
Advancing Class Diagram Extraction from Requirement Text: A
Transformer-Based Approach

Shweta and Suyash Mittal and Suryansh Chauhan
Department of Computer Science and Engineering

The LNM Institute of Information Technology, Jaipur, Rajasthan, India
shweta.singh332@gmail.com

Abstract
The class diagram plays an important role
in software development. As these diagrams
are created using software requirement text, it
helps to improve communication between the
developers and the stakeholders. Thus, the au-
tomatic extraction of class diagrams enhances
the speed of software development procedures.
The research carried out in this direction mostly
relies on rule-based methodologies and deep
learning models. These methodologies have
their drawbacks, such as the fact that large rule-
based systems are complex to handle, whereas
the word embeddings used in deep learning
models are context-independent. Thus, the pre-
sented research work strives to extract the class
diagram entities from the natural language text
by employing a transformer-based model, as
the embeddings generated by these models are
context-dependent. The results have been com-
pared with the existing procedure, and an abla-
tion study has also been carried out to find out
the relevance of each step in the extraction pro-
cedure. The analysis involved examining the
true positive, false positive, and false negative
rates for specific class diagram elements in sep-
arate case studies. As a result, an enhancement
of 9–7% has been observed in the procedures
used for extracting the resulting class diagrams.

1 Introduction

The Unified Modeling Language (UML) is a sig-
nificant aspect of the software requirement specifi-
cation document. These models are pivotal points
for enhancing pertinent communication between
software developers and customers. Thus, the mod-
eling ameliorates software requirements and expe-
dites product development according to the require-
ments of customers. Thus, the automated process
of converting software requirement document text
into Unified Modeling Language (UML), such as
class diagrams, speeds up the adaptation process
of requirements according to discussions. The ex-
isting literature indicates that different automated

methods were proposed for UML model extraction
from the requirement text. These processes promi-
nently rely on rule-based methodology (Thakur and
Gupta, 2016), (Shweta et al., 2018), and a limited
number of them are utilizing neural network ar-
chitectures (ALH, 2018). However, these existing
methods utilize neural networks such as RNN and
LSTM, which again take input as word embedding
generated through Word2vec (Madala et al., 2020).
The word2vec model does not consider contextual
information and generates a single-word embed-
ding for each word. Consider an example of the
word ’bank’ that can have two different meanings
based on context, such as ’riverbank’ or ’bank-a
financial institution’.
However, a transformer-based model will utilise
context-based word embedding, and in recent ad-
vancements, transformers show remarkable im-
provement in terms of accuracy and efficient re-
duction for the computational requirements (Fu
and Tantithamthavorn, 2022),(Kalyan et al., 2021).
Therefore, it motivates us to assess the effective-
ness of a transformer-based language model in ex-
tracting class diagrams from software functional
requirements. In the proposed approach, we have
employed the Robustly Optimized BERT Pretrain-
ing Approach (RoBERTa) (Liu et al., 2019) for
extraction of class diagram entities. The proposed
approach has also been compared with existing
approaches to evaluate the performance and effec-
tiveness of the RoBERTa model.

1.1 Contribution

The contributions of the proposed work are as fol-
lows:

• Explore the Transformer-based approach:
This research strives to propose an extrac-
tion tool with enhanced efficiency of extract-
ing class diagram elements such as classes,
attributes, methods, and associations from

textual requirements using RoBERTa-based
methodology.

• Addressing Data set Problems: We have
used a curated data set containing varied soft-
ware functional requirements, where tokens of
each software requirement are labelled with
class diagram entities. This research explores
multiple aspects to enhance the accuracy of
the class diagram entity extraction process, in-
cluding mitigating biases within the data set.

The rest of the paper is structured as follows:
Section 2 presents a concise literature survey of ex-
isting extraction procedures. Section 3 explains the
proposed methodology step by step taken to reach
the current fine-tuned model. Then, section 4 elab-
orates on our findings, and section 5 explains the
significance of each step of the proposed method-
ology through the ablation study. Finally, the last
section 6 contains our concluding remarks along
with some future directions.

2 Related Works

The literature suggests that existing research has
a predominant emphasis on heuristic rules for
model extraction from textual requirements. Neu-
ral network-based studies in this area are notably
scarce. In this section, we present a concise
overview, which is divided into two segments. The
first segment is dedicated to the extraction proce-
dures focused on heuristic rules, while the second
part delves into neural network-based extraction
approaches.

The literature suggests that several works have
been reported that have utilized extraction rules
procedures for the extraction of class diagrams. Re-
searchers employed heuristic extraction rules for
UML model entities (Perez-Gonzalez and Kalita,
2002), (Harmain and Gaizauskas, 2003), and some
used universal dependencies for the extraction of
class diagrams from requirement text (Sagar and
Abirami, 2014). In the existing work, the devel-
oped extraction rules were formulated based on the
grammatical structure of the sentences (Thakur and
Gupta, 2016), (Shweta et al., 2018).
In summary, the extraction procedure based on ex-
traction rules has its pros and cons (Gonzalez and
Dankel, 1993), (McGarry et al., 1999). Rules can
be easily removed or added to a rule-based sys-
tem, and it does not require a large amount of cor-
pus. However, a rule-based system with a large

number of rules is difficult to maintain (Gonza-
lez and Dankel, 1993). Thus, some researchers
also employed neural network architecture for the
extraction of different models from requirement
text, such as authors identifying component state
transition diagrams from requirements using recur-
rent neural network (RNN) and long short-term
memory (LSTM) architecture. Similar work is
also carried out to automatically identify actors
and actions in a system’s requirements using neural
networks (ALH, 2018). In (Pudlitz et al., 2019), a
self-trained named-entity recognition model is used
with bidirectional LSTMs and CNNs to extract the
system states from requirements text. In (Madala
et al., 2020), authors found that the neural network
RNN with LSTM and RNN with GRU architec-
tures provide good performance in the identifica-
tion of model elements, but the results changed in
different conditions. Hence, we can conclude that
the transformer-based approach has not been uti-
lized and tested until now for the model extraction
process from the requirement text.

3 Proposed Methodology

The proposed methodology can be divided into
mainly two components, i.e., data preprocessing
and training of the model, as shown in Fig. 1.

3.1 Dataset Annotation-Tagged XML Dataset

The first step of our proposed methodology in-
volves the annotation of the data set. We considered
the PURE data set (Ferrari et al., 2017) for our ex-
periment. We have utilized a data set that includes
thirty-two requirement documents and 34,268 sen-
tences. The functional requirements are separated
from SRS documents and then passed to volunteers
to annotate the class diagram entities within the
functional requirements. The volunteers included
graduate students, post-graduate students, Ph.D.
candidates, and some industry experts. Students
employed GATE (General Architecture for Text
Engineering) (Cunningham et al., 2013) to anno-
tate the requirements that generate the tagged XML
data sets. The annotation carried out by students
has been finalized as per the reviews provided by
the experts.

The rest of this section provides a detailed de-
scription of these two components in a step-by-
step manner, thereby providing a comprehensive
understanding of our approach to automating the
software design process through LLMs.

Dataset Annotation
Tagged XML Dataset

Data Preprocessing

Intermediate Data Cleaning

Sentence Splitting

XML Parsing

Resolving Nested XML Structures

Standard Dataset Formatting

Remove Stop Words (NLTK)

BIO2 Encoding

Tokenize and Align Labels

Mitigate Label Imbalance Problem
(Class Weights)

Train

Final Prepared Dataset

Train Dataset Test Dataset

Fine-Tune
Base Model
(RoBERTa)

Final Trained Model

Extracted Class Diagram Entities

Hyper-Parameter
Tuning

Figure 1: Proposed Methodology

3.2 Data Preprocessing
The first step of the preprocessing process includes
intermediate data cleaning. This step contains sen-
tence splitting, XML parsing, and fixing structure
resolution errors. These steps are explained as fol-
lows:

3.2.1 Intermediate Data Cleaning
Data cleaning is a critical step to extract pertinent
textual information from the problem statements

and prepare them for subsequent processing. We
started with an XML-based tagged data set, on
which we performed the following intermediate
steps:

1. Sentence Splitting: Since the XML data is
in a hierarchical structure, each specification
was divided into sentences to preserve the con-
textual information hinting to the LLM about
their respective meanings and relationships.

2. XML Parsing: This step involved extracting
and organizing data from the XML hierarchi-
cal structure into a sequenced data set format.
XML parsing makes the information more ac-
cessible and structured. It facilitates further
analysis and understanding while preserving
the context of the problem statement and help-
ing in batch training.

3. Resolving Nested XML Structures: This
step involves handling any erroneous XML
tags that caused the nesting of labels. This
is done to ensure that the data aligns with
the specific requirements of the class diagram
entity task.

3.2.2 Standard Dataset Formatting
In this step, the dataset format is changed into a
standard format that can be easily fed to the LLM as
input. This is carried out to ensure uniformity and
compatibility with the extraction of class diagram
entities.

3.2.3 Remove Stop Words
Stop words (Sarica and Luo, 2021) usually include
articles, prepositions, conjunctions, and pronouns
that have no or very little significance in the actual
meaning of the sentence. A list of such stop words
was obtained from the (Bird et al., 2009) library.
All occurrences of these words were stripped of
their current class. This removes the unnecessary
words, helping the language model focus on actual
data.

3.2.4 Inside-outside-beginning (IOB)2
Encoding

IOB2 encoding is used to tag the tokens for chunk-
ing tasks, such as token classification tasks similar
to our class diagram entity identification. The IOB2
scheme is widely employed to represent entity
spans with precision to enhance the model’s learn-
ing capabilities. This step involved assigning I, O,

<no>The</no> <class>diagnostic</class>
<no>tool</no> <no>is</no>

<method>executed</method> <no>prior</no>
<no>to</no> <no>the</no>

<no> <no gateId="7301"/>processing</no>
<no>of</no> <no>use case</no>.

{
 "no":[
 "The",
 "tool",
 "is",
 "prior",
 "to",
 "the",
 {"no":
 {
 "@gateId": "7301"
 },
 "#text": "processing"
 },
 "of",
 "use case"
],
 "class":["diagnostic"],
 "method":["executed"]
}

{
 "no":[
 "The",
 "tool",
 "is",
 "prior",
 "to",
 "the",
 "processing",
 "of",
 "use case"
],
 "class":["diagnostic"],
 "method":["executed"]
}

{
 "id": "105",
 "ner_tags": [
 "O",
 "B-class",
 "O",
 "O",
 "B-method",
 "O",
 "O",
 "O",
 "O",
 "O",
 "O",
 "O"
],
 "tokens": [
 "The",
 "diagnostic",
 "tool",
 "is",
 "executed",
 "prior",
 "to",
 "the",
 "processing",
 "of",
 "use case",
 "."
]
}

XML Data

Splitting and Parsing

Resolving Nested Structures

Formatting and Encoding

Figure 2: Steps of Preprocessing shown using an Example

and B labels for these six labels: ’Others’, ’class’,
’attribute’,’method’, ’association’, and ’generaliza-
tion’.

• Beginning: Any token belonging to a different
known entity than the previous token is tagged
as B-label.

• Inside: Any tokens consecutive to the token
tagged as B and of the same known entity type
are tagged as I-label.

• Outside: Those tokens that do not belong to
any known entity are tagged as Other.

The preprocessing steps, including intermediate
data cleaning, formatting, and cleaning, are illus-
trated in Fig. 2 using an example.

3.2.5 Tokenize and Align Labels
This step uses the AutoTokenizer of the RoBERTa
model to tokenize the inputs. Sometimes, there
is the possibility of multiple splittings of words.
In this scenario, simultaneous alignment is neces-
sary for these tokens to have their labels. Thus,
Algorithm 1 is employed to resolve this issue. The
algorithm labels only the first token of the word
and assigns a negative value to other special tokens
and the remaining tokens of the word. This is an
indication for the model to ignore these negatively
valued tokens in entity analysis and specifically
classify beginning tokens only.

3.2.6 Mitigate Label Imbalance Problem

Weights are assigned to each label corresponding
to their occurrence frequency to address the issue
of unbalanced label distribution. This is done to
ensure that: 1) Labels with lower frequency counts
are not underrepresented and are given equal impor-
tance while training. 2) The model will no longer
be biased towards labels with high frequency when
tagging unseen data.

3.3 Training

3.3.1 Train-Test Split

After preprocessing, the obtained dataset is split
into training (85%) and testing (15%) data sets to
avoid overfitting.

3.3.2 Fine Tune Model

The RoBERTa Large Language Model was fine-
tuned on the training dataset by adding a new layer
on top of the existing architecture, enabling it to
predict labels for tokens in the input sequence. Due
to space constraints, we are not able to add a de-
scription of the RoBERTa model to this manuscript.

The training process occurred over multiple
epochs, where the data was fed in batch sizes of 8.
This is quite low by general standards, but it was
mandated by the current GPU training capabilities.

Algorithm 1: Tokenize and Align Labels
input : record: a dataset record containing

tokens and their corresponding tags
output : tokenized_inputs: a dataset record

of tokenized inputs with their
aligned labels

begin
tokenized_inputs←
tokenizer(R[tokens])

labels← ∅
for labels ∈ R[”ner_tags”] do

word_ids←
tokenized_inputs.word_ids()
previous_word_idx← ∅
label_ids← ∅
for word_idx ∈ words_ids do

if word_idx is ∅ then
labels_ids.Append(−100)

end
else if word_idx ̸=
previous_word_idx then

label_ids.Append(
label[word_idx])

end
else

labels_ids.Append(−100)
end
previous_word_idx← word

end
end
labels.Append(label_ids)
tokenized_inputs← labels
return tokenized_inputs

end

3.3.3 Hyper-parameter tuning
Hyper-parameter tuning was executed to find the
best values for training parameters like learning
rate, weight decay and max-steps. Different op-
timizers (for optimizing the weights and biases)
like adam_torch, adam_hf, and adam_torch_fused
were also experimented with. Eventually, we set-
tled upon adam_torch (Kingma and Ba, 2017), as
it was the best performer.

3.3.4 Extract Entities from Test Dataset
The trained model has been saved and is hence
ready to extract entities from the testing dataset.
Then, each sentence was passed into the model,
and the predicted labels were recorded to evaluate
the trained model using metrics.

The dataset and final trained model are saved for
running inferences, downloading, or deploying as
APIs. We are not able to provide that tool link to
remain anonymous; however, on request, we can
provide that also.

4 Results and Discussions

The aim of this section is to evaluate the proposed
model using metrics such as precision, recall, and
accuracy. Each of these evaluation metrics is ex-
plained as follows:

4.1 Evaluation Metrics

Precision: measures the amount of false positives.
It lies between 0 and 1, 1 signifying no false posi-
tives.

P = TP/(TP + FP)

Recall: measures the amount of false negatives. It
lies between 0 and 1, 1 signifying no false nega-
tives.

R = TP/(TP + FN)

F1-Score: is the harmonic mean of precision and
recall:

F1− Score = 2 ∗ P ∗R/(P +R)

4.2 Comparison With Existing Rule-Based
Methodologies

We employed two case studies to illustrate the dis-
tinction between the existing extraction procedure
and the newly proposed methodology. The existing
methodology (Shweta et al., 2021) is a recent ex-
traction work based on a rule-based approach that is
able to extract all the class diagram elements from
software requirements. Thus, it makes this method-
ology suitable for comparison with the proposed
approach. As depicted in Table 1, the transformer-
based methodology has the upper hand with respect
to rule-based methodology. The accuracy of class
extraction has increased by an average of 7%, and
the accuracy of attribute extraction has improved
by an average of 9%. However, there is only a
slight enhancement in the extraction of methods
and associations, with average improvements of
5% and 1.5%, respectively.

The extraction of classes is more precise in com-
parison to other class diagram elements, including
methods, associations, and attributes. The extrac-
tion results of the proposed methodology for the
library management system are shown in Figure 3.

Table 1: Comparison of Methodologies

Models Metrics
Library Management
System (Ahsan Riaz)

Airport System (S.S.S., 2012)

C AT M AS C AT M AS

RoBERTa

TP 7 8 22 4 8 6 0 5

FP 0 0 6 1 0 1 0 1

FN 0 4 1 0 0 0 0 2

Precision 1.00 1.00 0.78 1.00 1.00 0.86 1.00 0.83

Recall 1.00 0.67 0..95 0.80 1.00 1.00 1.00 0.71

F1-
Socre

1.00 0.80 0.86 0.88 1.00 0.93 1.00 0.76

Intermedi
-ate

Template
Based

Approach
(Shweta

et al.,
2021)

TP 6 4 21 4 7 6 0 4

FP 1 0 9 1 1 2 0 1

FN 0 4 4 0 1 0 0 2

Precision 0.85 1.00 0.70 1.00 0.88 0.75 1.00 0.80

Recall 1.00 0.50 0.84 0.80 0.88 1.00 1.00 0.67

F1-
Score

0.91 0.67 0.76 0.88 0.88 0.86 1.00 0.73

C - Class, AT - Attribute, M - Method, AS - Association

This shows the requirements of the library manage-
ment system along with the extracted class diagram
entities using the proposed model.

The requirements text suggests that if ’LMS’ is
subject to every statement of requirements, then
’LMS’ should be extracted as a class according
to the rule, i.e., ’The subject should be extracted
as a class.’. If ’LMS’ is extracted as a class for
the class diagram, then all the extracted methods
will be associated with this single class only, and
ultimately, it will increase the complexity of the
system. Thus, in good practice, LMS should not
be extracted as a class. In this scenario, again, we
have to write some other rules to avoid this problem.
Thus, it will again increase the complexity of a rule-
based system. The same problem is resolved by
using the proposed transformer-based approach by
training the model on this type of statement, and
the results show great improvement in such kinds
of problems of requirement documents.

It is evident from Figure 3 that ’LMS’ is not
extracted as a class.

5 Ablation Study

The ablation study has been performed to find
out the importance of every step of the proposed
methodology. The following subsections demon-
strate the significance of each part of the methodol-
ogy.

5.1 Initial Step

We started with the implementation of DistilBERT
(uncased) (Sanh et al., 2020) as the base model.
DistilBERT’s efficiency and competitive perfor-
mance made it a suitable starting point from which
we could try numerous techniques. A decision was
made to use the cased version, as there would be
an impact on the class extraction between capital-
ized and non-capitalized words. The DistilBERT
model tries to classify every token into a label. For
example, the word ‘login’ was split into ‘log’ and
‘in’, and each part was identified as belonging to
a different class, both of those classes being incor-
rect. DistilBERT performed fairly well (76% Accu-
racy) given the smaller dataset that it was originally
trained on. However, other metrics like precision
and recall are quite low, suggesting that it makes
more false classifications.

Figure 3: Sanpshot of extracted classes diagram ele-
ments in Library Management System

5.2 Model Change to BERT

We transitioned from DistilBERT to BERT (Devlin
et al., 2018) (with a larger parameter count and
model size) to enhance the accuracy and precision
of entity recognition within our data. The decision
to switch to BERT was based on the understanding
that BERT’s deep learning architecture, which con-
siders both the left and right context of words in
a sentence, could significantly improve our entity
recognition results. By capturing these complex
contextual nuances, BERT can more accurately
identify and classify entities within our data, ulti-
mately leading to more precise and context-aware
outcomes.

The BERT model performed slightly worse (74%
accuracy) than DistilBERT, but that is most likely
due to the small batch size during training due to
limited GPU training resources.

5.3 Mitigation of Label Bias Problem

Recognizing the imbalance in the distribution of
entity labels within the dataset, we introduced

weighted labels during training. This measure en-
sured that the language model assigned appropriate
attention to underrepresented entities.

Doing so improved the accuracy by almost 5%.
A substantial increase in the F1 Score (60%) can
be seen, implying that the model is now making
fewer false classifications.

5.4 Removal of Stop Words

On analysis of the dataset, one could see words
that were not pertinent to entity recognition. To en-
hance accuracy, we implemented a token set trans-
formation, removing these stop words. This helped
remove irrelevant jargon from the dataset, which
masked the effect of tokens containing relational
data of the functional requirement. The effect of
the removal of stopwords on the label distribution
can be visualized in Fig. 4.

Figure 4: Effect of Removing Stop Words
on Label Distribution

This made the most significant impact, increas-
ing the accuracy to 86% and having the highest
Recall of 74%. Loss during training was also ap-
preciably low.

5.5 Model Change to RoBERTa

In pursuit of superior results, we continued to aug-
ment the model’s complexity. We transitioned to
RoBERTa, an advanced variant of BERT, which
provided an enhanced understanding of contextual
nuances (Liu et al., 2019).

The choice to transition to RoBERTa was be-
cause of its substantially larger parameter and
model size compared to BERT. This expanded size
equips our model with a greater capacity to capture
intricate linguistic nuances.

After making this switch, accuracy peaked at
89% with the best overall precision, recall, and
F1-Score, as shown in Table 2. The results of the
ablation study can also be visualized using Fig. 5.

Model Precision Recall Accuracy
DistilBERT 0.51 0.46 0.76
BERT 0.49 0.53 0.75
BERT - W 0.54 0.67 0.79
BERT - SW 0.44 0.75 0.86
RoBERTa 0.60 0.75 0.89

W - Weights, SW - Stop Words

Table 2: Model Wise Metrics

Figure 5: Training Metrics

While the proposed method has demonstrated
promising results, there is room for further im-
provement. This can be achieved through sev-
eral avenues: 1) Expanding the Dataset: As of
now, only the PURE dataset has been used for
fine-tuning the model. To enhance the model’s
performance, the dataset can be expanded to en-
compass a broader spectrum of software engineer-
ing domains and complex problem statements. 2)
Enhanced Computational Resources: Acquir-

ing additional computational resources can help
approach the upper limits of performance. Fine-
tuning a base model with more parameters and
a larger scope can contribute to improved results.
3) Advanced Techniques: Implement techniques
such as cross-validation and extensive hyperparam-
eter tuning to refine the current results and optimize
the model’s performance. 4) Post-processing Re-
finement: The encoding used in RoBERTa leads
to some incorrect tagging, i.e., ’cart’ and ’item’ are
extracted as two different classes, so to make it
correct, these two words should be merged. Thus,
further refinement in the post-processing of the
extracted class diagram entities is necessary to en-
sure the accuracy and consistency of the results. 5)
Complete Class Diagrams: Improving accuracy
can also be accomplished by constructing complete
class diagrams that connect all the extracted ele-
ments, i.e., to correctly identify the connection be-
tween the classes and their attributes, methods, and
associations with other classes. This will result in
a clearer and more comprehensive representation.

These strategies can collectively lead to a more
robust and effective methodology for class diagram
extraction and analysis.

6 Conclusion

In the current study, we proposed a new approach
to automate the software design process through
language model-based entity analysis for class di-
agram formation in an attempt to address the lim-
itations of the existing approaches. Transformer-
based models are also able to consider the con-
text of the words while extracting the class dia-
gram elements and, hence, achieve better results
for previously unseen statements. The tool, al-
though quite effective, remains a tool and must
be human-assisted to maintain integrity and avoid
edge cases that may hamper the planning process.
There may exist cases that hold very correlated in-
formation that may be hard to disassemble correctly
by the transformer-based model. This remains a
limitation of the approach, along with its extensive
dependence on the trained dataset, with inaccu-
racies being noticeable in software specifications
not previously seen by the model. In conclusion,
our research presents a promising approach to au-
tomating the software design process, significantly
reducing the cognitive load on software architects
while improving the quality of software designs.

References
2018. The use of artificial neural networks for extract-

ing actions and actors from requirements document.
Information and Software Technology, 101:1–15.

Hamaad Chuadry Ahsan Riaz, M.Bilal sp13-bse-106.
Library management system.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Hamish Cunningham, Valentin Tablan, Angus Roberts,
and Kalina Bontcheva. 2013. Getting more out
of biomedical documents with gate’s full lifecycle
open source text analytics. PLoS Comput Biol,
9(2):e1002854.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Alessio Ferrari, Giorgio Oronzo Spagnolo, and Stefania
Gnesi. 2017. Pure: A dataset of public requirements
documents. In Requirements Engineering Confer-
ence (RE), 2017 IEEE 25th International, pages 502–
505, Lisbon, Portugal. IEEE.

Michael Fu and Chakkrit Tantithamthavorn. 2022.
Gpt2sp: A transformer-based agile story point es-
timation approach. IEEE Transactions on Software
Engineering, 49(2):611–625.

Avelino J. Gonzalez and Douglas D. Dankel. 1993. The
Engineering of Knowledge-Based Systems: Theory
and Practice. Prentice-Hall, Inc., USA.

H.M. Harmain and R. Gaizauskas. 2003. Cm-builder:
A natural language-based case tool for object-
oriented analysis. Automated Software Engineering,
10(2):157–181.

Katikapalli Subramanyam Kalyan, Ajit Rajasekharan,
and Sivanesan Sangeetha. 2021. Ammus: A survey
of transformer-based pretrained models in natural lan-
guage processing. arXiv preprint arXiv:2108.05542.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
method for stochastic optimization.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Kaushik Madala, Shraddha Piparia, Eduardo Blanco,
Hyunsook Do, and Renee Bryce. 2020. Model ele-
ments identification using neural networks: a com-
prehensive study. Requirements Eng.

Kenneth McGarry, Stefan Wermter, and John MacIntyre.
1999. Hybrid neural systems: from simple coupling
to fully integrated neural networks. Neural Comput-
ing Surveys, 2(1):62–93.

Hector G. Perez-Gonzalez and Jugal K. Kalita. 2002.
Gooal: A graphic object oriented analysis laboratory.
In Companion of the 17th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Sys-
tems, Languages, and Applications, pages 38–39),
New York, NY, USA. ACM.

Florian Pudlitz, Florian Brokhausen, and Andreas Vogel-
sang. 2019. Extraction of system states from natural
language requirements. In 2019 IEEE 27th Interna-
tional Requirements Engineering Conference (RE),
pages 211–222.

Vidhu Bhala R. Vidya Sagar and S. Abirami. 2014. Con-
ceptual modeling of natural language functional re-
quirements. Journal of Systems and Software, 88:25
– 41.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Serhad Sarica and Jianxi Luo. 2021. Stopwords
in technical language processing. PLOS ONE,
16(8):e0254937.

Shweta, R. Sanyal, and B. Ghoshal. 2018. Automatic ex-
traction of structural model from semi structured soft-
ware requirement specification. In Proc. IEEE/ACIS
17th International Conference on Computer and In-
formation Science (ICIS), pages 543–58), Singapore.

Shweta, Ratna Sanyal, and Bibhas Ghoshal. 2021. Au-
tomated class diagram elicitation using intermediate
use case template. IET Software, 15(1):25–42.

S.S.S. 2012. Class diagram for airport uml questions.

Jitendra Singh Thakur and Atul Gupta. 2016. Anmod-
eler: A tool for generating domain models from tex-
tual specifications. In Proc. 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, pages 828–833), New York, NY, USA. Associa-
tion for Computing Machinery.

https://doi.org/https://doi.org/10.1016/j.infsof.2018.04.010
https://doi.org/https://doi.org/10.1016/j.infsof.2018.04.010
https://www.studocu.com/row/document/comsats-university-islamabad/software-engineering/ahsan-library-management-system-assignment/57305353
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1109/RE.2017.29
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1109/RE.2019.00031
https://doi.org/10.1109/RE.2019.00031
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.1371/journal.pone.0254937
https://doi.org/10.1371/journal.pone.0254937
https://doi.org/https://doi.org/10.1049/sfw2.12010
https://doi.org/https://doi.org/10.1049/sfw2.12010
https://doi.org/https://doi.org/10.1049/sfw2.12010

	Introduction
	Contribution

	Related Works
	Proposed Methodology
	Dataset Annotation-Tagged XML Dataset
	Data Preprocessing
	Intermediate Data Cleaning
	Standard Dataset Formatting
	Remove Stop Words
	 Inside-outside-beginning (IOB)2 Encoding
	Tokenize and Align Labels
	Mitigate Label Imbalance Problem

	Training
	Train-Test Split
	Fine Tune Model
	Hyper-parameter tuning
	Extract Entities from Test Dataset

	Results and Discussions
	Evaluation Metrics
	Comparison With Existing Rule-Based Methodologies

	Ablation Study
	Initial Step
	Model Change to BERT
	Mitigation of Label Bias Problem
	Removal of Stop Words
	Model Change to RoBERTa

	Conclusion

