
A Survey of using Large Language Models for Generating Infrastructure as
Code

Kalahasti Ganesh Srivatsa∗1, Sabyasachi Mukhopadhyay∗1,2, Ganesh Katrapati1,
Manish Shrivastava1

1. Language Technologies Research Center, KCIS, IIIT Hyderabad, India.
2. Tejas Networks Ltd., Bangalore, India .

{kalahasti.ganesh, sabyasachi.m, ganesh.katrapati}@research.iiit.ac.in
sabyasachim@tejasnetworks.com

m.shrivastava@iiit.ac.in

Abstract

Infrastructure as Code (IaC) is a revolution-
ary approach which has gained significant
prominence in the Industry. IaC manages
and provisions IT infrastructure using machine-
readable code by enabling automation, consis-
tency across the environments, reproducibility,
version control, error reduction and enhance-
ment in scalability. However, IaC orchestration
is often a painstaking effort which requires spe-
cialised skills as well as a lot of manual effort.
Automation of IaC is a necessity in the present
conditions of the Industry and in this survey,
we study the feasibility of applying Large Lan-
guage Models (LLM) to address this problem.
LLMs are large neural network-based models
which have demonstrated significant language
processing abilities and shown to be capable
of following a range of instructions within a
broad scope. Recently, they have also been
adapted for code understanding and generation
tasks successfully, which makes them a promis-
ing choice for the automatic generation of IaC
configurations. In this survey, we delve into
the details of IaC, usage of IaC in different
platforms, their challenges, LLMs in terms of
code-generation aspects and the importance of
LLMs in IaC along with our own experiments.
Finally, we conclude by presenting the chal-
lenges in this area and highlighting the scope
for future research.

1 Introduction

Infrastructure as Code (IaC) (Morris, 2016) has
gained significance in modern software develop-
ment as a mechanism for defining and managing
IT infrastructure using code-based representations.
With features like automation, scalability, consis-
tency and version control (Francis, 2018), IaC is
revolutionising the provisioning of infrastructure.
Developers who are unfamiliar with this technol-
ogy may find it challenging to create effective IaC

∗* Authors contributed equally

templates. Moreover, the manual creation of infras-
tructure code can be time-consuming, error-prone
and challenging to maintain, especially in complex
environments.

Large Language Models (LLMs) have emerged
as a new paradigm in NLP. Having been trained on
a large amount of text for predicting the next word,
with the given previous words and sentences by
using an in-context learning mechanism, they have
shown remarkable performance in downstream
NLP tasks such as dialogue modelling, machine
translation, question answering, text generation,
sentiment analysis and so on.

Additionally, LLMs have demonstrated an abil-
ity in tasks related to code generation and valida-
tion. For instance, CodeParrot, CodeGen (Nijkamp
et al., 2022), Llama (Touvron et al., 2023a), Google
PaLm and OpenAI’s GPT-3.5 Ouyang et al. (2022),
GPT-4 are some of the models which are being
studied and utilised for their code-generation ca-
pabilities. This leads to the promising possibility
that IaC configurations could be generated automat-
ically using LLMs, thereby addressing the problem
of a steep learning curve, as well as, enabling users
to understand the complexities and adjust parame-
ters accordingly.

2 Background

In this section, we give a broad overview of IaC,
with an introduction to well-known IaC platforms.
This is followed by a brief overview of LLMs, fo-
cusing on the applications of LLMs for code gener-
ation and then a summary of relevant work regard-
ing the incorporation of LLMs for IaC generation.

2.1 Infrastructure as Code (IaC)

Infrastructure as Code (IaC) is a software engineer-
ing and DevOps (Bass et al., 2015) practice that
entails managing and provisioning infrastructure
through code and automation (Punjabi and Bajaj,



2016) rather than manual operations. This defines
and manages infrastructure elements both in phys-
ical and virtual machines, networks, storage and
other resources using code scripts or configuration
files. IaC tools are categorized (Duvall, 2011) as
below two:

• Provisioning: Tools in this category pro-
vide infrastructure components for one or
more cloud providers. Examples include
HashiCorp’s Terraform (Howard, 2022) and
Pulumi1.

• Configuration management: Tools in this
category are used for installing and managing
software on pre-existing infrastructure. Exam-
ples include Ansible2, Chef3 and Puppet4.

Pre-IaC and need for IaC: Before IaC, IT had to
rely on manual configuration and scripting, which
was a tedious process and prone to errors. Addi-
tionally, there was a lack of consistency, making it
difficult to maintain and troubleshoot. IaC has revo-
lutionized IT management, making it more efficient
and reliable than ever before.

A phased approach to the Evolution of IaC:
Early IaC methods relied on configurable script-

ing languages like Shell scripts (Greenberg et al.,
2021) but had limitations in version control, modu-
larity, and ease of use. To address these shortcom-
ings, declarative configuration management tools
were introduced which also had their limitations
in terms of scalability, flexibility, and cloud sup-
port. With the advent of cloud computing, the need
for dynamic and scalable infrastructure provision-
ing became apparent. This led to the emergence
of infrastructure orchestration tools such as Ter-
raform, Ansible, and Pulumi, enabling on-demand
provisioning in cloud environments.

IaC, which employs a descriptive model, fol-
lows three key steps: (i) Developers use Domain-
Specific Language (DSL) (Shambaugh et al., 2016)
to define the configuration state in a file. (ii) This
configuration file is then transferred to a server,
code repository, or API. (iii) The system configures
the infrastructure based on the instructions in the
transferred file, ensuring reliable versioning and
deployment.

1https://github.com/pulumi/pulumi
2https://www.ansible.com
3https://www.chef.io/products/chef-infra
4https://www.puppet.com/

Approaches of IaC: Declarative (functional)
approach outlines the intended state, allowing the
system to perform necessary steps without spe-
cific syntax. Examples include Terraform, AWS
CloudFormation. Imperative (procedural) ap-
proach provides specific commands in the correct
sequence for desired results. Example includes
Ansible, Pulumi.

Benefits: IaC offers numerous industry benefits
(Humble and Farley, 2010; Cois et al., 2014), in-
cluding automation, consistency, rapid deployment,
transparency, version control, scalability, reusabil-
ity, modularity and immutability. These benefits
help in reducing errors, configuration drifts, effi-
cient deployment, tracking the changes, rollbacks,
traffic management and reusable code across var-
ious environments by ensuring stability without
modifying the deployed instances.

Challenges: Though IaC offers the above bene-
fits, it comes with its own set of challenges (Siebra
et al., 2018) such as an increase in the complex-
ity due to intricate code for complex configura-
tions, consistency, compatibility, and dependencies
across various platforms. It also involves exper-
tise in handling scalability, proper version tracking,
tool selection and security aspects.

Some of the popular IaC tools are (i) Terraform
an open source project, that uses HashiCorp Lan-
guage (HCL), (ii) Ansible, open source project au-
tomates provisioning using YAML, (iii) Pulumi,
a tool with the flexibility for using general pro-
gramming languages like C, C++, Python etc., (iv)
Kubernetes etc.

2.2 Large Language Models (LLM)
Language modelling (LM) advances machine intel-
ligence by modelling the generative likelihood of
word sequences and predicting future token prob-
abilities. LMs have garnered substantial attention
and transitioned through four distinct developmen-
tal stages starting from Statistical LM, progressing
through Neural LM namely RNN (Bengio et al.,
2000; Mikolov et al., 2010, 2011), LSTM (Hochre-
iter and Schmidhuber, 1997) and Transformers
(Vaswani et al., 2017), further advancing into Pre-
trained LMs like BERT (Devlin et al., 2018) and
culminating in the emergence of LLMs. The Trans-
former architecture, based on a self-attention mech-
anism, allows for efficient parallelization and han-
dling of long-range dependencies is a major break-
through for LLMs. LLMs such as GPT (Radford
et al., 2018) and RoBERTa (Liu et al., 2019) mod-

https://github.com/pulumi/pulumi
https://www.ansible.com
https://www.chef.io/products/chef-infra
https://www.puppet.com/


els exhibit high potential in performing NLP down-
stream tasks.

2.3 LLMs for Code Generation Task

Code generation, synthesis and summarization
tasks have been promising research in recent times
with the increased capabilities of LLMs. As per the
survey of Xu et al. (2022), there are three ways to
pre-train a code generation model.

Decoder-Based LM: An auto-regressive, left-
to-right model also called Causal Language Model
(CLM) performs well on code generation and com-
pletion tasks. In this, the model predicts the next
token based on the previous token. Codex (Chen
et al., 2021), a GPT-3 (Brown et al., 2020) based
12 billion parameters model which has been pre-
trained on 159 GB of code samples from 54 million
GitHub repositories, solved 28% of HumanEval.
According to a study by Chen et al., scores have
improved with the use of repeated sampling or
pass, a concept in which the model is given 100
chances and if it can generate 1 correct sample
out of 100 samples, the model has solved the task.
CodeParrot5(Tunstall et al., 2022) trained on 25-
30B tokens of Google BigQuery data, evaluated on
HumanEval where CodeParrot 110M(small) out-
performed the CodeParrot 2B(large). CodeGen
(Nijkamp et al., 2022), proposed Multi-Turn pro-
gram synthesis model trained on The Pile (Gao
et al., 2020), BigQuery6 which has natural lan-
guage, code, configuration files in its dataset and
BigPython datasets. CodeGen-Multi, fine-tuned on
Python files and termed as Mono model improved
the program synthesis task substantially. Their
study says that as there is an increase in the size of
the model, there is an increase in the overall per-
formance also. A few more examples of decoder-
based models are LLaMA & LLaMA-2 proposed
by Touvron et al. (2023a,b) are trained on pub-
lic GitHub data available on Google BigQuery to
generate a code based on natural language descrip-
tion. This is evaluated on HumanEval and MBPP
(Austin et al., 2021) datasets. LLaMA-2 outper-
formed LLaMA1 and other general models. As per
their study further fine-tuning on code-related data
would increase the capability of the model. GitHub
Copilot is an AI tool developed by GitHub along
with OpenAI that takes natural language input and
generates, completes and comments the code. In-

5https://github.com/huggingface/transformers/
tree/main/examples/research_projects/codeparrot

6https://cloud.google.com/bigquery

struct GPT (Ouyang et al., 2022) uses Reinforce-
ment Learning with Human Feedback (Christiano
et al., 2017; Stiennon et al., 2020) along with mod-
els like code-davinci-002, text-davinci-003 that has
shown their program synthesis abilities. PaLM
(Chowdhery et al., 2022) model takes natural lan-
guage (NL) prompts and assists in code generation
and completion tasks.

Encoder-Based LM: Auto-Encoding model
performs well on code detection and classifica-
tion tasks by utilising information bi-directionally.
CodeBERT (Feng et al., 2020) which is a bimodal
pre-trained model trained on natural language (NL)
and programming language (PL), achieved state-
of-the-art (SOTA) performance on NL-PL down-
stream tasks by outperforming RoBERTa in a zero-
shot setting. CuBERT (Kanade et al., 2020) is an-
other model that outperformed other models with
lesser data and fewer epochs.

Encoder-Decoder Based LM: CodeT5 (Wang
et al., 2021) which extends T5 (Text-To-Text-
Transfer-Transformer) (Raffel et al., 2020) works
on the objectives of masked span prediction, de-
noising sequence reconstruction, and masked iden-
tifier prediction with a bimodal dual generation,
encourages a better alignment between NL and
PL. This outperformed the previous SOTA model
PLBART (Ahmad et al., 2021) on all generation
tasks including code summarization, text-to-code
generation, code-to-code translation, and code re-
finement.

3 IaC using LLM: Related Works

There are some related works where IaC has been
generated by LLMs.

3.1 Ansible-YAML Generation by LLMs

1. Ansible-YAML file generation by open-
source models: The study in Pujar et al.
(2023) explores the use of LLMs transformer-
based models to generate Ansible-YAML
code from Natural Language prompts, provid-
ing an AI assistant for users to increase pro-
ductivity. IT infrastructure relies on YAML
files for defining and configuring crucial ele-
ments. It begins by learning from a sizable
amount of YAML and Ansible-YAML data,
curated from multiple data sources, including
GitHub, Google BigQuery, GitLab and Ansi-
ble Galaxy (Heap and Heap, 2016) and dedu-
plicated using the exact match method. The

https://github.com/huggingface/transformers/tree/main/examples/research_projects/codeparrot
https://github.com/huggingface/transformers/tree/main/examples/research_projects/codeparrot
https://cloud.google.com/bigquery


curated dataset contains closely 1.1M Ansi-
ble tasks, YAML playbooks, and nearly 2.2M
other generic YAML files. Their pre-trained
models WISDOM-ANSIBLE and WISDOM-
YAML are trained on CodeGen architecture’s
checkpoints that contain Ansible-YAML and
YAML files to improve the understanding
of the syntax and semantics of YAML files.
The ANSIBLE-Galaxy dataset is a collection
of high-quality files developed and approved
by the Ansible community and is utilized to
fine-tune the pre-trained models for Ansible-
YAML generation tasks. The major contribu-
tions of their work are: (i) Providing a for-
mal definition of the problem when applying
code generation to Ansible-YAML, (ii) Cre-
ating YAML and Ansible-YAML datasets for
pre-training and fine-tuning code generation
tasks, (iii) Reformalizing the problem of gen-
erating Ansible YAML into a code comple-
tion task with novel prompts (iv) Proposed
two novel metrics designed specifically for
Ansible-YAML. WISDOM-ANSIBLE and
WISDOM-YAML model’s training code is
based on Huggingface Transformer library
(Wolf et al., 2020), with the provided model
checkpoints and tokenizers on the YAML data
for 9 epochs on 16 A100 GPUs with 80GB
of memory, batch size of 32, 5*10-5 learning
rate and context window of 1024 along with
bf16 data type to fasten the training process.
The task utilizes a task description consisting
of Natural Language prompt X and Ansible-
YAML context script C that can generate two
kinds of output either a full playbook or a
task in the playbook Y. They defined a prob-
abilistic distribution of the Ansible snippet
Y given X and C as p(Y |X,C) and the best
possible Ansible task snippet is denoted by
ŷ = argmaxp(Y |X,C)

Thus, the generated Ansible YAML files are
evaluated using these 4 metrics Exact Match,
BLEU (Papineni et al., 2002) and Ansible
Aware which uses the Ansible YAML syn-
tax knowledge to compare the modules as
well as Schema Correct which measures the
correctness of the result. Results indicate
that pre-trained models WISDOM-ANSIBLE
and WISDOM-YAML outperform CODE-
GEN and CODEX(Codex-Davinci-002) on
all 4 metrics. Also, their fine-tuned models

show an increase in performance with respect
to the pre-trained models.

2. Ansible-YAML File Generation by Lan-
guage Models(LM): A similar study has been
done by Kawaguchi et al. (2022) where the
designed system uses an LM that has been
tuned on Ansible playbooks semantics to sug-
gest potential commands based on the sta-
tus of the current input (i.e., code comple-
tion function). The main goal of this work is
to prevent network downtime caused by mis-
configurations by using an automation tool.
This paper proposes an architecture with a
client and server paradigm. The client pro-
gram has an editor for creating Ansible play-
books and a code completion function using
LM. In their study, they state that the previous
work on completion using LM can only output
the candidates of the succeeding command
based on the current input command. Sup-
pose when the LM is trained with both YAML
configurations, “tasks:*, name:*, yum:*" and
“tasks:*, name:*, template*", with * indicating
variable string, in the previous models when
the model is given input as “tasks:*", it out-
puts only its immediate command “name:*"
which is a unigram prediction. But in the pro-
posed system, if the model is given an input of
“tasks:*" it outputs the complete Ansible com-
mand “name:*”, “name:*, yum:*”, “name:*,
template:*” by recursively using the output
candidates of the language model as the input
to generate the next output. This candidate
list is ordered by the appearance frequency in
training data.

Upon YAML configuration file completion,
operator easily sends it to the server applica-
tion which utilizes Ansible to compile and ac-
tivate the settings on the target network equip-
ment, while the client program supporting
the operator’s configuration. The evaluation
demonstrates improved accuracy as the num-
ber of input commands grows.

3.2 LLMs used in DevsecOps
1. Static Code Analysis of IaC: The primary

goal of Petrović (2023a) is to leverage Chat-
GPT for static code analysis in order to target
different IaC standards, with a particular em-
phasis on Terraform and Ansible in the con-
text of DevSecOps. As a first step, the user



must choose and upload the desired archive
that contains the IaC scripts in charge of de-
ploying the underlying infrastructure. Each
individual IaC file is read and converted as a
string to form the pre-defined question for the
ChatGPT in the form of the question “Find
security flaws in filetype script:contents”.
Here, the first parameter serves as a place-
holder for the IaC-related file type and the
second one contains the script’s actual con-
tent. Following the construction of the inquiry,
a ChatGPT request is submitted via Python
API and then a summary of the received re-
sponses for each of the IaC files is included in
an HTML table that serves as the final output
of the solution. Each entry represents a dif-
ferent file from the archive, along with Chat-
GPT’s summary with probable defects and
suggestions for resolving it.

2. Run-time Analysis of Server Logs: The
study Petrović (2023b) primarily focuses on
leveraging a machine learning approach using
server log analysis to detect suspicious activi-
ties in runtime security through traffic-related
data. Using ChatGPT, this novel technique
utilizes context i.e labelled data and queries,
in conjunction with log entries to assess the
suspicious activities. An essential aspect is
the volume of data required for training new
prediction models when log structures change.
This study explores the innovative application
of ChatGPT and LLM for log analysis, aim-
ing to reduce the need for extensive training
data by adapting a pre-trained model to yield
satisfactory results. The user input comprises
question-context pairs, where the context con-
sists of group of labelled log entries, serving
as an input to ChatGPT for pattern extrac-
tion. With this input, ChatGPT labels network
traffic records and explains the meaning of
log records, including its underlying protocol,
data exchange, communication flow and net-
work traffic details. Finally, the user receives
notifications about any detected suspicious
traffic or activities.

3.3 IaC Generation through ChatGPT
Queries

1. ChatGPT for DevOps: The blog Harvey
(2023) demonstrates use of ChatGPT for De-
vOps by prompting the tool to show its abil-

ity to generate accurate Python and Bash
scripts. With the results generated, the au-
thor queried the task-specific Terraform con-
figuration using Chatgpt, finding that OpenAI
Playground’s configuration was identical to
manual configurations and better than Chat-
GPT’s results. However, in queries about
broader DevOps concepts, results were less
accurate, resembling Google search results.
Nevertheless, utilizing ChatGPT or OpenAI
Playground proved helpful in understanding
and getting a way out for some of the CI/CD
and code debugging tasks.

2. SSO in Kubernates Configuration Genera-
tion: In the blog Entzmann (2023), ChatGPT
was utilized to generate Kubernetes configura-
tions for Azure, specifically related to Single
Sign-On (SSO) configurations using Azure
Active Directory. ChatGPT successfully gen-
erated a sample kube-API server YAML file
and detailed its parameters related to SSO and
also a sample kube-config file for use with the
kube-apiserver. Although it provided a valid
solution using the oidc-login plugin of kubectl,
an error surfaced when connecting the oidc
plugin with HTTPS to Azure, suggesting an
extra, non-existent parameter "-https." When
challenged, ChatGPT acknowledged the mis-
take and advised using a reverse proxy, that
is different from the desired configuration pa-
rameters.

3.4 IaC Generation Tools with LLM

1. Infracopilot (Masolo, 2023) is a cutting-edge
IaC editor that uses LLM to understand user
intent and Klotho 7, an open-source engine,
to revolutionize cloud infrastructure develop-
ment and management by providing unparal-
leled intelligence, flexibility, agility, consis-
tency, clarity and reliability. It includes com-
ponents like API/Orchestrator, Intent Parser,
Visualization Engine, and Discord Bot to com-
municate requests to the service. LLMs ex-
tract user intent, sent to intent corrector, that
confirms, corrects, convert it into JSON, and
update intents. Klotho Engine generates and
verifies architecture, including low-level com-
ponents like VPCs, subnets, security groups,
and IAM policies.

7https://klo.dev/announcing-infracopilot/

https://klo.dev/announcing-infracopilot/


2. K8sGPT (Singh, 2023) is a tool that scans
and diagnoses Kubernetes clusters using SRE-
encoded analyzers like PodAnalyzer, pvcAn-
alyzer, rsAnalyzer, serviceAnalyzer, event-
Analyzer and ingressAnalyzer providing effi-
cient troubleshooting. It features default and
customizable analyzers like hpaAnalyzer and
pdbAnalyzer which are activated for specific
needs. Filters control resource analysis, en-
hance analysis capabilities with commands
like "k8sgpt filters list" displaying available
filters and "k8sgpt filters add/remove" for
adding or removing multiple filters. "k8sgpt
integration activate/deactivate" activates or de-
activates the integrations with tools like Trivy.

3. Pulumi AI8 introduced an AI Assistant to
accelerate cloud infrastructure development
by leveraging LLMs and GPT, aiding intelli-
gent resource identification and interaction
within Pulumi cloud. Pulumi Insights (in-
sights, 2023) deploys generative AI and LLMs
for infrastructure enterprise, analytics and of-
fering key elements to manage cloud foot-
prints. The Pulumi resource supergraph pro-
vides metadata and links across cloud infras-
tructure, assisting in cloud architecture design,
allowing users to visualise data for cost, com-
pliance, and operations using preferred BI
tools.

4 IaC Code Generation Process

This section outlines a template for the generation
of Infrastructure as code through LLMs using Ter-
raform as an example and some basic results.

4.1 Pre-Training
Pre-trained models (Qiu et al., 2020) serve as foun-
dational components for diverse downstream tasks,
trained on large benchmark data to facilitate easy
fine-tuning in various applications and tasks, en-
abling comprehensive knowledge capture and se-
mantic representation for tasks like text generation
etc.

4.2 In-Context Learning
In-context learning, also often called “zero-shot” or
“few-shot” learning, utilizes the pre-training data
to provide context and task examples, enabling
models to infer expected behaviour and produce
appropriate responses. This concept helps in rapid

8https://www.pulumi.com/ai/

experimentation without fine-tuning model settings
in unlabelled data situations.

For generating “text to terraform configuration”
with a few-shot setting in a model, it utilizes the
text prompt for specific configuration and context
files with sample terraform configuration as an in-
put and the model keeps repeating until all blocks
of terraform are generated. In our example, we
used a model with a few-shot setting in LLM like
GPT 3.5-Turbo for generating “text to terraform
configuration”, and used context files with sample
terraform, provider and resource blocks along with
a text prompt given for a specific configuration and
the model generates the configuration for the block,
repeating until all blocks are generated.

This offers numerous advantages, particularly in
situations that lack labelled data or require UI/API
interaction, allowing rapid experimentation without
fine-tuning model settings.

4.3 Data Collection and Fine-Tuning

• Instruction Fine-Tuning: It is imperative
for LLMs when generating IaCs with an IaC
prompt due to its misalignment with the pre-
trained language modelling objective of pre-
dicting the next token, as it might exhibit unan-
ticipated behaviours like generating harmful
or fabricating content. Hence using fine-
tuning approach is essential for these tasks
that involves defining the task, architecture,
loss function, and data selection. Thus our
work, generating “Infrastructure as Code” con-
figuration files from English text empowers
engineers to refine configurations post-review.

To initiate fine-tuning, data pertinent to the
task must be collected. For Terraform IaC,
Google BigQuery’s GitHub dataset with .tf
extensions serves as a substantial source,
comprising 164MB of Terraform data across
23839 files from a 1.5TB corpus. After elimi-
nating duplicates, we pre-processed, and split
the data into 75% training and 25% valida-
tion sets. In our Code-parrot’s experiment we
utilized 19071 files for training and 4768 for
validation.

The pre-trained model, enriched with linguis-
tic knowledge from vast code and text data,
is then adapted for fine-tuning. The adapted
model involves continuous training on task-
specific data that contain terraform prompts
and configuration examples in our work. We

https://www.pulumi.com/ai/


adjust the model’s pre-trained parameters to
better suit the task, using gradient descent to
update parameters based on task-specific data
loss. Performance enhancements are achieved
by adjusting hyper-parameters like training
epochs, batch size, learning rate, and weight
decay. The refined model is preserved for anal-
ysis. In the Code-parrot example, fine-tuning
spanned 20000 epochs by utilizing the above
datasets.

4.4 Evaluation
In order to benchmark generative models for code,
samples are typically compared to a reference solu-
tion for Functional correctness (Chen et al., 2021)
A similar approach is used for IaC evaluation too.

• Functional correctness by exact match:
This metric compares the function of a gen-
erated configuration file to a reference solu-
tion by ensuring the same functionality across
different setups. A Terraform uses LLM-
generated configuration file to develop and
create a JSON execution plan if the gener-
ated configuration file compiles and matches
with the reference solution plan and consid-
ered as a success. This implies that even the
slightest error in the configuration file gener-
ated is considered as a failure. The reference
dataset contain tasks that have a natural lan-
guage description and a desired configuration.
Terraform 1.4.6 was used for this activity.

A task is is a JSON-formatted text file that de-
scribes one or more containers that forms our ap-
plication.

The evaluation dataset covers all features of
Terraform configuration files including jobs from
GCP, AWS, Azure and virtual machines with task
complexity varying to maximize LLMs capabili-
ties. To compare two plans, JSON file details need
anonymization, and multiple samples are generated
per task to determine the average success rate due
to the stochastic nature of code/config generation.

4.5 Experiments and Results Analysis
As a part of the survey, we performed experiments
with 4 GPUs of Nvidia GeForce RTX 2080 Ti
(11GB) and reported our scores on the models
CodeParrot small (110M) and GPT-3.5-turbo mod-
els with a single sample and multiple sample con-
figuration generation for 49 different tasks for AWS
service providers. These tasks are a collection

Single sample 50 samples

GPT-3.5 turbo 59.18% 56.81%

CodeParrot
(Small 110M) 8.2% 8%

Table 1: Experimental Results

of various configuration areas on the AWS cloud
through Terraform. The Table 1 summarizes the
results obtained by configuration generation and
evaluation by functional correctness by exact match
with human generated terraform configuration for
two models.

1. GPT3.5-turbo: Model used in-context learn-
ing to generate 1-sample and 50-sample con-
figurations for all 49 tasks in AWS provider
at temperature setting 0.2. The generated
configurations are evaluated against human
generated configurations using functional cor-
rectness by exact match. It obtained an av-
erage success rate(accuracy) of 59.16% with
1-sample and 56.81% with 50-samples, by cal-
culating the mean of success rate of total num-
ber of samples generated under each task and
the final score is the average of total success
rate of all 49 tasks in AWS provider.

2. Codeparrot: In this also, model generated
1-sample and 50-sample configurations for all
49 tasks in AWS provider and evaluated the
generated configurations with human gener-
ated configurations using functional correct-
ness by exact match. The same methodology
mentioned above in GPT3.5-turbo for calculat-
ing the average success rate(accuracy) is fol-
lowed and obtained an accuracy of 8.2% with
1-sample and 8% accuracy with 50-samples.

In summary, GPT-3.5-Turbo outperforms the
CodeParrot model due to its extensive and diverse
training dataset, as well as its inherent adaptability
through fine-tuning that collectively contributed to
GPT-3.5 Turbo’s remarkable performance.

5 IaC using LLM: Safety and Ethical
Considerations

This section outlines the safety and ethical consid-
erations of LLM-generated configurations in pro-
duction environments while proposing potential
resolutions.



5.1 Safety Concerns:

• Security Risks: Unvalidated IaC can lead to
vulnerabilities like misconfigured databases,
lax security, and exposed secrets.

• Over-Reliance: Blindly relying on LLM gen-
erated configurations is risky, understanding
them is crucial.

• Resource Overutilization: Poorly tuned IaC
can create unnecessary resources, that results
in cost overruns and also comes with the risk
of over-provisioning leading to environmental
expenses.

• Updates and Maintenance: LM’s struggle
with real-time changes to cloud platform etc.,
leading to outdated or ineffective setups.

5.2 Best Practices:

• Review and Validate: Continuous evaluation
of IaC for performance, security, and compli-
ance through manual and automated reviews.

• Test in Isolated Environments: Pre-
deployment testing in sandbox environments
helps uncover issues overlooked during code
review.

• Version Control: Store IaC in version-
controlled repositories for collaboration, au-
diting, and easy change reversals.

• Educate the Team: Ensure your team under-
stands IaC principles and leverages LLMs as
tools, to enhance expertise by staying updated
with the platform and technology.

• Limit Permissions: Safeguard production de-
ployments by restricting LLM access and hav-
ing human supervision in your CI/CD or au-
tomation framework.

• Feedback Loops: Create feedback mecha-
nisms to refine LLM training and prompts
based on IaC deployment results.

5.3 Ethical Considerations:

• Transparency: LLMs that conceal their
decision-making process can cause due dili-
gence concerns when using IaC models, as
stakeholders often seek more details to under-
stand the decisions.

• Accountability: Clear responsibility lines are
essential for preventing large-scale failures or
breaches in LLM-generated IaC, as determin-
ing accountability for defective and unsecure
systems is complex.

• Bias and Fairness: LLMs trained on subopti-
mal data may perpetuate errors and overlook
organizational or cultural nuances, creating
IaC suitable for one context but not another.

• Dependency and Vendor Lock-In: Exces-
sive reliance on a single LLM for IaC risks
vendor lock-in, reduced flexibility, and poten-
tial cost escalation.

5.4 Recommendations:

• Human-in-the-loop: Incorporating human
judgment for critical infrastructure decisions.

• Data Diversity: Ensuring varied training data
for comprehensive best practices.

• Regular Audits: Periodically reviewing
LLM-generated IaC for bias and inefficien-
cies.

• Stakeholder Education: Ensuring stakehold-
ers understand LLM capabilities and limita-
tions to manage expectations effectively.

Based on our experimental study and detailed
analysis from various references, we conclude that
LLMs have the ability to generate IaC with great
efficiency, but they must be employed carefully
with awareness of their ethical ramifications.

6 Challenges and Future Study

Limited GitHub training data and Terraform rep-
resentation may produce syntactically correct but
erroneous code. LLMs lack awareness of current
practices and security, risking data exposure. They
may offer unsuitable solutions, misaligned with
use cases. API updates affect code quality. Testing
complex LLM-generated IaC complicates deploy-
ment. Lack of best practices and comments ham-
pers modifications. Integration issues with DevOps
tools can lead to cost inefficiencies.

To mitigate challenges, we can implement a com-
prehensive review process by engaging domain ex-
perts, and rigorously testing generated infrastruc-
ture code. In future, we can also use LLMs as as-
sistants in multi-turn IaC Chatbots with automatic



validations. Also we plan to expand our experi-
ments using 1000 samples per task, comparing our
results with open and closed-source models.

References
Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi

Ray, and Kai-Wei Chang. 2021. Unified pre-training
for program understanding and generation. arXiv
preprint arXiv:2103.06333.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps:
A software architect’s perspective. Addison-Wesley
Professional.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.
2000. A neural probabilistic language model. Ad-
vances in neural information processing systems, 13.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. Ad-
vances in neural information processing systems, 30.

Constantine Aaron Cois, Joseph Yankel, and Anne Con-
nell. 2014. Modern devops: Optimizing software
development through effective system interactions.
In 2014 IEEE international professional communica-
tion conference (IPCC), pages 1–7. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Paul M Duvall. 2011. Continuous delivery: Patterns
and antipatterns in the software life cycle. DZone
refcard, 145.

Benoît Entzmann. 2023. Chatgpt vs devops. Accessed:
2023-02-01.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Erik Francis. 2018. Infrastructure as code: Everything
you need to know. Accessed: 2023-08-10.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Michael Greenberg, Konstantinos Kallas, and Nikos
Vasilakis. 2021. Unix shell programming: the next
50 years. In Proceedings of the Workshop on Hot
Topics in Operating Systems, pages 104–111.

Caoimhe Harvey. 2023. Using chatgpt for devops. Ac-
cessed: 2023-02-09.

Michael Heap and Michael Heap. 2016. Advanced
ansible. Ansible: From Beginner to Pro, pages 137–
157.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Michael Howard. 2022. Terraform–automating
infrastructure as a service. arXiv preprint
arXiv:2205.10676.

Jez Humble and David Farley. 2010. Continuous de-
livery: reliable software releases through build, test,
and deployment automation. Pearson Education.

insights. 2023. Pulumi insights: Intelligence for cloud
infrastructure. Accessed: 2023-04-13.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan,
and Kensen Shi. 2020. Learning and evaluating con-
textual embedding of source code. In International
conference on machine learning, pages 5110–5121.
PMLR.

Mamoru Kawaguchi, Kimihiro Mizutani, and Nobukazu
Iguchi. 2022. An implementation of misconfigura-
tion prevention system using language model for a
network automation tool. IEICE Proceedings Series,
72(S5-8).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Claudio Masolo. 2023. Infracopilot, a conversational
infrastructure-as-code editor. Accessed: 2023-05-31.

https://www.dbi-services.com/blog/chatgpt-vs-devops/
https://www.cloudbees.com/blog/infrastructure-as-code
https://www.cloudbees.com/blog/infrastructure-as-code
https://blog.devgenius.io/using-chatgpt-for-devops-7daa7c1783e9
https://genesis-aka.net/information-technology/professional/2023/04/19/pulumi-insights-ai-generated-iac-programs/
https://genesis-aka.net/information-technology/professional/2023/04/19/pulumi-insights-ai-generated-iac-programs/
https://www.infoq.com/news/2023/05/Infracopilot-conversation-editor/
https://www.infoq.com/news/2023/05/Infracopilot-conversation-editor/


Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. In Interspeech,
volume 2, pages 1045–1048. Makuhari.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2011. Extensions
of recurrent neural network language model. In 2011
IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 5528–5531.
IEEE.

Kief Morris. 2016. Infrastructure as code: managing
servers in the cloud. " O’Reilly Media, Inc.".

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Nenad Petrović. 2023a. Chatgpt-based design-time de-
vsecops. preprint.

Nenad Petrović. 2023b. Machine learning-based run-
time devsecops: Chatgpt against traditional approach.
preprint, pages 1–5.

Saurabh Pujar, Luca Buratti, Xiaojie Guo, Nicolas
Dupuis, Burn Lewis, Sahil Suneja, Atin Sood,
Ganesh Nalawade, Matt Jones, Alessandro Morari,
et al. 2023. Automated code generation for informa-
tion technology tasks in yaml through large language
models. arXiv preprint arXiv:2305.02783.

Rahul Punjabi and Ruhi Bajaj. 2016. User stories to user
reality: A devops approach for the cloud. In 2016
IEEE International Conference on Recent Trends in
Electronics, Information & Communication Technol-
ogy (RTEICT), pages 658–662. IEEE.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
Science China Technological Sciences, 63(10):1872–
1897.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Rian Shambaugh, Aaron Weiss, and Arjun Guha. 2016.
Rehearsal: A configuration verification tool for pup-
pet. In Proceedings of the 37th ACM SIGPLAN Con-
ference on Programming Language Design and Im-
plementation, pages 416–430.

Clauirton Siebra, Rosberg Lacerda, J Peixoto,
I Cerqueira, F Da Silva, and A Medeiros. 2018. From
theory to practice: The challenges of a devops infras-
tructure as code implementation. In ICSOFT 13th
2018, International Conference on Software Tech-
nologies. Porto: Portugal July, pages 26–28.

Jasbir Singh. 2023. Unlocking the power of kubernetes
with k8sgpt. Accessed: 2023-06-18.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–
3021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Lewis Tunstall, Leandro Von Werra, and Thomas Wolf.
2022. Natural Language Processing with Transform-
ers, Revised Edition. O’Reilly Media, Incorporated.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-
derstanding and generation. arXiv preprint
arXiv:2109.00859.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

https://medium.com/google-cloud/unlocking-the-power-of-kubernetes-with-k8sgpt-c9b82d6ef205
https://medium.com/google-cloud/unlocking-the-power-of-kubernetes-with-k8sgpt-c9b82d6ef205


Frank F Xu, Uri Alon, Graham Neubig, and Vincent Jo-
sua Hellendoorn. 2022. A systematic evaluation of
large language models of code. In Proceedings of
the 6th ACM SIGPLAN International Symposium on
Machine Programming, pages 1–10.


	Introduction
	Background
	Infrastructure as Code (IaC)
	Large Language Models (LLM)
	LLMs for Code Generation Task

	IaC using LLM: Related Works
	Ansible-YAML Generation by LLMs
	LLMs used in DevsecOps
	IaC Generation through ChatGPT Queries
	IaC Generation Tools with LLM

	IaC Code Generation Process
	Pre-Training
	In-Context Learning
	Data Collection and Fine-Tuning
	Evaluation
	Experiments and Results Analysis

	IaC using LLM: Safety and Ethical Considerations
	Safety Concerns:
	Best Practices:
	Ethical Considerations:
	Recommendations:

	Challenges and Future Study

