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Abstract

Ontologies are widely used to represent data in
a variety of scientific domains, including biology,
physics, and geography. Ontology curation and an-
notation, the process of reading scientific text and
associating words and phrases with appropriate on-
tology concepts, is essential for this representation.

Natural language processing (NLP) techniques
powered by deep learning have recently become
prominent in the task of ontology annotation. How-
ever, traditional metrics of accuracy, such as pre-
cision and recall, cannot be used to evaluate the
accuracy of these methods, as their output is ontol-
ogy concepts, not independent entities.

Semantic similarity metrics offer the capability
of estimating partial accuracy and have been used
in recent work to evaluate NLP methods for ontol-
ogy annotation. Here, we present robust semantic
similarity metrics created through the use of on-
tology embeddings. We tested our metrics using
gold standard data pertaining to evolutionary biol-
ogy created by scientists in the Phenoscape project
and show that they outperform traditional semantic
similarity metrics, offering a more robust and ac-
curate assessment of NLP approaches designed for
ontology annotation.

1 Introduction

As several fields of science entered the data-
intensive era, ontologies grew increasingly popular
for consistent, machine-readable representation of
scientific data (Stevens et al., 2000; Grimm, 2009;
Consortium, 2006).

Ontologies proved to be critical in life sciences
and particularly in biology to power large compar-
ative analyses (Sahoo et al., 2006; Manda et al.,
2015; McENTIRE, 2002). The Gene Ontology
(GO) was created in 2003 (Smith et al., 2003) as a

collaborative effort to facilitate meaningful descrip-
tions of genes in a variety of organisms (Consor-
tium, 2006). Ontologies enable standardization of
biology by providing a common vocabulary for de-
scribing biological entities and their relationships.
This helps to reduce ambiguity and improve com-
munication between researchers. They enable data
integration and interoperability (Consortium, 2006).
Ontologies can be used to link data from different
sources, even if they are stored in different formats.
This allows researchers to combine data from mul-
tiple experiments and databases to get a more com-
plete picture of biological phenomena. Ontologies
were built for supporting knowledge discovery and
hypothesis generation (Ultsch and Lötsch, 2014).
Ontologies can be used to reason about biological
data and identify new patterns and relationships
(Dahdul et al., 2015). This can help researchers to
generate new hypotheses and develop new insights
into biological systems. Finally, ontologies facili-
tate the development of new tools and applications
to support biological research, such as tools for
data annotation, knowledge discovery, and compu-
tational modeling (Manda et al., 2015).

While ontologies provide the necessary structure
and concepts, the real benefits of ontologies can
be reaped only when knowledge in scientific litera-
ture is represented using these ontologies through
annotation (Devkota et al., 2023). One of the use
cases for ontologies is gene annotation - Ontologies
are used to annotate genes with information about
their function, structure, and expression patterns
(Consortium, 2012). This information can be used
to better understand the role of genes in biological
processes and diseases.

Creating annotations using ontologies started as
a manual task undertaken by expert level human
curators (Dahdul et al., 2015). Manual annotation
of literature using ontologies is the process of iden-
tifying and tagging relevant biological entities and
relationships in text with ontology terms. This is



a time-consuming and labor-intensive process, but
it is essential for creating high-quality, machine-
readable annotations that can be used to support a
wide range of biological research tasks.

The manual annotation process typically in-
volves the following steps:

• Read the literature. The annotator carefully
reads the literature to identify relevant biolog-
ical entities and relationships.

• Identify the appropriate ontologies. The an-
notator selects the ontologies that are most
relevant to the topic of the literature.

• Annotate the text. The annotator tags the text
with ontology terms to identify and describe
the biological entities and relationships.

• Review and curate the annotations. The an-
notator reviews the annotations to ensure that
they are accurate and consistent.

These GO annotations are the drivers for several
crucial applications in biology such as gene func-
tion discovery, genome annotation, comparative ge-
nomics, functional genomics, and systems biology
(Consortium, 2006; You et al., 2018; Manda et al.,
2020). The ongoing generation of GO annotations
as new literature is published is important to be
able to conduct comparisons between species and
to utilize rich genomic data for answering complex
biological questions.

However, manual curation of scientific literature
by human curators soon became an infeasible prac-
tice because it was tedious, slow, and unscalable
to the rapid pace of scientific publishing (Dahdul
et al., 2015). The bioinformatics community turned
to text mining and natural language processing as
a means to automate the process of ontology-based
annotation. Ontology-based annotation is the pro-
cess of reading (by a human or a machine) scientific
literature and associating words in the text to appro-
priate ontology concepts (see Figure 1) (Cui et al.,
2015).

The initial foray into automated annotation us-
ing natural language processing relied on lexical
analysis and standard machine learning approaches
(Devkota et al., 2022a, 2023). More recently, deep
learning approaches have shown promise with text
related applications (Lample et al., 2016; Boguslav
et al., 2021; Casteleiro et al., 2018; Manda et al.,
2020; Devkota et al., 2023, 2022a).

The past few years have witnessed an increasing
focus on automated annotation of scientific liter-
ature and the development of sophisticated NLP
approaches (Manda et al., 2018, 2020; Devkota
et al., 2022b, 2023, 2022a). With this, a second and
equally important problem came to light - robust
and accurate methods for evaluating the success
of these NLP methods (Dahdul et al., 2018). Eval-
uating the performance of NLP systems that are
ontology-based is different from traditional NLP
systems because of the possibility of partial accu-
racy.

Traditional information retrieval systems only
consider whether the target information is retrieved
(success) or not (failure). In contrast, ontology-
based information retrieval systems allow for the
possibility of partial success. This means that the
system can still be successful even if it does not
retrieve the exact target information, as long as
it retrieves something that is semantically similar
(Devkota et al., 2022a).

Ontology-based information retrieval systems
are evaluated using three possibilities:

• Accurate retrieval: The system retrieves the
exact target information.

• Inaccurate retrieval: The system retrieves in-
formation that is not semantically similar to
the target information.

• Partially accurate retrieval: The system re-
trieves information that is semantically similar
to the target information, but not identical.

The goal of our NLP systems is to maximize ac-
curate retrieval rates and minimize inaccurate re-
trieval rates. In cases where complete accuracy is
not achieved, the method aims to maximize partial
accuracy.

Here is an example to illustrate the differ-
ence between traditional information retrieval and
ontology-based information retrieval:

Imagine that you are searching for information
about the concept of “dog”. A traditional informa-
tion retrieval system would only consider whether
it retrieves information that explicitly mentions the
word “dog”. In contrast, an ontology-based in-
formation retrieval system would also consider re-
trieving information about other concepts that are
semantically similar to “dog”, such as “canine” or
“mammal”.

If an ontology-based information retrieval sys-
tem retrieves information about “canine” when you



Figure 1: Illustration of ontology-based annotation. Appropriate words/phrases in scientific text are identified
(shown via highlighted text) and are annotated to suitable concepts from an ontology.

are searching for information about “dog”, this
would be considered a partial success. The sys-
tem has not retrieved the exact target information,
but it has retrieved something that is semantically
similar.

Ontology-based NLP systems need evaluation
metrics that can account for accurate, inaccurate,
and partial success (Dahdul et al., 2018). The an-
swer to this problem can be found in semantic simi-
larity metrics designed to estimate similarity (exact
or partial) between ontology concepts (Pesquita
et al., 2009). Several papers published in the re-
cent past describing NLP techniques for automated
annotation of literature have used semantic similar-
ity metrics for evaluating accuracy (Manda et al.,
2018, 2020; Devkota et al., 2022b,a, 2023). How-
ever, these existing semantic similarity measures
fall short in the area of robustness since they have
been shown to be quite susceptible to noise in the

data (Manda and Vision, 2018).
In addition, in the case of ontology-based annota-

tion, there is a great deal of information embedded
in the ontology hierarchy and semantics that needs
to be leveraged for accurate annotation (Devkota
et al., 2023). Here, we present an improved seman-
tic similarity metric for the evaluation of NLP ap-
proaches for automated ontology annotation. Our
metric is based on graph embeddings created from
ontologies (which are directed acyclic graphs). We
compared our metric to existing metrics applied on
a gold-standard dataset.

Graph embeddings are a type of machine learn-
ing technique that can be used to represent graphs
in a low-dimensional vector space. This makes
it possible to use machine learning algorithms to
learn from and make predictions on graph data (Cai
et al., 2018).

Graph embeddings are particularly useful for



NLP tasks, as many NLP problems can be repre-
sented as and are applied on graphs (Wang et al.,
2014). Graph embeddings can be used to improve
word representations, improve text classification,
and for machine translation. Overall, graph em-
beddings are a powerful tool that can be used to
improve the performance of a wide range of NLP
tasks.

While we use data and background from the do-
main of biology, the methods presented here have
wide scientific appeal and are generalizable. On-
tologies are used in Chemistry, Physics, Astronomy,
Geoscience, Materials science, Medicine, Psychol-
ogy, and Social science (Strömert et al., 2022;
Spencer, 1982; Hachem et al., 2011; Lesteven et al.,
2007). Hence, the need for automated annotation
methods and effective semantic similarity metrics
for evaluation exist in all these domains.

2 Gold standard dataset

The dataset used here was developed for the
Phenoscape project funded by the United States
National Science Foundation (Manda et al., 2015;
Dahdul et al., 2018). Three expert scientists were
asked to independently annotate the same text re-
lated to evolutionary biology. A gold standard
dataset was created by consensus of the three cura-
tors. The intuition behind this experimental set-up
is that the annotations created by each curator are
expected to be quite similar to the gold standard
if not identical. This allows us to test different se-
mantic similarity metrics by testing how well they
retrieve similarity from known biologically similar
annotations (Dahdul et al., 2018). The dataset is
publicly accessible from Dahdul et. al. (Dahdul
et al., 2018)

3 Ontology

The ontology used in the dataset described above
is UBERON (Mungall et al., 2012). UBERON is
a cross-species ontology that represents anatom-
ical structures in animals (Mungall et al., 2012).
This ontology is used to annotate biological data,
such as gene expression data and protein interac-
tion data, to enable data integration and knowledge
discovery (Chandak et al., 2023). It has been used
to develop tools and applications to support bio-
logical research and clinical practice (Zhao et al.,
2020).

3.1 Creating Ontology Embeddings
A directed graph of the UBERON ontology is con-
structed using the ontology OWL file, using the sub-
ClassOf schema or is_a relationship. This graph is
used as input to the Node2Vec algorithm to gener-
ate 128-dimensional embeddings for all concepts
in the ontology. We refer to these embeddings as
Ontology Embeddings (OE).

The Node2Vec algorithm (Grover and Leskovec,
2016)implements the following two steps:

1. Use a biased random walk to generate sen-
tences (lists of ontology IDs) from the ontol-
ogy graph.

2. This list of sentences generated from the ran-
dom walk constitutes the corpus that repre-
sents the ontology. The Word2Vec algorithm
is applied to this corpus to learn and calculate
the embedding vector for each concept iden-
tifier in the ontology. The embeddings are
learned through a deep learning model after
hyper parameter tuning.

3.2 Semantic similarity computations

We compared 6 similarity metrics in this study
- cosine similarity, manhattan distance, dot
product, minkowski distance, euclidean dis-
tance, and jaccard similarity. Jaccard simi-
larity is a widely used similarity metric that
uses the ontology hierarchy and not ontology
embeddings (Pesquita et al., 2009). The rest
of the metrics use ontology embeddings gen-
erated in this study.

We use annotations from the three human-
curated datasets as well as the Gold Standard
(GS) data from Dahdul (Dahdul et al., 2018)
for our semantic similarity comparisons. For
each snippet of text, semantic similarity is
computed between each of the three curators’
annotation and the corresponding annotation
in the GS in the dataset. Note that similarity is
always computed between a curator’s annota-
tion and the GS annotation for the same piece
of text. These similarity scores quantify how
closely aligned or similar each annotator’s in-
terpretation is to the GS annotation.

3.2.1 Random Forest Classifier to
estimate robustness

The next step after computing the semantic
similarity metrics is to evaluate the robustness



of the metrics computed from ontology em-
beddings and compare it to existing metrics.

We used a Random Forest (RF) classifier to
assess the robustness of the different semantic
similarity measures. The goal of this model is
to predict the ground truth (GS annotation)
given the three curator annotations and
a semantic similarity. The model was
trained on tuples that contained six items
- (C1, SC1,GS , C2, SC2,GS , C3, SC3,GS)
where Ci is an annotation by curator i,
SC1,GS is the similarity score between Ci
and the GS annotation. The target to be
predicted is the GS annotation.

Random Forest Classifiers are trained sepa-
rately for each similarity metric on a total
of 1266 observations. The classifier’s per-
formance is evaluated using 10-fold cross-
validation strategy and the average of accuracy
and f1 score from each fold is reported.

3.2.2 Super similarity metrics

After evaluating the robustness of different
similarity metrics, we combined the top met-
rics based on the RF model accuracy. We
aimed to see if combining two robust seman-
tic similarity metrics results in a more robust
“super” metric. We used the weighted sum ap-
proach, assigning a weight to each similarity
metric and calculating their weighted sum to
create a composite score. The super similarity
score is computed as:

super_similarity = α ∗ similarity_metric_1+
(1− α) ∗ similarity_metric_2

We chose the alpha that resulted in the highest
super similarity score using a grid search.

4 Results

The curator and gold standard datasets ob-
tained from Dahdul et al (Dahdul et al., 2018).
contained 1266 UBERON annotations.

During the embedding creation step, the sen-
tences were generated using the following hy-
per parameters:

i. p = 0.5
ii. q = 2.0

iii. walk_number = 100
iv. walk_length = 5

v. edge_weight = 1

The embeddings were learned using a deep
learning model trained with the following hy-
perparameters:

i. batch_size = 50
ii. learning_rate = 1e-03

iii. output_activation = sigmoid
iv. epochs = 2
v. embedding_dimension = 128

After training, we obtained 128-dimensional nor-
malized embedding vectors for each of the 15,539
concepts in the UBERON ontology.

1266 tuples of the form (Ci,GS) where Ci is an
annotation by curator i and GS is the corresponding
gold standard annotation. Jaccard similarity was
computed for these 1266 annotation pairs. Subse-
quently, cosine, dot product, minkowski distance,
euclidean distance, and manhattan distance were
computed between the embeddings of the concepts
in (Ci,GS).

A RF model was trained on predict the gold
standard annotation based on the three curators’
annotations and their similarity to the GS. Table 1
shows that.

These results clearly show that our similarity
measures based on ontology embeddings substan-
tially outperform the commonly used Jaccard simi-
larity. Among the metrics that use ontology embed-
dings we found dot product to be the most robust.

Next, we combined our top performing metric
(Dot product) with all the other metrics to create
“super metrics” to increase robustness. Table 2 re-
ports the combinations where the score of the“super
metric” exceeded the highest scores from individ-
ual metrics (Row 1, Table 1). We see that the
combination of individual embedding based met-
rics does provide a boost in accuracy. The highest
accuracy is obtained by combining Dot product
with Minkowski distance.

5 Conclusions

Our goal was to develop robust semantic similarity
metrics based on ontology embeddings to evaluate
the performance of NLP approaches for automated
annotation of scientific literature. We tested five
embedding-based metrics against a widely used
traditional metric and showed that the embedding-
based metrics outperformed the traditional met-
ric. We also found that combining the embedding-
based metrics further improved accuracy.



Table 1: Accuracy of a Random Forest model on predicting the gold standard annotation given individual curator
annotations and semantic similarity scores

Metric Mean accuracy Mean F1 score
Dot product 0.87 0.86

Cosine similarity 0.83 0.82
Euclidean distance 0.83 0.82
Manhattan distance 0.83 0.82
Minkowski distance 0.82 0.81
Jaccard similarity 0.76 0.75

Table 2: Composite Similarity score using two different semantic similarity metrics

Metric 1 Metric 2 Super Similarity Score
Dot product Minkowski 0.89
Dot product Manhattan distance 0.88
Dot product Euclidean distance 0.87
Dot product Cosine similarity 0.87

These results suggest that traditional semantic
similarity metrics, which are based on comparisons
of ontology subsumers, can be improved by using
ontology embeddings. The new, more robust, and
sensitive similarity metrics will enable an accurate
assessment of NLP approaches for ontology anno-
tation.
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