
Abstractive Hindi Text Summarization: A Challenge in a Low-Resource
Setting

Daisy Monika Lal and Paul Rayson
Lancaster University,

Lancaster, United Kingdom
{d.m.lal, p.rayson}@lancaster.ac.uk

Krishna Pratap Singh and Uma Shanker Tiwary
IIIT Allahabad, Prayagraj, India
{kpsingh, ust}@iiita.ac.in

Abstract
The Internet has led to a surge in text data in
Indian languages; hence, text summarization
tools have become essential for information re-
trieval. Due to a lack of data resources, prevail-
ing summarizing systems in Indian languages
have been primarily dependent on and derived
from English text summarization approaches.
Despite Hindi being the most widely spoken
language in India, progress in Hindi summa-
rization is being delayed due to the lack of
proper labeled datasets. In this preliminary
work we address two major challenges in ab-
stractive Hindi text summarization: creating
Hindi language summaries and assessing the
efficacy of the produced summaries. Since
transfer learning (TL) has shown to be effec-
tive in low-resource settings, in order to as-
sess the effectiveness of TL-based approach for
summarizing Hindi text, we perform a com-
parative analysis using three encoder-decoder
models: attention-based (BASE), multi-level
(MED), and TL-based model (RETRAIN). In
relation to the second challenge, we introduce
the ICE-H evaluation metric based on the ICE
metric for assessing English language sum-
maries. The Rouge and ICE-H metrics are used
for evaluating the BASE, MED, and RETRAIN
models. According to the Rouge results, the
RETRAIN model produces slightly better ab-
stracts than the BASE and MED models for 20k
and 100k training samples. The ICE-H metric,
on the other hand, produces inconclusive re-
sults, which may be attributed to the limitations
of existing Hindi NLP resources, such as word
embeddings and POS taggers.

1 Introduction

Automatic text summarization is the process of
condensing lengthy text into a concise version
that captures and relays important information.
The amount of text data created has increased
tremendously in the era of the internet, and while
statistical approaches were used in earlier sum-
marization methods, deep learning models have

emerged as a viable and promising solution. There
are two main approaches in text summarization:
extractive (ETS) and abstractive (ATS). To create a
summary, ETS combines already-written sentences
without any alterations while ATS involves text
generation. Essentially, the ATS writes its own
sentences, similar to how humans summarize text,
and is hence preferred over ETS (Mehta, 2016;
Gupta and Gupta, 2019). ATS, as it involves text
generation, requires massive volumes of data to
efficiently train a summarizer. Training models
for any NLP task is extremely challenging in the
low-resource situation, when textual input is either
limited, unannotated, inaccessible, or lacking
linguistic resources such as lemmatizers, grammar
and spelling checkers, part-of-speech taggers,
trained word embeddings, etc. With the increase in
text data in Indian languages due to advent of the
Internet, text summarization tools for efficiently
searching and retrieving information have become
imperative. Due to a paucity of data resources,
prevailing ATS systems in Indian languages have
been primarily dependent on and derived from
English text summarization approaches.

Hindi is, along with English, one of the 22
official languages of India. There are about 615
million native Hindi speakers, making it the third
most spoken language in the world. A majority
of Indians use Hindi as their main language.
The morphologically rich indigenous language
is a reservoir of ancient wisdom, composed
of folklores, songs, poems, chronicles, etc.
(Gopalakrishnan, 2009). Though Hindi is the
top-most language used in India, there is a lack
of a proper summarization system for Hindi
text. The prolonged advancements in abstractive
Hindi summarization are owed to the absence of
labeled Hindi summarization datasets. Even the
existing annotated corpora are not sufficiently
large enough to train a Sequence-to-Sequence

(Seq2Seq) (Sutskever et al., 2014a,b) model from
scratch. Seq2Seq models are loaded with massive
weights to be optimized during training. When
trained on very few data samples, these models fail
to optimize the weights and prohibit any learning,
whereas, on small to medium-sized corpora, the
models often tend to over-fit. Apparently, in the
scenario when data is scarce for independently
training a deep neural network, transfer learning
or TL-based approaches have proved to succeed
(Gehrmann et al., 2019; Fecht et al., 2019;
Zolotareva et al., 2020; Chen and Shuai, 2021;
Alomari et al., 2022).

The primary contributions of this work include:

• Multi-level shared weight encoding strat-
egy: Based on the model introduced by (Lal
et al., 2022b), which uses multiple levels of
encoding of the input sequence for capturing
the underlying context more accurately, we
experiment with a similar approach on a low-
resource Hindi corpus. The intent was to in-
vestigate the effects of rereading the input text
in the low-resource setting. We train an au-
tonomous model on Hindi corpora and study
its effectiveness for training data randomly
sampled at different sizes (5k, 20k, and 100k).

• Transfer learning strategy: The TL-based
approach uses pre-trained weights from a
model trained on English Gigaword corpus.
This approach fine-tunes on the new Hindi
corpus randomly sampled at different sizes
(5k, 20k, and 100k).

• Evaluation strategy: We introduce ICE-H
(Information Coverage Estimate for Hindi Ab-
stracts), a variant of the ICE Metric (Lal et al.,
2022a) for scoring the machine-generated ab-
stractive Hindi summaries. We pinpoint the
challenges encountered in devising the metric
and propose feasible solutions.

2 Related Work

2.1 Structure-based Approach

The structure-based practice involves the congre-
gation of salient sentences into a preset structure
(Lee et al., 2005; Saranyamol and Sindhu, 2014).
(Embar et al., 2013) employed a combination ap-
proach involving part-of-speech tagging, stemming,
named-entities identification, information retrieval,

and abstraction routines for Kannada text sum-
marization. (Kallimani et al., 2016) implement
a template-based summarization strategy for ad-
ministering content-aware information-intensive
abstracts. The primary step of key content classifi-
cation is realized using a sentence-scoring mecha-
nism, followed by, root-word identification to facil-
itate template-based sentence generation.

2.2 Semantic-based Approach
The semantic-based practice involves developing a
semantic blueprint of the input document to be sum-
marized. These semantic structures are delivered to
a Natural Language Generation (NLG) model for
generating the output summary. Semantic graphs,
multimodal-semantic strategies, and information-
item-based techniques are typical semantic-based
practices for generating abstractive summaries
(Kabeer and Idicula, 2014). (Sinha and Jha, 2020)
highlight the intricacies associated with Sanskrit
prose and propose that semantic representations,
such as rich semantic graphs are indispensable
for Sanskrit text summarization due to the vivid
morphological form of the language. Similar to
(Sinha and Jha, 2020), (Yeasmin et al., 2017) also
recommend semantic-graphs over ontology-based
or rule-based strategies. They also suggest that
the construction of domain ontologies and Bengali
Wordnet are essential prerequisites for semantic-
based Bengali text summarization.

2.3 Supervised Approach
(Nambiar et al., 2021b,a) bring to light the unique
complexities of the Malayalam language involving
lack of predicate agreements between subject and
verbs w.r.t person, gender, and number; and exten-
sive use of linking verbs or copulas in sentences.
The traditional seq2seq attention model is trained
on data constructed by translating freely available
BBC news corpora into Malayalam. (Karmakar
et al., 2021) employ two frameworks featuring
Stacked-Lstm encoders, namely, Time-distributed
Stacked-Lstm and Attention-based Stacked-Lstm
models. Specifically for training the Hindi and
Marathi ATS frameworks, data was manually cu-
rated from several news websites and online plat-
forms. (Bharath et al., 2022) proposed a seq2seq
architecture trained on 2000 news articles from
various Telugu News websites. The model also
harnesses the benefits of pre-trained FastText word
embeddings (Young and Rusli, 2019). (Talukder
et al., 2019) train a seq2seq pipeline consisting of a

Figure 1: TL-based Hindi ATS Model. Here, XS de-
notes the source feature space, XT denotes the target
feature space, DS , and DT denote the source and target
domains, respectively, TS and TT denote the source and
target tasks, respectively. The model is a scenario of
TL where the tasks are the same (TS = TT), but feature
spaces are different (XS ̸= XT).

bidirectional-LSTM encoder and attentive decoder
model for Bengali text summarization. The data
consists of Bengali texts assembled from social
media posts, news articles, etc.

2.3.1 Unsupervised Approach
(Chowdhury et al., 2021) construct an unsuper-
vised Bengali ATS framework backed up by a pre-
trained Bengali text language generation model.
The model entails the creation of sentence-level
directed graphs where words and corresponding
part-of-speech tags form the vertices with directed
edges between adjacent words.

3 Proposed Model

3.1 TL-based Abstractive Hindi Text
Summarization

The key idea is first to train a high-resource lan-
guage pair (the parent model), then transfer some
of the learned parameters to the low-resource pair
(the child model), as shown in Figure 1. The
proposed model comprises two phases: (a) Pre-
training Phase: In this phase, the model is trained
on parent data, i.e., English summarization corpus.
(b) Adaption Phase: In this phase, the parent model
is transferred and retrained on the Hindi summa-
rization corpus, using fine-tuning strategy. Given a
pre-trained model S with parameter θS and layers
LS , for the target model, with parameter θT and
layers LT , we use θS to learn the adapted model pa-
rameters. The new parameters are adapted using a
mapping function, F , that maps the parameters are
F(θS) = θT . For every layer lsi ∈ LS , where lsi is
the ith source model layer, fine-tuning requires up-

dating at least one layer of the source model. The
parameter of primary concern in this process is the
learning rate lr, which can be set differently or the
same for every layer during re-training. If lrs is the
learning rate for the source model, and lrti is the
learning rate for the ith target model layer, then:

lrti > 0, ∃i ∈ [1, LT] (1)

where ∃i implies that, there exists a layer i in LT ,
such that, its lr > 0. The model framework is
defined as:

Feature Space: The source feature space
of the proposed model (XS) consists of all the
English documents to be summarized. The target
feature space (XT) consists of all the Hindi
documents to be summarized. Here, XS ∈ Rn,
consists of all n-dimensional English word vectors
w.r.t the source domain (DS), and XT ∈ Rm,
consists of all m-dimensional Hindi word vectors
w.r.t the target domain (DT). The source and
target feature spaces are different from each other
(XS ̸= XT).

Domain: The source domain (English docu-
ments), DS = {XS ,P(XS)}, and the target
domain (Hindi documents), DT = {XT ,P(XT)},
are different as the feature spaces are different
(XS ̸= XT).

Label Space: The source label space, YS ,
corresponding to the source feature space (XS),
is defined as the set of all n-dimensional English
word vectors corresponding to the summary
(YS ∈ Rn), and the target label space, YT ,
corresponding to the target feature space (XT), is
defined as the set of all m-dimensional English
word vectors corresponding to the summary
(YT ∈ Rm). Here, the source and target label
spaces are also different, i.e., YS ̸= YT .

Task: The source task, TS = {YS ,F(·)} =
{YS ,P(YS |XS)}, is the task of English
ATS. The target task, TT = {YT ,F(·)} =
{YT ,P(YT |XT)}, is the task of Hindi ATS. For
the proposed model, the source and target tasks are
the same, i.e., TS = TT .

3.2 ICE-H: Information Coverage Estimate
for Hindi Abstracts

To evaluate the efficacy of the models, we propose
an evaluation metric that is a slight variant of

Table 1: The Rouge (Recall (R), Precision (P), and F1) Scores of the Base, MED, and RETRAIN (RT) model on the
HTSS Test Set for 20k training samples. The HTSS Test Set is obtained by randomly sampling 100 article-summary
pairs.

BASE MED RT

R P F1 R P F1 R P F1

R1 3.48 2.07 2.60 4.11 2.18 2.85 5.12 2.46 3.32
R2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RL 3.48 2.07 2.60 4.11 2.18 2.85 5.12 2.46 3.32

Table 2: The Rouge (Recall (R), Precision (P), and F1) Scores of the Base, MED, and RETRAIN (RT) model
on the HTSS Test Set for 100k training samples. The HTSS Test Set is obtained by randomly sampling 100
article-summary pairs.

BASE MED RT

R P F1 R P F1 R P F1

R1 19.9 16.2 17.6 25.7 22.6 23.5 29.1 23.7 25.5
R2 4.60 3.70 4.10 8.40 7.90 7.90 8.70 7.60 7.90
RL 19.3 15.8 17.0 24.3 21.5 22.3 27.4 22.0 23.8

the ICE (Information Coverage Estimate) metric
introduced by (Lal et al., 2022a). Like ICE, the
source text information (keywords and length), and
synonymy of terms (cosine similarity between the
source text and summary), are key prerequisites
for estimating the information covered in the
machine-generated Hindi abstracts using ICE-H.

For a set of Hindi language document-summary
pair, (HD,HS), where the summary length is less
than the document length (in terms of word count),
that is, |HS | << |HD|, the objective of ICE-H
metric, is to find a set of document and summary
keywords, KD and KS , such that, KD in HD and
KS ∈ HS , where |KD| ⊆ |HD| and |KS | ⊆ |HS |.
The intent is to capture the information retained in
the abstractive summary by computing the cosine
similarity between the overlapping keywords.
Ideally, the keywords contained in the document
must also be included in its summary to provide
good information coverage, that is, KD

∼= KS .
Each keyword, kDj sampled from a summary HS ,
is weighed against each keyword, kSi , sampled
from its corresponding document HD, using a
similarity score:

∀j(∀i sim(kSj , k
D
i)) (2)

The similarity score estimates how similar two
words are in terms of their interpretation or mean-
ing. ICE-H aims to quantify the information cov-
erage delivered by an automatically generated ab-

stractive Hindi summary using the reckoned key-
word similarity estimates, sim(kSj , k

D
i). Here,

each summary keyword’s coverage score, CovHj ,
is the maximum of its similarity score with each
document keyword:

CovHj = ∀j max(∀i sim(kSj , k
D
i) (3)

The information coverage is the summation of the
coverage rendered by each sampled summary key-
word divided by the number of sampled document
keyword terms:

ICE −H =

∑
j CovHj
|KD|

(4)

NN-VB-JJ-CD Sampling: The ICE metric (Lal
et al., 2022a) examined the efficacy of five sam-
pling strategies (NN, NN-VB, NN-JJ, NN-VB-JJ,
NN-VB-JJ-CD), and the experiments showed that
NN-VB-JJ-CD sampling outperformed all the other
strategies. Therefore, we use the NN-VB-JJ-CD
sampling to filter out the keyword sets, KD and KS .
The NN-VB-JJ-CD sampling implies that all the
words with the NN or VB or JJ or CD POS tag are
extracted to form the sampled keyword set, where
KD ∈ HD and KS ∈ HS .

4 Experimental Setup

4.1 Datasets
Gigaword corpora: It encompasses news articles
and corresponding headlines assembled from

seven different sources. The news articles are up
to 31.4 tokens long, and the headlines are up to
8.3 tokens long. Gigaword contains 3.8M training,
189k development, and 1951 test instances.

Hindi Text Short Summarization Corpus
(HTSS): We trained the model on 5k, 20k, and
100k sampled articles from the HTSS corpora.
HTSS contains articles and their headlines
collected from Hindi News Websites. The articles
are up to 100 tokens long, and the summaries are
12 tokens long.

4.2 System Configurations

The models were administered using the deep learn-
ing library Keras with the following system config-
urations: 16.4GB Intel Xeon CPU, 17.1GB Tesla
P100 Nvidia GPU, and 220GB disk space.

4.3 Model Parameters

Base: The BASE model is a simple attention-based
ATS model trained on HTSS corpora. The source
and target vocabularies are 35k and 6k most
frequent words, respectively. The 100-dimensional
word embeddings are randomly initialized using
a truncated normal distribution with mean and
standard deviation set to 0.0 and 0.01, respectively,
and are trained from scratch. All summaries are
clipped to a length of 16 words. The model is
trained with a batch size of 128 using the RMSProp
Optimizer3. The learning rate lr = 0.001 and
epsilon = 1e− 0.7. We use a dropout with a rate
of 0.4. We train the model for 50 epochs with early
stopping criteria45.

MED: MED is a multi-level encoding framework
that reads the input sequence twice. The source
and target vocabularies are 35k and 6k most
frequent words, respectively. Bidirectional-GRU
with hidden state dimensionality of 300 is used as
the reread encoder. Unidirectional-GRU decoder
having a hidden state size of 300 and beam search
size of 3 with Bahdanau attention (Bahdanau et al.,
2014) is used for generating the summary. All
summaries are clipped to a length of 16 words.
The model is trained with a batch size of 128
using the RMSProp Optimizer3, The learning rate

3https : //keras.io/api/optimizers/rmsprop/
4https : //keras.io/api/callbacks/earlystopping/
5https : //machinelearningmastery.com/how −

to − stop − training − deep − neural − networks −
at− the− right− time− using − early − stopping/

Table 3: The ICE-H Scores of the BASE, MED, and
RETRAIN model on the HTSS Test Set randomly sam-
pled 100 input-summary pairs. The scores correspond
to model summaries generated from training on 100k
samples.

Model ICE-Score

Base 0.2699
Med 0.2047

Retrain 0.1918

lr = 0.001 and epsilon = 1e − 0.7. We use a
dropout with a rate of 0.4. We train the model from
scratch for 50 epochs with early stopping criteria45.

RETRAIN: The RETRAIN model comprises
two training stages: 1) Primarily, the source
model is trained on English Gigaword corpora
to form the source model. 2) The source model
is then fine-tuned on the target task, i.e., Hindi
summarization corpora (HTSS). The model
configurations are preserved according to the MED
architecture mentioned above. The learning rate
lr = 0.0001 and epsilon = 1e − 0.8. We use a
dropout with a rate of 0.2. We retrain the model
for 50 epochs with early stopping criteria45.

4.4 Word Embeddings
The ICE-H score is calculated using a similarity
measure (cosine similarity) that estimates the ex-
tent to which two words are related. The cosine
similarity used embedding representations of words
or sentences to gauge the similarity score, thus ne-
cessitating the transformation of words into real-
valued vector representations. The transformations
in a vector space deem words with high seman-
tic closeness to be close to each other. We em-
ploy the iNLTK (Arora, 2020) open-source library
for acquiring the Hindi pre-trained word embed-
dings. The iNLTK is a powerhouse of various NLP
resources for 13 Indian languages, including pre-
trained language models, word and sentence em-
beddings, etc.

4.5 POS Tagger
The sampling strategy for the ICE-H metric re-
quires words to be marked with an appropriate
POS tag. The IndoWordNet (Bhattacharyya, 2010)
is an integrated framework consisting of wordnet
of various Indian languages. pyiwn6 is an user-
friendly framework with NLTK WordNet interface

6https://pypi.org/project/pyiwn/

Figure 2: Examples of POS tagged sequence with
<Unk> mark.

in Python (Panjwani et al., 2018). We use the In-
doWordNet for attaining the Hindi POS tags.

5 Results

We examine the BASE, MED, and RETRAIN
model performances against 5k, 20k, and 100k
training samples. For 5k sample training, the
models yield incompetent summaries and the
Rouge scores are computed to be 0.0 for all three
aspects, Rouge-1, Rouge-2, and Rouge-L. The
Rouge scores are observed to show an incline
from 5k training samples to 20k training samples
(Table 1). The rise is not significant, and the
model summaries still yield unsatisfactory results
with grammatically incorrect sentences, repetitive
phrases, and factual inconsistencies. Despite
the absurdity, it was observed that the models
can generate expressions and retain some facts.
The Rouge scores increase significantly for 100k
training samples (Table 2), generating remarkably
well-formed summaries. For 100k sample training,
the model summaries are observed to be grammat-
ically well-formed, retaining multiple facts and
no repetitive information (Figure 5). The Rouge
Scores (R1, R2, and RL) on 20k and 100k HTSS
training samples for all the models, are stated in
Tables 1 and 2, respectively.

BASE: For 20k training samples, the model
produces an R1 F1 Score of 2.60, R2 F1 Score
of 0.0, and RL F1 Score of 2.60. The results
signify a very narrow overlap of words between the
original summary and BASE-generated summary,
i.e., around 2.6% 1-gram overlap, 0% 2-gram
overlap, and 2.6% LCS overlap. For 100k training
samples, the model produces an R1 F1 Score of
17.6, R2 F1 Score of 4.1, and RL F1 Score of
17.0. The results signify a considerable overlap of

words between the original summary and BASE-
generated summary, i.e., around 17.6% 1-gram
overlap, 4% 2-gram overlap, and 17% LCS overlap.

MED: For 20k training samples, the model
produces an R1 F1 Score of 2.85, R2 F1 Score of
0.0, and RL F1 Score of 2.85. The results signify a
very narrow overlap of words between the original
and MED-generated summaries, i.e., around 2.8%
1-gram overlap, 0% 2-gram overlap, and 2.8%
LCS overlap. For 100k training samples, the model
produces an R1 F1 Score of 23.5, R2 F1 Score of
7.9, and RL F1 Score of 22.3. The results signify a
significant overlap of words between the original
and MED-generated summaries, i.e., around 23%
1-gram overlap, 8% 2-gram overlap, and 21% LCS
overlap.

RETRAIN: For 20k training samples, the
RETRAIN model produces an R1 F1 Score of
3.32, R2 F1 Score of 0.0, and RL F1 Score of
3.32. The results signify a very narrow overlap
of words between the original summary and
RETRAIN-generated summary, i.e., around 3.3%
1-gram overlap, 0% 2-gram overlap, and 3.3%
LCS overlap. The RETRAIN model observes
around 27% rise in R1 F1 and RL F1 scores
compared to the BASE and MED models. For
100k training samples, the model produces an R1
F1 Score of 25.5, R2 F1 Score of 7.9, and RL F1
Score of 23.8. The results signify a significant
overlap of words between the original summary
and RETRAIN-generated summary, i.e., around
25% 1-gram overlap, 8% 2-gram overlap, and 23%
LCS overlap. The model observes around 44% rise
in R1 F1 and RL F2 scores compared to the BASE
and MED models.

5.1 ICE-H Scores

The ICE-H scores on 100k HTSS training samples
for the BASE, MED, and RETRAIN models have
been stated in Table 3. The BASE model generates
a score of 2.699, exhibiting an extremely low level
of informativeness in the summaries. The ICE-
H scores are observed to decline for the MED and
RETRAIN models, where MED achieves a score of
0.2047 and RETRAIN a score of 0.1918. The low
scores attained by the models are attributed to the
various shortcomings encountered when devising
the metric, which is discussed in Section 6.

Figure 3: Examples of generated summaries on the HTSS corpus trained on 5k training samples. Review: source
news article, Original summary: actual headline, Base: output of the BASE model, MED: output of the MED
model, and RT: output of the RETRAIN model.

Figure 4: Examples of generated summaries on the HTSS corpus trained on 20k training samples. Review: source
news article, Original summary: actual headline, Base: output of the BASE model, MED: output of the MED
model, and RT: output of the RETRAIN model.

Figure 5: Examples of generated summaries on the HTSS corpus trained on 100k training samples. Review: source
news article, Original summary: actual headline, Base: output of the BASE model, MED: output of the MED
model, and RT: output of the RETRAIN model.

5.2 Computational Costs

On the HTSS dataset sampled at 100k, the BASE,
MED, and RETRAIN model’s training time per
epoch is about 5.5 hours, 5.3 hours, and 2 hours,
respectively. We trained each model for 50 epochs
with early stopping on a 17.1GB Tesla P100 Nvidia
GPU. The RETRAIN model is the fastest to train
and generates the best Rouge scores. As shown in
Figure 4, the BASE model takes the most amount
of time and converges after 40 epochs, and the
MED model takes almost the same time and con-
verges after 37 epochs. Still, the RETRAIN model
takes only 17 epochs for converging and trains ap-
proximately three times faster than the BASE and
MED models.

6 Challenges

The low performances relayed by the three models
may be a result of one of the following:

1. Size of the dataset for model training:

Table 4: Training speed of the BASE, MED, and RE-
TRAIN model for 100k sample training. The training
speed is calculated as the elapsed time (hours) per epoch,
tested on a 17.1GB Tesla P100 Nvidia GPU card.

Epochs Training Time Total Time
(hrs) (hrs)

BASE 40 0.137 hrs/epoch 5.480
MED 37 0.142 hrs/epoch 5.254

RETRAIN 17 0.111 hrs/epoch 1.887

Since the experiments are carried out to investigate
the model’s efficacy in the low-resource scenario,
it is certainly challenging to attain high model
performance. As established by the results (Figures
3 and 4), training an ATS model from scratch, with
5k and 20k training samples, is likely to deliver
substandard results. However, as can be seen
from the development from 5k to 100k (Figures 3
through 5), increased training data promises the
creation of fluent and informative sentences.

2. Comparatively longer input articles in
Target Domain: The pre-trained feature extractor
(source model) is learned on the Gigaword dataset
that has input articles of up to 31.4 tokens long on
average. All deep learning frameworks demand
a fixed input length value to be specified for
training, as the networks process only fixed-length
inputs. Since the source model is completely
transferred for fine-tuning on the target model, the
hyperparameter values are preserved. However, the
target dataset contains input articles of up to 100
tokens long on average. Longer sequences cause
the models to generate a summary by considering
only the first 3 to 4 sentences.

3. Lack of efficient POS Taggers: Due to
a lack of efficient POS Taggers, keywords could
not be efficiently sampled to find the coverage
score. Many words were POS tagged as "unk"
or "keyword error" was thrown in case of words
that were not lemmatized, i.e., words having
inflectional endings and not the BASE form, as
shown in Figure 2. The existence of phonetic
translations of English words in the target Hindi
dataset also makes it harder to acquire a POS mark.

4. Lack of adequately trained Hindi word
embeddings: The iNLTK library used for acquir-
ing the Hindi word embeddings was inadequate
in providing word vectors for multiple Hindi
words in the dataset. Since the dataset contains
multiple word inflexions, phonetically translated
English words, etc., multiple keywords could not
be considered when computing the ICE-H estimate.
This loss of key information led to significant
inaccuracies in the ICE-H scores. The scores could
not be rendered useful for gauging the information
covered in the model-generated summaries.

7 Conclusion

The primary aim of this preliminary assessment is
to conduct experiments to test the effectiveness of
three models in the low-resource setting, regular
attention-based encoder-decoder (BASE), multi-
level encoder-decoder (MED), and TL-based fine-
tuned model (RETRAIN), for performing abstrac-
tive Hindi text summarization. To test how the
size of the training sample effects the output sum-
mary, we create randomly sampled instances of
sizes 5k, 20k, and 100k from a Hindi corpora con-
taining news-headline pairs, for fine-tuning the

three models. At 5k, all the models are unable
to extract meaningful information from the text
and instead produce word repetition sequences that
neither make sense nor convey any significant infor-
mation. As the sample size is increased to 20k, all
models start to extract significant words from the
text, but the sentences are still poorly constructed.
The RETRAIN model, however, is able to predict
important words from text but the headline is still
incompetent. At 100k, every model begins crafting
coherent headlines that convey significant informa-
tion, where, the RETRAIN strategy produced head-
lines that were more well-focused and informative.
For assessing the quality of the Hindi abstracts gen-
erated for these random samples, we also propose
an evaluation metric (ICE-H), the framework of
which is borrowed from the ICE metric for evaluat-
ing English language summaries. We evaluate the
respective model’s performance using ICE-H and
report our findings and limitations.

References
Ayham Alomari, Norisma Idris, Aznul Qalid Md Sabri,

and Izzat Alsmadi. 2022. Deep reinforcement and
transfer learning for abstractive text summariza-
tion: A review. Computer Speech & Language,
71:101276.

Gaurav Arora. 2020. inltk: Natural language toolkit for
indic languages. arXiv preprint arXiv:2009.12534.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

B Mohan Bharath, B Aravindh Gowtham, and M Akhil.
2022. Neural abstractive text summarizer for telugu
language. In Soft Computing and Signal Processing,
pages 61–70. Springer.

Pushpak Bhattacharyya. 2010. IndoWordNet. In Pro-
ceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10).

Yi-Syuan Chen and Hong-Han Shuai. 2021. Meta-
transfer learning for low-resource abstractive sum-
marization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 12692–
12700.

Radia Rayan Chowdhury, Mir Tafseer Nayeem,
Tahsin Tasnim Mim, Md Saifur Rahman Chowdhury,
and Taufiqul Jannat. 2021. Unsupervised abstrac-
tive summarization of bengali text documents. arXiv
preprint arXiv:2102.04490.

Varsha R Embar, Surabhi R Deshpande, AK Vaish-
navi, Vishakha Jain, and Jagadish S Kallimani. 2013.

saramsha-a kannada abstractive summarizer. In 2013
International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pages
540–544. IEEE.

Pascal Fecht, Sebastian Blank, and Hans-Peter Zorn.
2019. Sequential transfer learning in nlp for german
text summarization. In SwissText.

Sebastian Gehrmann, Zachary Ziegler, and Alexander M
Rush. 2019. Generating abstractive summaries with
finetuned language models. In Proceedings of the
12th International Conference on Natural Language
Generation, pages 516–522.

Sudha Gopalakrishnan. 2009. Manuscripts and indian
knowledge systems: the past contextualising the fu-
ture. In 3rd International UNUESCO Conference.

Som Gupta and Sanjai Kumar Gupta. 2019. Abstractive
summarization: An overview of the state of the art.
Expert Systems with Applications, 121:49–65.

Rajina Kabeer and Sumam Mary Idicula. 2014. Text
summarization for malayalam documents — an ex-
perience. In 2014 International Conference on Data
Science Engineering (ICDSE), pages 145–150.

Jagadish S Kallimani, KG Srinivasa, and B Eswara
Reddy. 2016. Statistical and analytical study of
guided abstractive text summarization. Current Sci-
ence, pages 69–72.

Rishabh Karmakar, Ketki Nirantar, Prathamesh Ku-
runkar, Pooja Hiremath, and Deptii Chaudhari. 2021.
Indian regional language abstractive text summariza-
tion using attention-based lstm neural network. In
2021 International Conference on Intelligent Tech-
nologies (CONIT), pages 1–8. IEEE.

Daisy Monika Lal, Krishna Pratap Singh, and
Uma Shanker Tiwary. 2022a. Ice: Information
coverage estimate for automatic evaluation abstrac-
tive summaries. Expert Systems with Applications,
189:116064.

Daisy Monika Lal, Krishna Pratap Singh, and
Uma Shanker Tiwary. 2022b. Multi-level shared-
weight encoding for abstractive sentence summa-
rization. Neural Computing and Applications,
34(4):2965–2981.

Chang-Shing Lee, Zhi-Wei Jian, and Lin-Kai Huang.
2005. A fuzzy ontology and its application to news
summarization. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 35(5):859–
880.

Parth Mehta. 2016. From extractive to abstractive sum-
marization: A journey. In ACL (Student Research
Workshop), pages 100–106. Springer.

Sindhya K Nambiar, Sumam Mary Idicula, et al.
2021a. Attention based abstractive summarization of
malayalam document. Procedia Computer Science,
189:250–257.

Sindhya K Nambiar, S David Peter, and Sumam Mary
Idicula. 2021b. Abstractive summarization of malay-
alam document using sequence to sequence model.
In 2021 7th International Conference on Advanced
Computing and Communication Systems (ICACCS),
volume 1, pages 347–352. IEEE.

Ritesh Panjwani, Diptesh Kanojia, and Pushpak Bhat-
tacharyya. 2018. pyiwn: A python based api to ac-
cess indian language wordnets. In Proceedings of the
9th Global Wordnet Conference, pages 378–383.

CS Saranyamol and L Sindhu. 2014. A survey on au-
tomatic text summarization. International Journal
of Computer Science and Information Technologies,
5(6):7889–7893.

Shagun Sinha and Girish Nath Jha. 2020. Abstrac-
tive text summarization for sanskrit prose: A study
of methods and approaches. In Proceedings of the
WILDRE5–5th Workshop on Indian Language Data:
Resources and Evaluation, pages 60–65.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014a.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014b.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Md Ashraful Islam Talukder, Sheikh Abujar, Abu
Kaisar Mohammad Masum, Fahad Faisal, and
Syed Akhter Hossain. 2019. Bengali abstractive text
summarization using sequence to sequence rnns. In
2019 10th International Conference on Computing,
Communication and Networking Technologies (ICC-
CNT), pages 1–5. IEEE.

Sabina Yeasmin, Priyanka Basak Tumpa, Adiba Mah-
jabin Nitu, Md Palash Uddin, Emran Ali, and Ma-
sud Ibn Afjal. 2017. Study of abstractive text sum-
marization techniques. American Journal of Engi-
neering Research, 6(8):253–260.

Julio Christian Young and Andre Rusli. 2019. Review
and visualization of facebook’s fasttext pretrained
word vector model. In 2019 International Confer-
ence on Engineering, Science, and Industrial Appli-
cations (ICESI), pages 1–6. IEEE.

Ekaterina Zolotareva, Tsegaye Misikir Tashu, and
Tomás Horváth. 2020. Abstractive text summariza-
tion using transfer learning. In ITAT, pages 75–80.

https://doi.org/10.1109/ICDSE.2014.6974627
https://doi.org/10.1109/ICDSE.2014.6974627
https://doi.org/10.1109/ICDSE.2014.6974627

