0.829 0.846 0.874 0.836 0.798 0.606 0.754 0.583 0.938 0.927 0.751
TACT 0.657 0.835 0.852 0.886 0.840 0.816 0.679 0.775 0.798 0.889 0.94 0.738

ConGLR 0.682 0.859 0.886 0.893 0.856 0.929 0.707 0.929 0.81 0.949 0.943 0.816
NodePiece 0.873 0.939 0.944 0.949 0.830 0.886 0.785 0.807 0.890 0.901 0.936 0.893

MH-RARe (anchors + 1hop rel) 0.891 0.956 0.958 0.964 0.838 0.883 0.798 0.816 0.94 0.918 0.961 0.886
MH-RARe (only path) 0.895 0.953 0.963 0.96 0.867 0.885 0.8 0.84 0.92 0.905 0.943 0.895
MH-RARe (anchors + path) 0.905 0.961 0.96 0.969 0.867 0.893 0.809 0.832 0.935 0.926 0.97 0.9

Table 1: Hits@10 (%) of link prediction for KGs in the inductive setting. Results of baselines are taken from Galkin
et. al. (2021). Best results are in bold, second best have been underlined.

Dataset Entity Selected Anchors

FB15k237-v1

Sense and Sensibility (film) Atlantic City (1980 film), Brokeback Mountain, Magnolia (film), Gandhi (film), Chicago (2002 film)
Stoke City F.C. Celtic F.C., New Zealand national football team, Sunderland A.F.C.
University of Connecticut De La Salle University, University of Notre Dame, Boston College
Rocky V Rocky, Eagle Eye, American Gangster (film), Assassins (1995 film), Raging Bull
James Whitmore Herbert Ross, John C. Reilly, Ben Stiller, Gene Hackman, Jason Robards

NELL-v1

ceo:jeff_bezos ceo:david_sifry, ceo:andrea_jung, ceo:jeffrey_katzenberg
televisionstation:wwbt televisionstation:wpxi_tv,televisionstation:king_tv,website:wbir_tv,televisionstation:kwqc_tv,televisionstation:wcmh_tv
county:chicago county:san_francisco,county:philadelphia,city:princeton,city:dallas
coach:eric_mangini coach:dennis_green,coach:frank_beamer,coach:bob_stoops,athlete:rick_pitino
sportsteam:falcons sportsteam:florida_gators, sportsteam:usc, sportsteam:ravens, sportsteam:new_england_patriots, sportsteam:tennessee_volunteers

Table 2: Top selected anchors per entity. Anchors are selected based on the relation similarity score. We see that
the selected anchors for an entity are type consistent.

general we find rsimirf (.) to perform better for
datasets having triples per entity greater than 2. For
a given entity we sample relational paths upto a
maximum of 5 hop length. We limit the maximum
number of paths for an entity to 20. The hyper-
parameters of our best performing models can be
found in the Appendix in detail.

4.4 Baselines

We compare our approach MH-RARe against 3
different types of methods for inductive setting,
rule-based: Neural LP (Yang et al., 2017), DRUM
(Sadeghian et al., 2019), RuleN (Meilicke et al.,
2018b), 4 different GNN-based methods: GraIL
(Teru et al., 2020), CoMPILE (Mai et al., 2020),
TACT (Chen et al., 2021), ConGLR (Lin et al.,
2022) and node-tokenization based: NodePiece
(Galkin et al., 2022).

5 Results

5.1 Discussion

Looking at the general trend of results in Table 1,
we observe that anchors are more effective in rela-
tionally richer graphs. This is due to the strong in-
ductive bias in our anchor selection strategy which
is based on relation similarity. A graph with more
relations is likely to have diverse set of relations per

entity, which aids in the selection of unique anchors
per entity. To complement the performance of an-
chor based methods on sparse graphs we combine it
with path based method. Our path based approach
uses multi-hop relational sequence to generate the
hash for an entity. The effectiveness of path based
approach is evident in the sparser WN18RR graph.
Note that, our path based approach is a generaliza-
tion of 1-hop relation based tokenization proposed
in NodePiece. So in dataset versions where multi-
hop relational context is not useful, our model re-
tains the performance of Nodepiece. Overall, we
find combination of anchor based and relational
path based approach to work well attaining an av-
erage boost of 2.3%, 2.5% and 2.9% in Hits@10
in FB15k-237, WN18RR and NELL respectively.

5.2 Qualitative Analysis

Anchor Selection. On probing the selected an-
chors per node (Table 2) we find that in general
the anchors are type consistent. For e.g. for test
node falcon we extract florida gators, usc,
ravens as anchors, which are all football teams. In
a few cases we also observe some anchors which
are related but not exactly of the same type for
ex. county:chicago has anchors which are cities.
There are certain cases where a few nodes end up
getting noisy anchors. We find this is the case es-



(a) FB15k237-v1 (train) (b) WN18RR-v1 (train) (c) NELL-995-v1 (train)

(d) FB15k237-v1 (test) (e) WN18RR-v1 (test) (f) NELL-995 (test)

Figure 3: tSNE projections of train and test entities and their 100 most common anchors

pecially with the nodes that have scarce outdegree
and non informative relations. We believe that han-
dling such cases would require anchor selection
based on a multi-hop relational context, we leave
that upto future work.

Anchor Distribution. To study the quality of
the learned embeddings we plot the tSNE projec-
tions of entities and anchors in train and test graphs
Figure 3. For this we randomly sample 1000 enti-
ties from train and test sets of the version 1 of all
3 datasets. If the number of entities are less than
1000 we take all entities. We then compute the top-
100 most common anchors across all sampled enti-
ties. The embeddings for all sampled entities and
their anchors are then obtained from our learned
encoder.

tSNE projections of entities and anchors reveal
that anchors are evenly distributed across entity
clusters, a similar observation was made by Galkin
et al. (2022) for transductive KGs. While this trend
is evident in the training graphs across all 3 datasets,
in test graphs we find that in WN18RR there are
some entity clusters not covered by anchors. This
provides some evidence towards the performance
drop as seen in WN18RR.

6 Conlusion & Future Work

In this paper we have introduced an entity tokeniza-
tion strategy that tokenizes an entity into anchors
and relational paths for inductive KGs. In spite of
test graph being disconnected to the training graph,
our approach is able to select informative anchors
for an unseen entity. We show that while anchors
are more effective in relation rich graphs, rela-
tional paths can compensate for it’s performance in
sparser graphs. Overall, addition of anchors leads
to an increase in parameter budget, but the number
of parameters only grows sub-linearly as the an-
chor set contains only a small set of representative
entities derived from the full entity set.

An interesting direction for future research
would be to explore anchor selection in relationally
sparse KGs.
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Dataset Relations
Train Validation Test

Entity Query Facts Entity Query Facts Entity Query Facts

FB15k-237

v1 183 2,000 4,245 4,245 1,500 206 1,993 1,500 205 1,993
v2 203 3,000 9,739 9,739 2,000 469 4,145 2,000 478 4,145
v3 218 4,000 17,986 17,986 3,000 866 7,406 3,000 865 7,406
v4 222 5,000 27,203 27,203 3,500 1,416 11,714 3,500 1,424 11,714

WN18RR

v1 9 2,746 5,410 5,410 922 185 1,618 922 188 1,618
v2 10 6,954 15,262 15,262 2,923 411 4,011 2,923 441 4,011
v3 11 12,078 25,901 25,901 5,084 538 6,327 5,084 605 6,327
v4 9 3,861 7,940 7,940 7,208 1,394 12,334 7,208 1,429 12,334

NELL-995

v1 14 3,103 4,687 4,687 225 101 833 225 100 833
v2 88 2,564 8,219 8,219 4,937 459 4,586 4,937 476 4,586
v3 142 4,647 16,393 16,393 4,921 811 8,048 4,921 809 8,048
v4 77 2,092 7,546 7,546 3,294 716 7,073 3,294 731 7,073

Table 1: Dataset statistics for inductive link prediction

Parameter FB15k-237 WN18RR NELL-995
# Anchors |A| 100 | 100 | - | 100 100 | 100 | 100 | - 250 | 150 | 200 | 200
# Anchors per node, m 15 | 15 | - | 15 15 | 10 | 20 | - 15 | 15 | 15 | 20
Relation scoring function jac | irf | - | irf irf | irf | irf | - jac | irf | irf | irf
Max hops, k 3 | 3 | 5 | 3 3 | 3 | 1 | 5 1 | 3 rest
Max Paths n 20 | 15 | 20 | 20 20 | 20 | 5 | 20 6 | 20 rest
Batch size 256 256 256
Learning rate 0.0001 0.0001 0.0001
Num negatives 32 32 32
Epochs 2500 | 2000 rest 1000 | 2000 | 500 | 2000 1000 |3000 | 2500 rest
Trf Layers 2 2 2
Trf Attn Heads 4 4 4
CompGCN layers 3 4 | 6 | 6 | 10 8 | 4 | 4 | 4
CompGCN attention yes yes yes
CompGCN dropout 0.1 0.1 0.1
Loss function NSSAL NSSAL NSSAL
Margin 25 | 25 | 15 | 20 5 | 15 | 5 | 20 25 | 25 | 30 | 20

Table 2: Hyperparameters for inductive link prediction experiments. Hyperparametes for 4 different dataset splits
are pipe (|) separated
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