@inproceedings{akram-jyoti-2023-revolutionizing,
title = "Revolutionizing Authentication: Harnessing Natural Language Understanding for Dynamic Password Generation and Verification",
author = "Al-Rumaim, Akram and
D. Pawar, Jyoti",
editor = "D. Pawar, Jyoti and
Lalitha Devi, Sobha",
booktitle = "Proceedings of the 20th International Conference on Natural Language Processing (ICON)",
month = dec,
year = "2023",
address = "Goa University, Goa, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2023.icon-1.67",
pages = "670--678",
abstract = "In our interconnected digital ecosystem, API security is paramount. Traditional static password systems once used for API authentication, face vulnerabilities to cyber threats. This paper explores Natural Language Understanding (NLU) as a tool for dynamic password solutions, achieving 49.57{\%} accuracy. It investigates GPT-2 for dynamic password generation and innovative NLU-based verification using a set of specific criteria and threshold adjustments. The study highlights NLU{'}s benefits, challenges, and prospects in enhancing API security. This approach is a significant stride in safeguarding digital interfaces amidst evolving Cyber Security threats. Keywords: Cyber Security, Authentication, API Security, Generative AI, Dynamic Passwords, Passwords Verification, NLU",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="akram-jyoti-2023-revolutionizing">
<titleInfo>
<title>Revolutionizing Authentication: Harnessing Natural Language Understanding for Dynamic Password Generation and Verification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Akram</namePart>
<namePart type="family">Al-Rumaim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jyoti</namePart>
<namePart type="family">D. Pawar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th International Conference on Natural Language Processing (ICON)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jyoti</namePart>
<namePart type="family">D. Pawar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sobha</namePart>
<namePart type="family">Lalitha Devi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">Goa University, Goa, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In our interconnected digital ecosystem, API security is paramount. Traditional static password systems once used for API authentication, face vulnerabilities to cyber threats. This paper explores Natural Language Understanding (NLU) as a tool for dynamic password solutions, achieving 49.57% accuracy. It investigates GPT-2 for dynamic password generation and innovative NLU-based verification using a set of specific criteria and threshold adjustments. The study highlights NLU’s benefits, challenges, and prospects in enhancing API security. This approach is a significant stride in safeguarding digital interfaces amidst evolving Cyber Security threats. Keywords: Cyber Security, Authentication, API Security, Generative AI, Dynamic Passwords, Passwords Verification, NLU</abstract>
<identifier type="citekey">akram-jyoti-2023-revolutionizing</identifier>
<location>
<url>https://aclanthology.org/2023.icon-1.67</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>670</start>
<end>678</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Revolutionizing Authentication: Harnessing Natural Language Understanding for Dynamic Password Generation and Verification
%A Al-Rumaim, Akram
%A D. Pawar, Jyoti
%Y D. Pawar, Jyoti
%Y Lalitha Devi, Sobha
%S Proceedings of the 20th International Conference on Natural Language Processing (ICON)
%D 2023
%8 December
%I NLP Association of India (NLPAI)
%C Goa University, Goa, India
%F akram-jyoti-2023-revolutionizing
%X In our interconnected digital ecosystem, API security is paramount. Traditional static password systems once used for API authentication, face vulnerabilities to cyber threats. This paper explores Natural Language Understanding (NLU) as a tool for dynamic password solutions, achieving 49.57% accuracy. It investigates GPT-2 for dynamic password generation and innovative NLU-based verification using a set of specific criteria and threshold adjustments. The study highlights NLU’s benefits, challenges, and prospects in enhancing API security. This approach is a significant stride in safeguarding digital interfaces amidst evolving Cyber Security threats. Keywords: Cyber Security, Authentication, API Security, Generative AI, Dynamic Passwords, Passwords Verification, NLU
%U https://aclanthology.org/2023.icon-1.67
%P 670-678
Markdown (Informal)
[Revolutionizing Authentication: Harnessing Natural Language Understanding for Dynamic Password Generation and Verification](https://aclanthology.org/2023.icon-1.67) (Al-Rumaim & D. Pawar, ICON 2023)
ACL